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Principal wave analysis for high-dimensional
structured data with applications to epigenomics
and neuroimaging studies

Yuping Zhang
∗

High-dimensional structured data are emerging and ac-
cumulating in biomedical research fields. Examples include
epigenomics and neuroimaging studies. In these studies, it
is often required to extract biologically meaningful pat-
terns and identify relevant biological features from high-
dimensional structured data. Motivated by this problem,
we propose a new statistical learning method named Prin-
cipal Wave Analysis (PWA). The practical merits of PWA
are shown through simulation studies incorporating diverse
types of signal patterns as well as its applications to epige-
nomic and neuroimaging data.
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1. INTRODUCTION

By virtual of high-throughput modern technologies in
biomedical research, high-dimensional data are often gen-
erated routinely for a group of subjects from a cohort.
These data usually contain certain structures of interest that
can facilitate meaningful data interpretation. For instance,
in epigenomics, one may characterize histone modification,
DNA methylation, or gene expression profiles for a group of
subjects to identify biologically meaningful epigenomic sig-
natures. As another example, in neuroimaging studies, one
may measure non-stationary signals of brain activities for
a cohort to identify certain patterns with interesting struc-
tures.

Characterizing the meaningful patterns embedded in
high-dimensional data with rich structures often plays an
important role in biomedical research to address some signif-
icant scientific questions. For instance, to understand epige-
nomic mechanism for certain biological condition, it is im-
portant to dissect the underlying molecular activities based
on the measured biological signals across many genomic loci
for a group of subjects. The patterns of transcription factor
binding and chromatin states are not uniformly distributed
along the genome, and can exhibit context-dependent signa-
tures. In this paper, we focus on the problem of extracting
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population-level patterns and identifying important features
from high-dimensional measures for a cohort of subjects over
time or across genomic loci. That is, we consider a N×P×T
three-order tensor measured on a “uniform lattice”, where
N is the number of subjects, P is the number of features,
and T is the number of time points or genome loci.

Various dimensional reduction methods can be applied
to a high-dimensional structured data matrix. We briefly
review some of the representative methods, including prin-
cipal component analysis (PCA), sparse PCA, functional
PCA (FPCA), and wavelet PCA. PCA is a classical dimen-
sion reduction method. Let Y indicate an N × P data ma-
trix containing the measurements of P features for N ob-
servations. PCA can be implemented by a singular value
decomposition of the data matrix X, or a spectral decom-
position of the covariance (or correlation) matrix. The sin-
gular value decomposition is of the form: Y = UDV T, where
UUT = IN , V V T = IP ,D is a diagonal matrix with diagonal
elements d1 ≥ d2 ≥ · · · ≥ dK > 0, IN and IP are identical
matrices with dimensions N × N and P × P , respectively.
Each principal component in PCA is a linear combination of
all the original variables. To facilitate feature selection, sev-
eral related methods have been developed to produce mod-
ified principal components with sparse loadings [11, 30, 22].
PCA also has been extended to functional data analysis sce-
nario. Functional data have two key features [17]. One is
that measurements are taken on the same subject repeat-
edly over different time or different space. The other is the
smoothness assumption, where the underlying curve has a
certain degree of smoothness. Given N random trajectories
Xi(t), FPCA [2, 20, 24] is defined as the following expansion:
Xi(t) = μ(t) +

∑∞
k=1 Aikφk(t), where i ∈ {1, . . . , N}, t ∈ T ,

Aik =
∫
T (Xi(t) − μ(t))φk(t)dt are the functional principal

components (scores) ofXi, Aik are independent across i with
E(Aik) = 0 and V ar(Aik) = λk, λk are the eigenvalues in
descending order, and φk are the corresponding orthogonal
eigenfunctions. Specifically, the eigenvalues and eigenfunc-
tions can be obtained via the spectral decomposition of the
estimated auto-covariance surface Cov(X(s), X(t)) on a grid
of time points. In some time series data, extreme observa-
tions may exist, such as spikes. Wavelet basis functions are
known to be localized in both time and frequency domains
simultaneously, and thus can extract localized features from
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a time-varying signal. Wavelet PCA [8] is defined as per-
forming PCA on wavelet coefficients. Specifically, let Y be
an N × T data matrix, of which row vectors contain dyadic
observations for individuals i = 1, . . . , N , and T = 2J for
some integer J ≥ 0. Let W be an T × T wavelet trans-
formation. The wavelet decomposition of Y is of the form
Y = BW , where B is a scalar coefficient matrix consist-
ing of all wavelet coefficients from the different locations
and scales. Then, PCA is applied on wavelet coefficient ma-
trix B, which is equivalent to performing a rotation of B to
new axis, and the first coordinate is the projection with the
greatest variance. When Y is noisy, wavelet PCA employed
a two-step approach. First, it performs wavelet shrinkage on
B, which results in smoothing in the wavelet domain with
an estimate B̂. Then, PCA is applied on B̂. Note that, if
there is no shrinkage on wavelet coefficients, wavelet PCA
is equivalent to conventional PCA.

For a high-dimensional structured three-way array (ten-
sor) with multiple subjects from a cohort, we have previ-
ously developed principal trend analysis (PTA) [27] with
temporal smooth structure modeling for extracting the un-
derlying patterns and identify important features simul-
taneously. Splines are known to be continuous with eas-
ily defined derivatives, and thus are well suited to model-
ing smooth functions [12, 19, 16, 21]. In the PTA frame-
work, the smoothing splines are used, where we use a com-
plete basis, but then shrink the coefficients toward smooth-
ness. Then, smoothed principal trends can be characterized.
PTA was successfully applied to unsupervised learning of
smoothed transcriptional responses in longitudinal measure-
ments of gene expression in patients [27]. The PTA frame-
work has been extended to other sophisticated research sce-
narios [28, 26]. These methods have been successfully ap-
plied to analyzing longitudinal gene expression data mea-
sured for a cohort, where smooth trends are assumed. Fur-
ther, other latent factor models were developed for three-
way arrays via tensor decompositions [13, 23].

