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Link prediction via latent space logistic regression
model∗

Rui Pan, Xiangyu Chang
†
, Xuening Zhu, and Hansheng Wang

Nowadays, link prediction is of vital importance in the
operation of social network platforms. One typical applica-
tion is to make accurate recommendation to enhance users’
activeness. In this article, we propose a latent space logis-
tic regression model for link prediction. The model takes
both the users’ attributes and the latent social space into
consideration. Two pseudo maximum likelihood estimators
are proposed for parameter estimation. They correspond to
the concepts of reciprocity and transitivity, respectively, and
are computationally efficient for large-scale social networks.
Extensive simulation studies are provided to evaluate the
finite sample performance of the newly proposed methodol-
ogy. At last, a real data set of Sina Weibo is presented for
illustration purposes.

Keywords and phrases: Latent Social Space, Link Pre-
diction, Logistic Regression, Network Topology, Social Net-
works.

1. INTRODUCTION

A social network refers to a set of nodes (i.e., users) con-
nected by various social relationships (i.e., links). Typical
examples include but are not limited to Facebook (www.
facebook.com), Twitter (www.twitter.com), WeChat (www.
wechat.com), QQ (www.qq.com), Weibo (www.weibo.com),
and many others. On one side, it is vital for a social net-
work to be well connected so that information can diffuse
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efficiently. On the other side, most large-scale social net-
works are extremely sparse in structure. This means two
arbitrarily selected nodes are hardly to be connected di-
rectly (Zhou et al., 2017). However, the small world prop-
erty (Watts and Strogatz, 1998) ensures that disconnected
nodes could be linked through a finite number of interme-
diate nodes. This can be achieved by recommending each
node promising social relationships. Thus, it is of practi-
cal importance to establish a good recommendation system
because many disconnected nodes could be linked. Further-
more, nodes’ loyalties to the network platform can be po-
tentially enhanced. The problem of making recommendation
is also commonly known as making accurate link prediction
(Aiello et al., 2012).

Link prediction is a classical research topic in network
data analysis. Many researchers have made substantive pro-
gresses in the past literatures; see Lu and Zhou (2011) and
Wang et al. (2015) for detailed reviews. Two kinds of in-
formation are extensively used for link prediction. They
are node-based information and topology-based information.
More specifically, node-based information, seen as exogenous
predictive variables, can be further classified into two cat-
egories. The first is nodal information. Consider for exam-
ple Twitter, whether a particular node is a popular movie
star can be seen as useful nodal information. The second
is specific to one particular pair of nodes, and we refer to
it as pairwise information. As a concrete example, whether
two nodes are graduated from the same high school can
be seen as pairwise information. More examples of node-
based information can be found in Hunter et al. (2008) and
de Miguel Luken and Tranmer (2010).

The second type of information extensively is topology-
based information, which is closely related to network
structures. It has been widely proved that informa-
tion derived from network structures is extremely useful
(Libennowell and Kleinberg, 2007). To fix the idea, con-
sider a particular topology-based information, the com-
mon neighbors (Newman, 2001). As discussed before, in
a large-scale network, the probability that two arbitrary
nodes (i.e., i and j) are directly connected is extremely
small. However, if there exist many other nodes (i.e., com-
mon neighbors) connected with both i and j, the likelihood
for i and j to be connected can be significantly improved.
Other topology-based information, such as paths between
two nodes, can also be utilized for link prediction (Lu et al.,
2009).
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From the above discussions, it can be concluded that
both node-based and topology-based information play a
vital role in link prediction. Among the many link predic-
tion techniques, logistic regression (LR) model is frequently
used in practice, taking both information into account; see
Herz (2015), Kruse et al. (2016), and many others. Note
that one type of LR model, the latent space model proposed
by Hoff et al. (2002), is of great interest in both theory
and applications. In this model, nodes are assumed to be
embedded in a latent social space, where nodes staying
close to each other are more likely to be connected. Node-
based information can be easily accommodated and many
stylized network properties (e.g., reciprocity, transitivity,
and so forth) can be well modeled. As a consequence, the
latent space model and its extensions are widely stud-
ied and popularly used (Schweinberger and Snijders,
2003; Handcock et al., 2007; Krivitsky et al., 2009;
Oconnor et al., 2015; Sewell and Chen, 2015; Rastelli et al.,
2016; Han et al., 2019).

The latent space approach is attractive in inter-
preting network structures and existing estimation al-
gorithms are mainly performed using Markov chain
Monte Carlo (MCMC). To make the estimation proce-
dure computationally fast, many efforts have been de-
voted (Xing et al., 2010; Salter-Townshend and Murphy,
2013; Sewell and Chen, 2017). In this work, we develop a
novel latent space logistic regression (LSLR) model from
the perspective of frequentist. The newly proposed LSLR
model takes both latent social space and node-based infor-
mation into account. Furthermore, the LSLR model can well
express important characteristics of large-scale social net-
works, e.g., reciprocity and transitivity. Different from the
existing latent space models, the LSLR model can express
sparsity, which is commonly encountered in large-scale so-
cial network data. To estimate the regression coefficient, we
develop two pseudo maximum likelihood estimators (PM-
LEs), which correspond to the concepts of reciprocity and
transitivity. The newly proposed estimators are computa-
tionally efficient and particularly useful for large-scale net-
work analysis. The asymptotic properties of the PMLEs are
derived and two inference procedures are developed. Other
than that, we also conduct various types of link prediction.
Extensive simulation studies are conducted to evaluate their
finite sample performances. Lastly, a real dataset about Sina
Weibo is provided for illustration purposes.

The rest of article is organized as follows. In Section 2,
we describe the LSLR model and investigate the distribu-
tion of some important network statistics under the LSLR
model. In Section 3, we develop two estimation methods
with their asymptotic properties and discuss the problem
of link prediction. A number of simulation studies and real
data example are conducted in Section 4. Some concluding
remarks are given in Section 5. All the technical proofs are
presented in the Appendix.

2. LATENT SPACE LOGISTIC REGRESSION
MODEL

2.1 Model and notation

In order to describe the network structure, we define the
n × n adjacency matrix A = (Aij) ∈ {0, 1}, where n is the
total number of nodes. If node i claims a certain relationship
to node j, then Aij = 1, otherwise, Aij = 0. We follow the
convention and let Aii = 0 for 1 ≤ i ≤ n. In this work,
we focus on directed network so that Aij can be unequal to
Aji. Further assume that Xij = (Xij,1, . . . , Xij,p)

� ∈ R
p is

a p-dimensional predictive variable derived from nodes i and
j for i �= j. Any useful information for predicting Aij can
be included in Xij . For instance, Xij could be (1) whether
node i or j carries certain characteristics (e.g., movie star,
business elite or political leader), (2) whether i and j have
the same nodal factor effect (e.g., gender), (3) quantitative
measurement for social connection between i and j (e.g.,
the amount of phone calls made between i and j), and (4)
difference in social status between i and j (e.g., absolute
difference of annual income between i and j). For notation
simplicity, we denote X = {Xij} as the predictor set.

To model the stochastic mechanism of link formation (i.e.,
Aij = 1), we assume that there exists a latent social space
and each node has its own position in the space. To this end,
define the unobserved position Zi for node i. As commonly
accepted, we suppose that Zi ∈ R

1 is treated as a random
variable and Z = (Z1, · · · , Zn)

� ∈ R
n according to the ex-

isting literature (Hoff et al., 2002; Sewell and Chen, 2015;
Chang et al., 2019). Further define dij as the distance be-
tween node i and j in the latent space, where dij = |Zi−Zj |.
Intuitively, if two nodes are close to each other in the la-
tent social space (i.e., dij is small), the probability they are
connected should be relatively large. To mimic this phe-
nomenon, we propose the following LSLR model,

(2.1) P (Aij = 1|X,Z) = exp
(
− αnd

2
ij

) eX
�
ijβ

1 + eX
�
ijβ

,

where β = (β1, · · · , βp)
� ∈ R

p is the associated p-
dimensional regression coefficient, with its true value given
by β0 = (β01, · · · , β0p)

� ∈ R
p. Further assume c1n

δ ≤ αn ≤
c2n

δ, where δ, c1 and c2 are some positive constants. As a
result, αn is an unknown parameter controlling the distance
effect.

Note that (2.1) can be seen as a two-step process in link
formation. First, nodes i and j should be close enough to
each other (i.e., d2ij should be small enough). So that the

“probability” (i.e., exp(αnd
2
ij)) they “meet” each other is

nontrivial. In the meanwhile, nodes i and j should be simi-
lar to each other in terms of predictive variables. As a result,
the “probability” (i.e., exp(X�

ijβ)/{1 + exp(X�
ijβ)}) they

“resemble” each other is nontrivial. This makes the link for-
mation between i and j. The whole process is further shown
in Figure 1.
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Figure 1. The formation of (2.1), which can be seen as a two-step process.

Regarding the LSLR model, we have the following three
remarks.

Remark 1 (Network Sparsity). Note that in the LSLR
model (2.1), the unknown parameter αn controls the
strength of distance effect. We further require that αn is
positive, otherwise sparsity cannot be ensured. Even worse,
the conditional probability of (2.1) might be greater than 1
if αn is negative. It can be concluded that the probability
nodes i and j are connected converges to 0 as n → ∞, as
long as Zi �= Zj . As a result, the assumption on αn guaran-
tees network sparsity, especially for large-scale networks.

Remark 2 (Reciprocity and Transitivity). The LSLR
model possesses important network characteristics: reci-
procity and transitivity. To see this, assume that node i
follows node j, and node j follows node k (i.e., Aij = 1
and Ajk = 1), then it is commonly observed with a high
probability that Aji = 1 and Aik = 1. Theses two phenom-
ena (i.e., AijAji = 1 and AijAjkAik = 1) are referred to as
reciprocity and transitivity. In the next subsection, we will
show in detail that the LSLR model satisfies these two im-
portant characteristics. Further note that β is assumed to
be size-invariant, which means that β does not change with
the size of network n. Otherwise, transitivity may not be
guaranteed.

