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A new k-nearest neighbors classifier for functional
data∗

Tianming Zhu and Jin-Ting Zhang
†

For supervised classification of functional data, several
classifiers have been proposed in the literature, including
the well-known classic k-nearest neighbors (kNN) classifier.
The classic kNN classifier selects k nearest neighbors around
a new observation and determines its class-membership ac-
cording to a majority vote. A difficulty arises when there
are two classes having the same largest number of votes.
To overcome this difficulty, we propose a new kNN classifier
which selects k nearest neighbors around a new observation
from each class. The class-membership of the new obser-
vation is determined by the minimum average distance or
semi-distance between the k nearest neighbors and the new
observation. Good performance of the new kNN classifier is
demonstrated by three simulation studies and two real data
examples.
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1. INTRODUCTION

In recent years, more and more researchers concentrated
their efforts on solving high dimension, low sample size prob-
lems. A particular case is that of random variables taking
values into an infinite dimensional space, typically a space
of functions defined on some continuous set T . This kind
of data is often referred to as functional data. In practice,
functional data are obtained via observing some measures
over time, and we assume the sample of functional observa-
tions was generated from a stochastic process. A stochastic
function over time may be defined as a sequence of random
variables or random vectors, which is usually known as a
time series [23]. In the past decades, methods for statistical
inferences for functional data have been paid much atten-
tion; see for example, see [7] and [23] and references therein.
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In this paper, we are interested in proposing a new k-nearest
neighbors classifier for functional data.

A general G-class classification problem for function data
can be described as follows. Suppose we have a training data
set consists of G functional samples

(1) xi1(t), . . . , xini(t)
i.i.d∼ SP(ηi, γi), i = 1, . . . , G,

where ηi(t), i = 1, . . . , G are the unknown group mean func-
tions, and γi(s, t), i = 1, . . . , G are the unknown group co-
variance functions. We write x(t) ∼ SP(η, γ) to represent a
stochastic process having mean function η(t) and covariance
function γ(s, t) for simplicity. For a new coming observation
x(t), our aim is to determine the class membership of x(t)
based on the above training data set.

It is well-known that for the classic G-class classifica-
tion problem for multivariate data, the classic kNN classifier
which was proposed by [8] is a widely used approach due to
its simplicity and efficiency. It consists of the following steps:
given a training set with known class labels, classify a new
observation into a class by examining its k nearest neigh-
bors and applying the majority vote principle. The simplest
form of kNN is when k = 1, that is, the unknown observa-
tion is simply assigned to the class of its nearest neighbor.
Its asymptotic error rate has been found to approach the op-
timal Bayes error rate when k → ∞ and k/n → 0 as n → ∞,
where n is the training sample size. That is, the classic kNN
is universally consistent [19]. Further, it is known that the
error rate of the classic kNN is bounded above by twice the
optimal Bayes error rate [3]. By using filtering to reduce
the infinite dimension of the function space, [2] extended it
to infinite-dimensional function spaces. They showed that
the functional kNN classifier is also universally consistent in
general separable Hilbert spaces.

The classic kNN classifier is of great interests to the statis-
ticians since it was originally proposed. There are several
important issues in the classic kNN classifier. A challenging
problem is how to choose the number of nearest neighbors
k properly. On the one-hand, increasing the value of k can
reduce the influence of the noisy observations. On the other-
hand, when the training sample size is large, large value of
k can lead a long time to run the kNN algorithm, especially
in the context of functional data. To find a good k, a usual
method is via an M -fold cross-validation approach via try-
ing several k and choosing the one with the minimum cross-
validation score. However, it will be very time-consuming
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especially for multi-class classification problems for func-
tional data since the amount of the data involved can be
very huge. Even if we have selected a best k through an M -
fold cross-validation approach, there is a high chance to have
a tie among the largest number of nearest neighbors for more
than two classes. This is due to the fact that the classic kNN
classifier is only based on a simple majority voting princi-
ple. This tie problem may cause a difficulty to assign a class
membership to a new coming observation. To overcome this
problem, we often select an odd value of k for two-class clas-
sification problems to break ties, but there is not a general
method for selecting the value of k for multi-class classifica-
tion problems. It is fair to say that at least one of the reasons
that the probability of misclassification given by the simple
majority rule in the classic kNN classifier is due to the fact
that the probability ties taking place is high [4]. In this pa-
per, we propose and study a new kNN classifier to avoid ties.
It works generally for multi-class classification problems.

There is a sizeable literature on techniques for overcom-
ing the limitations of classic kNN classifier. For example,
[4] proposed a distance-weighted kNN which weights the
evidence of a neighbor close to an unclassified observation
more heavily than the evidence of another neighbor which
is at a greater distance from the unclassified observation.
[12] proposed a so-called condensed nearest neighbor algo-
rithm which stores the patterns one by one and eliminates
the duplicate ones. [11] proposed a reduced nearest neigh-
bor algorithm which is an improvement over the condensed
nearest neighbor algorithm via including one more step that
is an elimination of the patterns which are not affecting the
training data set result. There are many other algorithms
developed in the literature, such as model based kNN [13],
rank nearest neighbors [1] and among others.

Although a lot of work has been done for overcoming the
limitations of the classic kNN classifier, it still may fail for
imbalanced data set. A medical industry application (Sec-
tion 5.2) has partially motivated this paper. We want to
classify a new corneal surface to one of the four groups of
corneal surfaces: the normal cornea group, the unilateral
suspect cornea group, the suspect map cornea group and the
clinical keratoconus cornea group. As the unilateral suspect
cornea group has few observations, it is difficult to detect the
unilateral suspect cornea. Thus, the second contribution of
this paper is to propose an adjusted new kNN classifier for
imbalanced data set.

The rest of this paper is organized as follows. Section
2 introduces a new k-nearest neighbors classifier and ap-
plies it with several dissimilarity measures. Section 3 sug-
gests an adjusted new kNN classifier for imbalanced classes.
The good performance of the new kNN classifier with some
functional dissimilarity measures is demonstrated by some
simulation results presented in Section 4 and two real data
examples presented in Section 5. Some concluding remarks
are given in Section 6.

2. NEW K-NEAREST NEIGHBORS
CLASSIFIER

In this section, the new kNN classifier for functional
data is presented, with its classification rule introduced in
Section 2.1, functional dissimilarity measures given in Sec-
tion 2.2, and tuning parameters selection described in Sec-
tion 2.3 respectively.

2.1 New kNN classification rule

The new kNN classification rule for functional data can
be described as follows. Unlike the classic kNN classifier,
instead of applying the majority vote principle, the new
kNN classifier selects the same number of k nearest neigh-
bors from each class based on some functional dissimilar-
ity measures such as distance or semi-distance and com-
putes the average of all the dissimilarity measures between
the k nearest neighbors and the new observation in each
class, respectively. By comparing these average dissimilar-
ity measures, it assigns the new observation to the class
with the smallest average dissimilarity measure. Suppose
we have the G classes of functional observations in (1) and
a new coming functional observation x(t). Then for each
class, we select k functional observations which are clos-
est to x(t) according to a functional dissimilarity measure
d(y, z) between two functional observations y(t) and z(t),
say xij1(t), . . . , xijk(t), i = 1, . . . , G such that

(2) d(x, xij1) ≤ · · · ≤ d(x, xijk), i = 1, . . . , G.