As aforementioned, in certain real data applications, the
underlying meaningful signals can have different properties,
such as jump discontinuities, spikes, varying frequency be-
haviour, and smooth signals containing jumps/spikes. PTA
was proposed by integrating sparse latent factor models
for dimension reduction and feature selection with spline-
based methods [12, 19, 21] for temporal structure modeling.
Thus, it is necessary to develop a new statistical learning
method beyond the smoothness assumption for entire un-
derlying curves to analyze more variously structured data
with high-dimensional features measured for a cohort. Here,
we relax the assumption that the entire underlying signals
are smooth and develop a new statistical learning method
to analyze data with multiple types of embedded structures
and a large number of features measured for a cohort. On
one hand, we want to extract the underlying signal patterns
embedded in the data, where discontinuities are allowed. On
the other hand, we want to identify the features that have

contributions to those meaningful patterns. We propose a
new method, named Principal Wave Analysis (PWA), to
address the aforementioned objectives simultaneously. The
proposed PWA framework blends the dimension reduction
and feature selection, and characterizes data structures. The
paper is organized as follows. In Section 2, we present the
statistical framework of PWA and its computation. In Sec-
tion 3, we demonstrate the practical merits of PWA through
simulations. In Section 4, we show the applications of PWA
to real data. One is from an epigenomics study of human
embryonic stem cells, and the other is from a neuroimaging
study. We conclude our paper in Section 5.

2. METHOD

2.1 The model of principal wave analysis

Let xnpt be an element of tensor X for feature p, sub-
ject n, time point (or genome locus) t, where p ∈ {1, ..., P},
n ∈ {1, ..., N}, t ∈ {1, ..., T}. We use Xn to denote the
P × T matrix containing the observations for subject n in
X. We consider a factor model with basis expansions. Since
the motivating examples from cohort studies in epigenomics
and brain activity signals, their data exhibit spike and non-
stationary phenomena, we employ wavelets in our modeling.
Wavelets are multiresolution basis functions that are local-
ized in both time and frequency domains simultaneously,
and thus are suitable for irregular functions with disconti-
nuities. We decompose the matrix-valued measurements Xn

for each subject from the same population using a common
factor model Xn = ADΘTW + En, where n = 1, . . . , N ,
A denotes a P×K matrix of factor scores,A = [a1, . . . ,aK ],
and K is the number of factors; W denotes a T ×T wavelet
basis matrix, andWW T = IT , IT is a T×T identity matrix;
Θ denotes a T ×K matrix of coefficients, Θ = [θ1, . . . ,θK ];
D denotes a K×K diagonal matrix with scalars d1, . . . , dK
on its diagonal; En is the error term for the decomposition
for subject n. The underlying patterns are characterized by
S = DΘTW , which are generated by the combinations of
wavelets. We name S as Principal Waves (PWs).

Notably, let X̄ denote the sample mean, i.e. X̄ =
1
N

∑N
n=1 Xn, and let Ē = 1

N

∑N
n=1 En, then we have

X̄W T − ĒW T = ADΘT. Denoting X̄W T − ĒW T by X̃,
in the light of singular value decomposition (SVD) of X̃,
with the constraints AAT = IP , ΘΘT = IT , d1 ≥ d2 ≥
. . . ≥ dK > 0, the factor model is identifiable for the latent
matrix X̃ up to a sign change and orthogonal rotations.

The wavelet bases used in the factor model can be ob-
tained by translations and dilations of a single scaling func-
tion φ(t) with various types of forms [9, 6, 29]. With the
high adaptability to different levels of smoothness, wavelet
transforms are capable of capturing various types of dis-
continuities. We take the simple Haar wavelet transform
as an example to present basic ideas. The Haar basis pro-
duces a piecewise-constant representation, where the scal-
ing function (also known as the father) φ(t) is just the in-
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dicator function of the interval [0, 1], the Haar base func-
tion (also known as Haar mother wavelet) is defined as
ψ(t) = I[0, 12 )(t) − I[ 12 ,1](t). With binary dilation (scaling

j) and dyadic translation (shifting l), we have ψj,l(t) =
2j/2ψ(2jt−l), and φj,l(t) = 2j/2φ(2jt−l), where j = 0, 1, . . .
and l = 0, . . . , 2j − 1. Thus, ψj,l and φj,l etc. form the basis
vectors. Coefficients corresponding to ψj,l are known as av-
erages or sum coefficients, while coefficients corresponding
to φj,l are differences or detail coefficients. In practice, to
form the wavelet basis matrix, we only need ψ0,0, and other
columns are expressed in terms of φ·,·. To form a T × T
wavelet basis matrix (T = 2J), we need 2J − 1 basis vectors
corresponding to detail coefficients and 1 basis vector corre-
sponding to sum coefficient at 0th level. The matrix W has
these basis vectors as columns. For the numerical results in
this paper, we used a more complicated transform based on
Daubechies’ extremal phase wavelets.

In this paper, we impose additional constraints on the el-
ements of A and Θ. With a complete orthonormal wavelet
basis, we may shrink and select the coefficients to represent
different types of functions. Thus, we want to employ an
L1-norm regularization of coefficients toward a sparse rep-
resentation. In addition, the number of features of data may
be large, and only some of them behave interesting patterns
over time or along the genome. Consequently, we want to se-
lect those important features simultaneously. We start with
single-factor PWA, and consider the following optimization
problem.

