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Electroencephalography (EEG) studies produce region-
referenced functional data via EEG signals recorded across
scalp electrodes. The high-dimensional data can be used to
contrast neurodevelopmental trajectories between diagnos-
tic groups, for example between typically developing (TD)
children and children with autism spectrum disorder (ASD).
Valid inference requires characterization of the complex
EEG dependency structure as well as covariate-dependent
heteroscedasticity, such as changes in variation over develop-
mental age. In our motivating study, EEG data is collected
on TD and ASD children aged two to twelve years old. The
peak alpha frequency, a prominent peak in the alpha spec-
trum, is a biomarker linked to neurodevelopment that shifts
as children age. To retain information, we model patterns of
alpha spectral variation, rather than just the peak location,
regionally across the scalp and chronologically across devel-
opment. We propose a covariate-adjusted hybrid principal
components analysis (CA-HPCA) for EEG data, which uti-
lizes both vector and functional principal components anal-
ysis while simultaneously adjusting for covariate-dependent
heteroscedasticity. CA-HPCA assumes the covariance pro-
cess is weakly separable conditional on observed covari-
ates, allowing for covariate-adjustments to be made on the
marginal covariances rather than the full covariance lead-
ing to stable and computationally efficient estimation. The
proposed methodology provides novel insights into neurode-
velopmental differences between TD and ASD children.

Keywords and phrases: Autism spectrum disorder,
Covariate-adjustments, Electroencephalography, Functional
data analysis, Heteroscedasticity.

1. INTRODUCTION

Despite the numerous developmental delays observed in
children with autism spectrum disorder (ASD) compared
to their typically developing peers (TD), the neural mecha-
nisms underpinning these delays are not well characterized.
To address this gap, our motivating study collected resting-
state electroencephalograms (EEG) on TD and ASD chil-
dren aged two to twelve years old, making it possible to
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contrast neural processes between the two diagnostic groups
over a wide developmental range. EEG and magnetoen-
cephalography (MEG) characterize cortical and intracortical
brain activity, respectively, via the measurement of electri-
cal potentials and their corresponding oscillatory dynamics
(i.e. spectral characteristics). Recent studies in cognitive de-
velopment using both EEG and MEG highlight the peak
alpha frequency (PAF), defined as the location of a single
prominent peak in the spectral density within the alpha fre-
quency band (6–14 Hz), as a potential biomarker associated
with autism diagnosis [16, 14, 15]. Specifically, the location
of the PAF tends to shift from lower to higher frequencies
as TD children age but this chronological shift is notably
delayed or absent in ASD children [38, 30, 14, 15]. This
trend is observed in our motivating data from a temporal
electrode (T8) where the PAF, identifiable as ‘humps’ in
age-specific slices of the group-specific bivariate mean alpha
spectral density (across age and frequency), increases in fre-
quency with age for TD children but not for ASD children
(Figure 1 (a)).

Although the PAF holds promise as a biomarker for neu-
ral development in TD and ASD children, emphasis on the
identification of a single peak produces considerable draw-
backs. Not only is estimation of subject-specific PAF error
prone due to the presence of noise and multiple local max-
ima [11] but also identification of a single peak frequency
inherently reduces the alpha spectral band to a single scalar
summary resulting in a loss of information. To avoid these
limitations, we follow Scheffler et al. [36] and consider the
entire spectral density across the alpha band as a functional
measurement of neural activity.

In our motivating data, EEG signals are recorded from a
high-density electrode array for several minutes and the time
series at each channel is divided into overlapping two-second
segments prior to Fast Fourier Transform (FFT) to the fre-
quency domain. Spectral information is averaged across seg-
ments to boost the signal-to-noise ratio and the resulting
data form region-referenced functional data with electrodes
and spectral densities referred to as the regional and func-
tional dimensions, respectively.

We focus on modeling and contrasting patterns of alpha
spectral variation regionally across the scalp and chrono-
logically across development for both the ASD and TD di-
agnostic groups. Previous research clearly shows that al-
pha spectral dynamics differ as a function of age between
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Figure 1. (a) Slices of the group-specific bivariate mean alpha spectral density (across age and frequency (6–14 Hz)) at ages
50, 70, 90 and 110 months from the T8 electrode. Darker lines correspond to older children. (b) A schematic diagram of the

10–20 25 electrode montage observed in the EEG data.

TD and ASD children and to assume a constant covari-
ance structure across development risks missing important
findings. To preserve developmental information, we pro-
pose a covariate-adjusted hybrid principal components anal-
ysis (CA-HPCA) that models variation in region-referenced
functional data while simultaneously allowing the patterns
of variation to change as a function of subject-specific covari-
ates. CA-HPCA assumes the covariance process is weakly
separable conditional on observed covariates, allowing for
covariate-adjustments to be made on the marginal covari-
ances rather than the full covariance leading to stable and
computationally efficient estimation.

Since the introduction of the functional principal compo-
nents analysis (FPCA) expansion (i.e. Karhunen–Loève ex-
pansion; [24, 28]), a detailed literature has developed around
the estimation of functional principal scores and components
for both densely and sparsely observed functional data along
a single dimension (see Wang et al. [39] for a thorough re-
view). In recent years, the literature surrounding FPCA has
shifted to consider functional data with more complex de-
pendency structures, including repeatedly measured func-
tional data [12, 13, 26, 32, 31, 45], longitudinally observed
functional data [19, 8, 33, 7, 29], spatially correlated func-
tional data [2, 18, 44, 37, 27], both spatially and longitu-
dinally observed functional data [21, 35], and multivariate
functional data [22, 9, 20]. While these methods permit mod-
eling of high dimensional functional covariances, they are
unable to adjust for covariates in the analysis of higher di-
mensional functional data where the covariate may intro-
duce heteroscedasticity to the functional dependency struc-
ture (e.g. due to chronological age).

In the simplified context of one-dimensional functional
data, existing methods allow for covariate-adjustments to
both the functional mean and covariance. Generally, the

functional mean is smoothed across the covariate-domain,
or calculated for each class in the case of discrete covariates.
Covariate-adjustments are made to the functional covari-
ance in two ways: either both the eigenvalues and eigen-
functions of the functional covariance are allowed to change
as a function of observed covariates, or the eigenfunctions
are assumed to be constant across the covariate dimension
but their corresponding eigenvalues (as well as principal
scores) are covariate-dependent. In the former class, Cardot
[5] proposed a non-parametric covariate-adjusted FPCA in
the context of dense functional data and Jiang and Wang
[23] extended covariate-adjusted FPCA to noisy or sparse
settings by estimating subject-specific scores using condi-
tional expectation. In both cases, covariance estimation is
performed non-parametrically by simultaneous smoothing
across the covariate and functional domains via kernel meth-
ods. By fixing eigenfunctions across the covariate domain,
Chiou et al. [10] introduced a semi-parametric functional
regression model that estimates covariate-dependent prin-
cipal scores using a single-index model and Backenroth
et al. [1] developed a heteroscedastic FPCA for repeat-
edly measured curves that models eigenvalues as an ex-
ponential function of covariate and subject-dependent ef-
fects. We note that a parallel but distinct time series litera-
ture exists which focuses on estimation of covariate mod-
ulated spectral densities [17, 25, 4] but these works pri-
marily focus on directly modeling non-stationary spectra
as opposed functional data generally and do not embed
covariate-adjustments into simplifying assumptions of the
high-dimensional covariance structure (i.e. weak separabil-
ity).

Our proposed covariate-adjusted hybrid principal
components analysis (CA-HPCA) combines existing
one-dimensional methods for covariate-dependent func-
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tional heteroscedasticity with recent advances in multi-
dimensional FPCA to allow covariate-adjustments in the
context of region-referenced functional data. We briefly
explore the methodological contributions of our proposed
model and the resulting computational gains. A central
theme in FPCA decompositions for multi-dimensional
functional data is the use of simplifying assumptions
regarding the covariance structure to ease estimation. A
flexible approach in modeling two-dimensional functional
data is to assume weak separability of the covariance
process [7, 29] in which the marginal covariances along each
dimension are targeted and the full covariance is projected
onto a tensor basis formed from the corresponding marginal
eigenfunctions. Thus, estimation is reduced from that of
the total covariance in four-dimensions to the marginal
covariances in two-dimensions for which efficient two-
dimensional smoothers exist. Scheffler et al. [35] extended
weak separability to region-referenced functional EEG
data by proposing a hybrid principal components analysis
(HPCA) that includes a discrete regional dimension but
this model does not allow for the mean or covariance to
change across development as needed in our application. We
leverage the simplifying assumptions and computational
efficiency of HPCA by introducing covariate-dependence
to the functional mean and covariance which allows the
marginal eigenvalues and eigenfunctions to change across
the covariate domain.