Remark 3 (Relationship to LR model). If two nodes are
located at the same place in the latent social space (i.e.,
Zi = Zj), the probability that node i is connected to j
becomes a constant, i.e., exp(X�

ijβ)/{1 + exp(X�
ijβ)}. This

is a nontrivial probability which is bounded away from 0.
In this case, the LSLR model degenerates to traditional LR
model. In addition, we write the log-odds of our proposed

LSLR model,

X�
ijβ − αnd

2
ij − log

{
1 + eX

�
ijβ(1− e−αnd

2
ij )

}
.

It can be seen that the first two terms are the same as
the latent space model. However, there is a third term
log{1+exp(X�

ijβ)(1−exp(−αnd
2
ij))}, which makes the inter-

pretation of β different from that of the latent space model.
What we can conclude is that if the term αnd

2
ij goes to 0,

the third term goes to 0, and then the interpretation of β is
the same as that of the latent space model.

Note that in model (2.1), the latent positions Z are un-
observed. In order to make parameter estimation feasible,
we will derive the marginal probability P (Aij = 1|X). To
this end, define Uij = Zi − Zj to be a random variable. We
further assume its probability density function as f(u) ≥ 0,
where u ∈ R

1. As long as f(0) > 0, it is easy to have the
following result as n → ∞,

P (Aij = 1|X) =
eX

�
ijβ

1 + eX
�
ijβ

∫
R

e−αnu
2

f(u)du

=
eX

�
ijβ

1 + eX
�
ijβ

∫
R

e−t2f
( t√

αn

)( 1√
αn

)
dt

=
{
f(0) +O(n−δ/2)

}( π

αn

) 1
2 eX

�
ijβ

1 + eX
�
ijβ

,(2.2)

where latent positions are integrated out. Note that the
marginal probability of Aij = 1 converges to 0 as the net-
work size n increases. As a result, network sparsity can be
guaranteed for large-scale networks. Based on the result in
(2.2), we next study the properties of some important net-
work statistics.
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2.2 Network statistics

In order to explore social connections among nodes, var-
ious network statistics are extensively studied in the litera-
ture of social network analysis, e.g., degree, reciprocity, tran-
sitivity, and so forth (Wasserman and Faust, 1994). In this
subsection, we intend to study the properties of these im-
portant network statistics under the LSLR model. We start
with the simplest network statistic, that is the nodal degree.

Nodal degree

We first introduce notations A+i and Ai+, denoting nodal
in-degree and out-degree, respectively. Mathematically, they
can be spelled as A+i =

∑
j �=i Aji and Ai+ =

∑
j �=i Aij . In

the study of sociology, a node with large nodal in-degree is
believed to be attractive in the network, who draws many
attentions from others. A node with large nodal out-degree
is active, who initiatively follows many other nodes. As a
result, nodal degree can reflect certain characteristics of a
node and it is of great interest to investigate its properties.

From (2.2), the expectation of nodal in-degree can be
easily derived as

E(A+i|X) = E
(∑

j �=i

Aji|X
)

=
{
f(0) +O(n−δ/2)

}( π

αn

) 1
2

∑
j �=i

eX
�
jiβ

1 + eX
�
jiβ

.

We then focus on the leading term of this expectation and
consider two special scenarios regarding nodal in-degree for
detailed discussions.

Scenario 1 (Xij = Xj). In the first scenario, we let
Xij = Xj , where Xj = (Xj,1, · · · , Xj,p)

� ∈ R
p denotes

nodal characteristics with respect to node j. As a result, the
predictor between i and j is only determined by the nodal
information from the receiver (i.e., node j). As a result, the
leading term of E(A+i|X) is

(n− 1)f(0)
( π

αn

) 1
2 eX

�
i β

1 + eX
�
i β

.

The expected nodal in-degree for node i is only determined
by its own nodal information Xi. If Xi is some information
that exhibits large variability among nodes (i.e., personal
social status), the nodal in-degree would vary tremendously
for each node.

Scenario 2 (Xij = Xi). In the second scenario, we let
Xij = Xi. This means that the predictive variable is equiv-
alent to the nodal information derived from the sender (i.e.,
node i). In this case, the leading term of E(A+i|X) can be
expressed as

(n− 1)f(0)
( π

αn

) 1
2 1

n− 1

∑
j �=i

eX
�
j β

1 + eX
�
j β

.

The expected nodal in-degree for a particular node i is deter-
mined by the average nodal effect generated from the other
nodes (i.e., Xj with j �= i). In this case, the variation of
nodal in-degree will be relatively small under this scenario.

Similar conclusion can be obtained for nodal out-degree.
Further note that E(A+i) = O(n1−δ/2) and E(Ai+) =
O(n1−δ/2). When 0 < δ < 2, the expected nodal in-degree
and out-degree diverge with network size. When δ = 2, the
expected nodal in-degree and out-degree are well bounded,
i.e., E(A+i) = O(1) and E(Ai+) = O(1). Take nodal out-
degree for instance, this means that when network size n gets
larger, the number of nodes that one can follow is limited.
When δ > 2, the expected nodal in-degree and out-degree
diminish along with the expansion of the network. Although
this is counterintuitive in real practice, we still discuss it here
for theoretical completeness.

Reciprocity

Next, we study another important network structure,
that is reciprocity. To this end, define a dyad as Dij =
(Aij , Aji) with i < j (Holland and Leinhardt, 1981). Then,
a symmetric dyad with Dij = (1, 1) is said to be recipro-
cated, where i and j are mutually connected. Using similar
technique of deriving (2.2), we have that

P (AijAji = 1|X) =
{
f(0) +O(n−δ/2)

}( π

2αn

) 1
2

pijpji,

(2.3)

where pij = exp(X�
ijβ)/{1+exp(X�

ijβ)}. It can be seen that

P (AijAji = 1|X) is O(n−δ/2). In a large-scale network, the
probability that any two nodes are mutually connected is
very small, and it converges to 0 as n → ∞.

Although it is rare to observe a reciprocated dyad (i.e.,
Dij = (1, 1)), it is believed that given Aji = 1, the proba-
bility of observing Aij = 1 should be bounded away from 0.
Under the framework of LSLR model, it can be derived that

P (Aij = 1|Aji = 1,X) = P (AijAji = 1|X)/P (Aji = 1|X)

=
√
1/2

eX
�
ijβ

1 + eX
�
ijβ

+O(n−δ/2).(2.4)

As a result, once node j follows node i (i.e., Aji = 1), the
probability that i follows back (i.e., Aij = 1) is relatively
large. In this sense, the phenomenon of reciprocity can be
well explained by our newly proposed LSLR model.

Transitivity

We next study a more sophisticated network structure,
which is transitivity. First of all, define a triad to be three
different nodes (e.g., i, j, and k) and all possible edges
involved among them. A triad is said to be transitive if
i is related to j, j is related to k, and then i is related
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to k (i.e., AijAjkAik = 1). A large number of transi-
tive triads implies that the network structure is clustered
(Wasserman and Faust, 1994).

We first derive the marginal probabilities of P (AijAjk =
1|X) and P (AijAjkAik = 1|X). Recall that Uij = Zi−Zj . We
assume g(u, v) to be the joint probability density function
of Uij and Ukl for any i �= j and k �= l, where u ∈ R

1 and
v ∈ R

1. Given g(0, 0) > 0, we can use the same technique as
in (2.2) and obtain

P (AijAjk = 1|X) = pijpjk

∫
R

∫
R

e−αn(u
2+v2)g(u, v)dudv

=
{
g(0, 0) +O(n−δ/2)

}( π

αn

)
pijpjk.

Further note that Uik = Zi − Zk = Uij + Ujk. As a result,

P (AijAjkAik = 1|X)

= pijpjkpik

∫
R

∫
R

e−αn{u2+v2+(u+v)2}g(u, v)dudv

=
{
g(0, 0) +O(n−δ/2)

}( π√
3αn

)
pijpjkpik.

It can then be proved that

P (Aik = 1|AijAjk = 1,X)

= P (AijAjkAik = 1|X)/P (AijAjk = 1|X)

= (
√

1/3)
eX

�
ikβ

1 + eX
�
ikβ

+O(n−δ/2).(2.5)

From (2.5) we can see that once AijAjk = 1, the probability
of observing Aik = 1 is bounded away from 0. Furthermore,
this probability is only determined by the information ob-
tained from nodes i or/and k (i.e., Xik), and it has nothing
to do with the intermediate node j. Hence, the LSLR model
is able to express the transitivity property very well.

3. ESTIMATION METHODS AND LINK
PREDICTION

In this section, we develop a novel estimation method for
the unknown parameters in the LSLR model. To be more
specific, we are particularly interested in the regression co-
efficient β. Since the social position Zi is latent, the full
likelihood function constructed on (2.1) involves integration,
which is hard to calculate. As a straightforward alternative,
one can start from the marginal probability (2.2). This leads
to the following log-transformed pseudo likelihood function,

�(αn, β|X) =
∑
i �=j

{
AijX

�
ijβ+Aij log η(αn)− log

(
1+ eX

�
ijβ

)

+ (1−Aij) log

(
1 +

(
1− η(αn)

)
eX

�
ijβ

)}
,(3.1)

where η(αn) = f(0)(π/αn)
1/2. Since αn is not identifiable,

we do not estimate αn but focus on the estimation of β.