(1) min
a,d,θ

N∑
n=1

‖Xn − adθTW ‖2F ,

subject to ‖θ‖1 ≤ c1, ‖a‖1 ≤ c2, ‖θ‖22 = 1, and ‖a‖22 = 1,
where ‖ · ‖F is the Frobenius norm, ‖ · ‖1 is the L1 norm,
‖ · ‖2 is the L2 norm, c1 and c2 are constant tuning parame-
ters. We incorporate the L2-norm equality constraints for θ
and a in the proposed PWA optimization framework. While
the L2-norm equality constraints make it a non-convex opti-
mization problem, we can relax the constrains to ‖θ‖22 ≤ 1,

and ‖a‖22 ≤ 1. This is because the solutions θ̂ and â mini-
mizing the relaxed optimization problem also minimize the
original one with the L2-equality constraints on θ and a.
Then, we have the following tri-convex optimization prob-
lem, which results in the same solution as problem 1.

Theorem 1. The following optimization problem is tri-
convex.

min
a,d,θ

N∑
n=1

‖Xn − adθTW ‖2F ,

subject to ‖θ‖1 ≤ c1, ‖a‖1 ≤ c2, ‖θ‖22 ≤ 1, and ‖a‖22 ≤ 1.

The tuning parameters c1 and c2 control the amount of
sparsity in the estimated vectors θ and a, respectively. To
shrink and select the coefficients of the complete orthonor-
mal basis with T × T dimensions, the tuning parameter c1

needs to be between 1 and
√
T . To select features from a

dataset with the total number of features as P , the range of
the tuning parameter c2 needs to be between 1 and

√
P . By

the Lagrangian duality theory, we can obtain a, θ and d by
solving the following optimization problem (2) instead.

min
a,d,θ

N∑
n=1

‖Xn − adθTW ‖2F + 2λ1‖θ‖1 + 2λ2‖a‖1

+ λ3‖θ‖22 + λ4‖a‖22,(2)

where λ3 and λ4 need to be chosen to make ‖a‖2 = 1 and
‖θ‖2 = 1, respectively. The sparsity tuning parameters are
represented by λ1 and λ2.

Please refer to the appendix materials (A1) for the proof
of the triconvex property of optimization problem (2). The
detailed algorithm can be found in Algorithm (1). The
derivation of the PWA algorithm can be found in the ap-
pendix materials (A2). The solutions â, θ̂ and d̂ to opti-
mization problem (2) also solve the problem (1).

Algorithm 1 The rank-one PWA algorithm

1: procedure To find (â, θ̂, d̂)
2: initialize a(1), θ(1) and d(1).
3: repeat until convergence: For k in {1, . . . , k′}

4: θ(k+1) =
soft

(
1
N

W (
∑N

n=1 Xn)
T
a(k)d(k),λ1

)
∥∥∥soft

(
1
N

W (
∑N

n=1 Xn)
T
a(k)d(k),λ1

)∥∥∥
2

, where

soft(t, s) is a soft-thresholding function, defined as
sign(t)(|t| − s)+.

5: a(k+1) =
soft( 1

N

∑N
n=1 XnWθ(k+1)d(k),λ2)

‖soft( 1
N

∑N
n=1 XnWθ(k+1)d(k),λ2)‖2

.

6: d(k+1) = 1
N
(θ(k+1))TW (

∑N
n=1 X

T
n)a

(k+1).

7: return â = a(k′+1), θ̂ = θ(k′+1) and d̂ = d(k
′+1).

8: end procedure

2.2 Tuning parameter selection

The tuning parameters λ1 and λ2 (or equivalently, c1 and
c2) control the amount of sparsity in the estimated vectors
θ and a. Generally speaking, tuning parameter selection is a
hard problem for unsupervised learning. Here, we transform
the problem to the model selection of supervised learning
by treating some of observations as “missing” and mimick-
ing missing data imputation. Then, we have two options
for the model selection. One is based on the extra-sample
error, such as cross-validations. The other is based on in-
sample error, such as Akaike Information Criterion (AIC),
and Bayesian Information Criterion (BIC). We elaborate the
two options to estimate the penalty parameters in the pro-
posed PWA framework.

We first introduce the cross-validation type of methods,
which is similar to the extra-sample model selection ap-
proach in PTA [27]. Specifically, we can use the following
resampling procedure to select tuning parameters. We con-
struct m subsets of data from the original dataset X, where
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m is the number of folds stratified for cross-validation. Let
X1, . . . ,Xm denote these subsets of X, each of which con-
tains a nonoverlapping 1

m of the elements of X. Each subset
of data are obtained through random sampling from entries
in X. During the cross-validation procedure, each subset
of data will serve as a validation set, treated as “missing”
when the PWA is performed on the remaining m− 1 folds.
For each pair of candidate values of c1 (1 ≤ c1 ≤

√
T )

and c2 (1 ≤ c2 ≤
√
P ), we iterate the following steps. For

each fold j, (j ∈ {1, . . . ,m}), we fit the PWA to Xj with

the tuning parameter c1 and c2, and calculate X̂j , the re-
sulting estimate of Xj . Each sample i of Xj is estimated
by âd̂θ̂TW . We then record the mean squared error of X̂j .
This mean squared error is obtained by computing the mean
of the squared differences between elements of Xj and the
corresponding elements of X̂j . We then calculate the aver-
age mean squared error across X1, . . . ,Xm for the tuning
parameters c1 and c2. Finally, the optimal values of c1 and
c2 are those that correspond to the lowest mean squared
error.