In addition to the flexible modeling framework, CA-
HPCA also introduces major computational savings. These
savings are related to the the addition of a covariate dimen-
sion to estimation of the marginal covariances which for a
scalar covariate requires smoothing across three dimensions.
Previous methods such as Cardot [5] and Jiang and Wang
[23] utilized kernel methods to estimate covariate-dependent
marginal covariances but these approaches are computa-
tionally intensive and scale poorly with the introduction
of additional covariates. To address this challenge, we ex-
tend the fast functional covariance smoothing proposed by
Cederbaum et al. [6] to allow for covariate-adjustments by
including an additional basis along the covariate dimen-
sion. Thus, CA-HPCA generalizes covariate-adjustments to
high-dimensional functional covariances and achieves sub-
stantial reduction in computational burden by applying co-
variate adjustments to the marginal covariances with subse-
quent estimation performed via cutting-edge fast covariance
smoothers.

A mixed effects framework is proposed to estimate the
subject-specific scores with variance components that are a
function of observed covariates. The estimated model com-
ponents can be coupled with a parametric bootstrap resam-
pling procedure to allow inference in the form of hypothesis
testing and point-wise confidence intervals. We apply the
proposed procedure to assess differences in alpha spectral
dynamics between the TD and ASD groups across develop-
ment. The remaining sections are organized as follows. Sec-

tion 2 introduces the proposed CA-HPCA and Section 3 de-
scribes the corresponding estimation procedure. Application
of the proposed method to our motivating EEG data follows
in Section 4. Section 5 studies the finite-sample properties
of CA-HPCA via extensive simulations. Section 6 concludes
with a brief summary and discussion.

2. COVARIATE-ADJUSTED HYBRID
PRINCIPAL COMPONENTS ANALYSIS

(CA-HPCA)

Consider a region-referenced functional process observed
in the presence of some continuous non-functional covariate
ai ∈ A, Ydi(ai, r, ω), for subject i, i = 1, . . . , nd, from group
d, d = 1, . . . , D, in region r, r = 1, . . . , R, and at frequency
ω, ω ∈ Ω. We decompose Ydi(ai, r, ω) additively such that
the expectation and covariance of the process both depend
on the covariate ai,

Ydi(ai, r, ω) = ηd(ai, r, ω) + Zdi(ai, r, ω) + εdi(ai, r, ω),

where ηd(ai, r, ω) = E{Ydi(ai, r, ω)|ai} denotes the group-
region mean function, Zdi(ai, r, ω) denotes a mean zero
region-referenced stochastic process with total variance
Σd,T (ai; r, ω; r

′, ω′) = cov{Zdi(ai, r, ω), Zdi(ai, r
′, ω′)|ai},

and εdi(ai, r, ω) denotes measurement error with mean zero
and variance σ2

d that is independent across the regional,
functional, and covariate domains. We assume the group-
region mean functions ηd(a, r, ω) are smooth in both the
functional domain Ω and the non-functional domain A
though we place no restrictions across the regional domain
R

R which in EEG data can lack the ordering provided by
continuity.

In the proposed CA-HPCA model, we assume that the
total covariance Σd,T (a; r, ω; r

′, ω′) is weakly separable for
each a ∈ A. Weak separability, a concept recently proposed
by Lynch and Chen [29] for two-dimensional functional data
and adapted by Scheffler et al. [35] to region-referenced func-
tional EEG data, implies that a covariance can be expressed
as a weighted sum of separable covariance components and
that the direction of variation (i.e. eigenvectors or eigen-
functions) along one dimensions of the EEG data is the
same across fixed slices of the other dimension. Specifically,
this assumption allows a multi-dimensional functional pro-
cess to be decomposed parsimoniously via tensors of one-
dimensional eigencomponents obtained from marginal co-
variances along each dimension. Note that weak separabil-
ity is more flexible than strong separability (i.e. separabil-
ity) commonly utilized in spatiotemporal modeling which
requires the total covariance, not just the directions of vari-
ation, is the same up to a constant for fixed slices of the other
dimensions. Unlike previous applications of weak separa-
bility, we introduce covariate-dependent heteroscedasticity
by assuming the total covariance is weakly separable condi-
tional on observed covariates and that marginal covariances
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in each dimension vary smoothly along the covariate do-
main. Let the covariate-dependent regional and functional
marginal covariances be defined as,

{Σd,R(a)}r,r′ =

∫
Ω

cov{Zdi(ai, r, ω), Zdi(ai, r
′, ω)}dω

=

R∑
k=1

τdk,R(ai)vdk(ai, r)vdk(ai, r
′),

Σd,Ω(a, ω, ω
′) =

R∑
r=1

cov{Zdi(ai, r, ω), Zdi(ai, r, ω
′)}

=

∞∑
�=1

τd�,Ω(ai)φd�(ai, ω)φd�(ai, ω
′),

where vdk(a, r) are the covariate-dependent eigenvectors
of the regional marginal covariance matrix {Σd,R(a)}r,r′ ,
φd�(a, ω) are the covariate-dependent eigenfunctions of
the functional marginal covariance surface Σd,Ω(a, ω, ω

′),
and τdk,R(a) and τd�,Ω(a) are the regional and func-
tional covariate-dependent marginal eigenvalues, respec-
tively. Thus, there exists an orthogonal expansion of
the covariate-dependent marginal covariances in terms of
covariate-dependent marginal eigenvectors and eigenfunc-
tions.

Utilizing the covariate-dependent eigenvectors and eigen-
functions, the covariate-adjusted hybrid principal compo-
nents decomposition (CA-HPCA) of Ydi(ai, r, ω) is given
as,

Ydi(ai, r, ω) = ηd(ai, r, ω) + Zdi(ai, r, ω) + εdi(ai, r, ω)

= ηd(ai, r, ω) +

R∑
k=1

∞∑
�=1

ξdi,k�(ai)vdk(ai, r)

× φd�(ai, ω) + εdi(ai, r, ω),

where ξdi,k�(ai) are uncorrelated subject-specific
scores defined through the projection of the region-
referenced stochastic process onto the covariate-
dependent tensor basis, 〈Zdi(ai, r, ω), vdk(ai, r)φd�(ai, ω)〉 =∑R

r=1

∫
Zdi(ai, r, ω)vdk(ai, r)φd�(ai, ω)dω. Note that under

the assumption of weak separability the subject-specific
scores are uncorrelated over regions and frequencies. The
CA-HPCA decomposition leads to the decomposition of
the total covariance Σd,T (a; r, ω; r

′, ω′) as follows,

Σd,T (a; r, ω; r
′, ω′) = cov{Zdi(a, r, ω), Zdi(a, r

′, ω′)|a}
+ σ2

dδ(a; r, ω; r
′, ω′)

=

R∑
k=1

∞∑
�=1

τd,k�(a)vdk(a, r)vdk(a, r
′)

×φd�(a, ω)φd�(a, ω
′)

+σ2
dδ(a; r, ω; r

′, ω′),

where τd,k�(a) = var{ξdi,k�(a)} are covariate-dependent
variance components and δ(a, r, ω; a′, r′, ω′) denotes the in-
dicator for {(a, r, ω) = (a′, r′, ω′)}. Because the variance
components τd,k�(a) are allowed to vary along the covari-
ate domain, covariate-dependent heteroscedasticity is intro-
duced not only through the covariate-dependent marginal
eigencomponents but also in their relative contribution to
the total variance.

