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Empirical likelihood-based estimation and
inference in randomized controlled trials with
high-dimensional covariates

Wei Liang and Ying Yan
∗

In this paper, we propose a data-adaptive empirical
likelihood-based approach for treatment effect estimation
and inference, which overcomes the obstacle of the tradi-
tional empirical likelihood-based approaches in the high-
dimensional setting by adopting penalized regression and
machine learning methods to model the covariate-outcome
relationship. In particular, we show that our procedure suc-
cessfully recovers the true variance of Zhang’s treatment ef-
fect estimator [30] by utilizing a data-splitting technique.
Our proposed estimator is proved to be asymptotically nor-
mal and semiparametric efficient under mild regularity con-
ditions. Simulation studies indicate that our estimator is
more efficient than the estimator proposed by Wager et al.
[26] when random forest is employed to model the covariate-
outcome relationship. Moreover, when multiple machine
learning models are imposed, our estimator is at least as effi-
cient as any regular estimator with a single machine learning
model. We compare our method to existing ones using the
ACTG175 data and the GSE118657 data, and confirm the
outstanding performance of our approach.

Keywords and phrases: Average treatment effect, Data-
splitting, Machine learning, Multiple robustness, Semipara-
metric efficiency bound.

1. INTRODUCTION

Randomized controlled trials (RCTs) are recognized as
the standard clinical design to eliminate sources of con-
founding bias. When the outcome of interest is a continuous
variable, the difference of mean responses in the treatment
and the control groups is an unbiased and consistent esti-
mator for the average treatment effect (ATE), a commonly
used estimand to evaluate the effect of a treatment or policy.
When the baseline information is collected before assigning
the treatment, such as age, sex, and other characteristics,
adjusting for the pre-treatment covariates helps to improve
the efficiency of the ATE estimator.

The key of covariate adjustment is to explore the relation-
ship between the auxiliary covariates and response. Analysis
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of covariance (ANCOVA) is a classical regression method
for covariate adjustment where a linear regression model for
E[Y |X,D] is postulated, i.e.,

(1) E[Y |X,D] = β0 + β�
x X + βdD.

Here, Y is the outcome variable,X is the vector of covariates
and D is the binary treatment indicator variable. The pa-
rameter of interest, the unconditional population-level treat-
ment effect, is βd. We can then make inference about ATE
based on the asymptotic normality of the least square esti-
mator, β̂ols

d , of βd in (1) [12]. It follows from Leon, Tsiatis

and Davidian [15] and Tsiatis et al. [25] that β̂ols
d belongs

to the class of all regular and asymptotically linear esti-
mators, and more efficient estimators in this class can be
obtained by positing two separate working regression mod-
els for η(1)(x) = E[Y |X = x,D = 1] and η(0)(x) = E[Y |X =
x,D = 0], respectively.

Empirical likelihood (EL) is an alternative way to carry
out covariate adjustment. EL was introduced by Owen
[17, 18, 19] and primarily used to construct confidence inter-
vals for the mean or to infer the parameters in the general
estimating functions [20]. It has also been adopted as a tool
to efficiently incorporate information of auxiliary covariates
in causal inference problems. Huang, Qin and Follmann [11]
used EL to derive efficient estimators in the pretest–posttest
study with missing data. Qin and Zhang [21] and Zhang [29]
studied EL-based estimation in the observational study. In
particular, when multiple parametric regression models are
imposed into constraints, the EL estimator has good per-
formance as long as one of multiple models correctly speci-
fies the covariate-outcome relationship without requiring the
knowledge of which model is correct. This is known as the
multiple robustness property [10]. Recently, Zhang [30] and
Tan et al. [22] extended EL for statistical estimation and
inference of ATE in RCTs. Their EL estimators enjoy some
prominent advantages. For example, Zhang [30] proved that
his EL estimator was at least as efficient as the existing regu-
lar estimators when the parametric models for the covariate-
outcome relationship were mis-specified, and asymptotically
as efficient as the semiparametric estimator of Tsiatis et al.
[25] when the parametric models for the covariate-outcome
relationship were correctly specified. As shown in the sim-
ulation studies of Zhang [30] and Tan et al. [22], both EL
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estimators were considerably more efficient than the esti-
mator of Tsiatis et al. [25] when the imposed parametric
regression models were mis-specified. In addition, Tan et al.
[22] proved that the multiple robustness property of the EL
estimator could be maintained in RCTs.

In practice, the true covariate-outcome model is un-
known, which can be much more complicated than a simple
linear combination of several variables as displayed in equa-
tion (1). Furthermore, in the big data era, the number of fea-
tures may be high-dimensional, where ANCOVA and other
traditional methods are no longer directly applicable. It in-
spires us to model the highly complex covariate-outcome
relationship by modern machine learning (ML) methods,
such as Lasso [23], SCAD [6], and random forests [2]. A
general semiparametric framework for statistical inference
of treatment effects under which infinite-dimensional nui-
sance parameters are modelled with ML methods is given
by Chernozhukov et al. [4] and Belloni et al. [1], where two
crucial points were presented:

1. They used Neyman orthogonal scores to remove the
bias brought by regularization.

2. They split data to avoid overfitting.

Specifically, the Neyman orthogonal scores technique ad-
justs for the effect of covariates to reduce sensitivity with re-
spect to the nuisance parameters, and thus promotes the effi-
ciency of treatment effect estimation. It is straightforward to
show that the score function developed by Tsiatis et al. [25]
is Neyman orthogonal in RCTs. With an additional data-
splitting procedure, Wager et al. [26] generalized the results
of Tsiatis et al. [25] to the high-dimensional setting and
adopted ML methods to model the covariate-outcome re-
lationship. Under mild regularity conditions, they proposed
valid inference of ATE by integrating the data-splitting pro-
cedure.