Alternatively, we can perform the model selection based
on in-sample error. It is known that BIC is asymptotically
consistent as a selection criterion, while AIC is not [4]. Thus,
we propose to use a BIC type of approach to estimate the ap-
propriate amount of sparsity in the vectors θ and a. Specif-
ically, we propose the following formula as the BIC type of
model selection criterion:

BICtype(λ1, λ2) = log

(∑N
i=1 ‖Xn − âd̂θ̂TW ‖2F

NPT

)

+
log(NPT )

NPT
(d̂f(λ1) + d̂f(λ2)),

(3)

where d̂f(λ1) and d̂f(λ2) are estimates of the degrees of
freedom for certain L1-norm penalties employed on vec-
tors θ and a, respectively. Here, we have d̂f(λ1) = |θ̂|,
and d̂f(λ2) = |â|, which are the numbers of nonzero ele-

ments in θ̂ and â, respectively. In practice, the BIC type
of approach is usually less computationally intensive than
the cross-validations. Thus, we employed the proposed BIC
type of method (3) for model selections in our simulation
studies and real applications.

2.3 PWA with multiple factors

Using the PWA with single factor as the core building
block, we can sequentially build the PWA model with mul-
tiple factors. For instance, with the rank-one PWA result,
we can obtain the rank-two PWA through fitting a rank-one
decomposition on the residues. The residues are obtained
by removing the rank-one PWA estimates from the original
dataset X. Similarly, we can employ a cross-validation or
BIC type of approach to select appropriate tuning parame-
ters for the rank-two PWA. We explicitly present the rank-K
PWA (K ≥ 2) in Algorithm (2).

Algorithm 2 The rank-K PWA algorithm

1: procedure To find (âK , θ̂K , d̂K)

2: let X̂
(1)
n = Xn and initialize â1, θ̂1 and d̂1 through the rank-

one PWA algorithm.
3: loop: For k in {1, . . . ,K − 1}
4: set X̂

(k+1)
n = X̂

(k)
n − âkd̂kθ̂

T
kW

5: apply the rank-one PWA algorithm to X̂
(k+1)
n to obtain

âk+1, θ̂k+1, d̂k+1

6: return âK , θ̂K and d̂K .
7: end procedure

For high-dimensional structured three-way arrays with
multiple subjects from a cohort, PTA and PWA can extract
the underlying patterns and identify important features si-
multaneously. In the PTA framework, the smoothing splines
are used, where we use a complete basis, but then shrink the
coefficients toward smoothness. Then, smoothing principal
trends can be characterized. PTA was successfully applied to
unsupervised learning of longitudinal gene expression data
by assuming smoothing transcriptional dynamics [27]. In the
PWA framework, wavelets are used to form a complete or-
thonormal basis matrix. We then shrink and select the coef-
ficients toward a sparse representation. As a result, we ob-
tain principal waves without a smoothness assumption on
the entire underlying signal patterns embedded in the data.
We use the following simulation studies and real applications
to show the practical merits of PWA.

3. SIMULATIONS

We performed simulation studies to demonstrate the per-
formance of PWA for both rank-one and rank-K (K > 1)
scenarios. For the rank-one scenario, the simulated dataset
contains one signal component with various types of charac-
teristics. We simulated longitudinal datasets denoted by an
N ×P ×T tensor X with N = 10 subjects, T (= 2048) time
points, and P (= 100) features, respectively. We adopted var-
ious functions that can reproduce phenomena found in real
world signals as discussed in the literature [7]. Specifically,
we considered four types of functions. The first type of
functions represent jump discontinuities, i.e. blocks. We as-
signed values to xnpt, n ∈ {1, . . . , N}, t ∈ {1, . . . , T} and
p ∈ {1, . . . , P}, following Equation 4:

(4) xnpt =
1

2
b1,pf(t) + b2,pεnpt,

and

(5) f(t) =
∑
j

hj

[
1 + sign

(
t

T
− tj

)]
,

where (hj) = (4,−5, 3,−4, 5,−4.2, 2.1, 4.3,−3.1, 2.1,−4.2),
(tj) = (0.1, 0.13, 0.15, 0.23, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81),
b1,p is I(0 < p ≤ 60), b2,p is I(0 < p ≤ P ), εnpt ∼ N(0, 1).
The signal component in this equation has block patterns.
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Figure 1. The simulation study for a signal scenario with
blocks. (a) Simulated raw data represented by one individual
sampled from 10 subjects. Each row indicate one feature.
Columns are ordered by time. (b) True signals generated by
Equation 5. (c) The principal wave (PW) identified by PWA.

(d) Feature loadings identified by PWA.

Figure 1(a) shows the heatmap of simulated raw data from
one individual. The true latent pattern is shown in Fig-
ure 1(b). We applied PWA to this dataset and used the
proposed BIC-type of criterion to select tuning parameters.
The PW is shown in Figure 1(c), representing the estimated
signal. The corresponding feature loadings are shown in Fig-
ure 1(d). One can see that the top 60 features have negative
loadings, and the remaining 40 features have zero loadings.
On one hand, PWA can identify informative features hav-
ing contributions to the PW. On the other hand, the feature
loadings multiplied by the PW reported by PWA reflect the
signal patterns of the input data.