In practice, the CA-HPCA decomposition is truncated
to include only Kd and Ld covariate-dependent marginal
eigencomponents for the regional and functional domains,
respectively, with the number of components initially se-
lected by the fraction of variance explained (FVE). One
guideline is to include the minimum number of covariate-
dependent marginal eigencomponents in the CA-HPCA ex-
pansion that explain at least 90% of variation in their re-
spective covariate-dependent marginal covariances for each
observed covariate value, though this may need to be re-
laxed in certain instances when the number of eigencom-
ponents is excessively high for a few covariate values. The
final number of components can be fixed after the subject-
specific scores and their associated variance components are
estimated via a mixed effects model proposed in Section 3.1
which allow enumeration of the total FVE in the observed
data not just for the marginal covariances but the total
covariance. Further details on the selection of the number
of covariate-dependent marginal eigencomponents are pre-
sented in Section 3.1. As mentioned, the above model as-
sumes that both the marginal directions of variation and
their associated variance components for subject-specific
scores are allowed to vary across the covariate domain. If in-
stead we allow only the variance components to be covariate-
dependent but restrict the marginal eigenfunctions and
eigenvectors to be constant across the covariate-domain (i.e.
the marginal directions of variation are common across the
covariate domain), we produce a reduced model where the
marginal covariance may be pooled across observed covari-
ates. We defer specifics about this useful extension on the
reduced CA-HPCA to Web Appendix A of the Supporting
Information (http://intlpress.com/site/pub/files/ supp/sii/
2022/0015/0002/SII-2022-0015-0002-s002.pdf). While the
reduced CA-HPCA can lead to major computational sav-
ings, the assumption of covariate independent eigenfunc-
tions may not be satisfied in every application. As an exam-
ple, it was not found plausible in the context of our moti-
vating EEG data where the directions of marginal variation
were not constant across development.

3. ESTIMATION OF MODEL
COMPONENTS AND INFERENCE

The following section details estimation of all CA-HPCA
model components, including group-region mean functions,
covariate-dependent marginal covariances, subject-specific
decomposition scores and their associated variance com-
ponents as well as procedures for inference made available
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Algorithm 1 CA-HPCA Estimation Procedure

1. Estimation of group-region mean functions

(a) Calculate η̂d(ai, r, ω) by applying a bivariate penalized spline smoother to all observed data {ai, ω, Ydi(ai, r, ω) : i =
1, . . . , nd; ai ∈ A;ω ∈ Ω}.

(b) Mean center each observation, Ŷ c
di(ai, r, ω) = Ydi(ai, r, ω)− η̂d(ai, r, ω).

2. Estimation of covariate-dependent marginal covariances and measurement error variance

(a) Calculate Σ̂d,Ω(a, ω, ω
′) and σ̂2

d,Ω by applying trivariate penalized spline smoothers to the products,

{ai, ω, ω
′, Ŷ c

di(ai, r, ω)Ŷ
c
di(ai, r, ω

′) : i = 1, . . . , nd; ai ∈ A; r = 1, . . . , R;ω, ω′ ∈ Ω}.
(b) Calculate Σ̂d,R(a) by smoothing each (r, r′) entry across A. For r �= r′, estimate {Σ̂d,R(a)}(r,r′) by applying a univariate

kernel smoother to {ai, r, r
′, Ŷ c

di(ai, r, ω)Ŷ
c
di(ai, r

′, ω) : i = 1, . . . , nd; ai ∈ A; r �= r′ = 1, . . . , R;ω ∈ Ω}. For r = r′, estimate

{Σ̂d,R(a)}(r,r) by applying a univariate kernel smoother to {ai, r, r, Ŷ
c
di(ai, r, ω)Ŷ

c
di(ai, r, ω) − σ̂2

d,Ω : i = 1, . . . , nd; ai ∈
A; r = r′ = 1, . . . , R;ω ∈ Ω}.

3. Estimation of covariate-dependent marginal eigencomponents

(a) For each unique value of a observed, employ FPCA on Σ̂d,Ω(a, ω, ω
′) to estimate the covariate-dependent eigenvalue,

eigenfunction pairs, {τd�,Ω(a), φd�(a, ω) : � = 1, . . . , Ld}.
(b) For each unique value of a observed, employ PCA on Σ̂d,R(a) and to estimate the covariate-dependent eigenvalue,

eigenvector pairs {τdk,R(a), vdk(a, r) : k = 1, . . .Kd}.

4. Estimation of covariate-dependent variance components and subject-specific scores via linear mixed effects models

(a) Calculate τ̂dg(ai) and σ̂2
d by fitting the proposed linear mixed effects model.

(b) Select G′
d such that FV EdG′ > .8 for d = 1, . . . , D.

(c) Calculate ξ̂dig(ai) as the BLUP ξ̂dig(ai) = E{ξdig(ai)|Ydi} and form predictions Ŷdi(ai, r, ω).

through the proposed linear mixed effects model. In addi-
tion, guidance is provided for the selection of the number of
eigencomponents included in the proposed decomposition.

3.1 Estimation of CA-HPCA model
components

We begin by introducing the CA-HPCA algorithm above
and focus our discussion in this section more on the novel es-
timation procedures used in targeting covariate-dependent
marginal covariances and variance components found in
steps 2 and 4, respectively.

(1) Estimation of group-region mean functions: We cal-
culate the estimated group-region mean function η̂d(ai, r, ω)
for each region via smoothing performed by projection onto
a tensor basis formed by penalized marginal B-splines in the
covariate and functional domains. Smoothing parameter se-
lection is performed using restricted maximum likelihood
(REML) methods. Assuming the estimated group-region
mean functions lie in the space spanned by the marginal
B-splines, the estimated group-region mean functions enjoy
asymptotic consistency as discussed in [41].

(2) Estimation of covariate-dependent marginal covari-
ances and measurement error variance: We estimate the
covariate-dependent marginal covariances by assuming each
two-dimensional marginal covariance varies smoothly over
the covariate dimension. For the functional marginal covari-
ance, Σd,Ω(a, ω, ω

′), we extend the fast bivariate covariance

smoother of Cederbaum et al. [6] to include a third covari-
ate dimension a ∈ A. To briefly review, Cederbaum et al.
[6] proposed a smooth method of moments approach to esti-
mate covariance functions based on fast bivariate penalized
splines. To achieve computational efficiency, their method
leverages the symmetry of the covariance function to reduce
the data used in estimation by targeting the upper triangle
of the covariance surface (including the diagonal) and en-
force symmetry constraints that reduce the number of spline
coefficients needed for estimation.

We extend their approach via the development of a fast
trivariate penalized spline smoother which incorporates co-
variate information through the introduction of a marginal
spline basis along the covariate dimension. The resulting
smoother maintains the computational efficiency of Ceder-
baum et al. [6] while simultaneously allowing the marginal
functional covariance to vary smoothly along the covari-
ate dimension. In the process of estimating the covariate-
dependent marginal functional covariance, we obtain an ini-
tial estimate of the measurement error variance σ̂2

d,Ω as well
by modeling the diagonal elements additively as a function
of the marginal covariance and measurement error variance.
Smoothing parameter selection is performed using REML
methods. Note, the smooth method of moments estima-
tor assumes independences of the cross products and ho-
moscedastic Gaussian measurement error, common assump-
tions in the estimation of functional curves. Smooth covari-
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ance estimators which allow for heteroscedasticity are ex-
plored in Xiao et al. [42] but are more computationally de-
manding. However, Cederbaum et al. [6] showed that esti-
mates based on the working assumptions of independence
and homoscedastic Gaussian measurement error are robust
when these assumptions are violated and well worth the
computational savings.