EL and Neyman orthogonal scores play similar roles
in RCTs as they both achieve the goal of efficiency im-
provement of treatment effect estimation by incorporating
information of auxiliary covariates. However, the estima-
tor proposed by Wager and his colleagues does not enjoy
some unique properties of EL, e.g., multiple robustness.
When the single ML algorithm adopted by Wager et al. [26]
does not successfully capture the covariate-outcome rela-
tionship, their ATE estimation may incur efficiency loss. Mo-
tivated by embedding the benefits of EL-based approaches
with low-dimensional covariates in the high-dimensional set-
ting, we propose a Machine Learning and Data-splitting-
based Empirical Likelihood (MDEL) approach to estimate
ATE, where we apply multiple ML algorithms to model the
covariate-outcome relationship. Compared with the high-
dimensional regression adjustment approach of Wager et al.
[26], our proposed EL approach has the following advan-
tages:

1. When the single ML estimator of nuisance parameters
does not perform well, our proposed EL estimator is
more efficient, as indicated by our simulation studies.

2. Different estimators of the nuisance parameters can be
imposed simultaneously into constraints to enhance the
performance of our estimator. Our simulation studies
indicate that our EL estimator with multiple models
tends to perform as good as that with the correct model
without requiring the knowledge of which model is cor-
rect.

Our paper is organized as follows. In Section 2, we give a
brief introduction to the model setup and notations. In addi-
tion, we review the semiparametric methods by Tsiatis et al.
[25] and Wager et al. [26]. In Section 3, we introduce our pro-
posed empirical likelihood approach. Then we discuss the
practical implementation of our EL approach in Section 4.
In Section 5, we compare our proposed EL approach to the
existing ones in simulation studies, the ACTG175 data set,
and the GSE118657 data set.

2. NOTATIONS AND REVIEWS

2.1 The model setup

We introduce our model setup under the potential out-
come framework of Imbens and Rubin [12]. Suppose we
have n observations {Wi = (Yi, Xi, Di), i = 1, · · · , n} from
a binary experiment with the treatment indicator variable
Di ∈ {0, 1}.Di takes the value 1 if the i-th unit is assigned to
the treatment group and 0 if the i-th unit is assigned to the
control group. Assume Yi(d) is the potential outcome under
Di = d for d = 0, 1. The observed outcome of the i-th unit,
Yi, satisfies Yi = DiYi(1) + (1 − Di)Yi(0). The variable Xi

is the covariates of the i-th unit and offers us pre-treatment
information. We are interested in estimation and inference
of the population level ATE, defined by θ = E[Yi(1)−Yi(0)],
under the assumption that {Wi, i = 1, · · · , n} are indepen-
dent and identically distributed random samples from a ran-
dom vector W = (Y,X,D). In this paper, we focus on ran-
domized controlled trials, where Di is randomly assigned to
either 0 or 1 and is independent of all pre-treatment vari-
ables and the potential outcomes, i.e.,

Di ⊥⊥ {Yi(1), Yi(0), Xi} for i = 1, · · · , n.

Let δ = P(D = 1) be the probability of a unit being assigned
to the treatment group. We further assume that 0 < δ < 1.
Randomness of treatment assignments leads to that θ =
E[Y |D = 1] − E[Y |D = 0], which leads to a natural and
commonly used consistent estimator of ATE, the difference
in the means, defined by

θ̂dim = Ȳ (1) − Ȳ (0) =

n∑
i=1

DiYi

n1
−

n∑
i=1

(1−Di)Yi

n0
,

where n1 is the size of the treatment group and n0 = n−n1

is the size of the control group. θ̂dim ignores information of
covariates and thus loses efficiency. A popular regression ad-
justment approach Tsiatis et al. [25] was proposed to exploit
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information of covariates and enhance the efficiency, and we
review it in the following section.

2.2 A regression adjustment approach

Various regression adjustment methods for improving the
efficiency of the treatment effect estimation in RCTs with
low-dimensional covariates have emerged. Here, we only re-
view the method of Tsiatis et al. [25], which can be reformu-
lated as a method based on the efficient score. Wager et al.
[26] generalized it to the high-dimensional case. For other
methods, we refer to Zhang [30] and Tan et al. [22]. Different
from ANCOVA, the approach of Tsiatis et al. [25] focuses
on separately modelling the covariate-outcome relationships
η(d)(x) = E[Y |D = d,X = x], d = 0, 1. By fitting η(1)(x)
and η(0)(x) with two different parametric models f1(x, α1)
and f0(x, α0), specified by two finite-dimensional parame-
ters, α1 and α0, respectively, Tsiatis et al. [25] proposed to
estimate θ with

θ̂tdzl =Ȳ (1) − Ȳ (0) −
n∑

i=1

(
Di −

n1

n

){
n−1
0 f0(Xi, α̂0)

+ n−1
1 f1(Xi, α̂1)

}
,

where α̂0 and α̂1 are estimators of α0 and α1, respectively.
For example, α̂d can be the least square estimators or the
stepwise regression estimators. Write f̂d(·) = f(·, α̂d), d =
0, 1. The semiparametric theory [24] indicates that the effi-
cient score of θ is given by

ϕ(W, θ, δ, η(1), η(0))

=
D

δ

(
Y − η(1)(X)

)
− 1−D

1− δ

(
Y − η(0)(X)

)
+ η(1)(X)− η(0)(X)− θ.