The second type of functions consist of spikes, which are
similar to the bump signals observed in nuclear magnetic
resonance spectroscopy experiments. In this simulation, we
assigned values to xnpt, n ∈ {1, . . . , N}, t ∈ {1, . . . , T} and
p ∈ {1, . . . , P}, following Equation 6:

(6) xnpt = b1,pg(t) + b2,pεnpt,

and

(7) g(t) =
∑
j

hj

(
1 +

1

wj

∣∣∣∣ tT − tj

∣∣∣∣
)−4

,

where (hj) = (4, 5, 3, 4, 5, 4.2, 2.1, 4.3, 3.1, 5.1, 4.2), (tj) =
(0.1, 0.13, 0.15, 0.23, 0.40, 0.44, 0.65, 0.76, 0.78, 0.81), (wj) =
(0.005, 0.005, 0.006, 0.01, 0.01, 0.03, 0.01, 0.01, 0.005,
0.008, 0.005), b1,p is I(0 < p ≤ 60), b2,p is I(0 < p ≤ P ),
εnpt ∼ N(0, 1). The heatmap of simulated raw data from one
individual is shown in Figure 2(a). The true latent pattern
is shown in Figure 2(b). We applied PWA to this dataset
and used the proposed BIC-type of criterion to select tun-

Figure 2. The simulation study for a signal scenario
containing spikes. (a) Simulated raw data represented by one
individual sampled from 10 subjects. Each row indicate one

feature. Columns are ordered by time. (b) True signals
generated by Equation 7. (c) The principal wave (PW)

identified by PWA. (d) Feature loadings identified by PWA.

ing parameters. The PW is shown in Figure 2(c). The cor-
responding feature loadings are shown in Figure 2(d). One
can see that the top 60 features have negative loadings, and
the remaining 40 features have zero loadings. PWA not only
identifies informative features, but also captures the signal
patterns of the input data characterized by the feature load-
ings multiplied by the PW.

In the third simulation study, we utilized functions that
represent smooth signals with jumps/spikes in them. Specif-
ically, we assigned values to xnpt, n ∈ {1, . . . , N}, t ∈
{1, . . . , T} and p ∈ {1, . . . , P}, following Equation 8.

(8) xnpt = b1,pm(t) + b2,pεnpt,

where b1,p is I(0 < p ≤ 60), b2,p is I(0 < p ≤ P ), εnpt ∼
N(0, 1), and
(9)

m(t) = 4

[
sin

(
4πt

T

)
− sign

(
t

T
− 0.3

)
− sign

(
0.72− t

T

)]
.

The corresponding heatmap of raw simulated data is shown
in Figure 3(a), illustrated by one subject. The true latent
pattern embedded in the simulated data is shown in Fig-
ure 3(b), which is based on the corresponding signal com-
ponent in Equation 8. We applied PWA to this dataset, and
found that the identified PW reflects the embedded signals
as shown in Figure 3(c). The features exhibiting the tempo-
ral signals can be identified by PWA with nonzero loadings.

The fourth simulation study was motivated by the
Doppler shift phenomena in real world waves. Take a pass-
ing siren as an example, one may notice the sudden change
in pitch. This phenomenon is caused by the well-known
Doppler effect in physics, which indicates an increase (or
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Figure 3. The simulation study considering smooth signals
with jumps/spikes in them. (a) Simulated raw data

represented by one individual sampled from 10 subjects. Each
row indicate one feature. Columns are ordered by time. (b)
True signals generated by Equation 9. (c) The principal wave
(PW) identified by PWA. (d) Feature loadings identified by

PWA.

decrease) in the frequency of waves as the source and ob-
server move toward (or away from) each other. To mimic
the Doppler effect in this simulation study, we incorporated
a signal component using functions that have a varying
frequency behavior. Precisely, we assigned values to xnpt,
n ∈ {1, . . . , N}, t ∈ {1, . . . , T} and p ∈ {1, . . . , P}, following
Equation 10.

(10) xnpt = b1,pl(t) + b2,pεnpt,

and

(11) l(t) =
[t(T − t)]

1
2

T
sin

[
2.1Tπ

t+ 0.05 · T

]
,

where b1,p is I(0 < p ≤ 60), b2,p is I(0 < p ≤ P ),
εnpt ∼ N(0, 1). We plotted the heatmap of raw data from
one individual as shown in Figure 4(a). The true latent pat-
tern function based on Equation 10 is represented in Fig-
ure 4(b). By applying the PWA to this dataset, one can see
that the identified PW characterizes the embedded signal
as demonstrated in Figure 4(c). Furthermore, as shown in
Figure 4(d), the features with nonzero loadings in PWA are
consistent with those features carrying signals according to
the simulation.

To demonstrate the performance of PWA with multi-
ple ranks, we simulated a dataset with aforementioned four
types of signals simultaneously, i.e. jump discontinuities,
spikes, varying frequency behavior, and jumps/spikes in
smooth signals. Specifically, we generated xnpt based on
Equation 12

(12) xnpt = b1,pf(t) + b2,pg(t) + b3,pm(t) + b4,pl(t) + εnpt,

Figure 4. The simulation study motivated by the Doppler
shift phenomena in real world waves. (a) Simulated raw data
represented by one individual sampled from 10 subjects. Each
row indicate one feature. Columns are ordered by time. (b)
True signals as generated by Equation 11. (c) The principal

wave (PW) identified by PWA. (d) Feature loadings identified
by PWA.

where n ∈ {1, . . . , N}, p ∈ {1, . . . , P}, t ∈ {1, . . . , T}, b1,p =
I(0 < p ≤ 50), b2,p = I(50 < p ≤ 90), b3,p = I(90 < p ≤
120), b4,p = I(120 < p ≤ 140), and f(t), g(t), m(t) and l(t)
are based on Equations 5, 7, 9 and 11, respectively.