The regional marginal covariance {Σd,R(a)}r,r′ is discrete
in the regional dimension and thus not amenable to trivari-
ate smoothers as the marginal functional covariance above.
Therefore, we estimate the raw regional marginal covariance
at each covariate-value by removing the measurement vari-
ance from the diagonals as in Scheffler et al. [35], and smooth
the resulting matrices entry-by-entry along the covariate do-
main. To ensure a positive definite regional marginal covari-
ance, we utilize a kernel function with a common band-
width in smoothing each entry across the raw covariate-
dependent regional marginal covariances. The optimal band-
width is selected via leave-one-subject-out cross validation
(LOSOCV). Our kernel smoother is the Nadaraya–Watson
kernel weighted-average,

{Σ̂d,R(ao)}(r,r′) =
{ nd∑

i=1

∑
ω∈Ω

Kλ(ai − ao)Ŷ
c
di(ai, r, ω)

× Ŷ c
di(ai, r

′, ω)
}/{

|Ω|
nd∑
i=1

Kλ(ai − ao)
}
,

where Kλ(·) is a kernel with bandwidth parameter λ,

Ŷ c
di(ai, r, ω) = Ydi(ai, r, ω) − η̂d(ai, r, ω) is the demeaned

subject-level data, and |Ω| is the number of observed func-
tional grid points. For example, in our data application and
simulation study we make use of a Gaussian kernel func-

tion such that Kλ(·) = exp
(
− (ai−ao)

2

2λ

)
. The parameter λ

is selected to minimize the LOSOCV(λ) statistic across all
entries (r, r′),

LOSOCV(λ) =

R∑
r=1

r∑
r′=1

LOSOCV(λ, r, r′),

LOSOCV(λ, r, r′) =
1

|Ω|nd

nd∑
i=1

∑
ω∈Ω

[
Ŷ c
di(ai, r, ω)

× Ŷ c
di(ai, r

′, ω)− {Σ̂(−i)
d,R (ai)}(r,r′)

]2
,

where {Σ̂(−i)
d,R (ai)} is the estimated smoothed marginal co-

variance matrix with the ith subject left out. As with any
Nadaraya–Watson estimator, concerns can arise when the
covariate space grows to dimensions higher than observed
in our motivating data.

Thus, we introduce two novel covariate-dependent
smoothers for the regional and functional marginal covari-
ances that allow for calculation of the covariate-dependent
marginal covariances that may be used for subsequent
covariate-dependent eigendecompositions.

(3) Estimation of covariate-dependent marginal eigen-
components: To estimate the covariate-dependent marginal
eigencomponents we perform eigendecompositions at each
fixed covariate-value as described in Scheffler et al. [35]
retaining a common number of Kd and Ld covariate-
dependent eigencomponents. We initially include Kd and Ld

components that explain at least 90% of variation in their re-
spective covariate-dependent marginal covariances for each
observed covariate value.

(4) Estimation of covariate-dependent variance compo-
nents and subject-specific scores via linear mixed effects
models: We make use of the estimated group-region mean
functions and covariate-dependent marginal eigencompo-
nents to propose a linear mixed effects framework for es-
timation of the covariate-dependent variance components
and measurement error variance. Under the assumption of
joint normality of the covariate-dependent subject-specific
scores and measurement error, the proposed mixed effects
framework induces regularization and stability in modeling
the data by enforcing a low-rank structure on the covariate-
dependent variance components through projection of the
corresponding precision components onto a smooth basis.
The resulting variance components can be used to select
the number of eigencomponents to include in the CA-HPCA
decomposition by quantifying the proportion of variance ex-
plained, leading to parametric bootstrap based inference in
the form of hypothesis testing and point-wise confidence in-
tervals. We present the linear mixed effects modeling frame-
work below.

To make our notation more compact, we replace the dou-
ble index k� in CA-HPCA decomposition truncated at Kd

and Ld with a single index g = (k − 1) +Kd(�− 1) + 1,

Ydi(ai, r, ω) = ηd(ai, r, ω) +

Gd∑
g=1

ξdig(ai)ϕdg(ai, r, ω)

+ εdi(ai, r, ω),

where ϕdg(ai, r, ω) = vdk(ai, r)φd�(ai, ω) is a covariate-
dependent tensor basis formed from marginal eigencom-
ponents, ξdig(ai) = 〈Zdi(ai, r, ω), ϕdg(ai, r, ω)〉, τdg(ai) =
cov{ξdig(ai)}, and Gd = KdLd. Let Ydi(ai) represent the
vectorized form of Ydi(ai, r, ω) for subject i, i = 1, . . . , nd ob-
served along with covariate value ai. Analogous vectorized
forms for the group-region mean function, ηd(ai, r, ω), the
region-referenced stochastic process Zdi(ai, r, ω), covariate-
dependent tensor basis ϕdg(ai, r, ω), and the the measure-
ment error εdi(ai, r, ω) are denoted by ηdi(ai), Zdi(ai),
ϕdg(ai), and εdi(ai), respectively. Under the assumption
that ξdi(ai) = {ξdi1(ai), . . . , ξdiG(ai)} and εdi(ai) are jointly
Gaussian and cov{ξdi(ai), εdi(ai)} = 0 at a fixed value of ai,
the proposed linear mixed effects model is given as

Ydi(ai) = ηdi(ai) +Zdi(ai) + εdi(ai)

= ηdi(ai) +

Gd∑
g=1

ξdig(ai)ϕdg(ai) + εdi(ai),(1)
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for i = 1, . . . , nd. The model is fit separately in each
group, d = 1, . . . , D and the regional and functional de-
pendencies in Ydi(ai) are induced through the subject-
specific random effects ξdig(ai) in (1). Given the to-
tal covariance is weakly separable for fixed values of a,
cov{ξdig(ai), ξdig′(ai)} = 0 for g �= g′ and thus the co-
variance matrix of the subject-specific scores possesses
a diagonal diagonal structure, cov{ξdi(ai)} = Td(ai) =
diag{τd(ai)}, where τd(ai) = {τd1(ai), . . . , τdG(ai)}. We
further assume that Td(a) evolves smoothly along the co-
variate domain which allows the amount of variation at-
tributed to each component ϕdg(a, r, ω) to vary smoothly
as well. For covariance estimation, we target the smooth
variance components through their corresponding precision
matrix T−1

d (a) = Γd(a) = diag{γd(a)}, where γd(a) =
{1/τd1(ai), . . . , 1/τdG(ai)} = {γd1(a), . . . , γdG(a)}. To esti-
mate the smooth precision components, we project γdg(a)

onto a suitable basis, γdg(a) =
∑P

p=1 υdgpψp(a), where υdgp
are scalar precision components that act as basis weights and{
ψp(a)p=1,...,P

}
are basis functions spanning the covariate

domain (e.g. B-splines). The dimension P of the basis func-
tions is chosen to be sufficiently large to capture changes
in the variance components along the covariate dimension.
Given previous estimates for ηdi(a) and ϕdg(a), estimates
of the covariate-dependent variance components τd(a) and
measurement error variance σ2

d are obtained using REML
methods [41].

The assumption that the variance components evolve
smoothly over the covariate domain resolves several chal-
lenges that emerge when modeling the covariate-dependent
variance components. First, the estimation procedure is able
to borrow strength across the covariate-domain when mod-
eling variation, a necessity when specific covariate values
may only be observed once as in our motivating data. Sec-
ond, we are able to project the precision components onto
a low-rank basis of smooth functions which induces regu-
larization and control over the speed at which τd(a) is al-
lowed to vary. Alternatively, a projection based approach
would be less computationally burdensome with estimates
of the subject-specific scores obtained directly by numerical
integration, ξ̂dig(ai) = 〈Zdi(ai, r, ω), ϕ̂dg(ai, r, ω)〉 and their
corresponding variance components calculated empirically,
τ̂dg(a) = cov{ξ̂dig(a)}, but the resulting estimates are unsta-
ble due to the limited number of observations at each point
along the covariate domain. Therefore, despite the added
compute time, our proposed linear mixed effects framework
is better suited for providing covariate-adjustments to the
region-referenced functional process in a controlled and prin-
cipled manner.

The estimated covariate-dependent variance components
are used to choose the number of eigencomponents included
in the CA-HPCA decomposition where G′

d denotes a set
of eigencomponents such that the total fraction of vari-
ance explained (FV EdG′

d
) is greater than 0.8 for each group

d = 1, . . . , D. We recommend starting with a larger num-
ber Gd = KdLd of covariate-dependent tensor components,
{ϕdg(ai, r, ω) : 1, . . . , Gd}, in the mixed effects modeling
used for the estimation of the covariate-dependent variance
components, {τdg(ai) : g = 1, . . . , Gd}, and then reduce or
add components as appropriate to determine the final value
of G′

d. In order to estimate the group-specific total fraction
variance explained via the G′

d covariate-dependent tensor
components, we consider the quantity,

FV EdG′
d
=

∫
{
∑nd

i=1

∑G′
d

g=1 τ̂dg(ai)}da∫
[
∑nd

i=1{||Ŷ c
di(ai, r, ω)|| −R

∫
σ̂2
dda}]da

,

where ||f(ai, r, ω)||2 =
∑R

r=1

∫
f(ai, r, ω)

2dω. Note that
the above formulation utilizes covariate-dependent variance
components estimates τ̂dg(a) and σ̂2

d obtained from the pro-
posed mixed effects model to calculate the ratio of the vari-
ance in the G′

d eigencomponents to the total variation in the
observed data Ydi(ai, r, ω) without measurement error. The
denominator of FV EdG′

d
does not use variation in a large

number of tensor components to estimate the total variation
in the observed data due to computational costs in fitting
the proposed mixed effects model, but instead uses the two-
dimensional norm of the demeaned data minus measurement
error variance, similar to the approach by Chen et al. [7].
Consequently, when the measurement error variance is over-
estimated and scaled by R

∫
σ̂2
dda, FV EdG′

d
may exceed 1.

