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Average treatment effect estimation in
observational studies with functional covariates
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Functional data analysis is an important area in mod-
ern statistics and has been successfully applied in many
fields. Although many scientific studies aim to find causa-
tions, a predominant majority of functional data analysis ap-
proaches can only reveal correlations. In this paper, average
treatment effect estimation is studied for observational data
with functional covariates. This paper generalizes various
state-of-art propensity score estimation methods for multi-
variate data to functional data. The resulting average treat-
ment effect estimators via propensity score weighting are
numerically evaluated by a simulation study and applied to
a real-world dataset to study the causal effect of duloxitine
on the pain relief of chronic knee osteoarthritis patients.

AMS 2000 subject classifications: Primary 62G05;
secondary 62P10.
Keywords and phrases: Functional principal component
analysis, Functional regression, Direct modeling, Covariate
balancing, Magnetic resonance imaging.

1. INTRODUCTION

Functional data analysis (FDA) has become increasingly
important in modern statistics and has been successfully
applied in a variety of scientific fields. Apart from books
on general introductions to FDA (e.g., Bosq, 2000; Ram-
say and Silverman, 2005; Ferraty and Vieu, 2006; Horváth
and Kokoszka, 2012; Hsing and Eubank, 2015; Kokoszka and
Reimherr, 2017), recent advances of FDA, including innova-
tive methodologies, profound theories, efficient algorithms,
and successful applications, have been illustrated by numer-
ous survey papers (e.g., Guo, 2004; Müller, 2008; Delicado
et al., 2010; Geenens, 2011; Hörmann and Kokoszka, 2012;
Cuevas, 2014; Marron and Alonso, 2014; Shang, 2014; Wang,
Chiou and Müller, 2016; Chen et al., 2017; Nagy, 2017; Vieu,
2018; Kokoszka and Reimherr, 2019).

A majority of FDA methods can only reveal correlations
primarily via either functional regression models (for reviews
see e.g., Morris, 2015; Greven and Scheipl, 2017; Paganoni
and Sangalli, 2017; Reiss et al., 2017) or correlation mea-
sures (e.g., Leurgans, Moyeed and Silverman, 1993; Dubin
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and Müller, 2005; Cupidon et al., 2008; Eubank and Hsing,
2008; Lian, 2014; Shin and Lee, 2015; Zhou, Lin and Wang,
2018). However, FDA methods for causal inference is un-
derdeveloped despite the importance of causation in many
scientific studies. Among very few exceptions, almost all of
them focus on randomized clinical trials (e.g., Lindquist,
2012; McKeague and Qian, 2014; Ciarleglio et al., 2015,
2018; Zhao et al., 2018; Zhao and Luo, 2019). In classi-
cal causal inference for observational studies where multi-
variate data are of primary interest, the propensity score
(Rosenbaum and Rubin, 1983) plays an important role and
has been widely applied in epidemiology and political sci-
ence among others. Despite its popularity, its use in FDA
to study causations in observational studies is nearly void.

The main contribution of this paper is to introduce and
adapt various state-of-art propensity score methods to ob-
servational functional data. We consider the scenario where
the treatment is binary and at least one covariate is func-
tional. We generalize the definition of the propensity score to
functional data, and study two types of propensity score esti-
mations. The propensity score is estimated by either directly
fitting a functional regression model or balancing appropri-
ate functions of the covariates. This paper in particular fo-
cuses on propensity score weighting (e.g., Rosenbaum, 1987;
Robins, Hernán and Brumback, 2000; Hirano, Imbens and
Ridder, 2003), although the propensity score may be used
to adjust for confounding through other means, e.g., match-
ing (e.g., Rosenbaum and Rubin, 1985; Rosenbaum, 1989;
Abadie and Imbens, 2006) and subclassification (e.g., Rosen-
baum and Rubin, 1984; Rosenbaum, 1991; Hansen, 2004).
A systematic comparison of two popular propensity-score-
weighted average treatment effect estimators is provided in
both a simulation study and a real data application.

The rest of the paper proceeds as follows. Section 2 pro-
vides the problem setup and generalizes the classical defi-
nition of the propensity score to functional data where the
treatment is binary and one covariate is functional. Section 3
introduces two types of propensity score estimations via di-
rect modeling and covariate balancing respectively and two
widely used average treatment effect estimators via propen-
sity score weighting. The two average treatment effect es-
timators based on a variety of estimated propensity score
weights are comprehensively compared in a simulation study
in Section 4. They are also applied in a real data analysis in
Section 5 to study the causal effect of duloxitine on the pain
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relief of chronic knee osteoarthritis patients. Discussion in
Section 6 concludes the paper.