We applied the PWA with multiple ranks to this dataset,
and employed the proposed BIC type of method to select
the tuning parameters based on the first local minimum for
each rank sequentially. We illustrate the BIC type of curves
in the left panel of Figure 5 with ‖θ‖1 fixed as 0.2, 0.1, 0.2,
and 0.2 for the first, second, third, fourth rank of PWA, re-
spectively. The number of features with nonzero loadings for
the first, second, third and fourth rank of PWA are 50, 40,
30, and 20, respectively. These numbers are consistent with
the sizes of components with signals embedded in the sim-
ulation procedure indicated by Equation 12. In the middle
panel of Figure 5, one can see those feature loadings iden-
tified by the first, second, third, and fourth rank of PWA,
from top to bottom respectively. The corresponding PW for
each rank of PWA is shown in the right panel of Figure 5,
from top to bottom accordingly. Figure 5 shows that, in
each rank of PWA, the features with nonzero loadings along
with their corresponding PW can reveal the underlying sig-
nal patterns in the simulated dataset. As shown in Figure 6,
we further plotted the explained variances for the first, sec-
ond, third and fourth rank of PWA, as well as the residues
of the data after applying the first four ranks of PWA. This
indicates that the top four ranks of PWA is appropriate to
characterize the data structure and variance.

For comparison, we sought to use FPCA on this dataset.
We used the R-package “fdapace” to implement the FPCA.
FPCA cannot be directly applied to a tensor dataset. To
overcome the limitation, we arranged the simulated data as
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Figure 5. Simulation studies for PWA with multiple ranks.
The subfigures in the left panel illustrate BIC curves for the
first, second, third and fourth rank of PWA, from top to

bottom respectively. The vertical line in each BIC-type model
selection subfigure indicates the selected number of nonzero
features in the corresponding rank of PWA. The subfigures in
the middle panel show the feature loadings identified by the
first, second, third and fourth rank of PWA, from top to

bottom respectively. The subfigures in the right panel show
the identified principal waves accordingly.

a (N × P ) × T big matrix with T columns. We then ap-
plied FPCA to this big data matrix. FPCA gives a “data-
driven” basis that is constructed from the observed data.
Figure 7 shows the results of top four ranks identified by
FPCA from left to right, where the feature loadings are
shown in the upper panel and the eigenfunctions are shown
in the lower panel. Comparing these plots with the PWs
identified by PWA, one can see that the patterns identified
by PWA are more consistent with the true latent patterns.
We also applied PTA to this dataset. As shown in Figure 8,
PTA tends to produce smooth principal trends. We also ar-
ranged the simulated data as an (N × T ) × P big matrix,
and applied penalized matrix decomposition (PMA) [22],
sparse principal component analysis (SPCA) [30] and in-
dependent component analysis (ICA) on this dataset. Fig-
ure 9, Figure 10 and Figure 11 show the corresponding re-
sults, which demonstrate PWA is more appropriate for the
analysis.

We further performed simulation studies based on more
complicated signals by mixing the above four types of sig-

Figure 6. Simulation studies for PWA with multiple ranks.
Explained variances.

Figure 7. Simulation studies for FPCA with multiple ranks.
The top four ranks of loadings (upper panel) and

eigenfunctions (lower panel) are shown from left to right.

nals. Specifically, we generated xnpt based on Equation 13

(13) xnpt = 0.25 ∗ (f(t) + g(t) +m(t) + l(t)) ∗ b1,p + εnpt,

where n ∈ {1, . . . , N}, p ∈ {1, . . . , P}, t ∈ {1, . . . , T},
b1,p = I(0 < p ≤ 50),N = 10, T = 2048, and f(t), g(t),m(t)
and l(t) are based on Equations 5, 7, 9 and 11, respectively.
We first set P = 200, and noises to be Gaussian distributed
with signal-to-noise ratio (SNR) as 7 (case 1). We then in-
creased the number features by setting P = 2000, and keep
SNR=7 for Gaussian distributed noises (case 2). We fur-
ther decreased SNR=2 for Gaussian distributed noises, and
keep P = 200 (case 3). Finally, we incorporated correlated
noises into raw data generation using the first order auto-
regression model with correlation corr(εnpt, εnp(t+1)) = 0.5,
and set SNR=7 and P = 200 (case 4). Figure 12 shows the
simulated raw data from one subject and the corresponding
PWA estimates in each case. This set of simulation studies
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Figure 8. Simulation studies for PTA with multiple ranks.
The top four ranks of feature loadings (upper panel) and
principal trends (lower panel) are shown from left to right.

Figure 9. Simulation studies for PMA with multiple ranks.
The top four ranks of loadings (upper panel) and scores

(lower panel) are shown from left to right.

Figure 10. Simulation studies for SPCA with multiple ranks.
The top four ranks of loadings (upper panel) and scores

(lower panel) are shown from left to right.

Figure 11. Simulation studies for ICA with multiple ranks.
The first four columns of the estimated mixing matrix (upper
panel) and the corresponding estimated signals (lower panel)

are shown from left to right.

further demonstrated the practical merits of PWA in various
scenarios.