Remark 4. Note that the maximum likelihood estimator
of β in (3.1) is not easy to obtain. Firstly, the summation in
(3.1) involves all the possible pairs in the network, which is
of O(n2). This leads to high computational cost for a large-
scale network. Secondly, the probability density function of
Uij , i.e., f(·), needs to be evaluated. In order to avoid the
computational burden as well as estimating the unknown
probability density function, we develop two pseudo max-
imum likelihood estimators, which correspond to the con-
cepts of reciprocity and transitivity.

3.1 Pseudo maximum likelihood estimator

As mentioned before, we develop two new estimators for
β in this subsection. On one hand, the computational cost
can be reduced. On the other hand, the computational pro-
cedure is irrelevant with αn. We refer to the newly proposed
estimator as a pseudo maximum likelihood estimator. More
specifically, we propose two kinds of PMLE in this subsec-
tion, which correspond to the concepts of reciprocity and
transitivity.

Recall that a dyad refers to a pair of nodes and the pos-
sible links formed between them. It is denoted by Dij =
(Aij , Aji) with i < j. In a large-scale network, most dyads
are null with Dij = (0, 0) (Huang et al., 2016; Zhou et al.,
2017), which carry less information. This motivates us to
develop an estimator regarding Dij �= (0, 0). Furthermore,
we know the probability of Aij = 1 given Aji = 1 is

(
√
1/2) exp(X�

ijβ)/{1+exp(X�
ijβ)}, which is irrelevant with

αn. As a result, we construct the following log-transformed
pseudo likelihood function

�R(β|X) =
∑

Aji=1,i �=j

{
AijX

�
ijβ − log(1 + eX

�
ijβ)

+ (1−Aij) log
(
1 + γ0e

X�
ijβ

)}
=

∑
i �=j

{
AijX

�
ijβ − log(1 + eX

�
ijβ)

+ (1−Aij) log
(
1 + γ0e

X�
ijβ

)}
Aji,(3.2)

where some constants are ignored and γ0 = 1 −
√
1/2. We

denote the PMLE of β as β̂R = argmaxβ �R(β|X). Note that
the conditional likelihood function (3.2) only takes summa-
tion of the reciprocated dyad (i.e., Dij = (1, 1)) and asym-
metric dyad (i.e., Dij = (1, 0) or Dij = (0, 1)). Since the
null dyad (i.e., Dij = (0, 0)) is not taken into account, the
computation of PMLE should be more efficient.

Similarly, transitivity refers to the network structure
formed among three nodes, where AijAjkAik = 1. We then
develop a PMLE based on the concept of transitivity. More
specifically, given AikAkj = 1, we know that the condi-

tional probability of Aij = 1 is (
√

1/3) exp(X�
ijβ)/{1 +
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exp(X�
ijβ)}. As a result, we construct the following log-

transformed likelihood function

�T (β|X) =
∑
i �=j

AikAkj=1∑
k �=i,j

{
AijX

�
ijβ − log(1 + eX

�
ijβ)

+ (1−Aij) log
(
1 + ν0e

X�
ijβ

)}
=

∑
i �=j

∑
k �=i,j

{
AijX

�
ijβ − log(1 + eX

�
ijβ)

+ (1−Aij) log
(
1 + ν0e

X�
ijβ

)}
AikAkj ,(3.3)

where some constants are ignored and ν0 = 1 − (
√

1/3).

Denote the PMLE as β̂T = argmaxβ �T (β|X). We next in-

vestigate the asymptotic properties of both β̂R and β̂T .

3.2 Asymptotic properties

In order to establish asymptotic normality of the newly
proposed PMLEs, we introduce some notations at the first

hand. Define lij = {AijX
�
ijβ − log(1 + eX

�
ijβ) + (1 −

Aij) log(1 + γ0e
X�

ijβ)}Aji, then �R(β|X) =
∑

i �=j �ij(β).
Denote sij(β) = ∂�ij(β)/∂β as the score function. Fur-
thermore, let s̃ij(β) = sij(β) − E(sij(β)|X), and it can

be proved that E(s̃ij(β)|X) = 0. Lastly, let �̈ij(β|X) =
∂2�ij(β)/∂β

�∂β. The following technical conditions are

needed for building asymptotic properties of PMLE β̂R.

(C1) (Predictor Assumption) For any i �= j, assume
that Xijs are random variables, with mean vector 0
and covariance matrix ΣX ∈ R

p×p, where ΣX is pos-
itive definite. Furthermore, for any Xij and Xkl with
{i, j}

⋂
{k, l} = ∅, assume that cov(Xij , Xkl) = Ip×p,

where Ip×p ∈ R
p×p is an identity matrix.

(C2) (Coefficient Regularity) Assume c1n
δ ≤ αn ≤

c2n
δ, where c1 and c2 are some positive constants, and

1 < δ ≤ 2.
(C3) (Latent Position) Assume the latent positions

Z1, · · · , Zn are independent and identically dis-
tributed. Define Uij = Zi−Zj . Assume the probability
density function of Uij is f(·) ≥ 0 with f(0) > 0. Fur-
thermore, given X and Z, all Aijs are independent.

By (C1) we know that Xijs are assumed to be random
variables. Furthermore, Xij and Xkl are mutually uncor-
related with {i, j}

⋂
{k, l} = ∅. This means that nontrivial

dependence is allowed, for example, between Xij and Xik in
a flexible manner. We next explain condition (C2) in detail.
First of all, αn is allowed to diverge with the sample size n.
Denote the first- and second-order derivatives of the likeli-
hood function �R(β) as Q1(β) ∈ R

p and Q2(β) ∈ R
p×p. It

can be verified that the expectation of Q1 is not exactly 0, so
we use Q∗

1 = Q1 −E(Q1|X) for approximation. As shown in

Appendix A, we can prove β̂R−β0 = {Q2}−1Q∗
1+op(1), and

the normality of β̂R comes from the asymptotic distribution
of Q∗

1.

Recall the discussions of nodal degree in subsection 2.2, it
is required that δ ≤ 2. Otherwise, the expected nodal in- and
out-degree will diminish along with the expansion of the net-
work, which is counterintuitive in real practice. In the mean-
while, it is shown in Appendix A that {cov−1/2(Q∗

1)}Q∗
1

converges in distribution to a multivariate standard normal
random vector under the condition δ > 1. The marginal
probability of Aij = 1 given X is of O(n−δ/2). When δ = 2,
this is an O(n−1). When δ > 2, the probability that any
two nodes are connected is smaller than O(n−1), which will
generate a really sparse network when n is large. As a result,
we require 1 < δ ≤ 2.

In condition (C3), it is assumed that the probability den-
sity function satisfying f(0) > 0. Note that neither the sup-
port nor the function change with the number of nodes.
This is commonly accepted in the past literatures where
the distribution is assumed to be normal (Hoff et al., 2002;
Krivitsky et al., 2009; Sewell and Chen, 2015; Chang et al.,
2019). We then have the following theorem.

Theorem 1. Assume the LSLR model (2.1) holds. Fur-
ther assume conditions (C1)–(C3). As n → ∞, we have

that
√
n(β̂R − β0) →d N(0, H−1

1 C1H
−1
1 ), where C1 is some

positive definite matrix defined in Appendix A, and H1 =
−E{�̈ij(β)} is a positive definite matrix.

The proof of Theorem 1 is given in Appendix A. As we
can see in the conclusion of Theorem 1, the PMLE based on
reciprocity is

√
n-consistent.

Similarly, we derive the asymptotic normality of β̂T ,
which is based on the concept of transitivity. To this
end, let �T (β) =

∑
i �=j

∑
k �=i,j �ijk(β). Denote sijk(β) =

∂�ijk(β)/∂β as the score function. Furthermore, let
s̃ijk(β) = sijk(β) − E(sijk(β)|X), where E(s̃ijk(β)|X) = 0.
Lastly, denote the second order derivative of the likelihood
function as �̈ijk(β) = ∂�ijk(β)/∂β

�∂β.

Theorem 2. Assume the LSLR model (2.1) holds. Fur-
ther assume conditions (C1)–(C3). As n → ∞, we have

that
√
n(β̂T − β0) →d N(0, H−1

2 C2H
−1
2 ), where C2 is some

positive definite matrix defined in Appendix B, and H2 =
−E{�̈ijk(β)} (i �= j �= k).

The proof of Theorem 2 is given in Appendix B. It can be
seen that β̂T is also

√
n-consistent, which is the same as β̂R.

However, the asymptotic covariances of β̂R and β̂T are to-
tally different, which result in different inference procedures.
The details are given in the next subsection.

3.3 Estimation of standard error

In order to make inference of the newly proposed PMLEs,
the standard errors developed in Theorem 1 and 2 need
to be estimated. First of all, by Theorem 1 we know that
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the asymptotic covariance of
√
n(β̂R − β0) is given by

H−1
1 C1H

−1
1 . It can be estimated by Ĥ−1

1 Ĉ1Ĥ
−1
1 , where

Ĥ1 =
1

n(2−δ/2)

∑
i �=j

Ajie
X�

ij β̂R(
1 + γ0e

X�
ij β̂R

)2
×

{
γ0Aij +

(1− γ0)
(
1− γ0e

2X�
ij β̂R

)(
1 + eX

�
ij β̂R

)2
}
XijX

�
ij ,

Ĉ1 = n−1+δ
n∑

i=1

(m̂i + ĥi)(m̂i + ĥi)
�,

m̂i = (n− 1)−1
∑
j �=i

sij(β̂R), ĥi = (n− 1)−1
∑
j �=i

sji(β̂R).

To test the statistical significance of one particular regres-

sion coefficient, i.e., H0 : β0j = 0 versus H1 : β0j �= 0, a

Z-type statistic can be established as ZR = β̂R
j /ŜER(β̂

R
j ),

where β̂R
j is the jth element of β̂R and ŜE

2

R(β̂
R
j ) is the jth

diagonal element of Ĥ−1
1 Ĉ1Ĥ

−1
1 /n. It can be seen that, there

is no need to estimate the unknown coefficient δ. As a result,

given a significant level α∗, the null hypothesis is rejected

if |ZR| > zα∗/2, where zα∗ is the α∗-th upper quantile of a

standard normal distribution.