Here, η(1) and η(0) are treated as nuisance parameters, and
θ is the parameter of interest. θ̂tdzl can be reformulated as
the solution of

1

n

n∑
i=1

ϕ(Wi, θ, δ̂ =
n1

n
, f̂1, f̂0) = 0.

The semiparametric estimator θ̂tdzl reaches the semipara-
metric efficiency bound when both f1 and f0 correctly spec-
ify the true covariate-outcome relationships.

2.3 High-dimensional regression adjustment

Wager et al. [26] extended the approach of Tsiatis et al.
[25] to the high-dimensional case. The nuisance parame-
ters were proposed to be estimated using ML methods and
a data-splitting procedure was adopted for valid inference
with high-dimensional covariates. Let I = {1, · · · , n} be the
sample index set, I(1) and I

(0) the index set of the treatment
group and control group, respectively. We use the notation

|A| as the size of a set A. Suppose we randomly partition

I
(d) into K subsets with equal size, denoted by (I

(d)
k )Kk=1, for

d = 0, 1. Let Ik = I
(1)
k ∪ I

(0)
k , I

(d)
k

c
= I

(d)\I(d)k and I
c
k = I\Ik.

Generally, we set
|I(d)k |
|Ik| = nd

n and
|I(d)k |
|I(d)| =

1
K .

After data-splitting, Wager et al. [26] proposed to es-

timate θ with θ̂wdtt = 1
K

K∑
k=1

θ̂kwdtt, where the k-th sub-

estimator, θ̂kwdtt, is the solution of

1

|Ik|
∑
i∈Ik

ϕ(Wi, θ, δ̂ =
|I(1)k |
|Ik|

, ĝ
(1)
k , ĝ

(0)
k ) = 0.

Here, for fixed k and d, ĝ
(d)
k is an ML estimator of η(d)

obtained via the sub-sample (Wi)i∈I
(d)
k

c =
{
Wi|i ∈ I

(d)
k

c}
.

It follows immediately that conditional on the sample

(Wi)i∈I
(d)
k

c , ĝ
(d)
k (x) is a non-random function of x. There-

fore, the variance of θ̂wdtt can be directly estimated by

V̂ar(θ̂wdtt) =

K∑
k=1

|Ik|2
n2

V̂ar(θ̂kwdtt),

where for a fixed k, V̂ar(θ̂kwdtt) is a moment-based plug-in

estimator for the conditional variance of θ̂kwdtt,

∑
d=0,1

1

|I(d)k |
Var

[
Y − |I(0)k |

|Ik|
ĝ
(1)
k (X)− |I(1)k |

|Ik|
ĝ
(0)
k (X)

∣∣∣∣∣
ĝ
(1)
k , ĝ

(0)
k , D = d

]
.

Wager et al. [26] demonstrated that
(θ̂wdtt−θ)√
V̂ar(θ̂wdtt)

is asymp-

totically standard normal under certain regularity condi-
tions. Therefore, for statistical inference, the corresponding
1− α confidence interval for θ is given by(

θ̂wdtt − zα
2

√
V̂ar(θ̂wdtt), θ̂wdtt + zα

2

√
V̂ar(θ̂wdtt)

)
,

where zα
2
is the upper α

2 quantile of the standard normal
distribution.

3. EMPIRICAL LIKELIHOOD-BASED
APPROACHES IN RCTS

3.1 Traditional EL based approaches in
RCTs

Let f(x) = (f1(x), f0(x))
� be a vector function of x and

ξ = E[f(X)]. Based on two unbiased estimating functions

h1(D,Y, θ, δ) =
DY

δ
− (1−D)Y

1− δ
− θ
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and

h2(D,X, δ, f, ξ) =
D − δ

δ(1− δ)
{f(X)− ξ},

Zhang [30] proposed to estimate θ by maximizing
the nonparametric likelihood LF =

∏n
i=1 pi sub-

ject to constraints
∑n

i=1 pi = 1, pi ≥ 0 and∑n
i=1 pi

(
h1(Di, Yi, θ, δ̂), h

�
2 (Di, Xi, δ̂, f̂ , ξ̂)

)�
= 0, where

δ̂ = n1

n , ξ̂ = 1
n

∑n
i=1 f̂(Xi), f̂ = (f̂1, f̂0)

�, and f̂1 and f̂0
are estimated working regression models for η(1) and η(0),
respectively. The variance of θ̂Zhang was estimated by a sand-
wich variance estimator. When the covariates are of low-
dimension and fd is a correctly specified parametric regres-
sion model for η(d), d = 1, 0, θ̂Zhang is semiparametric effi-
cient. However, when the covariates are of high-dimension
and f̂d is an ML estimator for model selection, many spuri-
ous variables which have high correlations with the response
but do not belong to the true feature set will be selected and
thus result in serious underestimation of the variance [5]. We
conduct simulations to illustrate this point in Section 3.3.