4. APPLICATIONS

4.1 Epigenomic regulation in human
embryonic stem cells

To demonstrate the practical merits of the proposed
method, we first applied it to an epigenomic research sce-
nario. Specifically, we focused on the alterations of chro-
matin states through histone modifications. The chromatin
states along the genome are named as the epigenome.
Epigenomes can be tissue and developmental stage spe-
cific. Notably, human embryonic stem cells (hESCs) have
epigenetic remodeling characteristics, which are critical for
their self-renewal and pluripotence. Thus, it is impor-
tant to investigate epigenetic signatures in hESCs. High-
throughput biotechnologies such as chromatin immunopre-
cipitation sequencing (ChIP-seq) assays can characterize
profiles of histone modifications at the genome scale [15].
In our epigenome case study, we employed histone 3 lysine
4 trimethylation (H3K4me3) ChIP-seq data to demonstrate
the usefulness of the proposed PWA method. Specifically,
we used the ChIP-seq data for H3K4me3 epigenetic mod-
ification with two replicates in hESCs. These data were
derived from the following resources available in the pub-
lic domain [18]. We used top 20,000 genes with the highest
variance with 3,720 bases around the transcription start site
(TSS) in two replicates.

We applied PWA to this dataset and identified 14,000
genes with nonzero loadings. We plot the feature loadings
in Figure 13(a) and the estimated data heatmap in Fig-
ure 13(b). Each row in the heatmap indicates one gene.
In Figure 13(a), genes are ordered according to the ampli-
tudes of feature loadings. Each column in the estimated data
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Figure 12. Simulation studies for PWA with more
complicated mixed signals based on Equation 13. The
subfigures in the left panel illustrate raw data from one

subject for each case. The subfigures in the right panel show
the corresponding PWA estimates for each case. Case 1: The
number of features P = 200, and Gaussian distributed noises
with signal-to-noise ratio SNR=7. Case 2: P = 2000, and

Gaussian distributed noises with signal-to-noise ratio SNR=7.
Case 3: P = 200, and Gaussian distributed noises with

signal-to-noise ratio SNR=2. Case 4: P = 200, correlated
noises using the first order auto-regression model with
correlation corr(εnpt, εnp(t+1)) = 0.5, and SNR=7.

heatmap in Figure 13 indicates one genome locus around
the TSS. The estimated PW is shown in Figure 13(c). One
can see that a smaller peak of histone modification signals
exists before the TSS, and one larger peak occurs behind
the TSS. H3K4me3 is a well-known regulatory hallmark

Figure 13. The application of PWA to H3K4me3 ChIP-seq
data in human embryonic stem cells. (a) The PWA identified
gene loadings. (b) The estimated epigenetic signatures of
H3K4me3 in human embryonic stem cells. Each row in the
heatmap indicate one gene. Genes are ordered according to
the amplitudes of feature loadings in (a). Each column in the
estimated data heatmap in Figure 13 indicates one genome

locus. TSS: transcription start site. The upstream 1500bp and
downstream 1500bp genomic loci are marked in the figures.

(c) The principal wave (PW) identified by PWA.

which is highly enriched at active promoters near TSS of
up-regulated genes [3]. Furthermore, the bimodal property
of the identified PW provides insight on the structural fea-
tures of the genomic region and reveals the existence of pro-
moters for divergent transcriptions. Divergent transcriptions
are common in eukaryotic genomes, including those actively
transcribed genes regulated by H3K4me3 [5]. The biological
signal property and regulatory behaviour can result in co-
regulated gene expression. In PWA, the genes with nonzero
loadings can have divergent transcriptional properties given
the identified bimodal PW. We also further investigated the
functions of genes with large loading amplitudes. For in-
stance, gene ID1 has the largest loading amplitude. Exist-
ing biological literature reported that ID1 involves epige-
nomic regulations related to H3K4me3 in hESCs [10]. Ap-
plying PWA to the H3K4me3 ChIP-seq data from hESCs,
we are able to obtain consistent findings with exiting bio-
logical knowledge.

4.2 Neuroimaging data application

We applied the PWA to an alcoholism case study on Elec-
troencephalography (EEG). The data that support the find-
ings of this study are openly available in https://kdd.ics.uci.
edu/databases/eeg/eeg.data.html. This dataset contains 45
healthy controls and 77 alcoholics [25]. Single-stimulus EEG
signals were recorded for 64 channels and 256 time points.
The EEG channel means an electrode placement on a brain
scalp. Each electrode placement site has a letter and number
label to identify the area of brain. A human brain consists of
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the cerebrum, cerebellum, and brainstem. From functional
perspectives, cerebrum is responsible for interpreting touch,
vision and hearing. It also controls speech, reasoning, emo-
tions, learning and movement. The cerebrum is divided into
four lobes, which are frontal, parietal, occipital and tempo-
ral. In terms of the functions for these specific subareas of
a human brain, frontal lobe has functions related to emo-
tions, behavior, judgment, problem solving, speaking, writ-
ing, body movement, concentration and self awareness. Pari-
etal lobe can interpret signals from vision and hearing, as
well as sense touch, pain and temperature. Occipital lobe
interprets vision such as color, light and movement. Tempo-
ral lobe is responsible for understanding language, memory,
hearing, sequencing and organization. Cerebellum is located
under the cerebrum, and its function is to coordinate muscle
movements, maintain posture and balance. Brainstem con-
nects the cerebrum and cerebellum to the spinal cord. It is
responsible for many automatic functions such as heart rate,
breathing, digestion, wake and sleep cycles.

