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Rejoinder of “Estimation of Hilbertian varying
coefficient models”∗

Young Kyung Lee, Byeong U. Park
†
,

Hyerim Hong, and Dongwoo Kim

We thank all discussants for their insightful comments on
our paper. They highlight some important points of the pa-
per that need more detailed discussion and clarification, and
also make valuable suggestions for future study. We catego-
rize the issues raised by the discussants into three groups:
extensions to other models and data types; statistical infer-
ence; real data example. Below, we briefly address them.

1. EXTENSIONS TO OTHER MODELS AND
DATA TYPES

Du mentions a possible extension to models with general
interaction terms, which turn out to be additive regression
models with bivariate component maps. In fact, the esti-
mation of a bivariate additive regression model with a Eu-
clidean response was studied by Lee (2017). More general
cases with multivariate additive regression models are cov-
ered by a recent study, Jeon et al. (2021), where additive
models with a Hilbertian response and finite-dimensional
Hilbertian or manifold-valued predictors are considered.
Huang, Wang and Zhou also toss a question about including
the interaction between temperature and cloudiness to bet-
ter explain electricity consumption pattern in the real data
example (Section 4.3). There might be a certain level of such
interaction. But, we simply neglected it in the analysis of
the electricity consumption data since our main motivation
for the data example was to see how the nominal variable,
indicating weekdays or weekend, improves the accuracy of
predicting electricity load trajectory during a day. Adding
interaction terms such as f12,1(X1, X2) and Z�f12,2(X1, X2)
to the model (4.3) may improve the prediction accuracy fur-
ther depending on how strong the interaction between X1

and X2 is.
Du brings up another extension to models with functional

predictors, which is a very challenging problem. This is also
commented by Huang, Wang and Zhou regarding the real
data example in the paper. Basically, one can extend the
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methodology to the case in a way similar to the one dis-
cussed in Section 6 of Jeon and Park (2020) for additive
models with infinite-dimensional predictors. One can obtain
a version of Theorem 1 for the existence of the resulting
estimator and backfitting algorithm. However, there are at
least two difficulties in the extension. One is in the imple-
mentation of the extended method. Our method requires
Bochner integration with respect to a reference measure
on the infinite-dimensional space that embodies functional
data. For Euclidean spaces, Lebesgue measures take the role
of a reference measure. As far as we know, there is no such
thing for infinite-dimensional Hilbert or Banach spaces. An-
other difficulty stems from the fact that the nonparametric
estimation of a function basically deteriorates as the dimen-
sion of the space on which the function is seated gets large.
Additive models and varying coefficient models are two im-
portant classes of structured models that enable one to cir-
cumvent the curse of dimensionality. However, if the com-
ponent maps themselves are defined on high-dimensional
spaces, then one still faces the dimensionality problem with
structured models. Functional data are infinite-dimensional,
in which case we do not even think it is possible to find
a consistent estimator. The three recent works (Sun et al.,
2018; Reimherr et al., 2018; Cui et al., 2020) on function-
to-function regression mentioned by Du do not have the dif-
ficulty. Among them, Sun et al. (2018) and Cui et al. (2020)
are about parametric functional models. The other one,
Reimherr et al. (2018), is about a nonparametric functional
model that can be written as

(1) E
(
Y (·)|X(·)

)
=

∫ 1

0

g(·, s,X(s)) ds,

where g is the unspecified target of estimation. Adapting
the latter problem to our Hilbertian framework, Y = Y (·)
is a Hilbertian response and the target g(·, ·) defined by
g(s, u) = g(·, s, u) is a bivariate Hilbertian map. Thus,
the nonparametric Hilbertian map g in the model (1) is
actually seated on the two-dimensional space, not on the
infinite-dimensional space where X ≡ X(·) takes values.
In general, for functional or infinite-dimensional predictors,
there should be a dimension reduction stage before imple-
menting a nonparametric technique. The latter approach
was actually taken by many researchers (Han et al., 2018;
Park et al., 2018, e.g.).
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Cheng and Dai discuss a number of recent works on
regression with density-valued and manifold-valued data.
These areas are also evolving rapidly in recent years
due to today’s new data environments. As for density-
valued random objects, we note that the transformation
approach discussed by Cheng has been applied to addi-
tive regression by Han et al. (2020), for example. In fact,
the space of density functions is a Hilbert space under
the Aitchison geometry (Aitchison, 1986) and thus the
case is covered by the general Hilbertian framework of
Jeon and Park (2020). As for manifold-valued responses, the
four works (Chau and von Sachs, 2020; Cornea et al., 2017;
Dai and Muller, 2018; Dai et al., 2020) mentioned by Dai
are not for structured nonparametric regression. The first
study on structured nonparametric regression for mainfold-
valued responses is done by Lin et al. (2021), which proposes
an intrinsic group additive regression model for responses
taking values in the space S+ of symmetric positive-definite
matrices. The latter work exploits the abelian group struc-
ture of S+ endowed by the Log-Cholesky (Lin, 2019) and
Log-Euclidean (Arsigny et al., 2007) metrics. The group ad-
ditive model is then transformed into an additive model on
tangent spaces via the Riemannian logarithmic map. The ex-
tension is considered to pave a way for a general approach to
manifold additive modeling. Cheng raises an identification
issue for the linear and nonlinear parts in the model (2.6).
We note that they are well identified under the constraints
(2.5), as demonstrated by Proposition 1 and the discussion
that follows.