The averages of the dissimilarity measures (2) of the k near-
est neighbors for G classes are computed as

(3) τi = k−1
k∑

�=1

d(x, xij�), i = 1, . . . , G.

The class membership of x(t) is assigned according to the
smallest value of τi’s. That is, we put x(t) to the class g if
g = argmini=1,...,G τi.

It is interesting to compare the new kNN and the classic
kNN classifiers. First of all, both the kNN classifiers are easy
to implement provided that the number of nearest neighors
k and the dissimilarity measure d(·, ·) are given. However,
in the classic kNN classifier, the majority vote principle is
applied. Since k is an integer, as mentioned earlier, there is
a big chance that there is a tie among the largest number of
nearest neighbors for more than two classes. For example,
in a two-class classification problem, suppose we take k = 4,
then there is a big chance that each class has two observa-
tions among the four nearest neighbors. To overcome this
difficulty, for a two-class classification problem, k has to be
an odd number to break ties. Unfortunately, this strategy
does not work for general multi-class classification problems.
In our new kNN classifier, on the other hand, the class mem-
bership of the new observation is determined by the smallest
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average dissimilarity measure among the k nearest neighbors
from each class. Since the average dissimilarity measure such
as distance or semi-distance is continuous, it is well known
that the probability of the equality of two smallest average
dissimilarity measures is zero almost surely. Secondly, the
classic kNN classifier assigns the class membership of the
new observation just based on the majority vote principle
and the dissimilarity measures of the k nearest neighbors
are not used or used indirectly. In some sense, the values of
the dissimilarity measures of the k nearest neighbors are less
related as long as the observations are selected as the k near-
est neighbors. However, in the new kNN classifier, the values
of the dissimilarity measures of the k nearest neighbors for
each class are taken into account. The new kNN classifier
provides a new look at the use of the nearest neighbors. It is
expected that the new kNN classifier should outperform the
classic kNN classifier generally. We shall conduct simulation
studies to check if this is actually the case.

2.2 Functional dissimilarity measures

In the classic and new kNN classifiers, a functional dis-
similarity measure d(·, ·) is also needed. It can be distance
or semi-distance between two functional observations. Here
we review some useful functional dissimilarity measures. For
this aim, we first define the Lp-norm of a function. Through-
out this paper, let T be a finite interval, and we use ‖x‖p
to denote the Lp-norm of a function x(t), t ∈ T : ‖x‖p =(∫

T |x(t)|pdt
)1/p

, for p = 1, 2, . . .. If ‖x‖p < ∞, we say
x(t), t ∈ T is an Lp-integrable function. In this case, we write
x ∈ Lp(T ) where Lp(T ) denotes the Hilbert space formed by
all the Lp integrable functions over T . In particular, L2(T )
denotes the Hilbert space formed by all the squared inte-
grable functions over T , which is an inner product space.
The associated inner-product for any two functions is de-
fined as < x, y >=

∫
T x(t)y(t)dt, x(t), y(t) ∈ L2(T ). Let x(t)

and y(t) be two functional observations defined over a com-
pact set T which are Lp integrable. Then the Lp-distances
can be defined as

(4) dp(x, y) = ‖x− y‖p,

for p = 1, 2, . . .. For simplicity, we often use L1, L2, and L∞-
distances where d∞(x, y) = ‖x − y‖∞ = sup

t∈T
|x(t) − y(t)|.

When p = 2, we may also use ‖ · ‖ to denote the L2-norm
for convenience.

To measure the shape similarity between x(t) and y(t),
we can use the following functional cosine distance (FCD)
proposed by [25]:

(5) dFCD(x, y) = 1− < x, y >

‖x‖‖y‖ =
1

2
‖x̃− ỹ‖2,

where x̃(t) = x(t)/‖x‖ and ỹ(t) = y(t)/‖y‖ denote the nor-
malised versions of x(t), t ∈ T and y(t), t ∈ T , respectively.
Note that x̃(t) is also known as the spatial sign function of
x(t) [17], which may be interpreted as the direction of x(t).

Thus, the FCD between x(t) and y(t) measures the squared
L2-distance between the directions of x(t) and y(t).

The Lp-distances and the FCD can be implemented easily
in the new kNN classifier but they do not take the correla-
tion of a functional observation into account. To partially
address this issue, [10] proposed the so-called functional
Mahalanobis semi-distance which can also be employed in
the new kNN classifier so that the correlation structure of
functional observations can be taken into account partially.
The functional Mahalanobis semi-distance is defined using a
number of the largest eigenvalues and the associated eigen-
functions. Let y(t) ∼ SP(η, γ). It is well known that when
γ(s, t) has a finite trace, i.e., tr(γ) =

∫
T γ(t, t)dt < ∞, it

has the following singular value decomposition [21, p. 3]:
γ(s, t) =

∑∞
r=1 λrφr(s)φr(t), where λr, r = 1, 2, . . . are

the decreasing-ordered eigenvalues of γ(s, t), and φr(t), r =
1, 2, . . . are the associated orthonormal eigenfunctions such
that

∫
T φ2

r(t)dt = 1, and
∫
T φr(t)φ�(t)dt = 0, r 	= �. Fur-

ther, we have y(t) =
∑∞

r=1 ξrφr(t), where ξr =< y, φr >,
r = 1, 2, . . . denote the associated principal scores of y(t).
Let x(t) be another functional observation whose covariance
function is also γ(s, t). Then we can also expand x(t) in
terms of the eigenfunctions of γ(s, t) as x(t) =

∑∞
r=1 ζrφr(t),

where ζr =< x, φr >, r = 1, 2, . . . denote the associated
principal scores of x(t). Then, the functional Mahalanobis
(FM) semi-distance between x(t) and y(t) is given by

(6) dFM,q(x, y) =

[
q∑

r=1

λ−1
r (ζr − ξr)

2

]1/2

.

Based on the principal scores of x(t) and y(t), [7] defined the
following so-called functional principal components (FPC)
based semi-distance:

(7) dFPC,q(x, y) =

[
q∑

r=1

(ζr − ξr)
2

]1/2

.

In practice, the eigenvalues λr’s and the principal scores
ζr’s and ξr’s used in the FM semi-distance (6) and the FPC
based semi-distance (7) have to be replaced with their esti-
mates based on the data. For this purpose, we first need to
estimate the mean functions ηi(t) and the covariance func-
tions γi(s, t). Based on the training samples of G classes
(1), the unbiased estimators of the group mean functions
ηi(t) are their usual group sample mean functions x̄i(t). The
group covariance functions γi(s, t) can also be estimated us-
ing their usual sample covariance functions γ̂i(s, t). The es-
timators are given by

η̂i(t) = x̄i(t) = n−1
i

ni∑
j=1

xij(t), i = 1, . . . , G, and

γ̂i(s, t) = (ni − 1)−1
ni∑
j=1

[xij(s)− x̄i(s)][xij(t)− x̄i(t)],

i = 1, . . . , G.