Once G′
d is defined, the subject-specific scores can be ob-

tained using their best linear unbiased predictor (BLUP),

ξ̂dig(ai) = E{ξdig(ai)|Ydi}
= τ̂dg(ai)ϕ̂dg(ai)

T Σ̂−1
Ydi

{Ydi(ai)− η̂di(ai)},

where Σ̂Ydi
=

∑G′
d

g=1 τ̂dg(ai)ϕ̂dg(ai)ϕ̂dg(ai)
T + σ̂2

dI. Predic-

tions of subject-specific trajectories Ŷdi(ai) may be formed
as in (1) using estimated components. Asymptotic theory
supporting consistent estimation of the variance compo-
nents and subject-specific scores is discussed in [43]. For
CA-HPCA, this estimation relies on the assumption of weak
separability which ensures that the subject-specific scores
are uncorrelated and thus the variance components form a
diagonal matrix.

3.2 Inference via parametric bootstrap

Inference in the form of hypothesis testing and point-
wise confidence intervals can be performed via a para-
metric bootstrap based resampling from the estimated
CA-HPCA model components. To test the null hypoth-
esis that all groups have equal means in the region r
across the entire covariate domain, i.e. H0 : ηd(a, r, ω) =
η(a, r, ω) for d = 1, . . . D, we propose a parametric
bootstrap procedure based on the CA-HPCA decomposi-
tion. The proposed parametric bootstrap generates out-
comes based on the estimated model components un-
der the null hypothesis for region r as Y b

di(ai, r, ω) =
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η̂(ai, r, ω) +
∑G′

d
g=1 ξ

b
dig(ai)ϕ̂dg(ai, r, ω) + εbdi(ai, r, ω) and

as Y b
di(ai, r

′, ω) = η̂d(ai, r
′, ω) +

∑G′
d

g=1 ξ
b
digϕ̂dg(ai, r

′, ω) +

εbdi(ai, r
′, ω) in the other regions r′ �= r not considered

under the null, where subject-specific scores and measure-
ment error are sampled from ξbdig(ai) ∼ N{0, τ̂dg(ai)} and

εbdi(ai, r, ω) ∼ N (0, σ̂2
d), respectively. The proposed test

statistic Tr = [
∑D

d=1

∫ ∫
{η̂d(a, r, ω) − η̂(a, r, ω)}2dadω]1/2

is based on the norm of the sum of square-integrated depar-
tures of the estimated group-region shifts η̂d(a, r, ω) from the
estimate of the common shift across groups, η̂(a, r, ω). The
common region shift estimate η̂(a, r, ω) under the null is set
to the point-wise average of the group-region shift estimates,
η̂d(a, r, ω), d = 1, . . . , D. We utilize the proposed parametric
bootstrap to estimate the distribution of the test statistic
Tr which can be used to evaluate the null hypothesis across
the covariate domain. Presented below is the algorithm for
the proposed bootstrap test.

Algorithm 2 Bootstrap Test

For a fixed region, r ∈ {1, . . . , R}, perform the following:

1. Generate B parametric bootstrap samples with sample size
and age distribution in each group identical to the observed
data.

2. For the bth parametric bootstrap sample, calculate the test
statistic

T b
r =

√√√√ D∑
d=1

∫ ∫
{η̂b

d(a, r, ω)− η̂b(a, r, ω)}2dadω,

where η̂b
d(a, r, ω) and η̂b(a, r, ω) are both estimated based on

the bth bootstrap sample.

3. Use (1/B)
∑B

b=1 I(T
b
r > Tr) to estimate the p-value where

I(·) denotes the indicator function and Tr is the test statistic
from the original sample.

The bootstrap test described above can be extended to
test the null hypothesis that all groups have equal means
in the region r for a fixed covariate value a∗ ∈ A, i.e.
H0 : ηd(a

∗, r, ω) = η(a∗, r, ω) for d = 1, . . . D. This ex-
tension can be used to test for group differences at par-
ticular covariate values, for example at earlier or later de-
velopmental stages. Outcomes are generated as described
above but the test statistic Tr(a

∗) is calculated at a fixed
covariate value a∗ ∈ A rather than integrated across the
covariate domain. To generate point-wise confidence inter-
vals for estimates of η̂d(a, r, ω), repeat the above parametric
bootstrap procedure but instead generate outcomes from the

model Y b
di(ai, r, ω) = η̂d(ai, r, ω) +

∑G′
d

g=1 ξ
b
digϕ̂dg(ai, r, ω) +

εbdi(ai, r, ω). At each iteration of the bootstrap, estimate
η̂bd(a, r, ω) from the simulated data and then form point-wise
confidence intervals based on percentiles of the estimated
bootstrap group-region mean functions across iterations as
a function of a, r and ω, {η̂bdg(a, r, ω) : b = 1, . . . , B}. The

two versions of the bootstrap test as well as point-wise confi-
dence intervals will be utilized for data analysis in Section 4
and evaluated via simulations in Section 5.

4. APPLICATION TO THE ‘EYES-OPEN’
PARADIGM DATA

4.1 Data structure and methods

In our motivating data application, EEG signals were
sampled at 500 Hz for two minutes from a 128-channel Hy-
droCel Geodesic Sensor Net on 58 ASD and 39 TD chil-
dren aged 25 to 146 months old (diagnostic groups were age
matched). EEG recordings were collected during an ‘eyes-
open’ paradigm in which bubbles were displayed on a screen
in a sound-attenuated room to subjects at rest [14]. We de-
scribe the dataset in our previous work and present an ab-
breviated description here and direct the reader to Schef-
fler et al. [36] for technical details related to pre-processing
and data acquisition. EEG data for each subject is interpo-
lated down to a standard 10–20 system 25 electrode mon-
tage (R = 25, Figure 1(b)) using spherical interpolation as
detailed in Perrin et al. [34], producing 25 electrodes with
continuous EEG signal. Spectral density estimates for each
electrode were obtained on the first 38 seconds of artifact
free EEG data using Welch’s method with two second Han-
ning windows and 50 percent overlap [40], where 38 seconds
constitutes the minimum amount of artifact free data across
subjects. Thus, for each subject the electrode-specific spec-
tral estimates form an instance of region-referenced func-
tional data. Given that our primary interest is to model
the alpha spectrum as a form of functional data, we restrict
our analysis to the alpha spectral band (Ω = (6 Hz, 14 Hz))
which due to the sampling scheme has a frequency resolution
of .25 Hz resulting in |Ω| = 33 functional grid points. The
spectral density within this band is normalized to a unit
area (through division of by its integral over Ω) to better
facilitate comparisons across electrodes and subjects.