2. STATISTICAL INFERENCE

Du raises a very interesting question on how to make sta-
tistical inference for the model studied. It is common in non-
parametric inference that the estimation of unknown quan-
tities in the asymptotic distribution of an estimator is more
complicated and difficult than the original problem. In the
current problem, the asymptotic distribution demonstrated
in Theorem 3 involves βj , which do not have a closed form,
the covariance operator Cj and the second Fréchet deriva-
tives of the component maps fj,k. To use the asymptotic
distribution for inference, these unknown quantities need to
be estimated, which makes the problem even harder since
the estimation of the derivatives of a function, for example,
is more difficult than that of the original function. As Du
suggests, one might think of a bootstrap procedure to esti-
mate the distributions of the estimators of the component or
regression maps. This is doable in the following way. In the
construction of a confidence set, for example, for a compo-
nent map fj,k at a level (1− α) for 0 < α < 1, one basically
seeks for the quantile cα such that

P
(∫ 1

0

‖f̂j,k(xj)� fj,k(xj)‖2H dxj ≤ cα

)
= 1− α.

One may approximate cα by ĉα such that

P
(∫ 1

0

‖f̂∗j,k(xj)� f̂j,k(xj)‖2H dxj ≤ ĉα

∣∣∣Xi,Yi, 1 ≤ i ≤ n

)

= 1− α,

where f̂∗j,k is the bootstrap version of f̂j,k constructed from a
bootstrap sample {(X∗

i ,Y
∗
i ) : 1 ≤ i ≤ n} of {(Xi,Yi) : 1 ≤

i ≤ n}. A confidence set for fj,k at level (1−α) is then given
by

{
gj,k :

∫ 1

0
‖f̂j,k(xj) � gj,k(xj)‖2H dxj ≤ ĉα

}
. Two imme-

diate questions with such a confidence set are whether the
bootstrap procedure works theoretically and how to visual-
ize the confidence set. These issues deserve further study.

The bootstrapping idea described in the above paragraph
can be also applied to testing problems. This is in line with
a suggestion made by Zhou, Guo and Zhang. Specifically,
for testing H0 : fj,k = 0, one basically wants to find γα such
that

PH0

(∫ 1

0

‖f̂j,k(xj)‖2H dxj > γα

)
= α,

where PH0 is the probability measure corresponding to the
null hypothesis H0. A bootstrap estimate γ̂α of γα may be
defined by

P
(∫ 1

0

‖f̂∗j,k(xj)‖2H dxj > γ̂α

∣∣∣Xi,Yi, 1 ≤ i ≤ n

)
= α,

where the bootstrap version f̂∗j,k is obtained from the back-
fitting equations at (2.12) based on a bootstrap sample
{(X∗

i ,Y
∗
i ) : 1 ≤ i ≤ n} from an empirical model that re-

flects H0. With such a bootstrap quantile γ̂α, one rejects H0

if ∫ 1

0

‖f̂j,k(xj)‖2H dxj > γ̂α.

Zhou, Guo and Zhang also comment on the connection of
our model (2.1) to an ANOVA problem with density func-
tions as data objects from k sub-populations. The observa-
tions from k sub-populations may be put into a single model
using dummy variables. However, the ANOVA model does
not fit into our framework since the mean density functions
of the sub-populations are considered as constants in the
space of density functions.

3. REAL DATA EXAMPLE

Huang, Wang and Zhou make various comments on the
real data example. We respond to some of them here that
are left not being addressed in the previous sections.