Similarly, the inference procedure can be developed for

β̂T . To be more specific, the asymptotic covariance of√
n(β̂T − β0) is given by H−1

2 C2H
−1
2 , which can be esti-

mated by Ĥ−1
2 Ĉ2Ĥ

−1
2 . The estimators are given by

Ĥ2 =
1

n(3−δ)

∑
i,j,k

AikAkje
X�

ij β̂T(
1 + ν0e

X�
ij β̂T

)2
×

{
ν0Aij +

(1− ν0)
(
1− ν0e

2X�
ij β̂R

)(
1 + eX

�
ij β̂R

)2
}
XijX

�
ij ,

Ĉ2 = n−1+2δ
n∑

i=1

(m̂∗
i + ĥ∗

i + r̂∗i )(m̂
∗
i + ĥ∗

i + r̂∗i )
�,

m̂∗
i = (n− 1)−1(n− 2)−1

∑
j �=i

∑
k �=i,j

sijk(β̂T ),

ĥ∗
i = (n− 1)−1(n− 2)−1

∑
j �=i

∑
k �=i,j

sjik(β̂T ),

r̂∗i = (n− 1)−1(n− 2)−1
∑
j �=i

∑
k �=i,j

sjki(β̂T ).

In order to test the statistical significance of one particular

regression coefficient β0j , a Z-type statistics can be devel-

oped. More specifically, ZT = β̂T
j /ŜET (β̂

T
j ), where β̂T

j is

the jth element of β̂T and ŜE
2

T (β̂
T
j ) is the jth diagonal ele-

ment of Ĥ−1
2 Ĉ2Ĥ

−1
2 /n. Given a significant level α∗, the null

hypothesis of H0 : β0j = 0 can be rejected if |ZT | > zα∗/2.

3.4 Link prediction via LSLR

In social networks analysis, link prediction attempts to
estimate the likelihood of whether a link between two nodes
exists, given both the observed edges and the attributes of
nodes (Getoor and Diehl, 2005). In this subsection, we dis-
cuss how to estimate the link likelihood in social networks
based on LSLR.

So far, we have obtained two PMLEs β̂R and β̂T of LSLR
based on the concepts of reciprocity and transitivity. There-
fore, link prediction can directly be performed, i.e., predict-
ing P (Aij = 1|X) from (2.2). To be more specific, one only

needs to calculate exp(X�
ij β̂)/{1 + exp(X�

ij β̂)} for i �= j,

where β̂ can be either β̂R or β̂T . As a result, denote the
prediction of Aij based on PMLEs as

ÂP
ij = I

(
exp(X�

ij β̂)/
{
1 + exp(X�

ij β̂)
}
> ξ0

)
,

where the positive constant ξ0 is some threshold. Note that
there is no need to estimate f(0) and αn in (2.2), since they
are irrelevant with i and j. In real practice, the choice of
threshold ξ0 can be determined according to specific research
problem.

In a network without nodal information, topology-based
metrics are extensively used for link prediction, among
which the methods of “common neighbors” (CN) are
proved to be useful (Yu and Wang, 2014; Wang et al., 2015;
Chang et al., 2019). To be more specific, we adopt three
different definitions of CN, i.e., transitivity, 2-in-star and 2-
out-star. The corresponding network structures are shown in
Figure 2. Mathematically, we define CN1

ij =
∑

k �=i,j AikAkj ,

CN2
ij =

∑
k �=i,j AikAjk and CN3

ij =
∑

k �=i,j AkiAkj as the
number of common neighbors between i and j. As a result,
link prediction based on CN can be formulated as

ÂCN
ij = I

(
CNij > ξ1

)
,

where CNij can be CN1
ij , CN2

ij , CN3
ij , and ξ1 is some

threshold.
In order to compare the method of the newly proposed

PMLEs (i.e., ÂP
ij) and the results derived from CN (i.e.,

ÂCN
ij ), we further draw the receiver operation curves (ROC)

and calculate the value of the area under curve (AUC). As
a result, AUC values are evaluated and more details can be
found in numeric studies.

Figure 2. Three different network structures. From the left to
the right: transitivity, 2-in-star, 2-out-star.
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4. NUMERICAL STUDIES

4.1 Model setup

In order to demonstrate the finite sample performances
of our proposed PMLEs, we conduct a number of simulation
studies in this section. Different network sizes are considered
with n = 500, 1000, and 2000. Accordingly, αn is set to be
cnδ, where δ = 1.5, 1.8, and 2 with appropriately chosen
constant c. Nodal information Vi = (Vi1, · · · , Vi5)

� ∈ R
5 is

generated from multivariate normal distribution with mean
0 and covariance Σx = (σk1k2), where σk1k2 = 0.5|k1−k2|.
These variables can be viewed as some standardized quan-
titative measures for each node (e.g., income). In order to
obtain the adjacency matrix A, we introduce different sim-
ulation models for the latent position Zi and the predictors
Xij for every 1 ≤ i �= j ≤ n.

Model I. In this model, we let Xij = (Vj1, · · · , Vj5)
� ∈

R
5. As a result, the relationship between i and j is only

determined by the the receiver j. Furthermore, gener-
ate the latent position Zi independently from a standard
normal distribution for 1 ≤ i ≤ n. At last, let β =
(0.5, 1, 0,−0.5, 0.1)�. The adjacency matrix can be derived
according to (2.1).

Under this setup, whether Aij = 1 is only determined by
the characteristic of node j. If j is a node of great impor-
tance, he/she will attract many other nodes. As a result, the
nodal in-degree of j is relatively large (i.e., large A+j). This
will result in highly skewed distribution of nodal in-degree,
which is also known as the phenomenon of power-law distri-
bution. That is, most of the nodes in a network have very
small nodal in-degree, while very few nodes (e.g., movie star
or political leader) have a large amount of followers.

Model II. In this model, let Xij = ((Vi1 + Vj1)/2, · · · ,
(Vi5 + Vj5)/2)

�. As a result, the relationship between i
and j depends on both i and j, which represents the av-
erage on a certain kind of measurement between i and j.
It can be regarded as social tightness. Furthermore, we
generate the latent position from a mixture normal dis-
tribution, i.e., 0.5N(−1, 0.52) + 0.5N(1, 0.52). Hypotheti-
cally, nodes are clustered in the latent space around two
different centers and are rarely overlapped. At last, let
β = (0.1, 0.8, 0, 0.5,−0.5)�. The adjacency matrix can then
be simulated accordingly.

Model III. In the last model, let Xij = (|Vi1 − Vj1|, · · · ,
|Vi5−Vj5|)�. As a result, the predictor represents the differ-
ence between some quantitative measures between nodes i
and j. At last, let β = (0.6,−0.6, 0.1, 0, 0.5)�. The adjacency
matrix is then simulated accordingly.

4.2 Assessment criteria and simulation
results

For each simulation model, the experiment is randomly

replicated M = 1000 times. Denote β̂
(m)
R and β̂

(m)
T to be the

estimators corresponding to reciprocity and transitivity in

the mth replication, where 1 ≤ m ≤ M . We consider the fol-
lowing measures to gauge the performances. First of all, for a
given parameter βj with 1 ≤ j ≤ p, the root mean square er-

ror is calculated as RMSEj = {M−1
∑M

m=1(β̂
(m)
j −βj)

2}1/2,
where β̂

(m)
j is the jth element of β̂

(m)
R or β̂

(m)
T . Next, for each

1 ≤ j ≤ p, a 95% confidence interval is constructed for βj as

CIj = (β̂
(m)
j −z0.025ŜE

(m)

j , β̂
(m)
j +z0.025ŜE

(m)

j ), where ŜE
(m)

j

is defined in the subsection of 3.4, i.e., the estimated stan-
dard error. Then the coverage probability (CP) for the jth

parameter can be computed as CPj = M−1
∑M

m=1 I(βj ∈
CI

(m)
j ). Lastly, network statistics are also reported such as

network density (ND, {n(n − 1)}−1
∑

i,j Aij), the number
of reciprocated pairs (NR) and the number of transitivity
(NT).

The detailed simulation results are reported in Tables
1–3. Because the simulation results are similar for all the
models, we focus on Model I (i.e., Table 1) for interpreta-
tion. Note that the top panel reports the simulation results
based on reciprocity, and the bottom panel displays the re-
sults derived on transitivity. First of all, for a given δ, as
the network size n increases, the values of RMSE for all the
parameters decrease towards 0. Furthermore, the reported
coverage probability values for each parameter are all close
to the nominal level 95%. This implies that the estimated
standard error approximates the true one very well. More-
over, network density drops slowly towards 0 as the network
size increases, which indicates that the network structure is
increasingly sparse. However, the number of reciprocated
pairs and the number of transitivities increase along with
the network size, which means that the effective sample size
is increasing for parameter estimation.

Remark 5. We conduct more simulation studies for the
comparison between the LSLR and LR model. First, when
network density is moderate, parameter estimations for the
LSLR and LR model are very similar to each other. Sec-
ond, when network density is very low, e.g., under 10%, it
can be detected that the LR model does not work and a
biased estimation result can be found. This is because that
when network density is very low, the number of positive re-
sponse (i.e., number of observed edges) is extremely small.
In addition, under the simulation setup, the true model is
assumed to be the LSLR and the LR model ignores the ef-
fect of the latent space. This makes the LR model fail for
sparse networks. In contrast, the estimation procedure we
propose for the LSLR model takes advantages of network
typologies (e.g., transitivity), which makes our model useful
for sparse networks.