2. FRAMEWORK

Suppose that Y is a continuous outcome, T is a bi-
nary treatment variable which equals either 0 (control) or
1 (treatment), W is a multivariate covariate, and X(·) is a
functional covariate defined on a compact domain T . Sup-
pose that E

∫
T {X(t)}2 dt < ∞ and X(·) is smooth, e.g.,

continuous or twice-differentiable. Without loss of general-
ity E(W) = 0, T = [0, 1] and E{X(t)} = 0 for all t ∈ [0, 1].

Let Y (1) and Y (0) represent the potential values of Y
when T = 1 and 0 respectively. In practice Y = TY (1) +
(1 − T )Y (0) is observable but Y (1) and Y (0) are not both
observable. Based on {(Yi, Ti,Wi, {Xi(t) : t ∈ [0, 1]}) :
i = 1, . . . , n}, which are independently and identically dis-
tributed (i.i.d.) copies of (Y, T,W, {X(t) : t ∈ [0, 1]}), we
aim to estimate the average treatment effect τ = E{Y (1)−
Y (0)}.

We assume that each Xi(·) is fully observed, but the
methods below are also applicable for densely measured
Xi(·) since its entire trajectory can be accurately recovered
by smoothing (e.g., Zhang and Chen, 2007). In this paper
we only consider low-dimensional Wi. The handling of high-
dimensional multivariate covariates is beyond the scope of
this paper but is a promising topic for future research (e.g.,
Belloni, Chernozhukov and Hansen, 2014; Farrell, 2015; Bel-
loni et al., 2017; Chernozhukov et al., 2018; Ning, Peng and
Imai, 2018).

Similar to its classical counterpart (e.g., Rosenbaum and
Rubin, 1983; Robins, Hernán and Brumback, 2000), the
propensity score is defined by

(1) p(Wi, Xi) = P (Ti = 1 | Wi, Xi(·)).

In this paper we make the following two assumptions:

Assumption 1.

Ti ⊥ (Yi(0), Yi(1)) | (Wi, Xi(·)) ,

where “⊥” represents independence.

Assumption 2. The propensity score satisfies

0 < P (Ti = 1 | Wi = w, Xi(·) = x(·)) < 1,

for all vectors w and all functions x(·) defined on [0, 1] such

that
∫ 1

0
{x(t)}2 dt < ∞.

Assumptions 1 and 2 are straightforward generalizations
of the commonly used strong ignorability and positivity as-
sumptions in classical causal inference respectively. Assump-
tion 1 implies that there is no unmeasured covariate, while
Assumption 2 essentially requires that every sample has a
positive probability of receiving the treatment or being in
the control group.

3. METHODOLOGY

In this section, we introduce various methods for propen-
sity score estimation and two average treatment effect esti-
mators via propensity score weighting.

3.1 Propensity score estimation

We propose two types of propensity score estimations,
one via direct modeling and the other via covariate bal-
ancing. They will be introduced in Sections 3.1.1 and 3.1.2
respectively.

3.1.1 Direct modeling

To estimate the propensity score p(Wi, Xi), one may as-
sume a parametric model for p(Wi, Xi) and fit it with an
appropriate estimation procedure.

The simplest model might be the generalized functional
partial linear model (GFPLM):

(2) logit {p(Wi, Xi)} = α0 + α�
1 Wi +

∫ 1

0

β(t)Xi(t) dt,

where logit(x) = log{x/(1−x)} and the scalar α0, vector α1

and function β(·) are unknown parameters to be estimated.
Apparently the GFPLM is an extension of James (2002),
Müller and Stadtmüller (2005) and Shin (2009).