Tan et al. [22] extended the two-sample EL approach
of Wu and Yan [28] and proposed to estimate θ based on
the property E [f(X)− ξ|D = d] = 0. Their estimator is

θ̂Tan =
∑

i∈I(1)
p̂iYi−

∑
i∈I(0)

p̂iYi, where for d = 1, 0, the p̂i’s
are obtained by maximizing the nonparametric likelihood
LF =

∏
i∈I(d)

pi subject to constraints
∑

i∈I(d)
pi = 1, pi ≥ 0

and
∑

i∈I(d)
pif̂d(Xi) = 1

n

∑n
j=1 f̂d(Xj). Here f̂d(x) is a

guess of E[Y |X = x,D = d]. Multiple guesses are allowed in

Tan’s method. Estimation for the variance of θ̂Tan is given
by the bootstrap method. Tan’s approach is simple and
easy to explain. Asymptotic theory and simulation stud-
ies of Tan et al. [22] verify its multiple robustness property,
which means that the estimator achieves the semiparamet-
ric efficiency bound as long as one model of fd is correctly
specified. However, when f̂d involves ML estimators, their
proposed bootstrap re-sampling procedure is no longer ap-
plicable as Donsker conditions are inappropriate when the
space of f̂d is highly complicated.

Both EL approaches by Zhang [30] and Tan et al. [22]
have desirable properties in the low-dimensional setting but
fail to make valid inference in the high-dimensional setting.
To maintain multiple robustness and other nice properties
of EL estimators, as well as to overcome the invalid inference
problem of traditional EL approaches, we are motivated to
extend the approach of Tan et al. [22], which is very simple
to implement, to RCTs with high-dimensional covariates by
means of machine learning and data-splitting.

3.2 The proposed EL-based estimator with
high-dimensional covariates

In our proposed approach, the nuisance parameters are
allowed to be estimated using multiple ML methods. For
d = 0, 1, assume we already have an r-dimensional vector

of estimators of η(d), denoted by ĝ
(d)
k =

(
ĝ
(d)
k,1, · · · , ĝ

(d)
k,r

)�
,

where each component of ĝ
(d)
k is an ML estimator such as the

random forests estimator or Lasso estimator of η(d) based

on the sub-sample (Wi)i∈I
(d)
k

c . Let ξ̂(d) = 1
n

K∑
k=1

∑
i∈Ik

ĝ
(d)
k (Xi)

and ξ̂
(d)
k = 1

|Ik|
∑
i∈Ik

ĝ
(d)
k (Xi) for k = 1, · · · ,K and d = 0, 1.

It is easy to check that ξ̂(d) = 1
K

K∑
k=1

ξ̂
(d)
k . Let kd(y, x) be

the conditional joint density of (Y,X) given D = d and
pi = kd(Yi, Xi), i ∈ I

(d) for d = 0, 1. Due to randomization,
conditional on the sub-sample (Wi)i∈I

(d)
k

c , we have

E
[
ĝ
(d)
k (X)

∣∣∣D = d
]
= E

[
ĝ
(d)
k (X)

]
for k = 1, · · · ,K and d = 0, 1. It leads to

(2)

K∑
k=1

∑
i∈I

(d)
k

piĝ
(d)
k (Xi) =

1

K

K∑
k=1

ξ̂
(d)
k

for d = 0, 1. Based on (2) and
∫∫

kd(y, x)dydx = 1, we im-
pose the following constraints on pi:

(3)

∑
i∈I(d)

pi = 1, d = 0, 1, pi ≥ 0, ∀i ∈ I,

K∑
k=1

∑
i∈I

(d)
k

piĝ
(d)
k (Xi) =

1

K

K∑
k=1

ξ̂
(d)
k , d = 0, 1.

We propose to estimate pi by maximizing the nonparamet-
ric likelihood Lk =

∏
i∈I(1)

pi
∏

i∈I(0)

pi subject to the constraints

(3), which is equivalent to solving two separated minimiza-
tion problems:

(4)

min
{pi≥0,i∈I(d)}

−
∑
i∈I(d)

log(pi)

s.t.
∑
i∈I(d)

pi = 1,

K∑
k=1

∑
i∈I

(d)
k

pi

(
ĝ
(d)
k (Xi)− ξ̂(d)

)
= 0,

for d = 0, 1. Let Ĝ

(
x, ĝ

(d)
k , ξ̂(d)

)
= ĝ

(d)
k (x) − ξ̂(d). The La-

grange multiplier method shows that the dual problem of
(4) is

(5)
max

λd∈Ad
n

	(λd) =

K∑
k=1

∑
i∈I

(d)
k

log
{
1 + λ�

d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)}
+ nd lognd

286 W. Liang and Y. Yan



where

Ad
n =

{
x ∈ R

r : 1 + x�
Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
> 0, i ∈ I

(d)
}

and p̂i is given by

p̂i =
1

nd

{
1 + λ̂�

d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)}−1

for i ∈ I
(d)
k , k = 1, · · · ,K, where λ̂d is the solution

of (5). The existence and uniqueness of the solution of

(5) could be guaranteed by two conditions [9, 3]: (b1)
The strict concavity of 	(λd) over the domain Ad

n; (b2)