First, as for adding the seasonal indicator, we did not
consider it at the time of writing the paper because we
thought that the seasonal effect is well explained by temper-
ature and cloudiness, the predictors we already considered
in the model (4.3). In preparing this rejoinder, we checked
it by fitting a model where the seasonal effect was added.
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Let X4 be the indicator of weekdays, X5, X6 and X7 be
the indicators of summer (June–August), fall (September–
November) and winter (December–February), respectively.
We fitted the model,

E(Y|X) = f1,3(X1)⊕ f2,3(X2)

⊕X4 �
(
f1,4(X1)⊕ f2,4(X2)

)

⊕X5 �
(
f1,5(X1)⊕ f2,5(X2)

)

⊕X6 �
(
f1,6(X1)⊕ f2,6(X2)

)

⊕X7 �
(
f1,7(X1)⊕ f2,7(X2)

)
.

We found that the value of ASPE with the above model was
0.0081, which is worse than 0.0052 with the model (4.3).
One reason for this is that, as we note above, each season in
Korea has a unique climate and thus its effect is sufficiently
well accounted by temperature and cloudiness. Including the
additional variables in the model seemed to increase only
the variability of the estimated model. Another, which also
seemed to worsen the ASPE performance, is that the pres-
ence of the seasonal variables actually hinders proper tuning
for the bandwidths. To see this, we first note that adding
the seasonal indicators increases the dimension of the ma-
trices M̂jj(xj), defined at (2.10), from 2 × 2 to 5 × 5. Let
Ik,1 for 1 ≤ k ≤ 4 be the index set of i for Yi correspond-
ing to weekdays in the kth season, where k = 1 for spring,
k = 2 for summer, k = 3 for fall and k = 4 for winter. Also,
let Ik,0 be the index set for weekend in the kth season. Put
Sk,l(xj) =

∑
i∈Ik,l

Khj (xj , Xij) for j = 1, 2, l = 0, 1 and
k = 1, . . . , 4. Then, we find

det
(
n · M̂jj(xj)

)

=

4∑
k=1

Sk,0(xj) · Sk,1(xj) ·
4∏

k′=1,�=k

(
Sk′,0(xj) + Sk′,1(xj)

)
.

Thus, M̂jj(xj) is invertible if and only if the right hand side
of the above equation is not zero. Note that the backfitting
equation at (2.12) is well defined only if M̂jj(xj) is invertible
for all xj and for all j. The constraint, det

(
n ·M̂jj(xj)

)
�= 0

for all xj ∈ [0, 1] and j = 1, 2, certainly restricts the band-
width ranges on which we search for the bandwidths hj

by the CBS scheme mentioned in Section 4.2. In fact, the
CBS bandwidths chosen for fitting the model (4.3) were
h1 = 0.052 and h2 = 0.2472, while with the seasonal vari-
ables being added the CBS scheme gave h1 = 0.7696 and
h2 = 0.4513, which seemed to give the worse ASPE perfor-
mance due to excessive bias.

Huang, Wang and Zhou present a question on the differ-
ence between fitting (4.3) and two separate additive models,
one for the weekday and the other for the weekend data.
The two approaches are essentially the same as far as the
models are concerned. The only difference is in tuning the

smoothing parameters. In fitting the two separate additive
models, one basically tunes four bandwidths, one for each
of four associated component maps. Let h1,1/2 and h2,1/2

denote the two bandwidths used to fit the separate addi-
tive model for the weekday data. Likewise, let h1,−1/2 and
h2,−1/2 be those for the weekend data. Then, the four band-
widths h1,±1/2 and h2,±1/2 are not for the individual com-
ponents, f̂1,3, f̂1,4, f̂2,3 and f̂2,4, but for the four combined
maps,

f̂1,3 ⊕
(1
2
� f̂1,4

)
, f̂1,3 �

(1
2
� f̂1,4

)
,

f̂2,3 ⊕
(1
2
� f̂2,4

)
, f̂2,3 �

(1
2
� f̂2,4

)
,

respectively, under the coding scheme Z = ±1/2. For the ex-
istence of the estimators in fitting the two separate additive
models, one basically needs

n∑
i=1:Zi=1/2

Khj,1/2
(xj , Xij) > 0,

n∑
i=1:Zi=−1/2

Khj,−1/2
(xj , Xij) > 0

(2)

for all xj ∈ [0, 1] and for j = 1, 2. Thus, tuning the four
bandwidths are to be done over a four dimensional grid that
satisfies (2).

On the other hand, with the model (4.3), the two compo-
nents fj,3 and fj,4 are estimated using the same bandwidth
hj so that one tunes only two bandwidths h1 and h2. We
note that, if one desires to use a different amount of smooth-
ing for each of the component maps, f̂1,3, f̂1,4, f̂2,3 and f̂2,4,
then one may employ the two-step procedure analyzed by
Park et al. (2015). Now, writing (4.3) in the form of (2.10),
we get

E(Y|X) =
(
Z� � f1(X1)

)
⊕

(
Z� � f2(X2)

)
,

where Z = (1, Z)�, f1 = (f1,3, f1,4)
� and f2 = (f2,3, f2,4)

�.
For the existence of the estimators in fitting the model (4.3),
M̂jj(xj) need to be invertible for all xj ∈ [0, 1] and for
j = 1, 2. Note that M̂jj(xj) is invertible if and only if

n−1
n∑

i=1

(
α0 + α1I(Zi = 1/2)

)2
Khj (xj , Xij) = 0

implies α0 = α1 = 0.