(8)
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The associated pooled sample covariance function can be
obtained as

(9) γ̂(s, t) =

G∑
i=1

(ni − 1)γ̂i(s, t)/(n−G),

where n = n1 + · · ·+ nG.
Let λ̂r’s and φ̂r(t)’s denote the estimated decreasing-

ordered eigenvalues and eigenfunctions of γ̂(s, t). Then the
estimated FM semi-distance and the estimated FPC based
semi-distance between a new functional observation x(t) and
any functional observations xij(t) from the given G samples
(1) can be defined as

dFM,q(x, xij) =
[∑q

r=1 λ̂
−1
r (ζ̂r − ξ̂ij,r)

2
]1/2

, and

dFPC,q(x, xij) =
[∑q

r=1(ζ̂r − ξ̂ij,r)
2
]1/2

,

where ζ̂r =< x, φ̂r > and ξ̂ij,r =< xij , φ̂r > for r = 1, . . . , q.
Note that the parameter q used in the estimated FM

distance and the estimated FPC based distance should also
be estimated based on the data. This issue will be handled
in the next subsection.

Remark 1. In this subsection and throughout, for simplic-
ity, we assume that all the individual functions are fully ob-
served without errors over a finite interval T . This means
that we implicitly adopt a “smoothing first, then inference”
strategy that is widely used in functional data analysis; see
[15] and [23] among others. In real data analysis, however,
some smoothing techniques, e.g., smoothing splines [21] or
local polynomial smoothing [5], have to be employed to re-
construct all the individual functions, especially when the
design time points are not the same for all the individual
functions. This is because in practice, the functional sam-
ples (1) are generally observed discretely on some design
time points, often with noise. The reconstructed individual
functions are then evaluated at a common grid of design time
points so that the above dissimilarity measures can be com-
puted numerically based on the resulting multivariate data.
[24] shows that when the individual functions are densely ob-
served, the reconstructed individual functions can be used to
replace the underlying individual functions with asymptoti-
cally ignorable errors. [10] provided an example where a ba-
sis method was employed to implement their functional Ma-
halanobis semi-distance based classifier for functional data.
The dissimilarity measures reviewed in this subsection may
be computed directly if all the individual functional observa-
tions are observed at a common grid of design time points.

Remark 2. Note that the functional dissimilarity measures
reviewed in this subsection do not take into account the
smoothness of functions directly since as mentioned in Re-
mark 1, we implicitly adopt the “smoothing first, then infer-
ence” strategy in this paper so that the smoothness of the in-
dividual functions may have already been taken into account

in the reconstructing step of the individual functions. As sug-
gested by an anonymous reviewer, it would be interesting to
involve derivatives directly in a similarity measure, e.g., un-
der the reproducing kernel Hilbert space if no reconstructing
step of the individual functions has been made. This may be
a very good research topic for a future study.

2.3 Parameters selection

When the new kNN classifier is applied with one of the
Lp-distances or FCD, the parameter we need to select is
the number of nearest neighbors, k. When the new kNN
classifier is applied with the FM semi-distance or the FPC
based semi-distance, the extra parameter we need to select
is the number of principal components, q. In this subsec-
tion, we discuss how to select them using the so-called cross-
validation approach.

As in the classic kNN classifier, it is necessary to select
the number of nearest neighbors, k, properly in the new
kNN classifier. If we consider a big training sample with
noisy functional observations, we need a larger value of k
to reduce the influence of the noisy functional observations.
However, increasing the value of k can lead the classifier
into taking a long time to run. To determine the best k,
a straightforward method is through cross-validation by try-
ing various possible values of k and choose the one with the
best performance. Throughout this paper, we choose the M -
fold cross-validation to select the optimal value of k. That
is, we randomly partition the training sample into M equal
sized subsamples, as in [9, chap. 7]. Of the M subsamples, a
single subsample is retained as the validation data, and the
remaining M − 1 subsamples are used as training data. We
run the classifier based on the training observations to pre-
dict the class membership for each observation in the valida-
tion data. If the predicted class membership matches its true
class membership, we count a correct classification. Other-
wise, it is a cross-validation error. Then the cross-validation
process is repeated M times, with each of the M subsam-
ples used exactly once as the validation data. We estimate
the cross-validation error by taking an average of M cross-
validation estimators. We determine the optimal value of k
with the smallest cross-validation error rate.

Specially, let X = {xij , j = 1, . . . , ni; i = 1, . . . , G}
denote the whole training sample and we randomly par-
tition it into M equal sized subsample, X1, . . . ,XM . For
each Xm,m = 1, . . . ,M , we let X\Xm denote the remaining
training sample after choosing Xm as the validation data.
Then the class membership of xij when xij ∈ Xm predicted
by the new kNN classifier constructed based on X\Xm and
with k nearest neighbors, i.e., the classification function, can
be denoted as

(10) ĝk (xij |X\Xm) .

If ĝk (xij |X\Xm) = i, this is a correction classification; oth-
erwise, this is a misclassification error. The average misclas-
sification error rate based on this M -fold cross-validation
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may be denoted as

(11) CVk = n−1
M∑

m=1

∑
xij∈Xm

I{ĝk (xij |X\Xm) 	= i},

where n =
∑G

i=1 ni denotes the total sample size of
the training sample and I{A} denotes the indicator func-
tion of A. Then the optimal value of k is given by
argmin1≤k≤nmin

CVk where nmin = min1≤i≤G ni denotes the
minimum group sample size. In practice, the parameter k
can take values from 1 to nmin.

When the FM semi-distance or FPC based semi-distance
is used in the new kNN classifier, we also need to select the
number of principal components, q, so that the resulting new
kNN classifier has the best performance. In this case, the
classification function (10) and the cross-validation average
misclassification error rate (11) depend on both k and q and
may be denoted as ĝk,q (xij |X\Xm) and CVk,q respectively
instead. The optimal values of k and q are then given by
argmink,q CVk,q. Similarly, the parameter k can take values
from 1 to nmin while the parameter q can take values from
1 to some q0 which is specified by the user. A possible q0
may be chosen such that the sum of the first q0 eigenvalues∑q0

r=1 λ̂r is about 85% to 95% of the total variation, i.e.,
tr(γ̂).

3. ADJUSTED NEW KNN CLASSIFIER FOR
IMBALANCED DATA

The new kNN classifier proposed in Section 2 works well
for balanced data. However, it may fail when we have the
class imbalance problem. In this section, we will study an
adjusted new kNN classifier for imbalanced data.

Learning from imbalanced data has been identified as one
of the 10 most challenging problems in data mining research
[22]. A data set is imbalanced if the instances of one class
are far less in number than the instances of another class.
When a class has few observations, it is likely that these
observations will be further apart than the observations of
another class with more observations. At this time, the clas-
sic kNN classifier will fail for imbalanced classification and
so will the new kNN classifier proposed in Section 2.

Figure 1 shows an artificial two-class imbalance classifi-
cation problem, where the majority class is represented by
blue circles and the minority class by red triangles. There
are 300 observations in the majority class and 30 observa-
tions in the minority class. As can be seen from the figure,
since the class instance ratio is 10 to 1, the majority class
dominates the neighbors of the observations in the minority
class. Thus, it is hard to classify the minority class correctly
using the classic kNN classifier.

When we use the new kNN classifier proposed in the pre-
vious section, we select the same number of neighbors from
each class. However, due to the imbalanced sample sizes, the
average distance of the k nearest neighbors for the majority

Figure 1. An imbalanced classification example.

class should be often smaller than the average distance for
the minority class. Therefore, our new kNN classifier may
fail for the imbalance classification problems too. To address
this issue, we change the number of neighbors chosen from
each class to reduce the imbalance between classes so that
the number of neighbors chosen is proportional to the class
size. Suppose we have the G functional samples in (1) and
a new coming observation x(t). Then for each class i, we se-
lect ki functional observations which are closest to the new
observation x(t) according to a distance (or semi-distance)
d(x, y) between two functional observations x(t) and y(t),
say xij1(t), . . . , xijki

(t), i = 1, . . . , G such that

(12) d(x, xij1) ≤ · · · ≤ d(x, xijki
), i = 1, . . . , G.