The zero vector is an interior point of the convex hull of{
Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
, i ∈ I

(d)
}
. Below we show in propositions

that (b1) and (b2) could be ensured with high probability
as n goes to infinity. Simple calculation also reveals that,

under (b1) and (b2), λ̂d is determined by

1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
1 + λ̂�

d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

) = 0.(6)

Our proposed Machine learning and Data-splitting based

Empirical Likelihood (MDEL) estimator for θ is

θ̂mdel = θ̂
(1)
mdel − θ̂

(0)
mdel =

n∑
i=1

Dip̂iYi −
n∑

i=1

(1−Di)p̂iYi.

To solve the dual problem (5) for d = 0, 1 and obtain the
MDEL estimator, we carry out a modified Newton-Raphson

algorithm such that the search for the solution of (6) always

falls in Ad
n. The details of the algorithm have been exten-

sively discussed in Chen, Sitter and Wu [3], Wu [27], and

Tan et al. [22]. The following regularity condition ensures

that (b2) holds with high probability.

(A1) With probability tending to 1 as n → ∞,

Var

{[
ĝ
(d)
k (X)

]
j

}
> 0 and E

[[
ĝ
(d)
k (X)

]2
j

]
< ∞ condi-

tionally on (Wi)i∈I
(d)
k

c for j = 1, · · · , r, k = 1, · · · ,K and

d = 0, 1, where [x]i denotes the i-th element of a vector x.

Assumption (A1) is mild and does not give any restriction

on the dimension of covariates. The solution of (6) exists
and is unique with high probability when n is large enough,

even if the dimension of covariates grows with the sample

size, which is indicated by the following proposition.

Proposition 1. Under Assumption (A1), the vector 0 is in

the convex hull of
{
Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
, i ∈ I

(d)
}

with proba-

bility tending to 1 as n → ∞ for d = 0, 1.

For d = 0, 1, define

ξ̈(d) =
1

K

K∑
k=1

E
[
ĝ
(d)
k (X)

∣∣∣ (Wi)i∈I
(d)c

k

]
,

Ĝ

(
x, ĝ

(d)
k , ξ̈(d)

)
= ĝ

(d)
k (x)− ξ̈(d),

V̂ (d)
n =

1

n

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)⊗2

(2d− 1)δ + 1− d
,

J̈ (d)
n =

1

n

K∑
k=1

∑
i∈I

(d)
k

(Yi − θd)Ĝ
(
Xi, ĝ

(d)
k , ξ̈(d)

)
(2d− 1)δ + 1− d

,

S̈(d)
n =

1

n

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̈(d)

)⊗2

(2d− 1)δ + 1− d
,

where H⊗2 = HH� for any vector or matrix H. The fol-

lowing regularity condition ensures (b1) and helps to study

the rate of λ̂d.

(A2) With probability tending to 1 as n → ∞, V1 < V̂
(d)
n <

V2, where V1 and V2 are two finite and positive definite ma-

trices.

Assumption (A2) is mild and reasonable as we do not re-

quire that V̂
(d)
n converges to any finite and positive definite

matrix, but is bounded by two finite and positive definite

matrices with probability tending to 1. The full rank re-

quirement of V̂
(d)
n suggests that the r ML models we impose

should be different as much as possible. It is easy to see

that the second derivative of 	(λd) is negative definite un-

der (A2) and thus (b1) is satisfied. (A2) together with (A1)

are sufficient for us to derive the order of λ̂d, which is given

by the following proposition:

Proposition 2. Under Assumptions (A1)–(A2), we have

||λ̂d||= Op(
1√
n
) for d = 0, 1, where ||·|| denotes the Euclidean

norm.

The difference between S̈
(d)
n and V̂

(d)
n is only a term that

vanishes in probability. Therefore, under (A2), S̈
(d)
n is in-

vertible at least when n is sufficiently large.

(A3) E[Y 2|D = d] < ∞, for d = 0, 1.

Assumption (A3) is common in the empirical likelihood the-

ory. Now, we derive the decomposition and asymptotic prop-

erties of the MDEL estimator.
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Proposition 3. Under Assumptions (A1)–(A3), we have

√
n
(
θ̂mdel − θ

)
=

1√
n

K∑
k=1

∑
i∈Ik

[
Di

δ
(Yi − θ1)

− Di − δ

δ
J̈ (1)�

n S̈(1)−1

n Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)
− 1−Di

1− δ
(Yi − θ0)

+
Di − δ

1− δ
J̈ (0)�

n S̈(0)−1

n Ĝ

(
Xi, ĝ

(0)
k , ξ̈(0)

)]
+ op(1),

where θ1 = E[Y (1)] and θ0 = E[Y (0)].