Similar to fitting other functional regression models con-
sidered in the FDA literature, regularization for the func-
tional coefficient β is needed to fit (2). Popular regu-
larizations include the truncated basis function expansion
(e.g., Cardot, Ferraty and Sarda, 1999; Ramsay and Sil-
verman, 2005, Ch. 4), roughness penalization (e.g., Yuan
and Cai, 2010) and their combinations (e.g., Cardot, Fer-
raty and Sarda, 2003; Ramsay and Silverman, 2005, Ch. 5).
The most straightforward regularization is perhaps the first
one above where the basis functions are obtained by func-
tional principal component analysis (FPCA). Explicitly, the
functional covariate may be approximated by by Xi(t) ≈∑L

k=1 Aikφk(t) where φk(·), 1 ≤ k ≤ L < ∞, are eigenfunc-
tions corresponding to the top L eigenvalues λ1 ≥ · · · ≥
λL > 0 of the covariance function Cov{X(s), X(t)}, and

Aik =
∫ 1

0
Xi(t)φk(t), 1 ≤ k ≤ L, are corresponding FPC

scores. Thus

(3) logit {p(Wi, Xi)} ≈ α0 + α�
1 Wi +

L∑
k=1

βkAik,

where βk =
∫ 1

0
β(t)φk(t) dt, 1 ≤ k ≤ L. The maximum like-

lihood method can be used to find the parameter estimates
(α̂0, α̂1, β̂1, . . . , β̂L) and thus the propensity score estimate
p̂(Wi, Xi).

Remark 1.
1. The terms φk(·), λk, Aik, k ≥ 1 above are all population
quantities. In practice one can only obtain their sample ver-
sions.
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2. The aforementioned FPCA-regularized maximum likeli-
hood method is also applicable to fit a GPFLM if Xi is a
multidimensional functional covariate, i.e.,

logit {p(Wi, Xi)} = α0 + α�
1 Wi +

∫
β(u)Xi(u) du,

where u is a generic and multidimensional index for Xi.
With the FPC scores obtained by FPCA, this multidimen-
sional GPFLM can also be approximated by (3) and fitted
by the maximum likelihood method.
3. Following the suggestion by Rubin (2007) that the propen-
sity score estimation is conducted without access to outcome
data, the number of FPC scores L, a tuning parameter, can
be determined by various means when estimating the propen-
sity score, including the fraction of variation explained (e.g.,
95% or 99%), cross-validation, the Akaike information cri-
terion (AIC), etc.

In addition to the GFPLM, one may fit other propen-
sity score models, such as the functional generalized addi-
tive model (FGAM, e.g., Müller, Wu and Yao, 2013; McLean
et al., 2014):

(4) logit {p(Wi, Xi)} = α0 + α�
1 Wi +

∫ 1

0

η(t,Xi(t)) dt,

where the unknown parameters are α0, a scalar, α1, a vector,
and η(∗, ·), a bivariate function. To fit (4), one may apply
the maximum likelihood method after approximating η(∗, ·)
by a set of tensor products of B-spline basis functions.

3.1.2 Covariate balancing

In the classical literature on causal inference, it is well
known that parametric methods for propensity score esti-
mation may suffer from model misspecification substantially
(e.g., Smith and Todd, 2005; Kang and Schafer, 2007). Re-
cently covariate balancing methods, which aim to mimic
randomization, have been proposed as important alterna-
tives (e.g., Qin and Zhang, 2007; Hainmueller, 2012; Imai
and Ratkovic, 2014; Zubizarreta, 2015; Li, Morgan and Za-
slavsky, 2018; Wong and Chan, 2018; Zhao, 2019). To the
best of our knowledge, all existing covariate balancing meth-
ods so far are developed to handle multivariate covariates
and cannot be directly used for functional covariates.

One way of balancing both multivariate covariates Wi

and functional covariate Xi is to generalize the covari-
ate balancing propensity score (CBPS) method (Imai and
Ratkovic, 2014) by considering the following functional co-
variate balancing equation:

(5)
1

n

n∑
i=1

{
Ti

p(Wi, Xi)
− (1− Ti)

1− p(Wi, Xi)

}
h(Wi, Xi) = 0,

where a parametric model is assumed for the propensity
score p(Wi, Xi) and h(Wi, Xi) is a user-defined vector-
valued function to reflect how Wi and Xi are balanced.

To solve (5), we propose to substitute the functional
covariate Xi by a multivariate covariate. For example, by
FPCA as in Section 3.1.1, the functional covariate Xi(·) can
be approximated by Xi(t) ≈

∑L
k=1 Aikφk(t) with a proper

integer L such that Ai = (Ai1, . . . , AiL)
� possesses a major-

ity of the information of Xi. Thus Ai may be used as a sub-
stitute of Xi and we may replace p(Wi, Xi) and h(Wi, Xi)
in (5) by the substitute propensity score

(6) p(Ci) = P (Ti = 1 | Ci),

and another user-defined vector-valued function h(Ci) re-
spectively, where Ci = (W�

i ,A
�
i )

�. Obviously if X(·) is
of finite rank in terms of its spectral decomposition, i.e.,
FPCA, the substitute propensity score p(Ci) is equivalent
to p(Wi, Xi) when L is chosen to be the rank of X(·). Then
it suffices to solve

(7)
1

n

n∑
i=1

{
Ti

p(Ci)
− (1− Ti)

1− p(Ci)

}
h(Ci) = 0,

which is exactly the covariate balancing equation for multi-
variate covariates (Imai and Ratkovic, 2014).