In order to reduce the imbalance between classes, we set
ki = [ ni

nmin
kmin], kmin = 1, . . . , nmin, i = 1, . . . , G, where [x]

returns the nearest integer to x and kmin is the number of
nearest neighbors from the class whose sample size is the
smallest. If n1 = · · · = nG, it reduces to the usual new kNN
classifier for balanced classification problems. The averages
of the distances (12) of the ki neighbors for class i are com-
puted as

(13) τ∗i = k−1
i

ki∑
�=1

d(x, xij�), i = 1, . . . , G.

The class membership of the new functional observation x(t)
is assigned to class g if g = argmini=1,...,G τ∗i .

For balanced classification problems, we use the classifi-
cation accuracy or misclassification error rate to assess the
classification performance. However, for imbalanced classifi-
cation problems, classification accuracy is no longer a proper
measure since the minority class has very little impact on
the accuracy compared with the majority class. A typical ex-
ample is the disease diagnostic problem. The disease cases
are usually quite rare and there is a large number of pa-
tients who do not have that disease. The goal is to detect
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those people with diseases. The classification accuracy may
be close to 1 as the number of disease cases is small, but it
cannot detect the diseases. A favorable classifier is one that
provides a higher identification rate on the disease category.
To consider the performance of majority class and minority
class simultaneously, [14] suggested the G-mean for two-class
scenario which is the geometric mean of the accuracies on
two classes. [20] extended this measure to multi-class sce-
nario. They defined the G-mean as the geometric mean of
accuracies on all classes:

(14) G-mean =

(
G∏
i=1

ACCi

) 1
G

,

where ACCi is the accuracy on the class i, i = 1, . . . , G.
As each ACCi representing the classification performance
of class i is equally accounted, G-mean is capable to mea-
sure the balanced performance among classes of a classifica-
tion output [20]. The larger the G-mean is, the better the
classifier is.

As in the new kNN classifier proposed in the last section,
it is necessary to select the number of nearest neighbors in
each class properly in this adjusted new kNN classifier as
well. In fact, we only need to select the value of kmin, that
is, the number of nearest neighbors selected from the class
whose sample size is the smallest. We still use the M -fold
cross-validation approach to select the optimal value of kmin.
However, it is not proper to estimate the cross-validation
error by taking an average of M cross-validation estimators.
We determine the optimal value of kmin with the largest G-
mean in (14). Based on the training sample X\Xm, the class
membership of xij when xij ∈ Xm predicted by the adjusted
new kNN classifier with ki = [ ni

nmin
kmin] nearest neighbors

from class i, can be denoted as

(15) ĝ∗kmin
(xij |X\Xm).

If ĝ∗kmin
(xij |X\Xm) = i, this is a correct classification; other-

wise, this is a misclassification error. The G-mean based on
the M -fold cross-validation approach may then be denoted
as

CV∗
kmin

=

[
G∏
i=1

1

ni

M∑
m=1

∑
xij∈Xm

I{ĝ∗kmin
(xij |X\Xm) = i}

] 1
G

.

(16)

Then the optimal value of kmin is given by
argmax1≤kmin≤nmin

CV∗
kmin

.

When the FM semi-distance or FPC based semi-distance
is used in the adjusted new kNN classifier, we also need
to select the number of principal components, q, so that
the resulting adjusted new kNN classifier has the best per-
formance. In this case, the classification function (15) and
the cross-validation G-mean (16) depend on both kmin and
q and may be denoted as ĝ∗kmin,q

(xij |X\Xm) and CV∗
kmin,q

respectively instead. The optimal values of kmin and q are
then given by argmaxkmin,q CV

∗
kmin,q. Similarly, the parame-

ter kmin can take values from 1 to nmin while the parameter
q can take values from 1 to some q0 which is specified by the
user.

It is interesting to compare the proposed new kNN and
adjusted new kNN classifiers. First of all, the new kNN clas-
sifier works for balanced classification problems. It selects
the same number of nearest neighbors from each class. How-
ever, if the number of instances of one class is much larger
than that of another class, the proposed new kNN classi-
fier is hard to classify the minority class correctly. Thus, we
propose the adjusted new kNN classifier for imbalanced clas-
sification problems. The number of nearest neighbors from
class i is proportional to the prior probability of this class.
By taking the prior probability into account, the imbalance
between different classes is reduced. Secondly, both the pro-
posed new kNN and adjusted new kNN classifiers need to
select the number of nearest neighbors. For the new kNN
classifier, the number of nearest neighbors from each class is
selected by the M -fold cross-validation approach described
in Section 2.3. For the adjusted new kNN classifier, since it
is not accurate to use accuracy as a measure of the classifi-
cation performance, we still use the M -fold cross-validation
approach to choose the number of nearest neighbors from
each class, but the classification function and the cross-
validation G-mean are given by (15) and (16), respectively.
We shall conduct simulation studies to check the perfor-
mance of this adjusted new kNN classifier for imbalanced
classification problems.

4. SIMULATION STUDIES

It is of interest to check if the proposed new kNN classifier
works well for balanced classification problems and the pro-
posed adjusted new kNN classifier works well for imbalanced
classification problems compared with the classic kNN clas-
sifier and some non-kNN classifiers. In this section, simula-
tion studies are presented to compare the proposed new kNN
and adjusted new kNN classifiers against the classic kNN
classifier with various dissimilarity measures, including the
Lp-distances (4) for p = 1, 2,∞, functional cosine distance
(5), functional Mahalanobis (FM) semi-distance assuming
a common covariance operator (6) and functional principal
components (FPC) based semi-distance assuming a com-
mon covariance operator (7), labeled by L1, L2, L∞, FCD,
FPC and FM. Two-class and three-class classification prob-
lems are considered respectively. Furthermore, an additional
simulation study is presented to compare the proposed new
kNN and adjusted new kNN classifiers against the classic
kNN classifier with various dissimilarity measures and the
support vector machine classifier as well.

4.1 Two-class classification

In this subsection, functional data for two-class classifica-
tion problems are generated under four different scenarios.
In the first scenario, two functional samples are generated
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from two Gaussian processes defined over the unit interval
[0, 1], with different group mean functions η1(t) = 25t1.1(1−
t) and η2(t) = 25t(1 − t)1.1 but their covariance functions
γ1(s, t) and γ2(s, t) are the same, denoted as γ(s, t) whose
eigenfunctions are given by φr(t) =

√
2 sin(rπt), r = 1, 2, . . .

and the associated eigenvalues are given by λr = 1/(rπ)2,
for r = 1, 2, . . .. The generated functions are evaluated at
1000 equidistant time points over [0, 1]. In the second sce-
nario, the functions are generated in a similar way except
that the two covariance functions γ1(s, t) and γ2(s, t) are
not the same. Although their eigenfunctions are the same
as those defined in the first scenario, their eigenvalues are
given by λ1r = 1/(rπ)2 and λ2r = 2/(rπ)2, for r = 1, 2, . . .
respectively. In the third and fourth scenarios, the functions
are generated in a similar way as in the first two scenarios
respectively except that the two Gaussian processes are re-
placed with two standardized exponential processes of rate
1, with the same group mean functions and the group co-
variance functions.