It is easy to know from Proposition 3 that each term in

the decomposition of
√
n
(
θ̂mdel − θ

)
is correlated with all

the observations. When r = 1 and the ML estimators for
the nuisance parameters are consistent conditionally, how-
ever, these terms become asymptotically independent. In
this case, the semiparametric theory implies that proposed
MDEL estimator is asymptotically normal and semipara-
metric efficient.

Theorem 4. Under Assumptions (A1)–(A3), if r = 1 and

E

[(
ĝ
(d)
k (X)− η(d)(X)

)2∣∣∣∣ (Wi)i∈I
(d)c

k

]
→ 0

in probability as n → ∞ for k = 1, · · · ,K and d = 0, 1,√
n
(
θ̂mdel − θ

)
is asymptotically normal with mean zero

and variance Var[ϕ(W, θ, δ, η(1), η(0))], where

ϕ(W, θ, δ, η(1), η(0)) =
D

δ

(
Y − η(1)(X)

)
− 1−D

1− δ

(
Y − η(0)(X)

)
+ η(1)(X)− η(0)(X)− θ.

Therefore, θ̂mdel achieves the semiparametric efficiency
bound.

The “conditional consistency” assumption

E

[(
ĝ
(d)
k (X)− η(d)(X)

)2∣∣∣∣ (Wi)i∈I
(d)c

k

]
→ 0 in proba-

bility as n → ∞ is called “risk consistency” in Wager
et al. [26]. It is mild for penalized regression methods when
the regression model is correctly specified and sufficient
sparsity is satisfied. The “risk consistency” assumption is
also mild for many ML methods such as the random forests
and neural networks when sufficient sparsity is satisfied.
We refer to Chernozhukov et al. [4] for more explanations.
When r > 1, i.e., multiple ML methods are imposed to
estimate the nuisance parameters, it is our expectation
that Theorem 4 could hold when any one of estimators
for the nuisance parameter satisfies “risk consistency”

assumption. Moreover, we expect that the convergence rate
of the estimator with multiple models is identical to that
with the oracle model. The asymptotic theory under this
situation, however, needs further complicated assumptions
about the structure of covariates such that the weak law
of large numbers can be applied to dependent terms, and
we reserve it as future work. Instead, we use simulation
studies in Section 5 to show that our proposed estimator
attains multiple robustness property and is approximately
normally distributed with reasonable coverage rates.

3.3 Variance recovery for valid inference

Based on the decomposition of θ̂mdel in Proposition 3, we
propose to estimate the variance of θ̂mdel with
(7)

σ̂2
mdel =

1

n

∑
d=0,1

K∑
k=1

∑
i∈I

(d)
k

nd

n
p̂i

{
n

n1
Di(Yi − θ̂

(1)
mdel)

− n

n1
(Di −

n1

n
)Ĵ (1)�

n Ŝ(1)−1

n Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

)
− n

n0
(1−Di)(Yi − θ̂

(0)
mdel)

+
n

n0
(Di −

n1

n
)Ĵ (0)�

n Ŝ(0)−1

n Ĝ

(
Xi, ĝ

(0)
k , ξ̂(0)

)}2

,

where

Ĵ (d)
n =

K∑
k=1

∑
i∈I

(d)
k

p̂iYiĜ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
,

Ŝ(d)
n =∑

v∈{0,1}

K∑
k=1

∑
i∈I

(v)
k

nv

n
p̂iĜ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)�
,

for d = 0, 1. The following theorem indicates that this vari-
ance estimator converges to the true variance in probability.
That is, our variance estimator successfully recovers the true
asymptotic variance of the proposed MDEL estimator.

Theorem 5. Under the assumption and regularity condi-
tions of Theorem 4, we have

σ̂2
mdel →

Var
[
ϕ(W, θ, δ, η(1), η(0))

]
n

in probability as n → ∞.

Corollary 6. Under the assumption and regularity condi-

tions of Theorem 4, (σ̂mdel)
−1
(
θ̂mdel − θ

)
is asymptotically

standard normal.

Corollary 6 leads to a 100(1 − α)% Wald confidence in-
terval of θ:

CI :=
(
θ̂mdel − zα/2σ̂mdel, θ̂mdel + zα/2σ̂mdel

)
.
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Figure 1. Simulation results based on 500 Monte Carlo replications with β(1) = β(0) = (1, 0, · · · , 0), p = 500, ρ = 0, δ = 0.5
and sample size n ranging from 100 to 500 under a simple setting described in section 5.1. In the left panel, solid lines depict
the mean-squared lengths of 95% Wald confidence intervals and dashed-dotted lines depict the mean squared lengths of 99%
Wald confidence intervals. In the right panel, solid lines depict coverage proportions of 95% Wald confidence intervals that

cover the true θ and dashed lines depict coverage proportions of 99% Wald confidence intervals that cover the true θ.

As we mentioned in Section 3.1, Zhang’s approach with
the covariate-outcome relationship estimated by an ML
method seriously underestimates the variance. In contrast,
our proposed EL approach recovers the true variance. To il-
lustrate this point, we conduct a simulation study following
the setting of Wager et al. [26]. The setting is a special case of
the simulation studies in Section 5.1 with coefficients equal
to (1, 0, · · · , 0) or a permutation of (1, 1

2 , · · · ,
1
p ). We com-

pare the difference-in-means estimator θ̂dim, Zhang’s esti-
mator, and our proposed MDEL estimator. In both Zhang’s
and our proposed MDEL approaches, the covariate-outcome
relationship is modelled by Lasso.