(3)

The relation between the conditions (2) and (3) depends
on the sizes of hj , hj,1/2 and hj,−1/2. Recall that the baseline
kernel K is assumed to vanish on R\ (−1, 1) and be positive
on (−1, 1). Thus, Kh(x, u) > 0 if and only if |u − x| < h,
so that Kh(x, u) > 0 implies Kh′(x, u) > 0 if h ≤ h′. In
case hj = hj,1/2 = hj,−1/2, it is not difficult to see that the
conditions (2) and (3) are equivalent.
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About the issue of normalization, we agree with Huang,
Wang and Zhou that actual hourly consumption conveys
more information than its normalized version that demon-
strates only consumption pattern. The reason we worked on
the normalized trajectories was that actual electricity load
trajectories were not available. We were provided only with
relative electricity loads, which were already normalized, al-
though not to integrate to unity but to 24× 1,000. If actual
hourly trajectories are available, we may apply the model
(4.3) with H = L2[0, 24]. We note that the normalization
does not distort prediction since we are working on the cor-
rect metric introduced in Section 4.1. Also, it is easy to
convert the ‘density’ (intensity) of electricity consumption
over time during a day to the corresponding actual electric-
ity consumption trajectory, simply by multiplying the total
daily consumption, if the latter is available.

Regarding normalization after averaging versus averaging
after normalization, we would like to note that the orig-
inal data are Y unsmth

i as described in Section 4.3 where
Zi are monthly averages. If one does have raw data, then
one might first normalize the consumption trajectories and
then average out the normalized versions over the month.
Although the latter is more natural as noted by Huang,
Wang and Zhou, both give a summarized pattern of elec-
tricity consumption for each month. They are different but
related. The difference between the two pre-processing pro-
cedures, normalization after averaging versus averaging after
normalization, is actually small since daily weekday con-
sumption patterns are similar within each month and so
are daily weekend patterns. As for the comment that the
data smoothing leading to Y smth

i may introduce bias, we
would say that the pre-smoothing step is necessary to ap-
ply our method to the data. The original data are electric-
ity consumption measured on the discrete hourly time grid
with possible error. Pre-smoothing is common in functional
data analysis and is typically employed to retrieve unob-
served true trajectories on a continuous time scale from ob-
servations on a discrete grid with errors. It would be in-
teresting to analyze the effect of the pre-smoothing, how-
ever.

Huang, Wang and Zhou also comment on our coding
scheme for weekdays versus weekend: Z = ±1/2 instead
of Z = 1/0. Of course, the interpretation of each compo-
nent map is different if Z is coded in a different way. But,
in any cases, f1,4 and f2,4 represent the effects of Z on the
nonlinear effects of Xj . The nonlinear effect of Xj when
Z = 1/2 equals fj,3(Xj)⊕ (1/2)� fj,4(Xj) and the one when
Z = −1/2 equals fj,3(Xj)� (1/2)� fj,4(Xj), so that the dif-
ference equals fj,4(Xj). The same is true for the case where
one takes the coding scheme Z = 0/1. The estimated maps
f̂j,4 for j = 1 and 2 are depicted on the two bottom pan-
els in Figure 2. Furthermore, the two top panels show the
estimated maps f̂j,3 ⊕ (1/2) � f̂j,4 for j = 1 and 2, and the
two middle demonstrate f̂j,3 � (1/2) � f̂j,4. If one changes

the coding scheme to Z∗ = 0/1 and rewrite the model (4.3)
as

E(Y|X) = f∗1,3(X1)⊕ f∗2,3(X2)⊕Z∗ �
(
f∗1,4(X1)⊕ f∗2,4(X2)

)
,

then f∗j,3⊕f∗j,4 = fj,3⊕(1/2)�fj,4 and f∗j,3 = fj,3�(1/2)�fj,4.
Thus, the estimated effects of temperature and cloudiness
for weekday and weekend are independent of coding scheme,
so are their interpretation.

We close this rejoinder by giving a brief remark regarding
the alternative model formulation suggested by Zhou, Guo
and Zhang. We agree with them that the new formulation
gives a clear picture about the model (2.1). However, we
basically need the representation (2.1) to better describe
the SBF method and to undertake the theoretical analysis
of the method.
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