4.3 Real data analysis

To demonstrate the usefulness of our proposed method-
ology, we study a real example in this subsection. The data
are collected form Sina Weibo (www.weibo.cn), which is the
largest social network platform in China. The dataset con-
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Table 1. Simulation Results for Model I with 1000 replications. The root mean square error (RMSE) values are reported for
every β estimates. The corresponding coverage probability (CP) in percentage of every estimate is given in the parentheses.

Network density (ND), the number of reciprocated pairs (NR) and the number of transitivities (NT) are also reported

δ Network ND NR NT Parameter
Size (%) (×103) (×103) β1 β2 β3 β4 β5

Reciprocity
500 2.4 1.0 28.6 0.051(95.0) 0.061(95.0) 0.054(95.0) 0.056(95.0) 0.050(93.1)

1.5 1000 1.4 2.5 81.6 0.033(94.9) 0.040(94.9) 0.037(93.3) 0.037(94.4) 0.031(94.3)
2000 0.8 5.9 231.8 0.021(94.3) 0.026(94.4) 0.022(95.3) 0.024(94.0) 0.021(94.4)

500 1.3 0.6 8.9 0.069(94.7) 0.079(95.3) 0.075(93.7) 0.075(95.2) 0.068(95.2)
1.8 1000 0.7 1.2 20.6 0.047(94.2) 0.058(94.0) 0.048(96.3) 0.052(94.2) 0.043(96.0)

2000 0.4 2.7 47.5 0.032(94.9) 0.038(95.6) 0.034(94.8) 0.035(95.1) 0.030(95.0)

500 2.2 1.0 25.8 0.051(95.6) 0.065(94.0) 0.056(94.2) 0.057(95.5) 0.050(94.6)
2.0 1000 1.1 2.0 51.6 0.037(94.4) 0.045(95.1) 0.039(94.4) 0.042(94.4) 0.035(94.9)

2000 0.6 4.0 103.8 0.025(95.9) 0.031(96.1) 0.027(95.0) 0.029(94.5) 0.025(95.1)

Transitivity
500 2.4 1.0 28.6 0.046(95.0) 0.061(94.9) 0.045(96.2) 0.049(95.4) 0.041(96.1)

1.5 1000 1.4 2.5 81.6 0.029(95.6) 0.039(95.0) 0.030(96.2) 0.033(95.0) 0.026(95.7)
2000 0.8 5.9 231.8 0.018(95.9) 0.025(94.1) 0.019(96.0) 0.021(94.6) 0.017(95.9)

500 1.3 0.6 8.9 0.065(96.3) 0.085(96.5) 0.065(96.6) 0.070(96.4) 0.062(95.7)
1.8 1000 0.7 1.2 20.6 0.044(96.4) 0.055(95.4) 0.045(96.0) 0.050(96.1) 0.038(96.8)

2000 0.4 2.7 47.5 0.030(95.8) 0.040(95.7) 0.030(96.0) 0.033(95.8) 0.028(94.9)

500 2.2 1.0 25.8 0.046(95.1) 0.062(96.4) 0.049(95.0) 0.051(95.2) 0.042(95.8)
2.0 1000 1.1 2.0 51.6 0.032(96.8) 0.045(95.4) 0.034(95.9) 0.037(95.0) 0.030(95.7)

2000 0.6 4.0 103.8 0.023(96.4) 0.031(95.6) 0.024(96.3) 0.025(96.5) 0.021(95.8)

sists of n = 3,030 users, who are all followers of an official
account. The adjacency matrix A is defined as follows. If the
ith node follows the jth node on the platform, then Aij = 1,
otherwise Aij = 0. We always set Aii = 0 for 1 ≤ i ≤ n. The
estimated density of this network is around 3.51%, which in-
dicates a sparse network structure. Other than that, nodal
in-degree and out-degree are calculated according to the def-
inition of A+i and Ai+. The histogram of nodal in- and out-
degree is shown in the left panel of Figure 3, which exhibits
the power-law phenomenon. At last, the network structure
is depicted in the right panel of Figure 3.

To explain the network structure, we consider the fol-
lowing nodal information: V1, the location of each node
(Beijing = 1, others = 0). V2, whether the node is autho-
rized (authorized = 1, not authorized = 0). Authorization is
the mechanism created by Weibo platform and authorized
nodes are believed to be more popular with relatively much
more fans. V3, the log transformed number of posts made
by each node, which reflect the activity of each node. As
a result, the covariates are constructed as follows. First of
all, Xij,1 = I(Vi1 = Vj1), which indicates whether node i
and j are both from Beijing. Possessing the same charac-
teristics is known as homophily in social network analysis
(Hunter et al., 2008). Next, we let Xij,2 = Vj2, which rep-
resent the popularity of the receiver (i.e., node j in Aij).
Furthermore, we let Xij,3 = |Vi3 − Vj3|, which represents

the difference between node i and j on their activity. At
last, we define Xij,4 =

∑
k A

0
ikA

0
kj as the number of com-

mon neighbors between i and j. Note that (A0
ij) represents

network structure a month ago. As a result, Xij,4 can be
seen as a measurement of social tightness formed between i
and j.

The detailed estimation result is shown in Table 4. Note
that the estimation procedure as well as link prediction do
not rely on the choice of f(·) defined in Section 2.1. The
results based on reciprocity and transitivity are slightly dif-
ferent from each other. For the estimation from reciprocity,
it can be seen that under 5% level of significance, all the
estimates are statistically significant. More specifically, we
can make the following conclusions. First, nodes both from
Beijing are more likely to be connected. Second, the more
popular the receiver (i.e., j), the more likely to observe an
edge between i and j (i.e., Aij = 1). Thirdly, the larger
the difference between two nodes on their activity, the less
likely they are connected. Lastly, the closer nodes i and j
are socially connected, the larger probability to form an edge
between i and j. On the other hand, the results from transi-
tivity show that receiver’s popularity is not statistically sig-
nificant. What’s more, the effect of social tightness is weaker
compared with the method of reciprocity. In order to decide
which model to be used, one can conduct model selection
from the perspective of prediction accuracy.
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Table 2. Simulation Results for Model II with 1000 replications. The root mean square error (RMSE) values are reported for
every β estimates. The corresponding coverage probability (CP) in percentage of every estimate is given in the parentheses.

Network density (ND), the number of reciprocated pairs (NR) and the number of transitivities (NT) are also reported

δ Network ND NR NT Parameter
Size (%) (×103) (×103) β1 β2 β3 β4 β5

Reciprocity
500 2.4 1.2 27.2 0.079(95.3) 0.097(95.1) 0.090(94.6) 0.090(95.5) 0.082(95.5)

1.5 1000 1.4 2.8 77.4 0.051(95.4) 0.063(95.1) 0.058(94.9) 0.058(96.0) 0.057(94.1)
2000 0.8 6.7 218.9 0.033(95.2) 0.040(94.5) 0.037(95.4) 0.039(94.7) 0.034(95.8)

500 0.9 0.5 4.2 0.131(95.1) 0.155(95.5) 0.146(95.1) 0.156(93.5) 0.137(95.0)
1.8 1000 0.5 1.0 9.7 0.086(96.0) 0.106(94.9) 0.097(94.8) 0.100(95.6) 0.089(95.1)

2000 0.3 2.1 22.4 0.062(94.8) 0.072(94.6) 0.068(94.6) 0.071(93.3) 0.063(93.4)

500 2.3 1.1 24.2 0.083(95.1) 0.099(95.6) 0.096(94.6) 0.098(93.7) 0.087(94.4)
2.0 1000 1.1 2.2 48.9 0.057(95.6) 0.069(95.5) 0.064(95.7) 0.067(95.1) 0.058(95.5)

2000 0.6 4.5 98.2 0.043(93.5) 0.050(94.4) 0.047(94.5) 0.047(94.5) 0.043(94.3)

Transitivity
500 2.4 1.2 27.2 0.052(96.8) 0.067(95.1) 0.057(96.3) 0.061(95.5) 0.054(95.6)

1.5 1000 1.4 2.8 77.4 0.034(95.4) 0.043(94.5) 0.038(96.5) 0.040(96.3) 0.036(96.4)
2000 0.8 6.7 218.9 0.023(95.6) 0.027(95.8) 0.025(95.1) 0.027(94.8) 0.024(94.2)

500 0.9 0.5 4.2 0.093(97.7) 0.121(95.6) 0.110(95.4) 0.116(95.4) 0.098(96.4)
1.8 1000 0.5 1.0 9.7 0.064(96.4) 0.081(95.8) 0.072(96.7) 0.075(96.2) 0.068(96.6)

2000 0.3 2.1 22.4 0.046(95.2) 0.053(97.2) 0.048(96.5) 0.050(97.0) 0.046(96.0)

500 2.3 1.1 24.2 0.055(95.5) 0.068(95.5) 0.061(95.9) 0.064(96.2) 0.059(94.5)
2.0 1000 1.1 2.2 48.9 0.039(95.1) 0.047(95.5) 0.043(96.1) 0.046(95.6) 0.041(95.7)

2000 0.6 4.5 98.2 0.027(96.3) 0.034(95.2) 0.030(95.9) 0.031(96.8) 0.030(94.8)

In order to evaluate the prediction accuracy, the nodes
are randomly separated into two parts. 1,000 nodes and their
corresponding relationships are chosen to form the testing
set, the left 2,030 are treated as training. Out-sample AUC
can then be calculated for the methods of LSLR, CN, and
logistic regression model. The experiment is randomly re-
peated for 100 times and the averaged AUC values are re-
ported in Table 5. It can be seen that, the LSLR model to-
gether with the transitivity method achieve best out-sample
AUC performance (i.e., more than 90%) than the other two
CN methods.