To solve (7), one may assume a logistic model for p(Ci):

(8) logit {p(Ci)} = γ0 + γ�
1 Ci,

where γ0 and γ1 are unknown parameters to be estimated,
which is equivalent to the approximate GFPLM in (3). One
also needs to specify h(Ci) to reflect how Ci are balanced.
For example, one may define h(Ci) = Ci to balance the first
moment of Ci. Alternatively to balance both the first and
second moments of Ci, one may use h(Ci) = (C�

i , (C
2
i )

�)�

where C2
i contains the entry-wise square of Ci. Then we let

p̂(Wi, Xi) = p̂(Ci) obtained in (7).

3.2 Average treatment effect estimation

To estimate the average treatment effect τ = E{Y (1) −
Y (0)}, a variety of estimators via propensity score weight-
ing have been proposed, such as the Horvitz-Thompson es-
timator (Horvitz and Thompson, 1952), the inverse propen-
sity score weighting estimator (Hirano, Imbens and Rid-
der, 2003), the weighted least squares regression estimator
(Robins, Hernán and Brumback, 2000; Freedman and Berk,
2008), and the doubly robust estimator (Robins, Rotnitzky
and Zhao, 1994) among others.

In the simulation experiments and real data application
below, we will consider two representative average treat-
ment effect estimators, the Horvitz-Thompson (HT) estima-
tor and Hájek estimator, to numerically evaluate and com-
pare the propensity score estimation methods in Section 3.1.

Explicitly, for each propensity score estimate p̂i =
p̂(Wi, Xi) obtained by either direct modeling or covariate
balancing approach, the HT and Hájek estimators are re-
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spectively defined by

τ̂HT =
1

n

n∑
i=1

{
TiYi

p̂i
− (1− Ti)Yi

1− p̂i

}
, and

τ̂Hájek =

∑n
i=1 TiYi/p̂i∑n
i=1 Ti/p̂i

−
∑n

i=1(1− Ti)Yi/(1− p̂i)∑n
i=1(1− Ti)/(1− p̂i)

.

Apparently the Hájek estimator, which normalizes the HT
estimator, is a special inverse propensity score weighting
estimator.

4. SIMULATION

In this section we present a simulation study to evaluate
and compare a few propensity score estimation methods in
terms of the performances of their resulting average treat-
ment effect estimations.

We had 1,000 simulation runs where we generated in-
dependent subjects with sample size n = 200 and 500 re-
spectively. For the ith subject, Zi1, . . . , Zi6 were i.i.d. sam-
pled from the standard normal distribution. The multivari-
ate covariate Wi = (Wi1,Wi2,Wi3)

� was generated by
Wi1 = Zi1 + 2Zi2, Wi2 = Z2

i2 − Z2
i3, Wi3 = exp(Zi3) −

exp(1/2). The functional covariate was generated byXi(t) =∑6
k=1 Aikφk(t), t ∈ [0, 1] where Aik = 2Zik/k, k = 1, . . . , 6,

and φ2k−1(t) =
√
2 cos(2πkt), φ2k(t) =

√
2 sin(2πkt), k =

1, 2, 3. Note that E(Wi) = 0 and E{Xi(t)} = 0, t ∈ [0, 1].
We generated the treatment Ti using the three propensity

score models (PSMs) for p(Wi, Xi) as follows.

1. PSM 1: The treatment Ti follows a Bernoulli distribu-
tion with the probability

p(Wi, Xi) =
exp{α�Wi +

∫ 1

0
β0(t)Xi(t) dt}

1 + exp{α�Wi +
∫ 1

0
β0(t)Xi(t) dt}

,

where α = (−1, 0.5,−0.1)� and β0(t) = 2φ1(t) +
0.5φ2(t) + 0.5φ3(t) + φ4(t).