4.1.1 Balanced cases

For balanced classification problems, we only need to
compare the performance of the proposed new kNN clas-
sifier and the classic kNN classifier since in this case, the
new kNN and adjusted new kNN classifiers are equivalent.
Under each scenario, two functional samples of equal sizes
100 are generated. The training sample is formed via se-
lecting 50 functions from each sample so that the whole
training sample consists of 100 functional observations. The
remaining functional observations from the two functional
samples form the test sample. The training sample is used to
determine the tuning parameters. We use the 10-fold cross-
validation approach described in Section 2.3 to select the
tuning parameters involved in the classifiers, including the
number of principal components q and/or the number of
nearest neighbors k. We set the number of nearest neigh-
bors k to range from 1 to 19 for simplicity, and set k to be
odd numbers only to avoid the tie problem for the classic
kNN classifier. At the same time, we set the number of prin-
cipal components q to range from 1 to q0 where q0 may be
chosen such that the sum of the first q0 eigenvalues of the
pooled sample covariance function γ̂(s, t) is about 95% of
the total variation given by tr(γ̂). The test sample is used to
compute the classification accuracy. The simulation process
is repeated 1000 times so that 1000 classification accuracy
values can be recorded.

Figure 2 displays the boxplots of the 1000 classification
accuracy values of the classic and new kNN classifiers un-
der the four scenarios and various dissimilarity measures.
For each dissimilarity measure, the two boxes are associated
with the classic and new kNN classifiers respectively. It is
seen that in terms of classification accuracy, the proposed
new kNN classifier generally performs better than the clas-
sic kNN classifier under each scenario and each dissimilarity
measure, showing that the proposed new kNN classifier does
work well in this simulation study.

Figure 2. Boxplots of the classification accuracy values of the
classic and new kNN classifiers under the four scenarios. For
each dissimilarity measure, the two boxes are associated with

the classic and new kNN classifiers respectively. The
Lp-distances for p = 1, 2,∞, functional cosine semi-distance
(FCD), functional Mahalanobis (FM) semi-distance, and

functional principal components (FPC) are defined in (4), (5),
(6), and (7) respectively.

4.1.2 Imbalanced cases

For imbalanced classification problems, we now compare
the proposed new kNN classifier, the adjusted new kNN
classifier against the classic kNN classifier. We consider the
same simulation setup as in the previous subsection. Since
in the previous subsection, the classic kNN and new kNN
classifiers with the FM semi-distance perform well in all the
four scenarios, for simplicity, in this subsection, we compare
the classic kNN, new kNN and adjusted new kNN classi-
fiers only with the FM semi-distance. In order to generate
imbalanced classification problems, we generate N1 = cN2

functions from the first stochastic process mentioned in the
functional data generation setting of the previous subsec-
tion and N2 = 50 functions from the second process, where
the sample size ratio constant c = 1, 2, 4, 10 and 20, repre-
senting different degrees of imbalance of the sample sizes
of the training and test samples. The training sample is
formed via selecting n1 = N1/2 functions from the first
sample and n2 = N2/2 functions from the second sample
while the remaining functions form the test sample. It is of
interest to evaluate the performance of the classic kNN, new
kNN and adjusted new kNN classifiers for different c. Tuning
parameters involved in the classic kNN and new kNN clas-
sifiers are selected by the same approaches as described in
the previous subsection. In addition, we also use the 10-fold
cross-validation approach described in Section 3 to choose
the tuning parameters involved in the adjusted new kNN
classifier. We also set the number of principal components
q to range from 1 to q0, and the number of nearest neigh-
bors from the second process kmin to range from 1 to 20, for
simplicity.

A new k-nearest neighbors classifier for functional data 253



Figure 3. Performances of the classic kNN, new kNN and
adjusted new kNN classifiers under the four scenarios and five
different c values. For each classifier, the mean classification
accuracy values for the whole test sample, the first class of
the test sample, the second class of the test sample, and the
average G-mean value of the whole test sample are labeled by

ACC, ACC1, ACC2, and GM, respectively.

Figure 3 displays the mean classification accuracy values
of the classic kNN, new kNN and adjusted new kNN classi-
fiers under the four scenarios and five different c values with
1000 Monte Carlo simulation runs. For each classifier, the
mean classification accuracy values for the whole test sam-
ple, the first class of the test sample, the second class of the
test sample, and the average G-mean value of the whole test
sample are calculated and labeled by ACC, ACC1, ACC2,
and GM, respectively.

It is seen that when the two classes are balanced (n1 =
n2), the performances of the three classifiers are generally
comparable as expected. However, when the two classes are
imbalanced (n1 > n2), if we use the classic and new kNN
classifiers, the mean classification accuracy values on the
first class, ACC1, are always larger than those on the sec-
ond class, ACC2. As c increases, ACC1 becomes larger while
ACC2 becomes smaller. In particular, when n1 = 10n2 and
n1 = 20n2, ACC1 is close to 1 while ACC2 is less than 0.60.
This is not surprise since when n1 is much larger than n2, the
number of nearest neighbors from the first class is naturally
much larger than that from the second class. It is then much
easier to assign the new observation to the first class than
to the second class. As a result, ACC1 will be much larger
than ACC2 as expected. This explains why the performances
of the classic and new kNN classifiers are often dominated
by their performances on the majority class when the two
classes are seriously imbalanced in sample sizes. This prob-
lem can be overcome by the adjusted new kNN classifier, as
seen from Figure 3. The adjusted new kNN classifier chooses
the number of nearest neighbors proportional to the respec-
tive sample size so that ACC1 becomes smaller and ACC2

becomes larger than those respective values of the classic

and new kNN classifiers. Consequently, ACC1 and ACC2

become more balanced than in those cases of the classic
and new kNN classifiers. Unfortunately, as seen from Fig-
ure 3, this advantage of the adjusted new kNN classifier is
not reflected from the classification accuracy values of the
whole test sample (ACC). Therefore, it is less appropriate
to assess the performance of the adjusted new kNN classi-
fier using ACC. Rather, we should use the G-mean defined
in (14). In fact, as seen from Figure 3, in terms of G-mean,
the adjusted new kNN classifier always performs better than
the classic and new kNN classifiers when the two-classes are
imbalanced in sample sizes.

4.2 Three-class classification

In this subsection, we investigate the performances of
the classic kNN, new kNN and adjusted new kNN classi-
fiers on three-class classification problems. For simplicity,
we use only the first scenario as described in the previ-
ous subsection. That is, the functional samples are gener-
ated from Gaussian processes and the classes differ only in
mean functions. For this purpose, we set η1(t) = 25tα(1− t)
and η2(t) = 25t(1 − t)α where α = 1.1, 1.2 and 1.5, rep-
resenting the shape differences of the first two mean func-
tions. For convenience, we set the third mean function as
η3(t) = [η1(t) + η2(t)]/2, the average of the first two mean
functions. As before, the generated functions are evaluated
at 1000 equidistant time points over [0, 1].