We employ the CA-HPCA decomposition to model the
alpha spectrum which allows both the group-region mean
functions and total variation to change across develop-
ment. Estimation for the CA-HPCA procedure is carried
out as described in Section 3.1. Smooths of the group-
region mean functions ηd(r, a, ω) and covariate-dependent
functional marginal covariances Σd,Ω(a, ω, ω

′) are obtained
using tensor bases formed from marginal penalized cubic B-
splines (with 10 and 4 degrees of freedom in the functional
and covariate domains, respectively) and second degree dif-
ference penalties along each dimension. Smooths of the pre-
cision components γdg(a) for the linear mixed effects model
are estimated by projection onto cubic B-splines with 4 de-
grees of freedom in the covariate domain. Penalty param-
eters and variance components for the group-region mean
functions, covariate-dependent functional marginal covari-
ances, and linear mixed effects model are selected via REML
and models are fit using the gam and bam functions from
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Figure 2. (a) Estimated first and second leading covariate-dependent eigenfunctions φd1(a, ω) and φd2(a, ω) at
a = 50, 70, 90, 110 months (darker lines correspond to older children). (b) Estimated first and second leading

covariate-dependent eigenvectors vd1(a, r) and vd2(a, r) at a = 50, 70, 90, 110 months. Shading corresponds to the weight of
each element in the eigenvector.

mgcv (version 1.8-28). Smooths of the covariate-dependent
regional marginal covariance {Σd,R(a)}r,r′ are estimated
as in Section 3.1 using a Gaussian kernel with Nadaraya–
Watson estimates obtained using the ksmooth function from
stats (version 3.6.1) and bandwidth selection performed via
LOSOCV. The parametric bootstrap procedure utilized 200
bootstrap samples. All estimation was performed on a 2.8
GHz 6-Core Intel Core i7 processor operating the R software
environment (version 3.6.1).

4.2 Data analysis results

We present the results from our application of the CA-
HPCA decomposition to the EEG data. While the main
focus of our analysis is to characterize differences in al-
pha spectral dynamics between TD and ASD children over
the course of development via inference on the group-region
mean functions, we begin by briefly discussing the covariate-
dependent marginal eigencomponents produced by the de-
composition. Figure S1 displays the marginal FVE of or-
dered eigencomponents for the covariate-dependent regional
and functional marginal covariances that explain at least
90% of the marginal FVE across the covariate domain.
The marginal FVE attributed to each component is rel-
atively constant over development. The leading (five and
six) covariate-dependent regional marginal eigenvectors and
(four and four) covariate-dependent functional marginal
eigenfunctions are collectively found to explain (1.006 and

0.895) of the total FVE (FV EdG′
d
) in the (TD and ASD)

groups, respectively. Recall, the total FVE may exceed 1 due
to slight overestimation of measurement error as described
in Section 3.1.

In the functional dimension along the covariate domain,
the leading covariate-dependent marginal eigenfunctions
φd1(a, ω) (Figure 2 (a), top row) display patterns of varia-
tion that capture individual differences between initial alpha
power at 6 Hz and intermediate alpha power at 10 Hz. Note,
the frequency location of maximal alpha variation decreases
as age increases in the TD group but remains relatively con-
stant across development in ASD group. The second leading
covariate-dependent marginal eigenfunctions φd2(a, ω) (Fig-
ure 2 (a), bottom row), identifies different sources of alpha
variation in the TD and ASD groups. Referring back to the
mean alpha spectral densities displayed in Figure 1 (a), both
diagnostic groups display a dip before 10 Hz that is followed
by a peak after 10 Hz, though this is much more pronounced
in the TD group. For the TD group, the second eigenfunc-
tion can be interpreted as differences in alpha power below
and above the prominent peak at 10 Hz, whereas in the ASD
group the second eigenfunction captures difference between
initial alpha power at 6 Hz and intermediate alpha power be-
tween 7 and 9 Hz. In the TD group, the location of variation
in the second eigenfunction shifts horizontally from higher to
lower frequencies as age increases but no covariate trend is
detectable in the ASD group. The first two leading covariate-
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Figure 3. The results from the secondary analysis of seven electrodes identified as showing significant differences at some
point across development. A parametric bootstrap test is conducted for each month between 25 and 145 months from the
CA-HPCA model of the alpha spectrum. P-values are transformed to the −log10 scale to better stratify results where darker

colors correspond to more significant differences (−log10(p) > 1.30 denote significance at level α = .05).

dependent marginal eigenfunctions together explain at least
65% of the variation in the covariate-dependent functional
marginal covariances in each diagnostic group.

In the regional dimension along the covariate domain,
the first leading covariate-dependent marginal eigenvectors
vd1(a, r) (Figure 2 (b), top row) display maximal variation
in the (central and posterior regions) at younger ages with
a shift to the (posterior and central regions) at older ages
in the (TD and ASD groups), respectively. In the second
leading covariate-dependent marginal eigenvector vd2(a, r)
(Figure 2 (b), bottom row) the TD group shows maximal
variation in the frontal region at younger ages with a shift
to the the posterior at older ages while the ASD group ex-
hibits maximal variation that alternates between the tem-
poral and central regions over development. The first two
covariate-dependent marginal eigenvectors together explain
at least 70% of the variation in the covariate-dependent re-
gional marginal covariances in each diagnostic group.

In the covariate dimension, the four leading covariate-
dependent variance components τdg(a) (Figure S2) fluctu-
ate as a function of age where the leading component cor-
responding to the covariate-dependent tensor component
ϕd1(a, r, ω) = vd1(a, r)φd1(a, ω) is responsible for the vast
majority of variation in the ASD group but not the TD
group. The variance components in the TD group vary along
the covariate domain whereas the variance components in
the ASD group are relatively constant apart from edge ef-
fects at the boundary of the covariate domain. In summary,
the covariate-dependent eigencomponents and their asso-
ciated variance components for the two diagnostic groups
show differing patterns of variation that modulate distinctly
along the covariate domain, confirming our need to model
covariate-dependent heteroscedasticity in each group sepa-
rately.

To test for differences between diagnostic groups in the
alpha spectrum across development, we utilize the paramet-
ric bootstrap procedures described in Section 3.2. For each
electrode r, we test the null hypothesis that the TD and
ASD group-region mean functions are equal across the en-
tire covariate domain from 25 to 145 months which takes
the form H0 : ηd(r, ω, a) = η(r, ω, a), d = 1, 2. To address
the issue of multiple testing across electrodes, we utilize
the procedure of Benjamini and Yekutieli [3], a less con-
servative alternative to Bonferroni correction which trans-
forms p-values into q-values to control the false discovery
rate (FDR). We define q-values less than 0.05 to be statisti-
cally significant and find significant differences in the frontal
(Fp1, q=0.036; F3, q<0.001), temporal (T8, q=0.025; T10,
q=0.036), and posterior regions (P4, q=0.025; P8, q=0.025;
P10, q<0.001) between the TD and ASD groups across de-
velopment (results for each electrode can be found in Ta-
ble S2). To investigate which stages of development are
driving the observed differences in these seven electrodes
(Fp1, F3, T8, T10, P4, P8, and P10), we perform a sec-
ondary analysis and test the null hypothesis that the TD
and ASD group-region mean functions are equal for a fixed
age a∗ = 25, 26, . . . , 144, 145 months within each electrode
which takes the form H0 : ηd(r, ω, a

∗) = η(r, ω, a∗), d = 1, 2.
Because this is a secondary analysis, rather than formally
adjusting for multiple comparisons we examine unadjusted
p-values and avoid emphasis of findings with nominal sig-
nificance, instead highlighting regions of development where
electrodes consistently violate the null hypothesis. Figure 3
displays the results of the hypothesis tests for the seven elec-
trodes with p-values transformed to the −log10 scale to bet-
ter stratify results where values greater than −log10(0.05) =
1.30 denote significance at level α = .05. All seven electrodes
display strong differences between diagnostic groups in the
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Figure 4. The estimated group-region mean functions ηd(a, r, ω) at ages a = 50, 70, 90, 110 months from the T8, T10, P8,
and P10 electrodes from the CA-HPCA model of the alpha spectrum. Grey shading denotes 95% point-wise confidence

intervals for estimates.

alpha spectrum between approximately 100 and 130 months
with the two temporal electrodes showing differences at ear-
lier ages between 30 and 50 months, as well.

Among the greatest visual differences in the group-region
mean functions are observed in the T8, T10, P8, and P10
electrodes displayed in Figure 4 along with their 95% point-
wise confidence intervals generated as described in Sec-
tion 3.2. At all four electrodes, the TD group displays a
well-defined peak in the alpha spectrum that shifts from 9
Hz to 11 Hz moving from 50 to 110 months, whereas the
ASD group generally has less clearly-defined flat peaks that
tend to center around 9 Hz throughout development. Differ-
ences in the estimated group-region mean functions mirror
the results found from the secondary analysis which exam-
ined group-differences month by month. For the T8 elec-
trode, the point-wise confidence intervals between diagnos-
tic groups separate for younger and older ages at 50, 90 and
110 months, while all four electrodes display separation in
the point-wide confidence intervals at 110 months.