5. CONCLUDING REMARKS

Logistic regression, as one of the most important data
analysis tools, is widely used in a number of scientific and
industrial fields. Due to its simplicity and interpretabil-
ity, logistic regression is commonly applied to conduct link
prediction in social science (Hoff et al., 2002; Herz, 2015;
Kruse et al., 2016). Our newly proposed LSLR model can be
seen as an essential extension of the logistic regression model
for two reasons. First, we incorporate latent social space in-
formation in the logistic regression model, where nodes close
to each other in the latent social space are more likely to be

connected with each other. Second, useful network charac-
teristics (i.e., sparsity, reciprocity, and transitivity) can be
guaranteed under the setup of the LSLR model. Two PM-
LEs are constructed for estimating the unknown parameters
in the LSLR model efficiently. Extensive simulation studies
and a real example analysis both demonstrate the usefulness
of the LSLR model.

We discuss here a number of interesting topics for future
study. First, the LSLR model introduces a flexible frame-
work for modeling network structure. Extending the frame-
work to include other network topologies (e.g., community
structure, dynamic networks and so forth) is an interesting
topic worthwhile pursuing. Second, along with the develop-
ment of technology, we are able to collect more abundant
user information. Therefore, the number of nodal covari-
ates (i.e., Vi) can be of high dimension. For example, it can
be user self-created labels (Huang et al., 2016). Then, how
to incorporate with such type of non-structural and high-
dimensional data can be challenging and interesting. Third,
we estimate the regression coefficients in the LSLR model
by a pseudo maximum likelihood method, ignoring the dis-
tance between nodes in the latent space. It is then of great
interest to predict the distance so that visualization can be
performed to get more intuitive explanations.
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Table 3. Simulation Results for Model III with 1000 replications. The root mean square error (RMSE) values are reported for
every β estimates. The corresponding coverage probability (CP) in percentage of every estimate is given in the parentheses.

Network density (ND), the number of reciprocated pairs (NR) and the number of transitivities (NT) are also reported

δ Network ND NR NT Parameter
Size (%) (×103) (×103) β1 β2 β3 β4 β5

Reciprocity
500 3.0 1.8 51.3 0.062(94.6) 0.065(94.9) 0.057(96.0) 0.059(94.6) 0.061(94.5)

1.5 1000 1.8 4.4 146.0 0.040(95.1) 0.042(95.2) 0.036(95.7) 0.037(94.9) 0.040(93.4)
2000 1.1 10.4 413.7 0.025(95.5) 0.027(95.1) 0.024(95.0) 0.024(94.7) 0.024(95.3)

500 1.7 1.0 15.9 0.083(95.4) 0.089(94.8) 0.079(94.9) 0.081(93.9) 0.082(94.7)
1.8 1000 0.9 2.2 36.9 0.055(95.8) 0.058(96.1) 0.054(94.4) 0.053(94.7) 0.055(94.9)

2000 0.5 4.7 84.5 0.039(95.4) 0.041(94.6) 0.035(95.9) 0.036(95.4) 0.038(94.9)

500 2.9 1.7 46.1 0.063(95.7) 0.068(94.8) 0.063(93.5) 0.060(94.6) 0.064(93.7)
2.0 1000 1.4 3.5 92.1 0.045(94.5) 0.048(94.5) 0.042(95.4) 0.043(94.3) 0.044(94.0)

2000 0.7 7.0 185.2 0.031(95.4) 0.034(94.3) 0.031(94.6) 0.030(94.4) 0.031(93.9)

Transitivity
500 3.0 1.8 51.3 0.047(95.5) 0.042(94.6) 0.039(96.2) 0.041(94.9) 0.044(95.3)

1.5 1000 1.8 4.4 146.0 0.031(95.7) 0.026(95.8) 0.025(95.8) 0.025(96.1) 0.028(95.7)
2000 1.1 10.4 413.7 0.019(96.0) 0.017(95.6) 0.016(96.0) 0.016(95.4) 0.018(95.5)

500 1.7 1.0 15.9 0.063(96.3) 0.057(95.9) 0.053(96.3) 0.055(95.8) 0.062(95.7)
1.8 1000 0.9 2.2 36.9 0.043(97.0) 0.038(97.3) 0.037(95.9) 0.038(96.3) 0.041(96.9)

2000 0.5 4.7 84.5 0.030(97.2) 0.027(95.1) 0.025(97.1) 0.027(95.2) 0.029(95.6)

500 2.9 1.7 46.1 0.047(96.4) 0.042(95.5) 0.041(94.7) 0.040(96.8) 0.046(96.3)
2.0 1000 1.4 3.5 92.1 0.034(95.4) 0.031(95.6) 0.029(95.2) 0.028(95.6) 0.033(95.6)

2000 0.7 7.0 185.2 0.024(95.3) 0.022(95.1) 0.021(95.8) 0.020(96.3) 0.023(95.7)

Table 4. Detailed estimation results for real dataset

Covariate Reciprocity Transitivity
Estimate p-value Estimate p-value

Intercept −2.53 <.001 −3.18 <.001
Homophily of Location 0.27 <.001 0.24 <.001
Receiver’s Popularity 0.50 <.001 0.09 0.159
Difference on No. of Posts −0.12 <.001 −0.05 <.001
Social Tightness 0.36 <.001 0.09 <.001

Table 5. Out sample AUC values for different methods on Sina Weibo dataset

Method LSLR CN LR

Transitivity 2-in-star 2-out-star

AUC 93.74% 93.53% 89.29% 85.29% 92.61%

APPENDIX A. PROOF OF THEOREM 1

The theorem conclusion can be proved in three steps.
In the first step, we prove the consistency of the PMLE
β̂R. In the second step, we establish the asymptotic nor-

mality of Q
(1)
1 (β), where Q

(1)
1 (β) is the first order deriva-

tive of the pseudo likelihood function (3.2). In the last

step, we show the consistency of Q
(1)
2 (β), which is the

second order derivative of the pseudo likelihood func-

tion. For notation simplicity, we denote Q
(1)
1 (β) and

Q
(1)
2 (β) as Q1(β) and Q2(β) throughout the rest of the

proof.

Step 1. Recall the pseudo likelihood function in (3.2),

which is a convex function in β. As long as we can prove

that there exists a
√
n-consistent local optimizer, it must

be the global optimizer. By Fan and Li (2001), we know

that this is implied by the following fact. For any arbitrary
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Figure 3. Left panel: histogram of nodal in-degree (left) and out-degree (right) of the Weibo data. The highly right skewed
shape indicates that there may exist “super stars”. Right panel: Network structure of the real dataset. Each dot represents a
node, and each line represents an edge between two nodes. Larger size of the dot indicates higher number of nodal in-degrees.

small ε > 0, there exists a sufficiently large constant C, such
that

lim
n→∞

P

[
sup

‖u‖=C

{
�R(β + n−1/2u)− �R(β)

}
< 0

]
≥ 1− ε,

(A.1)

where u = (u1, · · · , up)
� ∈ R

p. Then by the standard argu-
ment on the Taylor expansion of the likelihood function, we
have

n−(1−δ/2) sup
‖u‖=C

{
�R(β + n−1/2u)− �R(β)

}(A.2)

= n−(3−δ)/2Q�
1 (β)u− 1

2
u�

{
−n−(2−δ)/2)Q2(β)

}
u+ op(1)

≤ n−(3−δ)/2‖Q1(β)‖C

− 1

2
λmin

{
−n−(2−δ/2)Q2(β)

}
C2 + op(1),

where λmin(H) refers to the minimum eigenvalue of H. As
we will prove in the next step, n−(3−δ)/2Q1(β) = Op(1),
which implies that n−(3−δ)/2‖Q1(β)‖ = Op(1). Similarly,
we can prove that {−n−(2−δ/2)Q2(β)} →p H1, where H1

is defined in Theorem 1 and we will prove in Step 3 that
it is a positive definite matrix. Then the second term in
(A.2) is quadratic in C. On the other hand, the first term
in (A.2) is linear in C. Therefore, as long as the constant C
is sufficient large, the second term will always dominate the
other terms with arbitrary large probability. This implies
the inequality (A.1), and thus completes the first step of
the proof.

Step 2. In the second step, we show the asymptotic nor-
mality ofQ1(β). To be more specific, we utilize the technique
of U -statistics. Since the expectation of Q1(β) is not exactly
0, we first approximate it by Q∗

1(β), a quantity with 0 expec-
tation. Then we construct a U -statistic Q̃∗

1(β) to approxi-
mate Q∗

1(β). At last, the asymptotic normality of Q1(β) can
be approximated by that of Q̃∗

1(β).
Step 2.1 Recall that γ0 = 1 −

√
1/2 and we denote

pij = exp(X�
ijβ)/{1 + exp(X�

ijβ)}. As a result,

Q1(β) = ∂�R(β)/∂β

(A.3)

=
∑
i �=j

{
AijAji −Aji

eX
�
ijβ

1 + eX
�
ijβ

+ (1−Aij)Aji
γ0e

X�
ijβ

1 + γ0e
X�

ijβ

}
Xij

=
∑
i �=j

{
AijAji

1

1 + γ0e
X�

ijβ
−Ajipij

1− γ0

1 + γ0e
X�

ijβ

}
Xij

=
∑
i �=j

sij(β).

Due to (2.2) and (2.3), we denote

Wij = E(sij |X)

=
Xij

1 + γ0e
X�

ijβ

{
P (AijAji = 1|X)

− (1− γ0)pijP (Aji = 1|X)
}

= η0X̃ij ,
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where X̃ij = pijpjiXij/{1+γ0 exp(X
�
ijβ)} and η0 = O(n−δ).