4.2.1 Balanced cases

As in the two-class classification, for balanced classifica-
tion problems, we only need to compare the performance
of the classic and new kNN classifiers. For simplicity, we
set the training and test samples to have 50 observations
in each class. The same approaches as in Section 4.1.1 are
used to choose the tuning parameters, but we no longer set
the number of nearest neighbors k to be odd since for three-
class classification problems, this does not help solving the
tie problem of the classic kNN classifier. The simulation pro-
cess is repeated 1000 times and the boxplots of the 1000 clas-
sification accuracy values on the whole test samples with dif-
ferent values of α are shown in Figure 4. As before, for each
dissimilarity measure, the two boxes are associated with the
classic and new kNN classifiers respectively.

It is seen from Figure 4 that the proposed new kNN clas-
sifier generally outperforms the classic kNN classifier, es-
pecially when the three classes are difficult to be classified
(α = 1.1 and α = 1.2). Note that with increasing the values
of α, the three classes become easier to be classified due to
the fact that the mean functions of the three classes become
more different in shape.

4.2.2 Imbalanced cases

To generate three-class imbalanced classification prob-
lems, we set each of the training and test samples to have
50 observations from Class 1, 100 observations from Class
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Figure 4. Boxplots of the classification accuracy values of the
classic and new kNN classifiers with different values of α. For
each dissimilarity measure, the two boxes are associated with

the classic and new kNN classifiers respectively.

2, and 200 observations from Class 3. As in Section 4.1.2,
we compare the performance of the classic kNN, new kNN
and adjusted new kNN classifiers with different values of
α. The same approaches as in the previous subsections are
used to choose the tuning parameters used in the classic
kNN and new kNN classifiers. For the tuning parameters
used in the adjusted new kNN classifier, we use the 10-fold
cross-validation approach described in Section 3. We set the
number of nearest neighbors from Class 1 to range from 1 to
19 and the number of principal components q to range from
1 to q0 as well where q0 is chosen using the same method
as described in Section 4.1.1. This process is repeated 1000
times. Figure 5 shows the boxplots of these 1000 classifi-
cation accuracy values of the three classifiers for various
dissimilarity measures and different values of α. For each
dissimilarity measure, the three boxes are associated with
the classic kNN, new kNN and adjusted new kNN classi-
fiers, respectively.

Figure 5. Boxplots of the classification accuracy values of the
classic kNN, new kNN, and adjusted new kNN classifiers for
various dissimilarity measures and different values of α. For
each dissimilarity measure, the three boxes are associated
with the classic kNN, new kNN and adjusted new kNN

classifiers, respectively.

It is seen from Figure 5 that in terms of classification
accuracy, when α = 1.1 and α = 1.2, the new kNN classifier
generally outperforms the classic kNN classifier while the

latter generally outperforms the adjusted new kNN classifier
and when α = 1.5, the three classifiers perform similarly.

Figure 6. Boxplots of the G-mean values of the classic kNN,
new kNN and adjusted new kNN classifiers with different
values of α. For each dissimilarity measure, the three boxes
are associated with the classic kNN, new kNN and adjusted

new kNN classifiers, respectively.

As mentioned in Section 4.1.2, for imbalanced classifica-
tion problems, it is less appropriate to assess the perfor-
mances of the three classifiers using the classification ac-
curacy. Rather, we should use the G-mean defined in (14).
Figure 6 displays the boxplots of the 1000 G-mean values of
the three classifiers with different values of α. It is seen that
in terms of the G-mean values, the adjusted new kNN clas-
sifier indeed outperforms the classic and new kNN classifiers
especially when the mean functions of the three classes are
more similar to each other (i.e., when α = 1.1 and α = 1.2).

4.3 A comparison with an non-kNN classifier

As suggested by an anonymous reviewer, it is of interest
to compare the new kNN and adjusted new kNN classifiers
with some non-kNN classifiers. In this subsection, we present
such a simulation study using the simulation setup of the
two-sample imbalanced cases as described in Section 4.1.2 to
compare the proposed new kNN and adjusted new kNN clas-
sifiers against the classic kNN classifier with various dissimi-
larity measures and the support vector machine (SVM) clas-
sifier, one of the well-known and accurate non-kNN classi-
fiers. For simplicity, we consider only the first scenario where
the two functional samples are generated from Gaussian pro-
cesses and the two classes differ only in mean functions. As
before, the simulation process is repeated 1000 times. The
boxplots of the 1000 classification accuracy values and 1000
G-mean values of the classifiers under consideration with
different sample size ratios are displayed in Figure 7.

From the left panels of Figure 7, it is seen that in terms
of the classification accuracy values, the new kNN classi-
fier generally outperforms the classic kNN classifier under
each setting. This conclusion is consistent with what we
have drawn from the previous two simulation studies. It
is also seen that the new kNN classifier is also compara-
ble with the SVM classifier under each setting although
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Figure 7. Boxplots of the classification accuracy values (left
panels) and G-mean values (right panels) of the classic kNN,

new kNN, adjusted new kNN classifiers for various
dissimilarity measures and the SVM classifier under five

different sample size ratios. For each dissimilarity measure,
the three boxes are associated with the classic kNN, new kNN
and adjusted new kNN classifiers, respectively and in each
panel, the last box is associated with the SVM classifier.

the SVM classifier is much more sophisticated and time-
consuming than the new kNN classifier. As expected, the
adjusted kNN classifier is comparable with other classifiers
when n1 = n2 and it seems outperforms other classifiers
slightly when n1 = 2n2. However, its performance is getting
worse with increasing the value of the sample size ratio. This
indicates that when the two samples are imbalanced seri-
ously, the classification accuracy value may be not an appro-
priate criterion for measuring the performance of a classifier.

From the right panels of Figure 7, it is seen that in terms
of the G-mean values, the new kNN classifier generally out-
performs the classic kNN classifier under each setting except
when n1 = 20n2 and when the L∞ dissimilarity measure is
used. It is also seen that the new kNN classifier performs
slightly worse than the SVM classifier when n1 ≤ 4n2 but
it also performs slightly better than the SVM classifier oth-

erwise. As expected, the adjusted kNN classifier generally
outperforms other classifiers under each setting. This indi-
cates that when the two samples are imbalanced seriously,
the G-mean value may be a better criterion for measuring
the performance of a classifier. This is consistent with what
we observed in the previous two simulation studies.

5. APPLICATIONS TO REAL-LIFE DATA

In this section, we present the applications of the pro-
posed new kNN and adjusted new kNN classifiers, together
with the classic kNN classifier, to two real-life datasets.

5.1 Tecator data

The Tecator dataset has been considered by [6] and [16] to
illustrate their classification methodologies. It is available at
http://lib.stat.cmu.edu/datasets/tecator. The dataset con-
sists of 215 near-infrared absorbance spectra of meat sam-
ples. For each meat sample, the measurements consist of
a 100-channel spectrum of absorbance spectra in the wave
length range 850-1050 nm and the contents of moisture (wa-
ter), fat and protein. Of interest is a two-class classification
problem, aiming to classify a new meat sample into one of
two classes with one class of meat samples with a high fat
content (≥ 20%) and the other class with a low fat content
(< 20%). Among N = 215 meat samples, N1 = 77 meat
samples from the first class and N2 = 138 meat samples
from the second class.