2. PSM 2: The treatment Ti follows a Bernoulli distribu-
tion with the probability

p(Wi, Xi) =
exp{α�Wi +

∫ 1

0
η0(t,Xi(t)) dt}

1 + exp{α�Wi +
∫ 1

0
η0(t,Xi(t)) dt}

,

where α = (−1, 0.5,−0.1)� and η0(t, x) = −0.5 +
exp[−{(t− 0.5)/0.3}2 − (x/5)2].

3. PSM 3: The treatment Ti follows a Bernoulli distribu-
tion with the probability

p(Wi, Xi) =
exp(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4)

1 + exp(−Zi1 + 0.5Zi2 − 0.25Zi3 − 0.1Zi4)
.

Obviously PSM 1 is a GFPLM as in (2) and PSM 2 is an
FGAM as in (4).

We generated the outcome Yi based on the following two
outcome models (OMs).

1. OM 1: Yi = 200 + 10Ti + (1.5Ti − 0.5)(27.4Zi1 +
13.7Zi2 + 13.7Zi3 + 13.7Zi4) + ei where ei is gener-
ated from the standard normal distribution indepen-
dently of Zi1, . . . , Zi6. The true average treatment effect
is τ = 10.

2. OM 2: Yi = Zi1Z
3
i2Z

2
i3Zi4 + ei where ei follows the

standard normal distribution which is independent of
Zi1, . . . , Zi6. The true average treatment effect is τ = 0.

We compared the performances of five propensity score
estimation methods in the simulation study, denoted by GF-
PLM, FGAM, CBPS1, CBPS2 and KBCB respectively. The
first two methods are via direct modeling while the last
three are via covariate balancing. By the FPCA approxima-
tion and maximum likelihood method as in Section 3.1.1,
GFPLM fits (2) to estimate the propensity score. The num-
ber of FPC scores L was selected as the smallest integer
such that the fraction of variation explained by the top L
FPC scores is at least 95%. FGAM obtains the propensity
score estimate by fitting (4) directly, where tensor prod-
ucts of seven cubic B-spline basis functions were used to
approximate η(∗, ·) before the maximum likelihood method
was applied. Apparently GFPLM is subject to model mis-
specification when data are generated from PSM 2, while
both GFPLM and FGAM fit incorrect models when data are
generated from PSM 3.

Table 1. Bias and RMSE values for the HT and Hájek
estimates based on five propensity score estimation methods
for PSM 1 and OM 1. The percentages beside a propensity
score estimation method, if any, refer to the proportions of
simulation runs used to calculate the bias and RMSE values
for the HT and Hájek estimates respectively, and “-” denotes
100%. All simulation runs were used for a propensity score

estimation method if no such percentages are given

HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.9%, -) 4.82 100.17 2.28 11.28
FGAM (99.9%, -) 8.44 17.12 9.58 10.47
CBPS1 2.90 45.87 3.00 9.15
CBPS2 (99.8%, -) 1.77 28.58 3.75 7.29
KBCB 1.69 4.43 2.08 4.58

n = 500
GFPLM 1.78 75.83 1.65 10.07
FGAM 9.02 11.98 9.56 9.86
CBPS1 2.47 39.25 2.27 7.58
CBPS2 (99.8%, -) 1.98 21.26 2.73 5.74
KBCB 0.79 2.56 0.96 2.62

Both CBPS1 and CBPS2 are based on the CBPS method
as introduced in Section 3.1.2. The multivariate substi-
tute Ai = (Ai1, . . . , AiL)

� for the functional covariate Xi
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was obtained by FPCA which explains at least 95% of
the variation of Xi, and (8) was assumed for the substi-
tute propensity score p(Ci). CBPS1 balanced the first mo-
ments of Ci while CBPS2 balanced both first and second
moments of Ci, and they were performed using the CBPS
R package. KBCB is another covariate functional balanc-
ing method recently proposed by Wong and Chan (2018),
which controls the balance of Ci over a reproducing kernel
Hilbert space (RKHS). KBCB was implemented using the
ATE.ncb R package downloaded from https://github.com/
raymondkww/ATE.ncb where the RKHS was chosen as the
second-order Sobolev space.

With the propensity score estimate obtained by each of
the five methods above, we achieved the HT and Hájek es-
timates for the average treatment effect, i.e., τ̂HT and τ̂Hájek

as in Section 3.2. Note that KBCB does not give an estimate
for the substitute propensity score p(Ci). Instead it provides
estimates for both Ti/p(Ci) and (1 − Ti)/{1 − p(Ci)}, but
they suffice to obtain both HT and Hájek estimates.