To assess the sensitivity of our results to developmental
information, we include a naive analysis examining group
differences in the alpha spectrum using the hybrid princi-
pal components analysis decomposition of Scheffler et al.
[35] which ignores covariate information. Full details of the
naive analysis are included in Web Appendix B of the Sup-
porting Information and are summarized here. The naive
analysis find six regions that display differential alpha spec-
tral dynamics between the two diagnostic groups over the
course of development, four of which are not found among
the seven electrodes identified by the CA-HPCA decompo-
sition. Collectively, this suggests that omitting covariate-
information reduces power in our motivating analysis and
may lead to misleading results due to model misspecifica-
tion. In addition, by omitting covariate information there
is no way to quantify at what point in development these
particular regions differ significantly. When aggregated, the
observations and inferences obtained from the CA-HPCA
model components provide evidence for differences in both
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the mean structure and patterns of covariation between the
two diagnostic groups that shift and change over develop-
ment highlighting the need to provide covariate-adjustments
in modeling the region-referenced EEG data across a broad
age range.

5. SIMULATION

We studied the finite sample properties of the proposed
CA-HPCAmodel as well as the associated bootstrap derived
group-level inference via extensive simulations. We summa-
rize the results of the simulation study here and defer details
of data generation and simulation evaluation to Web Ap-
pendix C of the Supporting information. We conducted 500
Monte Carlo runs for two sample sizes (nd = 50 and 100)
and two signal-to-noise ratios (SNRs = 4 and 10) for a total
of four settings. The lower sample size is similar to the group
sample sizes in our observed EEG data. To assess the perfor-
mance of the proposed estimation algorithm in targeting the
functional and vector components of CA-HPCA, we utilize
normalized mean squared errors (MSE) and relative squared
errors (RSE) based on norms of deviations of the estimated
quantities from target quantities. In addition, we report the
total fraction of variance explained (FVE), coverage prop-
erties of 95% confidence intervals for the group-region mean
functions, and power of the proposed bootstrap procedure
for testing differences both across the covariate domain and
at fixed locations of the covariate domain.

Figure 5 displays estimated model components based on
500 Monte Carlo runs from the CA-HPCA simulation setup
with the most challenging simulation settings nd = 50 and
c = 4 (low SNR). The estimated group-region mean func-
tions with the 10th, 50th, and 90th percentile RSE from
d = 1 and r = 5 (Figure 5 (a)) closely match the true
curves across the covariate domain. The estimated covariate-
dependent regional and functional marginal eigencompo-
nents (Figure 5 (b, c)) are displayed from runs with RSE
values at the 10th, 50th, and 90th percentiles, overlaid by
their true quantities. Even at small sample sizes and low
SNR, CA-HPCA captures the periodicity, phase, and mag-
nitude of the true components. Occasionally, estimates of
model components at the edge of the covariate domain do
not capture phase shifts likely due to relative sparsity ob-
servations in covariate domain when nd = 50.

Table 1 displays median, 10th, and 90th percentile RSE
and normalized MSE values based on 500 Monte Carlo
runs corresponding to the estimated CA-HPCA compo-
nents from all four simulation settings. Given that nor-
malized measures of RSE and MSE were used, we report
percentiles for model component(s) over all Monte Carlo
runs combined across groups (and subjects in the case of
subject-level predictions). More specifically, while perfor-
mance measures for vdk(a, r), φd�(a, ω), σ

2
d, and FV EdG′

d

are reported over D × 500 Monte Carlo runs, measures for
ηd(a, r, ω), Ydi(ai, r, ω), τ(a)d,k�, and coverage are reported

Figure 5. The true and estimated (a) group-region mean
functions ηd(a, r, ω) for d = 1 and r = 5, (b) two leading
covariate-dependent functional marginal eigenfunctions

φd1(a, ω) and φd2(a, ω), (c) two leading covariate-dependent
regional marginal eigenvectors vd1(a, r) and vd2(a, r) for

a = 0.211, 0.474, 0.737 corresponding to the 10th, 50th, and
90th percentile relative squared error (RSE) values based on
500 Monte Carlo runs from the CA-HPCA simulation design

at nd = 50 and low signal-to-noise ratio (SNR).

over D × R × 500, D × nd × 500, D ×Kd × Ld × 500, and

D ×R× |A| × 500 Monte Carlo runs, respectively.

Overall, the RSEs for all model components decrease

with higher sample size and SNR. The predicted subject-
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Table 1. Percentiles 50% (10%, 90%) of the relative squared errors (RSE), normalized mean squared errors (MSE), total
fraction of variance explained (FVE), and coverage across groups for model components based on 500 Monte Carlo runs from
the design at nd = 50, 100 for low and high signal-to-noise ratio (SNR) from the CA-HPCA simulation study. Due to their

small magnitude, MSE values are scaled by a factor of 103 for presentation.

Low SNR High SNR

nd = 50 nd = 100 nd = 50 nd = 100

ηd(a, r, ω) 0.017 (0.007, 0.035) 0.009 (0.004, 0.018) 0.016 (0.006, 0.034) 0.008 (0.003, 0.017)
Ydi(ai, r, ω) 0.173 (0.140, 0.219) 0.173 (0.139, 0.220) 0.079 (0.062, 0.102) 0.078 (0.062, 0.102)

vd1(a, r) 0.086 (0.024, 0.233) 0.045 (0.017, 0.130) 0.082 (0.022, 0.236) 0.042 (0.014, 0.097)
vd2(a, r) 0.153 (0.069, 0.278) 0.074 (0.04, 0.159) 0.137 (0.061, 0.268) 0.067 (0.035, 0.128)

φd1(a, ω) 0.073 (0.026, 0.151) 0.048 (0.03, 0.097) 0.066 (0.031, 0.144) 0.048 (0.028, 0.088)
φd2(a, ω) 0.075 (0.031, 0.148) 0.052 (0.032, 0.098) 0.065 (0.033, 0.140) 0.049 (0.03, 0.091)

τd,k�(a) 0.150 (0.031, 0.989) 0.061 (0.021, 0.975) 0.105 (0.032, 0.243) 0.053 (0.019, 0.141)
σ2
d 0.056 (0.002, 0.320) 0.040 (0.002, 0.205) 0.067 (0.002, 0.430) 0.042 (0.001, 0.238)

FV Ed,k� 0.982 (0.962, 1.005) 0.992 (0.974, 1.006) 0.971 (0.947, 0.994) 0.985 (0.971, 1.001)
coverage 0.892 (0.758, 0.988) 0.952 (0.802, 0.998) 0.940 (0.823, 0.998) 0.958 (0.828, 0.998)

level curves Ydi(ai, r, ω) are most sensitive to changes in

SNR, as expected, while the RSEs for the eigencompo-

nents, vdk(a, r), φd�(a, ω) and τd,k�(a), are more sensitive

to changes in sample size rather than SNR, suggesting that

the estimation procedure effectively corrects for measure-

ment error when obtaining the marginal covariances. The

MSE for σ2
d was extremely small and did not follow a trend

with respect to sample size or SNR. Across simulation de-

signs, the total fraction of variance explained, FV Ed,G′
d
, al-

most always approach 1.00 due to the compact number of

marginal eigencomponents used to generate the data. Given

that calculation of FV Ed,G′
d
depends on estimates of the

variance components and the two-dimensional norm of the

demeaned observed data, the calculated values of FV EdGd

may exceed 1.00 in some instances. For all simulation set-

tings except the lowest sample size and SNR, the median

coverage probabilities for the point-wise confidence intervals

of the group-region mean functions approach their nominal

level of 95%. For the hypothesis test defined across the co-

variate domain, the level of the parametric bootstrap test

was approximately .05 for nd = 100 and the power of the

test generally increases faster with larger sample sizes (Table

S1). For the hypothesis test at fixed locations of the covari-

ate domain, the level of the parametric bootstrap test was

slightly above .05 across the covariate domain, particularly

at the smaller sample size nd = 50. The power across fixed

locations of the covariate domain also increased with sam-

ple size (Figure S4). Further discussion of the power analysis

can be found in Web Appendix C of the Supporting Infor-

mation.