In Figure 1, where the true signal is very sparse, the
95% confidence intervals and 99% confidence intervals of the
proposed MDEL approach are shorter than the correspond-
ing confidence intervals based on θ̂dim. The coverage prob-
ability of the 95% or 99% confidence intervals of Zhang’s
EL approach is substantially lower than the true level for
n = 100, 200. In contrast, the coverage probability of our
approach resembles the nominal level for any sample size.

In Figure 2, where the true signal is geometric, the 95%
confidence intervals and 99% confidence intervals of the pro-
posed MDEL approach are still shorter than the correspond-
ing ones based on θ̂dim. The coverage probability of the 95%

or 99% confidence intervals of Zhang’s approach is signifi-
cantly below the nominal level for n ranging from 100 to
500. In contrast, the coverage probability of our approach
are very close to the nominal level for any sample size.

In summary, when the true signal is either (1, 0, · · · , 0) or
a permutation of (1, 1

2 , · · · ,
1
p ), Zhang’s approach with ma-

chine learning to model the covariate-outcome relationship
is not desirable as the corresponding confidence intervals
fail to cover θ in reasonable proportions, whereas our ap-
proach recovers true variance and the coverage probabilities
are close to the nominal levels.

4. PRACTICAL IMPLEMENTATIONS

In our simulation studies and real data analysis, we uti-
lize three popular ML methods to estimate η(d). The first
two methods are Lasso [23] and SCAD [6]. Lasso and SCAD
are both penalized regression methods. Generally, they both
lead to sparse solutions and thus work well for variable se-
lection purpose. Compared with Lasso, however, large coef-
ficients would not be shrunken by SCAD and some small co-
efficients cannot survive after punishment. Therefore, SCAD
works better for models with strong and sparse signals. The
third method we use is random forests [2], which is increas-
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Figure 2. Simulation results based on 500 Monte Carlo replications with β(d) equal to a random permutation of ( 11 ,
1
2 , · · · ,

1
p )

for d = 0, 1, p = 500, ρ = 0.5, δ = 0.5 and sample size n ranging from 100 to 500 under the setting described in Section 5.1.
In the left panel, solid lines depict the mean-squared length of 95% Wald confidence intervals and dashed-dotted lines depict
the mean-squared length of 99% Wald confidence intervals. In the right panel, solid lines depict coverage proportions of 95%
Wald confidence intervals that cover the true θ and dashed lines depict coverage proportions of 99% Wald confidence intervals

that cover the true θ.

ingly popular in recent years because of its flexibility and
outstanding prediction ability for real complex data.

For Lasso, the penalty parameter λ is determined by 10-
fold cross-validation criterion using cv.glmnet in R-package
glmnet in this paper. For SCAD, the first tuning param-
eter a is chosen to be default 3.7 and penalty parame-
ter λ is determined by 10-fold cross-validation criterion us-
ing cv.ncvreg in R-package ncvreg. For random forests,
we build 500 regression trees using ranger in R-package
ranger, a fast implementation of random forests for high
dimensional data in C++ and R, with parameters set to be
default.

5. SIMULATION STUDIES AND REAL
DATA ANALYSIS

5.1 Simulation studies

We consider linear models for η(d) with the dimension of
covariates p larger than the sample size n. The universal set-
tings of our simulations are as follows. The covariatesXi, i =
1, · · · , n are independent and identically generated from mul-
tivariate Gaussian N (1p,Σ), where 1p = (1, · · · , 1)� is a p-
dimensional vector. The assignment probability is fixed to

be δ = 0.5 and Di
i.i.d∼ Bernoulli(δ). The outcome Yi of

the i-th unit under treatment Di = di are generated from
N (X�

i β(di) + 5I(di = 1), 1), i = 1, · · · , n. We consider four
different size scales

(n, p) = {(80, 200), (160, 200), (200, 1000), (800, 1000)}.

Define 00 = 1, signals and the covariance matrix of the
covariates, Σ, are different as follows.

Simulation 1 (Sufficient sparsity). β
(1)
i = 3 · 1(i ≤

3), β
(0)
j = 2 · 1(j ≤ 3) and Σij = ρ1(i �=j).

Simulation 2 (Fan, Guo and Hao [5]).

(β
(d)
i )i=1,2,3,5,7,11,13,17,19,23 = (1.01,−0.06, 0.72, 1.55, 2.32,

−0.36, 3.75,−2.04,−0.13, 0.61)�, d = 0, 1

and Σij = ρ|i−j|.