We then write

Q1 =
∑
i �=j

(sij −Wij) +
∑
i �=j

Wij =
∑
i �=j

s̃ij +
∑
i �=j

Wij(A.4)

= Q∗
1 +

∑
i �=j

Wij ,

where s̃ij = sij −Wij . It is known that E(s̃ij) = 0. We want
to prove that Q1 can be approximated by Q∗

1. To this end,
we need to show{

cov−1/2
(
Q∗

1

)}{
E

( ∑
i �=j

Wij

)}
→ 0,(A.5)

{
cov−1/2

(
Q∗

1

)}{
cov1/2

( ∑
i �=j

Wij

)}
→ 0.(A.6)

Step 2.1.1 In this step, we show the expectation and
covariance of

∑
i �=j Wij .

First of all, note that E(
∑

i �=j Wij) =
∑

i �=j E(Wij) =

η0
∑

i �=j E(X̃ij). Since η0 = O(n−δ), along with condition

(C1), it can be verified that E(
∑

i �=j Wij) = O(n2−δ).
We next study cov(

∑
i �=j Wij). By condition (C1), the

covariance of
∑

i �=j Wij is

cov
( ∑

i �=j

η0X̃ij

)
= η20

{ ∑
i �=j

cov(X̃ij) +
∑
i �=j

cov(X̃ij , X̃ji)

+
∑
i �=j

∑
k �=i,j

cov(X̃ij , X̃ik)

+
∑
i �=j

∑
k �=i,j

cov(X̃ji, X̃ki)

+ 2
∑
i �=j

∑
k �=i,j

cov(X̃ji, X̃ik)

}
.

Recall that η0 = O(n−δ). As a result, cov(
∑

i �=j Wij) is

O(n3−2δ).
Step 2.1.2 In this step, we focus on the covariance of

Q∗
1 =

∑
i �=j s̃ij .

Note that cov(Q∗
1) = E{cov(Q∗

1|X)}+cov{E(Q∗
1|X)}, and

E(Q∗
1|X) = 0. So that cov(Q∗

1) = E{cov(Q∗
1|X)}. We then

study cov(Q∗
1|X), which is equal to

cov
( ∑

i �=j

s̃ij |X
)
=

∑
i �=j

cov
(
s̃ij |X

)
+

∑
i �=j

cov
(
s̃ij , s̃ji|X

)(A.7)

+
∑
i �=j

∑
k �=i,j

cov
(
s̃ij , s̃ik|X

)
+

∑
i �=j

∑
k �=i,j

cov
(
s̃ji, s̃ki|X

)
+ 2

∑
i �=j

∑
k �=i,j

cov
(
s̃ji, s̃ik|X

)
= M1 +M2 +M31 +M32 + 2M33.

We next study the terms in (A.7) one by one. Recall that
s̃ij = sij−Wij = {AijAji−(1−γ0)Ajipij−η0pijpji}Xij/(1+

γ0e
X�

ijβ) and E(s̃ij |X) = 0. As a result, cov(s̃ij |X) =
E(s̃ij s̃

�
ij |X). After simple calculation, it can be proved that

cov(s̃ij |X) = Op(n
−δ/2). As a result,M1 = Op(n

2−δ/2). Sim-
ilarly, it can be shown that M2 = Op(n

2−δ/2).
In order to derive the order of M31 to M33, we need to

utilize the following results,

P (AijAik = 1|X)

= pijpik

∫ ∫
e−αn(‖u‖2+‖v‖2)g(u,v)dudv = O(n−δ),

P (AijAjiAki = 1|X)

= pijpjipki

∫ ∫
e−αn(2‖u‖2+‖v‖2)g(u,v)dudv = O(n−δ),

P (AijAjiAikAki = 1|X)

= pijpjipikpki

∫ ∫
e−2αn(‖u‖2+‖v‖2)g(u,v)dudv = O(n−δ).

It can then be derived that M31 to M33 are both of the
order Op(n

3−δ). Under Condition (C2), the leading term is
of O(n3−δ), and cov(Q∗

1) = E{var(Q∗
1|X)} = O(n3−δ).

Recall that we intend to prove (A.5) and (A.6). Under
Condition (C2), we know that 2−δ < (3−δ)/2 and 3−2δ <
3− δ. As a result, Q1 can be well approximated by Q∗

1.
Step 2.2 We have shown that Q1 can be well approxi-

mated by Q∗
1 =

∑
i �=j s̃ij . In this step, we construct a U -

statistic to demonstrate the normality of Q1. To this end,
define mi = E(s̃ij |Zi,X) and hj = E(s̃ij |Zj ,X). Then, let

Q̃∗
1 =

∑
i �=j(mi + hj). We next intend to show that Q∗

1

can be well approximated by Q̃∗
1. To this end, we compare

cov(Q∗
1|X) and cov(D|X), where D = Q∗

1 − Q̃∗
1.

Remember that cov(Q∗
1|X) has been studied in Step 2.1.2,

which is Op(n
3−δ). We then only need to study cov(D|X) =

cov{
∑

i �=j(s̃ij −mi − hj |X)}, which is∑
i �=j

cov
(
s̃ij −mi − hj |X

)
+

∑
i �=j

cov
(
s̃ij −mi − hj , s̃ji −mj − hi|X

)
+

∑
i

∑
j �=i

∑
k �=i,j

{
cov

(
s̃ij −mi − hj , s̃ik −mi − hk|X

)
+ cov

(
s̃ji −mj − hi, s̃ki −mk − hi|X

)
+ 2cov

(
s̃ji −mj − hi, s̃ik −mi − hk|X

)}
.

Define the last three terms in the above equation by D1, D2

and D3 respectively. We then have cov
(
s̃ij −mi − hj , s̃ik −

mi − hk|X
)
= E(s̃ij s̃

�
ik|X) − E(s̃ijm

�
i |X) − E(s̃ijh

�
k |X) −

E(mis̃
�
ik|X) + E(mim

�
i |X) + E(mih

�
k |X) − E(hj s̃

�
ik|X) +

E(hjm
�
i |X)+E(hjh

�
k |X). One can verify that E(s̃ij s̃

�
ik|X) =

E{E(s̃ij s̃
�
ik|X, Zi)|X} = E{E(s̃ij |X, Zi)E(s̃�ik|X, Zi)|X} =
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E(mim
�
i |X). Similarly, we can prove E(sijm

�
i |X) =

E(mim
�
i |X) and E(hjh

�
k |X) = 0. Consequently, we have

D1 = 0. The same technique can be used to derive that
D2 = 0 and D3 = 0. Use similar techniques in Step 2.1.2,
it can be verified that cov(D|X) is a smaller order as com-
pared with cov(Q∗

1|X). This suggests that Q∗
1 and Q̃∗

1 share
the same asymptotic distribution.

Note that Q̃∗
1 can also be written as Q̃∗

1 =
∑

i �=j(mi +

hj) = (n − 1)
∑n

i=1(mi + hi). It can be seen that, given

X, Q̃∗
1 can be treated as the sum of independent random

variables. In order to study cov(Q̃∗
1|X), we need to ob-

tain the order of P (Aij = 1|X, Zi). Using similar tech-
nique in (2.2), it can be derived that P (Aij = 1|X, Zi) =
O(n−δ/2). As a result, by the definition of s̃ij , it can be
proved that mi = E(s̃ij |Zi,X) = O(n−δ/2) and hj =
E(s̃ij |Zj ,X) = O(n−δ/2). As a result, the conditional co-

variance of n−(3−δ)/2Q̃∗
1 can be calculated as the follows,

cov
(
n−(3−δ)/2Q̃∗

1|X
)

= n−(3−δ)(n− 1)2
n∑

i=1

cov(mi + hi|X)

= n−(3−δ)(n− 1)2
n∑

i=1

E
{
(mi + hi)(mi + hi)

�|X
}
→p C1,

where C1 is some positive definite matrix.
Step 3. In this step, we study the second order derivative

of the conditional likelihood function, i.e.,Q2(β). First of all,
it can be derived that

Q2 = −
∑
i �=j

{
AijAji

γ0e
X�

ijβ(
1 + γ0e

X�
ijβ

)2
+Ajipij

(1− γ0)(1− γ0e
2X�

ijβ)

(1 + eX
�
ijβ)

(
1 + γ0e

X�
ijβ

)2
}
XijX

�
ij .

According to (2.2) and (2.3), it can be proved that E(Q2|X)
is Op(n

2−δ/2). As a result, {−n−(2−δ/2)Q2} →p H1, where
H1 is defined in Theorem 1. Along with the result de-
rived in Step 2, it can be concluded that

√
n(β̂R − β) →d

N(0, H−1
1 C1H

−1
1 ). This completes the proof of Theorem 1.

APPENDIX B. PROOF OF THEOREM 2

Similar to Theorem 1, the conclusion in Theorem 2 can
be proved in three steps. In the first step, we prove the con-
sistency of the pseudo maximum likelihood estimator β̂T .
In the second step, we establish the asymptotic normal-

ity of Q
(2)
1 (β), where Q

(2)
1 (β) is the first order derivative

of the pseudo likelihood function (3.3). In the last step, we

show the consistency of Q
(2)
2 (β), which is the second or-

der derivative of the pseudo likelihood function. For nota-

tion simplicity, we denote Q
(2)
1 (β) and Q

(2)
2 (β) as Q1(β) and

Q2(β) throughout the rest of the proof.