Table 2. The same as Table 1 except for PSM 2 and OM 1

HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.9%, -) 1.26 57.49 -0.68 8.20
FGAM (99.8%, -) -1.05 59.70 -0.93 8.22
CBPS1 -1.22 29.65 -1.44 6.48
CBPS2 (99.9%, -) -4.19 22.22 -1.81 5.62
KBCB -1.03 4.11 -0.49 3.95

n = 500
GFPLM -2.46 40.28 -0.87 6.00
FGAM -3.23 43.39 -0.74 5.95
CBPS1 -0.38 22.52 -1.14 4.94
CBPS2 -0.98 15.31 -0.98 3.83
KBCB -0.35 2.53 -0.17 2.51

The bias and root mean squared error (RMSE) values
for the HT and Hájek estimates are given in Tables 1–6.
For each average treatment effect estimate based on any
propensity score estimation method, we removed the simu-
lation runs of which average treatment effect estimates are
ten standard deviations away from the mean, and used the
remaining simulated data to calculate bias and RMSE val-
ues.

The six tables show that for any propensity score es-
timation methods but KBCB, a larger sample size gener-
ally improves the average treatment effect estimation accu-
racy measured by RMSE, but it unnecessarily improves the
bias. With respect to RMSE, the three covariate balancing
methods are generally better than the two directly modeling
methods, although FGAM occasionally outperforms the two
CBPS methods (see Tables 1 and 3). Between the two direct
modeling methods, FGAM almost always performs better
than GFPLM in terms of RMSE even when the latter cor-
rectly specifies PSM 1, but the former is often worse in terms

of bias. The results for the two CBPS methods indicate that
balancing additional covariate moments can typically im-
prove average treatment effect estimation. Among all five
propensity score estimation methods, KBCB performs over-
all the best in terms of both bias and RMSE with the only
exceptions for PSM 1 and OM 2 (see Table 4) and for PSM
2 and OM 2 with n = 200 (see Table 5).

Table 3. The same as Table 1 except for PSM 3 and OM 1

HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.9%, -) 0.15 22.19 -0.15 5.66
FGAM (99.9%, -) -4.22 9.16 -4.37 5.96
CBPS1 -1.83 13.02 -1.14 4.63
CBPS2 (99.8%, -) -1.69 14.80 -1.11 4.83
KBCB -0.37 3.92 -0.27 3.90

n=500
GFPLM -0.04 12.51 -0.09 3.45
FGAM -4.03 5.84 -4.37 5.05
CBPS1 -0.63 9.12 -0.70 3.06
CBPS2 -1.27 8.40 -0.81 2.91
KBCB -0.07 2.46 -0.05 2.46

Table 4. The same as Table 1 except for PSM 1 and OM 2.
All bias and RMSE values are given in the unit of 10−1

10−1 HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.9%, 99.8%) 0.05 18.26 0.27 12.48
FGAM (99.9%, 99.9%) 3.28 11.83 3.29 11.75
CBPS1 (99.9%, 99.9%) 0.59 9.74 0.65 10.71
CBPS2 (99.8%, -) 0.99 7.92 1.04 8.26
KBCB 0.95 8.70 0.95 8.71

n = 500
GFPLM (99.8%, 99.9%) -0.07 11.59 -0.04 10.76
FGAM (99.8%, 99.8%) 4.01 10.40 4.02 10.43
CBPS1 (99.9%, 99.9%) 0.11 8.49 0.22 8.63
CBPS2 (99.8%, 99.9%) 0.51 6.74 0.64 6.58
KBCB 1.04 6.71 1.04 6.71

In terms of computational stability, all propensity score
estimation methods perform satisfactorily, but KBCB is the
most robust method since it never produces outlying aver-
age treatment effect estimates. CBPS1 is slightly less likely
to produce extreme average treatment effect estimates than
CBPS2. This is somewhat unsurprising since the latter ad-
ditionally balances the second moments of covariates. Com-
pare to the HT estimates, the Hájek estimates generally
have fewer outlying values and smaller RMSE values for all
propensity score estimation methods but KBCB. This obser-
vation demonstrates the benefit of inverse propensity score
weighting.
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Table 5. The same as Table 4 except for PSM 2 and OM 2