We performed the proposed PWA method on the EEG
data from control and alcoholic groups, respectively. Then,
we investigated the denoised EEG signals estimated by the
PWA through the formula âd̂θ̂TW . The estimated signals
for the control group are shown in Figure 14(a), and those
for the alcoholic group are shown in Figure 14(b). In Fig-
ure 14, brain areas are shown by the electrode labels. The
mapping between the electrode labels and the brain areas
are as follows: FP means prefrontal, F means frontal, T
means temporal, P means parietal, O means occipital. The
electrode label C is reading from central, however there is
no central lobe. Based on the placement and individual, the
“C” electrodes can exhibit frontal, temporal and parietal-
occipital type of activities in their EEG signals. AF means
intermediate electrode placement between FP and F, FC
means between F and C, FT means between F and T, CP
means between C and P, TP means between T and P, PO
means between P and O. Odd numbers (1, 3, 5, 7) in the elec-
trode labels refer to electrode placement on the left hemi-
sphere, whereas even numbered electrodes (2, 4, 6, 8) refer
to those on the right. A letter “Z” in the electrode labels
means zero, referring to an electrode placed on the mid-
line sagittal plane of the skull, as seen in FPZ, FZ, CZ and
OZ. By looking at Figure 14(a) and Figure 14(b) simultane-
ously, one can see that brain activities in the areas of pre-
frontal, parietal and occipital are more time-varying than
those in frontal, temporal and central areas. In addition,
the PWA estimated signals tend to be similar to each other
for the nearby brain locations. By comparing Figure 14(a)
with Figure 14(b), we found that the estimated EEG signals
in alcoholic group exhibit differently in the prefrontal, pari-
etal and occipital areas compared to the control group. As
aforementioned, these areas have functions related to inter-
preting signals corresponding to vision, hearing, movement,
pain and temperature. These findings based on the PWA
estimated signals are consistent with existing studies on al-
coholism [1, 14].

Figure 14. PWA estimated EEG signals across 64 brain areas
and 256 time points. (a) PWA estimation for healthy control
EEG data. (b) PWA estimation for alcoholism EEG data.

5. CONCLUSION

We have developed a new statistical method, named as
PWA, motivated by the problem of extracting underlying
patterns and identifying the corresponding features for high-
dimensional structured data. The proposed PWA does not
assume the embedded patterns are entirely smooth. We
demonstrated the practical merits of PWA through simu-
lation studies with different types of signal phenomena em-
bedded in the data, such as jump discontinuities, spikes,
varying frequency behaviour, and smooth signals containing
jumps/spikes. We also applied PWA to epigenomic research
in human embryonic stem cells and an alcoholism case study
on EEG data. The real applications demonstrated the pro-
posed PWA method can reveal biologically meaningful un-
derlying signal patterns and identify important biological
features.

APPENDIX

A.1 Proof of the triconvex property

The loss function is defined as L(a, d,θ|X) =∑N
n=1 ‖Xn − adθTW ‖2F .
The squared error loss can be shown as

L(a, d,θ|X) =
N∑

n=1

tr(ET
nEn)

=
N∑

n=1

tr
[
(Xn − adθTW )T(Xn − adθTW )

]

=

N∑
n=1

tr
[
XT

nXn − 2XT
nadθ

TW +W TθdaTadθTW
]

=

N∑
n=1

tr
[
XT

nXn

]
− 2tr

[(
N∑

n=1

XT
n

)
adθTW

]

+N · tr
[
W TθdaTadθTW

]
234 Y. Zhang



For fixed a and d, the second and third terms are respec-
tively linear and quadratic in θ, since

tr

[(
N∑

n=1

XT
n

)
adθTW

]
= tr

[
W

(
N∑

n=1

XT
n

)
adθT

]

=

(
W

(
N∑

n=1

XT
n

)
ad

)T

θ,

and

tr
[
W TθdaTadθTW

]
= tr

[
θTWW TθdaTad

]
= tr

[
θTθdaTad

]
= θTθdaTad.

Similarly, for fixed θ and d, the second and third terms
are respectively linear and quadratic in a, since

tr

[
(

N∑
n=1

XT
n )adθ

TW

]
= tr

[
adθTW

(
N∑

n=1

XT
n

)]

=

(
dθTW

(
N∑

n=1

XT
n

))
a.

and

tr
[
W TθdaTadθTW

]
= tr

[
dθTWW TθdaTa

]
= tr

[
dθTθdaTa

]
= dθTθdaTa.

Convexity follows for each parameter with the others
fixed, since θTθ and aTa are nonnegative. Thus, the orig-
inal optimization problem with the appropriate convex re-
laxation ‖θ‖22 ≤ 1 and ‖a‖22 ≤ 1 is triconvex. This suggests
an iterative algorithm.

A.2 Derivation of the PWA algorithm

With a and d fixed, we minimize the following criterion:

N ·θTθdaTad−2·
(
W

(
N∑

n=1

XT
n

)
ad

)T

θ+2λ1‖θ‖1+λ3‖θ‖22,

and we differentiate, set the derivative to 0, and solve for θ:

θ =

soft

(
1
NW

(∑N
n=1 Xn

)T

ad, λ1

)
∥∥∥∥soft

(
1
NW

(∑N
n=1 Xn

)T

ad, λ1

)∥∥∥∥
2

,

where soft(t, s) is a soft-thresholding function.
With θ and d fixed, we minimize the following criterion:

N ·θTθdaTad−2·
(
dθTW

(
N∑

n=1

XT
n

))
a+2λ2‖a‖1+λ4‖a‖22,

and we differentiate, set the derivative to 0, and solve for a:

a =
soft

(
1
N

∑N
n=1 XnWθd, λ2

)
∥∥∥soft(

1
N

∑N
n=1 XnWθd, λ2

)∥∥∥
2

.

With θ and a fixed, we minimize the following criterion:

−2d

(
θTW

(
N∑

n=1

XT
n

))
a+Nd2θTθaTa.

Thus, d = 1
N (θTθaTa)−1(θTW (

∑N
n=1 X

T
n ))a =

1
N θTW (

∑N
n=1 X

T
n )a
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