Step 1. Recall the pseudo likelihood function in (3.3),
which is a convex function in β. As long as we can prove
that there exists a

√
n-consistent local optimizer, it must be

the global optimizer. By Fan and Li (2001), we know that
this is implied by the following fact. For any arbitrary small
ε > 0, there exists a sufficiently large constant C, such that
(B.1)

lim
n→∞

P

[
sup

‖u‖=C

{
�T (β + n−1/2u)− �T (β)

}
< 0

]
≥ 1− ε,

where u = (u1, · · · , up)
� ∈ R

p. Then by the standard argu-
ment on the Taylor expansion of the likelihood function, we
have

n−(2−δ) sup
‖u‖=C

{
�T (β + n−1/2u)− �T (β)

}(B.2)

= n−(5/2−δ)Q�
1 (β)u− 1

2
u�

{
−n−(3−δ)Q2(β)

}
u+ op(1)

≤ n−(5/2−δ)‖Q1(β)‖C

− 1

2
λmin

{
−n−(3−δ)Q2(β)

}
C2 + op(1).

As we will prove in the next step, n−(5/2−δ)Q1(β) is an
Op(1), which implies that n−(5/2−δ)‖Q1(β)‖ = Op(1). Sim-
ilarly, we can prove that {−n−(3−δ)Q2(β)} →p H2, where
H2 is defined in Theorem 2 and we will prove in Step 3
that it is a positive definite matrix. Then the second term
in (B.2) is quadratic in C. On the other hand, the first term
in (B.2) is linear in C. Therefore, as long as the constant C
is sufficient large, the second term will always dominate the
other terms with arbitrary large probability. This implies
the inequality (B.1), and thus completes the first step of the
proof.

Step 2. In the second step, we show the asymptotic nor-
mality ofQ1(β). To be more specific, we utilize the technique
of U -statistics. Since the expectation of Q1(β) is not exactly
0, we first approximate it by Q∗

1(β), a quantity with 0 expec-
tation. Then we construct a U -statistic Q̃∗

1(β) to approxi-
mate Q∗

1(β). At last, the asymptotic normality of Q1(β) can
be approximated by that of Q̃∗

1(β).
Step 2.1 Recall that ν0 = 1 −

√
1/3 and pij =

exp(X�
ijβ)/{1 + exp(X�

ijβ)}. As a result,

Q1(β) = ∂�T (β)/∂β

(B.3)

=
∑
i,j,k

AikAkj

{
Aij −

eX
�
ijβ

1 + eX
�
ijβ

+ (1−Aij)
ν0e

X�
ijβ

1 + ν0e
X�

ijβ

}
Xij

=
∑
i,j,k

AikAkj

{
Aij

1

1 + ν0e
X�

ijβ
− pij

1− ν0

1 + ν0e
X�

ijβ

}
Xij
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=
∑
i,j,k

sijk(β).

We next denote

Wijk = E(sijk|X)

=
Xij

1 + ν0e
X�

ijβ

{
P (AikAkjAij = 1|X)

− (1− ν0)pijP (AikAkj = 1|X)
}

= η1X̃ijk,

where X̃ijk = pikpkjpijXij/{1 + ν0 exp(X
�
ijβ)} and η1 =

O(n−3δ/2). We then write

Q1 =
∑
i,j,k

(sijk −Wijk) +
∑
i,j,k

Wijk(B.4)

=
∑
i,j,k

s̃ijk +
∑
i,j,k

Wijk = Q∗
1 +

∑
i,j,k

Wijk,

where s̃ijk = sijk −Wijk. It is known that E(s̃ijk) = 0. We
want to prove that Q1 can be approximated by Q∗

1. To this
end, we need to show{

cov−1/2
(
Q∗

1

)}{
E

( ∑
i,j,k

Wijk

)}
→ 0,(B.5)

{
cov−1/2

(
Q∗

1

)}{
cov1/2

( ∑
i,j,k

Wijk

)}
→ 0.(B.6)

Step 2.1.1 In this step, we show the expectation and
covariance of

∑
i,j,k Wijk.

First of all, note that E(
∑

i,j,k Wijk) =
∑

i,j,k E(Wijk) =

η1
∑

i �=j E(X̃ijk). Since η1 = O(n−3δ/2), along with con-
dition (C1), it can be shown that E(

∑
i,j,k Wijk) =

O(n3−3δ/2).
We next study cov(

∑
i,j,k Wijk), which is

η21cov(
∑

i,j,k X̃ijk). Recall that X̃ijk is a function of Xij ,
Xjk and Xik. Then by condition (C1), it can be verified

that cov(
∑

i,j,k X̃ijk) is O(n5). Recall that η1 = O(n−3δ/2).

As a result, cov(
∑

i,j,k Wijk) is O(n5−3δ).
Step 2.1.2 In this step, we focus on the covariance of

Q∗
1 =

∑
i,j,k s̃ijk.

Note that cov(Q∗
1) = E{cov(Q∗

1|X)}+cov{E(Q∗
1|X)}, and

E(Q∗
1|X) = 0. So that cov(Q∗

1) = E{cov(Q∗
1|X)}. We then

study cov(Q∗
1|X), which is equal to

cov
( ∑

i,j,k

s̃ijk|X
)
=

∑
i,j,k

cov
(
s̃ijk|X

)
+ a1

∑
i,j,k

cov
(
s̃ijk, s̃jik|X

)(B.7)

+ a2
∑
i �=j

∑
k1 �=k2

cov
(
s̃ijk1 , s̃ijk2 |X

)
+ a3

∑
i

∑
j1 �=j2

∑
k1 �=k2

cov
(
s̃ij1k1 , s̃ij2k2 |X

)

= M1 +M2 +M3 +M4,

where a1, a2 and a3 are some constants. We next study the
terms in (B.7) one by one. Recall that s̃ijk = sijk −Wijk =
{AikAkjAij − (1 − ν0)AikAkjpij − η1pikpkjpij}Xij/(1 +

ν0e
X�

ijβ) and E(s̃ijk|X) = 0. As a result, cov(s̃ijk|X) =
E(s̃ijks̃

�
ji|X). After simple calculation, it can be proved that

cov(s̃ijk|X) = Op(n
−δ). As a result, M1 = Op(n

3−δ). Simi-
larly, it can be shown that M2 = Op(n

3−δ).
In order to derive the order of M3 to M4, we need to

utilize the following results,
P (AijAik1

Aik2
Ak1jAk2j = 1|X) = pijpik1

pik2
pk1jpk2j∫ ∫ ∫

e−αn(‖u‖2+‖v‖2+‖w‖2+‖u−v‖2+‖u−w‖2)h(u,v,w)dudvdw

= O(n−3δ/2),

P (Aij1Aij2Aik1
Aik2

Ak1j1Ak2j2 = 1|X) = pij1pij2pik1
pik2

pk1j1pk2j2∫ ∫ ∫ ∫ ∫
e−αn(‖u1‖2+‖u2‖2+‖v1‖2+‖v2‖2+‖u1−u2‖2+‖v1−v2‖2)

k(u1,u2,v1,v2)du1du2dv1dv2 = O(n−2δ),

where h(·, ·, ·) and k(·, ·, ·, ·) are the joint probability density
functions, satisfying h(0,0,0) > 0 and k(0,0,0,0) > 0.
It can then be derived that M3 to M4 are of the order
Op(n

4−3δ/2) and Op(n
5−2δ). By condition (C2), the lead-

ing term of cov(Q∗
1|X) is M4, which is of Op(n

5−2δq). As a
result cov(Q∗

1) = E{var(Q∗
1|X)} = O(n5−2δq).

Recall that we intend to prove (B.5) and (B.6), By con-
dition (C2), (B.5) and (B.6) are satisfied. As a result, Q1

can be well approximated by Q∗
1, and cov(Q∗

1) = O(n5−2δ).
Step 2.2 We have shown that Q1 can be well approx-

imated by Q∗
1 =

∑
i,j,k s̃ijk. In this step, we construct a

U -statistic to demonstrate the normality of Q1. To this end,
define m̃i = E(s̃ijk|Zi,X), h̃j = E(s̃ijk|Zj ,X), and r̃k =

E(s̃ijk|Zk,X). Then, let Q̃∗
1 =

∑
i �=j

∑
k �=i,j(m̃i + h̃j + r̃k).

We next intend to show that Q∗
1 can be well approximated

by Q̃∗
1. To this end, we compare cov(Q∗

1|X) and cov(D|X),
where D = Q∗

1 − Q̃∗
1.

Note that Q̃∗
1 can also be written as

Q̃∗
1 =

∑
i �=j

∑
k �=i,j

(m̃i+h̃j+r̃k) = (n−1)(n−2)

n∑
i=1

(m̃i+h̃i+r̃i).

It can be seen that, given X, Q̃∗
1 can be treated as the sum

of independent random variables. By similar techniques in
Appendix A, the conditional covariance of n−(3−δ)/2Q̃∗

1 can
be calculated as the follows,

cov
(
n−(5/2−δ)Q̃∗

1|X
)

= n−(5−2δ)(n− 1)2(n− 2)2
n∑

i=1

cov(m̃i + h̃i + r̃i|X)

= n−(5−2δ)(n− 1)2(n− 2)2

n∑
i=1

E
{
(m̃i + h̃i + r̃i)(m̃i + h̃i + r̃i)

�|X
}
→p C2,

where C2 is some positive definite matrix.
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Step 3. In this step, we study the second order derivative
of the conditional likelihood function, i.e.,Q2(β). First of all,
it can be derived that

Q2 = −
∑
i,j,k

AikAkj

{
Aij

ν0e
X�

ijβ(
1 + ν0e

X�
ijβ

)2
+ pij

(1− ν0)(1− ν0e
2X�

ijβ)

(1+ eX
�
ijβ)

(
1+ ν0e

X�
ijβ

)2
}
XijX

�
ij .

According to the conclusions derived in transitivity, it
can be proved that E(Q2|X) is Op(n

3−δ). As a result,
{−n−(3−δ)Q2} →p H2, where H2 is defined in Theorem 2.
Along with the result derived in Step 2, it can be concluded
that

√
n(β̂T − β) →d N(0, H−1

2 C2H
−1
2 ). This completes the

proof of Theorem 2.
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