6. DISCUSSION

We proposed a covariate-adjusted hybrid principal com-

ponents analysis (CA-HPCA) which decomposes region-

referenced functional data and accounts for covariate-

dependent heteroscedasticity by assuming the high-

dimensional covariance structure is weakly separable con-

ditional on observed covariates. The proposed estimation

procedure develops computationally efficient fast-covariance

smoothers that incorporate covariate-dependence when es-

timating marginal covariances as well as a mixed effects

framework which admits inference along the covariate-

domain via parametric bootstrap sampling of estimated

model components. As with any model, verifying key as-

sumptions is necessary for principled inference, namely val-

idating the assumption of weak separability conditional on

observed covariates as well as joint normality of the subject-

specific scores and measurement error variance in the linear

mixed effects model. Application of CA-HPCA to region-

referenced EEG data collected on TD and ASD children

revealed that the alpha spectrum changes over development

both in terms of mean structure and patterns of covaria-

tion. Further, inference based on the CA-HPCA decompo-

sition revealed significant differences in alpha spectral dy-

namics between the two diagnostic groups, particularly at

younger and older ages. The CA-HPCA decomposition was

developed to model EEG data over a broad developmental

range, the procedure may be applied to other settings where

high-dimensional data is expected to exhibit differential co-

variation as a function of observed covariates.
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SUPPORTING INFORMATION

Web Appendices A, B, and C for the proposed CA-HPCA
decomposition may be found online in the Supporting In-
formation section at the end of the article. R code imple-
menting the proposed methodology can be found at https://
github.com/aaron-scheffler.

ACKNOWLEDGEMENTS

This work was supported by the National Institute of
Mental Health [R01 MH122428 (DS)].

Received 24 November 2020

REFERENCES
[1] Backenroth, D., Goldsmith, J., Harran, M. D.,

Cortes, J. C., Krakauer, J. W. and Kitago, T. (2018).
Modeling Motor Learning Using Heteroscedastic Functional
Principal Components Analysis. Journal of the American
Statistical Association 113 1003–1015. MR3862335

[2] Baladandayuthapani, V., Mallick, B. K., Hong, M. Y.,
Lupton, J. R., Turner, N. D. and Carroll, R. J. (2007).
Bayesian Hierarchical Spatially Correlated Functional Data Anal-
ysis with Application to Colon Carcinogenesis. Biometrics 64 64–
73. MR2422820

[3] Benjamini, Y. and Yekutieli, D. (2001). The control of the false
discovery rate in multiple testing under dependency. Ann. Statist.
29 1165–1188. MR1869245

[4] Bruce, S. A., Hall, M. H., Buysse, D. J. and Krafty, R. T.

(2018). Conditional adaptive Bayesian spectral analysis of
nonstationary biomedical time series. Biometrics 74 260–269.
MR3777946

[5] Cardot, H. (2007). Conditional Functional Principal Compo-
nents Analysis. Scandinavian Journal of Statistics 34 317–335.
MR2346642

[6] Cederbaum, J., Scheipl, F. and Greven, S. (2018). Fast sym-
metric additive covariance smoothing. Computational Statistics
& Data Analysis 120 25–41. MR3742206

[7] Chen, K., Delicado, P. and Müller, H. G. (2016). Modelling
function-valued stochastic processes, with applications to fertil-
ity dynamics. Journal of the Royal Statistical Society. Series B
(Methodological) 79 177–196. MR3597969

[8] Chen, K. and Müller, H. G. (2012). Modeling Repeated Func-
tional Observations. Journal of the American Statistical Associ-
ation 107 1599–1609. MR3036419

[9] Chiou, J.-M., Chen, Y.-T. and Yang, Y.-F. (2014). Multivari-
ate functional principal components analysis: a normalization ap-
proach. Statistica Sinica 24 1571–1596. MR3308652

[10] Chiou, J.-M., Müller, H.-G. and Wang, J.-L. (2003). Func-
tional Quasi-Likelihood Regression Models with Smooth Random
Effects. Journal of the Royal Statistical Society. Series B (Statis-
tical Methodology) 65 405–423. MR1983755

[11] Corcoran, A. W., Alday, P. M., Schlesewsky, M. and
Bornkessel-Schlesewsky, I. (2018). Toward a reliable, auto-
mated method of individual alpha frequency (IAF) quantification.
Psychophysiology 55 e13064.

[12] Crainiceanu, C., Staicu, A. M. and Di, C. Z. (2009). General-
ized Multilevel Functional Regression. Journal of the American
Statistical Association 104 1550–1561. MR2750578

[13] Di, C. Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M.

(2009). Multilevel functional principal component analysis. The
Annals of Applied Statistics 3 458–488. MR2668715

[14] Dickinson, A., DiStefano, C., Senturk, D. and Jeste, S. S.

(2018). Peak alpha frequency is a neural marker of cognitive func-
tion across the autism spectrum. European Journal of Neuro-
science 47 643–651.

[15] Edgar, J. C., Dipiero, M., McBride, E., Green, H. L.,
Berman, J., Ku, M., Liu, S., Blaskey, L., Kuschner, E.,
Airey, M., Ross, J. L., Bloy, L., Kim, M., Koppers, S.,
Gaetz, W., Schultz, R. T. and Roberts, T. P. L. (2019). Ab-
normal maturation of the resting-state peak alpha frequency in
children with autism spectrum disorder. Human Brain Mapping
40 3288–3298.

[16] Edgar, J. C., Heiken, K., Chen, Y.-H., Herrington, J. D.,
Chow, V., Liu, S., Bloy, L., Huang, M., Pandey, J., Can-

non, K. M., Qasmieh, S., Levy, S. E., Schultz, R. T. and
Roberts, T. P. L. (2015). Resting-State Alpha in Autism Spec-
trum Disorder and Alpha Associations with Thalamic Volume.
Journal of Autism and Developmental Disorders 45 795–804.

[17] Fiecas, M. and Ombao, H. (2016). Modeling the Evolution of
Dynamic Brain Processes During an Associative Learning Ex-
periment. Journal of the American Statistical Association 111
1440–1453. MR3601700

[18] Giraldo, R., Delicado, P. and Mateu, J. (2010). Ordinary krig-
ing for function-valued spatial data. Environmental and Ecologi-
cal Statistics 18 411–426. MR2832903

[19] Greven, S., Crainiceanu, C. M., Caffo, B. S. and Reich, D. S.

(2010). Longitudinal functional principal component analysis.
Electronic Journal of Statistics 4 1022–1054. MR2727452

[20] Happ, C. and Greven, S. (2018). Multivariate Functional Princi-
pal Component Analysis for Data Observed on Different (Dimen-
sional) Domains. Journal of the American Statistical Association
113 649–659. MR3832216

[21] Hasenstab, K., Scheffler, A., Telesca, D., Sugar, C. A.,
Jeste, S., DiStefano, C. and Şentürk, D. (2017). A multi-
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Damla Şentürk
Department of Biostatistics
University of California
Los Angeles
USA
E-mail address: dsenturk@ucla.edu

CA-HPCA 223

http://www.ams.org/mathscinet-getitem?mr=4043850
http://www.ams.org/mathscinet-getitem?mr=4039196
http://www.ams.org/mathscinet-getitem?mr=2206355
http://www.ams.org/mathscinet-getitem?mr=3761337
http://www.ams.org/mathscinet-getitem?mr=2160561
http://www.ams.org/mathscinet-getitem?mr=2757206
http://www.ams.org/mathscinet-getitem?mr=3292493
mailto:aaron.scheffler@ucsf.edu
mailto:ADickinson@mednet.ucla.edu
mailto:CDiStefano@mednet.ucla.edu
mailto:sjeste@chla.usc.edu
mailto:dsenturk@ucla.edu

	Introduction
	Covariate-adjusted hybrid principal components analysis (CA-HPCA)
	Estimation of model components and inference
	Estimation of CA-HPCA model components
	Inference via parametric bootstrap

	Application to the `eyes-open' paradigm data
	Data structure and methods
	Data analysis results

	Simulation
	Discussion
	Supporting information
	Acknowledgements
	References
	Authors' addresses