Figure 8 displays the raw spectrometric curves (1st row)
of the Tecator data and their first (2nd row) and second
derivative curves (3rd row) for the high fat content class
(left panels) and the low fat content class (right panels). It
is seen that the raw spectrometric curves of the two classes
are similar in shape but their first and second derivative
curves are less similar. This implies that it may be more
effective to classify the Tecator data using their first and
second derivative curves than using their raw spectrometric
curves. Further, as the number of meat samples in the high
fat content class is about half of that in the low fat con-
tent class, the two-class classification problem is somewhat
unbalanced in sample sizes. It is then of interest to check
the performance of the classic, new, and adjusted new kNN
classifiers in this example.

We randomly split the 215 raw spectrometric curves of
the Tecator data (and their first and second derivative
curves respectively) into a training sample of size n = 120
and a test sample of size 95. For the three classifiers, we
set the number of functional principal components to range
up to 15 and the number of nearest neighbors to range up
to 9. For the classic and new kNN classifiers, the number
of functional principal components and the number of near-
est neighbors are determined by the 10-fold cross-validation
approach as described in Section 2.3 while for the adjusted
new kNN classifier, they are selected by the 10-fold cross-
validation approach as described in Section 3. We then com-

256 T. Zhu and J.-T. Zhang

http://lib.stat.cmu.edu/datasets/tecator


Figure 8. Raw spectrometric curves (1st row) of the Tecator
data and their first (2nd row) and second derivative curves
(3rd row) for the high fat content class (left panels) and the

low fat content class (right panels).

pute the classification accuracy values of the three classifiers.
We repeat this process 1000 times so that 1000 classification
accuracy values for each classifier are obtained.

Table 1 displays the means and standard deviations (in
parentheses) of the 1000 classification accuracy values (in
percent) of the three classifiers using the raw spectromet-
ric curves of the Tecator data and their first and second
derivative curves respectively. With the same dissimilarity
measure, the largest mean classification accuracy value of
the classifiers is in boldface. It is seen that in terms of mean
classification accuracy, the new kNN and adjusted new kNN
classifiers generally perform better than or are largely com-
parable with the classic kNN classifier, regardless if we use
the raw spectrometric curves or their first and second deriva-
tive curves. It is also seen that with the same dissimilar-
ity measure, the three classifiers generally have much larger
mean classification accuracy values for the first and second
derivative curves than those for the raw spectrometric curves
of the Tecator data. This shows that the three classifiers in-
deed perform better when the first and second derivative
curves are used than when the raw spectrometric curves of
the Tecator data are used. This is consistent with what we
observed from Figure 8, as we mentioned earlier.

It is sometimes interesting to compare the best perfor-
mance of a classifier with various dissimilarity measures.
The largest mean classification accuracy values of the clas-
sic kNN classifier with the raw spectrometric curves and
their first and second derivative curves are 94.79%, 98.09%,
and 97.88% respectively. For the new kNN classifier, these
three numbers are 95.20%, 98.05%, and 98.05% respectively,
while for the adjusted new kNN classifier, they are 95.21%,
97.95%, and 98.40%, respectively. These results are compa-
rable with or even better than the mean classification accu-
racy values of the support vector machine (SVM) classifier
of [16] although the SVM classifier is generally more sophis-
ticated than the classic, new, and adjusted new kNN clas-
sifiers. In fact, under an experiment with a setup similar to
ours, [16] reported that the mean classification accuracy val-
ues of the SVM classifier with the raw spectrometric curves
and their second derivative curves are 96.62% and 96.72%
respectively.

As mentioned before, when the classification problem is
unbalanced in sample sizes, it is more appropriate to com-
pare the performances of the three classifiers using G-mean
values. Table 2 displays the means and standard deviations
(in parentheses) of the 1000 G-mean values (in percent)
of the classic, new, and adjusted new kNN classifiers with
the raw spectrometric curves of the Tecator data and their
first and second derivative curves respectively. Again, for
the same dissimilarity measure, the largest G-mean value of
the three classifiers is in boldface. It is seen that with the
same dissimilarity measure, the adjusted new kNN classifier
has larger average G-mean values than the new kNN classi-
fier most of time while the latter has larger average G-mean
values than the classic kNN classifier most of time. This
again shows that the proposed new kNN and adjusted kNN
classifiers outperform the classic kNN classifier generally.

5.2 Corneal surface data

The corneal surface data set was from the keratoconus
study, a consulting project with Ms. Nancy Tripoli and Dr.
Kenneth L. Cohen of Department of Ophthalmology, Uni-
versity of North Carolina at Chapel Hill. In this corneal
surface data set, 150 corneal surfaces were divided into four
groups. The normal cornea group consists of 43 healthy
corneas while the unilateral suspect, suspect map and clini-
cal keratoconus cornea groups respectively consist of 14, 21,
and 72 disease corneas which are misshaped in some degree.

Figure 9 displays a corneal surface from each of the four
cornea groups. To apply the classic, new, and adjusted new
kNN classifiers to the above corneal data, we fitted the
corneal surfaces using the method described in [18] so that
each of the corneal surfaces is represented by a feature vec-
tor of length 2000. The feature vectors of the whole corneal
data set are displayed in Figure 10. It is seen that there are
two outliers in the unilateral suspect cornea group (right up-
per panel), thus we delete them before classification. Now,
we have 43 feature vectors in the normal cornea group, 12
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Table 1. Means and standard deviations (in parentheses) of the 1000 classification accuracy values (in percent) of the classic
kNN, new kNN and adjusted new kNN classifiers using the raw spectrometric curves of the Tecator data and their first and

second derivative curves, respectively

Curve Method L1 L2 L∞ FCD FPC FM

Raw
kNN 76.83 (4.79) 79.20 (4.55) 84.63 (4.32) 92.89 (2.49) 78.95 (4.82) 94.79 (2.37)
new kNN 77.26 (4.57) 78.90 (4.61) 84.64 (3.98) 93.61 (2.37) 79.44 (4.30) 95.20 (2.14)
adjusted new kNN 74.15 (4.61) 76.51 (4.70) 83.02 (4.55) 93.16 (2.40) 76.50 (4.59) 95.21 (2.19)

1st
Derivative

kNN 97.18 (1.55) 97.06 (1.58) 96.68 (1.62) 98.09 (1.33) 97.25 (1.45) 96.92 (1.93)
new kNN 97.46 (1.43) 97.33 (1.44) 96.95 (1.48) 98.05 (1.27) 97.44 (1.51) 96.98 (1.85)
adjusted new kNN 97.67 (1.41) 97.42 (1.44) 97.06 (1.39) 97.95 (1.42) 97.52 (1.47) 96.91 (1.91)

2nd
Derivative

kNN 97.88 (1.51) 97.49 (1.62) 97.30 (1.53) 97.84 (1.38) 97.84 (1.66) 96.99 (1.99)
new kNN 97.86 (1.43) 97.58 (1.60) 97.31 (1.53) 97.79 (1.36) 98.05 (1.55) 97.33 (1.95)
adjusted new kNN 98.40 (1.30) 97.96 (1.47) 97.28 (1.47) 97.82 (1.33) 98.37 (1.54) 96.98 (2.05)