10−1 HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.8%, 99.8%) -0.54 10.24 -0.52 9.29
FGAM (99.7%, 99.9%) -0.21 10.17 -0.24 9.91
CBPS1 -0.50 8.43 -0.51 8.87
CBPS2 (99.9%, -) -0.35 5.95 -0.34 6.70
KBCB -0.66 7.13 -0.66 7.14

n = 500
GFPLM (99.8%, 99.9%) -0.53 8.46 -0.54 8.25
FGAM (99.8%, 99.9%) -0.54 9.70 -0.55 8.96
CBPS1 -0.62 6.86 -0.67 7.17
CBPS2 (99.9%, 99.9%) -0.55 6.24 -0.60 6.35
KBCB -0.60 5.12 -0.60 5.12

Table 6. The same as Table 4 except for PSM 3 and OM 2

10−1 HT Hájek
Bias RMSE Bias RMSE

n = 200
GFPLM (99.9%, 99.9%) -0.43 10.91 -0.39 10.49
FGAM (99.8%, 99.8%) -0.29 10.19 -0.30 10.31
CBPS1 -0.35 8.43 -0.37 8.75
CBPS2 (99.9%, 99.9%) -0.37 10.43 -0.31 8.94
KBCB -0.12 7.10 -0.12 7.11

n = 500
GFPLM -0.92 7.44 -0.90 7.35
FGAM -1.12 7.91 -1.13 7.92
CBPS1 -0.70 6.29 -0.72 6.42
CBPS2 (99.9%, 99.9%) -0.59 5.89 -0.60 6.04
KBCB -0.30 4.88 -0.30 4.88

5. DATA APPLICATION

We applied three propensity score weighting methods
introduced above to a pain relief dataset (Tétreault et al.,
2016), which was downloaded from OpenNeuro (https://
openneuro.org/datasets/ds000208/versions/1.0.0). The
dataset consists of 56 chronic knee osteoarthritis pain
patients in two separate clinical trials. The first trial was
single-blind where all 17 subjects took placebo pills, while
the second trial was double-blind where 39 subjects were
randomized to take either duloxetine (30/60mg QD) or
placebo. With the observational data obtained by combining
the two trials, we aimed to estimate the average treatment
effect of duloxitine compared to placebos on chronic knee
osteoarthritis pain relief. The pain relief was measured
by the visual analog scale (VAS) score, and the Western
Ontario and McMaster Universities Osteoarthritis Index
(WOMAC) score, and we studied the average duloxitine
effect on both measures separately.

A subject is considered to receive the treatment if he/she
took duloxitine; those who took placebo pills are regarded
to be in the control group. The multivariate covariates Wi

are age and gender. Each subject also underwent pretreat-
ment brain scans, via both anatomical magnetic resonance
imaging (MRI) and resting state functional MRI (rsfMRI).
Using the FMRIB Software Library v6.0 (https://fsl.fmrib.
ox.ac.uk/fsl/fslwiki), we preprocessed the rsfMRI scans of
each subject, registered them to template MNI152 through
his/her anatomical MRI scan, and then downsampled each
registered rsfMRI scan to the spatial resolution of voxel size
4mm3. Finally, inspired by Tétreault et al. (2016), we ob-
tained a connectivity network/matrix for each subject which
contains the Pearson correlation of the brain signals from
every pair of voxels, and we treated this network as a func-
tional covariate Xi. Since each voxel is indexed by a three-
dimensional spatial coordinate, the functional covariate is
six-dimensional.

Table 7. The HT and Hájek estimates for the average
treatment effect of duloxitine on pain relief measured by the

VAS score. Bootstrap standard errors (SE) and 95%
bootstrap percentile confidence intervals were obtained by

1,000 bootstrap samples

τ̂ SE [2.5%, 97.5%]

HT
GFPLM -5.99 11.62 [-22.77, 6.49]
CBPS -5.26 4.12 [-12.21, 3.17]
KBCB 0.39 3.43 [-6.29, 7.21]

Hájek
GFPLM -0.52 4.27 [-9.04, 7.58]
CBPS -0.23 3.64 [-6.87, 7.18]
KBCB 0.28 3.37 [-6.14, 7.17]

Table 8. The same as Table 7 except for the WOMAC score

τ̂ SE [2.5%, 97.5%]

HT
GFPLM -8.41 11.23 [-26.25, 5.35]
CBPS -7.63 4.79 [-16.22, 2.08]
KBCB 1.16 4.18 [-7.54, 8.45]