Table 2. Means and standard deviations (in parentheses) of the 1000 G-mean values (in percent) of the classic, new, and
adjusted new kNN classifiers with the raw spectrometric curves of the Tecator data and their first and second derivative curves

respectively

Curves Method L1 L2 L∞ FCD FPC FM

Raw
kNN 72.76 (7.60) 76.23 (6.77) 82.16 (5.70) 91.12 (3.34) 75.82 (7.03) 93.29 (3.25)
new kNN 74.39 (5.60) 76.43 (5.83) 82.47 (4.84) 92.06 (2.96) 77.09 (5.37) 93.80 (2.93)
adjusted new kNN 74.46 (4.46) 76.76 (4.60) 83.24 (4.38) 92.25 (2.85) 76.86 (4.46) 94.20 (2.80)

1st
Derivative

kNN 96.60 (2.01) 96.40 (2.08) 95.86 (2.13) 97.43 (1.79) 96.59 (1.87) 95.90 (2.48)
new kNN 96.98 (1.76) 96.78 (1.78) 96.24 (1.86) 97.39 (1.67) 96.94 (1.78) 96.01 (2.36)
adjusted new kNN 97.47 (1.56) 97.10 (1.67) 96.61 (1.67) 97.50 (1.77) 97.26 (1.64) 96.16 (2.33)

2nd
Derivative

kNN 97.23 (1.96) 96.67 (2.08) 96.46 (1.97) 97.15 (1.83) 97.28 (2.11) 96.21 (2.53)
new kNN 97.31 (1.82) 96.86 (1.99) 96.59 (1.85) 97.09 (1.75) 97.59 (1.92) 96.70 (2.38)
adjusted new kNN 98.09 (1.58) 97.49 (1.77) 96.84 (1.66) 97.40 (1.68) 98.10 (1.76) 96.43 (2.50)

feature vectors in the unilateral suspect cornea group, 21
feature vectors in the suspect map cornea group and 72 fea-
tures in the clinical keratoconus cornea group. It is seen
from Figure 9 that the corneal surfaces from the unilateral
suspect and suspect map groups are quite similar in shape.
A preliminary study also indicated that almost all the uni-
lateral suspect corneas are classified into the suspect map
cornea group. To overcome this difficulty, we combined the
unilateral and suspect map cornea groups into one group so
that we now have 43 feature vectors in the normal cornea
group, 33 feature vectors in the combined suspect cornea
group, and 72 feature vectors in the clinical keratoconus
cornea group.

To compute the classification accuracy values of the clas-
sic, new, and adjusted new kNN classifiers for the corneal
data, we randomly split the 148 feature vectors into a train-
ing sample and a test sample. The training sample contains
26 feature vectors from the normal cornea group, 20 feature
vectors from the combined suspect cornea group, and 43 fea-
ture vectors from the clinical keratoconus cornea group. The
remaining feature vectors form the test sample. As before,
for the classic kNN classifier, we set the number of near-
est neighbors to range up to 7 and the number of principal
components to range up to 9. For the new kNN classifier,
we set the number of nearest neighbors from each class to

range up to 5 and the number of principal components to
range up to 9. The number of nearest neighbors and the
number of principal components are selected by the 10-fold
cross-validation approach described in Section 2.3. For the
adjusted new kNN classifier, we set the number of nearest
neighbors and the number of principal components to range
up to 4 and 9 respectively. The number of nearest neighbors
and the number of principal components are selected by the
10-fold cross-validation approach described in Section 3. The
process is repeated 1000 times.

Table 3 displays the mean classification accuracy values
and their standard deviations (in parentheses) of the three
classifiers for the corneal surface data. With the same dis-
similarity measure, the largest mean classification accuracy
value of the classifiers is in boldface. It is seen that in terms
of mean classification accuracy, the new kNN classifier out-
performs the other two classifiers. Since the sample sizes of
the three classes of the corneal surface data are quite dif-
ferent, it may be more appropriate to compare the perfor-
mances of the three classifiers using their average G-mean
values. Table 4 displays the means and standard deviations
(in parentheses) of the 1000 G-mean values of the three clas-
sifiers with various dissimilarity measures. It is seen that in
terms of average G-means, the adjusted new kNN classifier
outperforms the classic and new kNN classifiers.
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Table 3. Means and standard deviations (in parentheses) of the 1000 classification accuracy values (in percent) of the classic,
new, and adjusted new kNN classifiers for corneal surface data

Method L1 L2 L∞ FCD FPC FM

kNN 57.80 (6.19) 55.54 (6.27) 48.93 (5.55) 50.46 (5.82) 53.05 (6.63) 66.50 (5.88)
new kNN 58.57 (5.66) 56.15 (5.77) 50.41 (5.30) 52.02 (5.78) 54.96 (6.25) 68.33 (5.68)
adjusted new kNN 55.98 (5.67) 54.62 (5.78) 47.63 (5.74) 48.07 (6.13) 53.25 (6.58) 65.58 (6.24)

Table 4. Means and standard deviations (in parentheses) of the 1000 G-mean values (in percent) of the classic, new, and
adjusted new kNN classifiers for the corneal surface data

Method L1 L2 L∞ FCD FPC FM

kNN 53.27 (7.47) 51.46 (7.47) 44.43 (7.15) 43.13 (8.37) 47.63 (8.47) 61.67 (7.13)
new kNN 53.91 (7.15) 51.70 (7.30) 45.93 (7.08) 43.73 (8.18) 49.23 (8.46) 63.62 (6.84)
adjusted new kNN 55.28 (6.29) 54.01 (6.22) 47.39 (6.17) 45.71 (6.85) 52.30 (7.37) 64.05 (6.68)

Figure 9. Corneal surfaces from each of the normal, unilateral
suspect, suspect map, and clinical keratoconus cornea groups.

As mentioned in the introduction section, the classic kNN
classifier has a tie problem while the new and adjusted new
kNN classifiers do not have such a problem. We now demon-
strate this via a small scale simulation study. Figure 11 dis-
plays the boxplots of the number of ties happened in the
1000 Monte Carlo runs by the classic, new, and adjusted
new kNN classifiers, respectively. As expected, there is a se-
rious tie problem for the classic kNN classier while this is
not the case for the new and adjusted new kNN classifiers.

6. CONCLUDING REMARKS

The classic kNN classifier works well for supervised classi-
fication of functional data but it has a tie-voting problem. To
overcome this difficulty, in this paper, we proposed and stud-
ied a new k-nearest neighbors classifier. Its key ideas are as

Figure 10. Feature vectors of the four cornea groups.

Figure 11. Boxplots of the number of ties happened in the
1000 Monte Carlo runs by the classic, new, and adjusted new

kNN classifiers, respectively.

follows. For a new unclassified observation, we take k nearest
neighbors from each class and compute their average dissim-
ilarity measures from the new observation respectively. This
new observation will be assigned to the class with the min-
imum average dissimilarity measure. Since the dissimilarity
measure is continuous, the new kNN classifier does not have
a tie-voting problem. When the number of observations in
one class is very different from those in other classes, like
the classic kNN classier, the new kNN classifier may not

A new k-nearest neighbors classifier for functional data 259



work well. In this case, we propose the adjusted new kNN
classifier via selecting the number of nearest neighbors pro-
portional to the sample size of a class. Good performances of
the new and adjusted new kNN classifiers are demonstrated
by three simulation studies and two real data examples. We
believe that the proposed new kNN and adjusted new kNN
classifiers may be adopted for other types of data, including
the irregular and sparse functional data or high-dimensional
data. A further study in this direction is interesting and war-
ranted.
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