Hájek
GFPLM -3.18 4.72 [-11.66, 6.50]
CBPS -2.85 4.31 [-10.56, 6.52]
KBCB 1.05 4.17 [-7.76, 8.50]

We considered three methods for propensity score estima-
tion, GFPLM, CBPS and KBCB. GFPLM refers to the direct
modeling method where the propensity score is estimated
by fitting the model in Remark 1.2. The top L FPC scores
of Xi, denoted by Ai = (Ai1, . . . , AiL)

�, were used in the
approximate model (3) for GFPLM. They were also used as
the multivariate substitute of Xi to define the substitute
propensity score as in (6) to perform CBPS and KBCB. To
apply CBPS, (8) was assumed for the substitute propensity
score, and only the first moments of Ci = (W�

i ,A
�
i )

� were
balanced due to a small sample size. We used L = 4 in all
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three methods, which was selected as the smallest integer
such that the corresponding AIC value no longer decreases
when the top FPC scores are sequentially added to (3).

Figure 1. Violin plots for the 1,000 bootstrap HT and Hájek
estimates for the average treatment effect of duloxitine on the

VAS score.

Figure 2. The same as Figure 1 except for the WOMAC score.

For each propensity score estimation and each pain relief
measure, i.e., VAS or WOMAC score, we obtained its cor-
responding HT and Hájek estimates for the average treat-
ment effect of duloxitine. We used 1,000 bootstrap samples
to provide uncertainty measures, including standard errors
and confidence intervals.

Tables 7 and 8 provide the HT and Hájek estimates, boot-
strap standard errors and 95% bootstrap percentile confi-
dence intervals for the average treatment effect of duloxitine
on VAS and WOMAC scores respectively. They indicate no
significant treatment effect of duloxitine over placebo pills
on pain relief. This is consistent with Tétreault et al. (2016),
although their conclusion was made from a double-blind
clinical trial, i.e., the second trial, while we based our find-
ing on an observational dataset. Explicitly, the 95% confi-
dence intervals for the average treatment effect of duloxitine
on VAS and WOMAC scores obtained from the double-
blind trial are [−8.402, 6.760] and [−9.717, 8.832] respec-
tively. Both confidence intervals are based on t statistics
assuming normality of each treatment or control group and
equal variances of the two groups, which are validated by
the Shapiro-Wilk tests and F-tests respectively.

The 1,000 bootstrap HT and Hájek average treatment ef-
fect estimates are illustrated in Figures 1 and 2 for VAS and
WOMAC scores respectively. Both figures show that the HT
estimates based on GFPLM for propensity score estimation
have a much larger variation than the two covariate balanc-
ing methods, but inverse propensity score weighting can sub-
stantially reduce their differences as revealed by the Hájek
estimates. The median of the Hájek estimates is shifted to-
wards zero compared to that of the HT estimates when the
propensity score is estimated by either GFPLM or CBPS.
The two average treatment effect estimates essentially show
no difference for KBCB.

6. DISCUSSION

To the best of our knowledge, this paper has made the
first attempt to study average treatment effect estimation
via propensity score weighting for functional data in obser-
vational studies. The paper introduces both direct modeling
and covariate balancing methods for propensity score esti-
mation and systematically evaluates their performances via
a simulation experiment and a real data application. The
results confirm the benefits of both inverse propensity score
weighting and covariate balancing methods as advocated for
multivariate data.

The methods introduced in this paper for average treat-
ment effect estimation only focus on the scenario where the
outcome is a continuous scalar variable and there is only one
functional covariate. However, with straightforward modifi-
cations, they may be generalized to handle multiple func-
tional covariates and continuous functional outcomes.

The covariate balancing methods introduced above rely
on a satisfactory multivariate substitute for the functional
covariate, which requires the functional covariate to be ei-
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ther fully observed or densely measured (e.g., Dauxois,
Pousse and Romain, 1982; Hall and Hosseini-Nasab, 2006;
Hall, Müller and Wang, 2006). A future research topic is
to develop covariate balancing methods for sparsely mea-
sured functional covariates (e.g, James, Hastie and Sugar,
2000; Yao, Müller and Wang, 2005) or a unified approach for
all types of functional covariates (e.g., Li and Hsing, 2010;
Zhang and Wang, 2016; Liebl, 2019). Another interesting di-
rection is to study non-truncation regularization methods,
e.g., the roughness penalization, to solve covariate balancing
equations with functional covariates.
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