Simulation 3 (Dense geometry [26]). β
(1)
i =

11−10i/p, β
(0)
j = 10−10j/p and Σij = ρ|i−j|.
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Table 1. Results of Simulation 1 based on 5000 Monte Carlo replications

ρ = 0 ρ = 0.5

Estimator Bias SD SE RMSE Cov95 Cov99 Bias SD SE RMSE Cov95 Cov99

(n, p) = (80, 200)
̂θdim -0.004 1.002 1.015 1.002 0.950 0.988 -0.012 1.389 1.417 1.389 0.953 0.991
̂θwdtt(LASSO) 0.000 0.386 0.383 0.386 0.943 0.987 0.000 0.407 0.409 0.407 0.951 0.991
̂θwdtt(SCAD) 0.001 0.318 0.315 0.318 0.948 0.989 0.002 0.381 0.378 0.381 0.947 0.988
̂θwdtt(RF) -0.005 0.959 0.970 0.959 0.947 0.988 -0.010 0.820 0.841 0.820 0.955 0.990
̂θmdel(LASSO) 0.001 0.349 0.349 0.349 0.949 0.987 0.000 0.399 0.406 0.399 0.952 0.991
̂θmdel(SCAD) 0.001 0.318 0.316 0.318 0.945 0.990 0.002 0.382 0.381 0.382 0.948 0.988
̂θmdel(RF) -0.008 0.945 0.948 0.945 0.948 0.988 -0.008 0.743 0.772 0.743 0.956 0.992
̂θmdel(MULTI) 0.003 0.321 0.341 0.321 0.959 0.992 0.002 0.374 0.397 0.374 0.957 0.993

(n, p) = (160, 200)
̂θdim -0.004 0.713 0.718 0.713 0.950 0.990 -0.016 0.999 1.003 0.999 0.951 0.991
̂θwdtt(LASSO) -0.001 0.225 0.228 0.225 0.953 0.989 -0.002 0.261 0.263 0.261 0.946 0.992
̂θwdtt(SCAD) -0.001 0.210 0.212 0.210 0.948 0.989 -0.002 0.250 0.251 0.250 0.949 0.990
̂θwdtt(RF) -0.004 0.653 0.658 0.653 0.951 0.990 -0.005 0.550 0.556 0.550 0.951 0.990
̂θmdel(LASSO) -0.001 0.215 0.218 0.215 0.950 0.990 -0.001 0.259 0.262 0.259 0.950 0.992
̂θmdel(SCAD) -0.001 0.210 0.212 0.210 0.950 0.989 -0.002 0.250 0.252 0.250 0.952 0.991
̂θmdel(RF) -0.004 0.536 0.560 0.536 0.959 0.992 -0.001 0.510 0.519 0.510 0.952 0.991
̂θmdel(MULTI) -0.001 0.212 0.222 0.212 0.956 0.991 -0.002 0.251 0.261 0.251 0.959 0.991

(n, p) = (200, 1000)
̂θdim -0.008 0.642 0.642 0.642 0.946 0.989 -0.019 0.895 0.896 0.895 0.947 0.990
̂θwdtt(LASSO) 0.002 0.206 0.207 0.206 0.950 0.988 0.002 0.237 0.238 0.237 0.950 0.989
̂θwdtt(SCAD) 0.003 0.190 0.189 0.190 0.948 0.990 0.003 0.225 0.225 0.225 0.951 0.989
̂θwdtt(RF) -0.007 0.618 0.618 0.618 0.946 0.990 -0.009 0.510 0.508 0.510 0.947 0.988
̂θmdel(LASSO) 0.004 0.194 0.194 0.194 0.949 0.990 0.003 0.235 0.236 0.235 0.951 0.989
̂θmdel(SCAD) 0.003 0.190 0.190 0.190 0.950 0.990 0.003 0.225 0.225 0.225 0.952 0.990
̂θmdel(RF) -0.005 0.565 0.576 0.565 0.953 0.991 -0.006 0.483 0.482 0.483 0.950 0.987
̂θmdel(MULTI) 0.003 0.191 0.196 0.191 0.955 0.992 0.003 0.226 0.231 0.226 0.954 0.991

(n, p) = (800, 1000)
̂θdim -0.005 0.321 0.320 0.321 0.949 0.990 -0.004 0.450 0.447 0.450 0.951 0.991
̂θwdtt(LASSO) -0.001 0.096 0.096 0.096 0.949 0.991 -0.002 0.114 0.113 0.114 0.949 0.989
̂θwdtt(SCAD) -0.001 0.093 0.094 0.093 0.950 0.991 -0.002 0.112 0.112 0.112 0.949 0.989
̂θwdtt(RF) -0.004 0.294 0.293 0.294 0.951 0.991 -0.005 0.238 0.237 0.238 0.949 0.989
̂θmdel(LASSO) -0.001 0.094 0.094 0.094 0.950 0.991 -0.002 0.113 0.113 0.113 0.949 0.989
̂θmdel(SCAD) -0.001 0.093 0.094 0.093 0.951 0.991 -0.002 0.112 0.112 0.112 0.950 0.989
̂θmdel(RF) -0.002 0.189 0.194 0.189 0.957 0.991 -0.005 0.230 0.230 0.230 0.948 0.989
̂θmdel(MULTI) -0.001 0.093 0.095 0.093 0.952 0.992 -0.002 0.112 0.113 0.112 0.949 0.989

Bias = average bias of 5000 Monte Carlo estimators, SD = sample standard deviation of estimators, SE = average of model-based
standard error, RMSE = empirical root mean square error, Cov95 = proportion of 95% Wald confidence intervals covering the true
θ, Cov99 = proportion of 99% Wald confidence intervals covering the true θ.

Simulation 1 has sparse and strong signals. Simulation 2
has sparse signals with more challenging cofficients. Simula-
tion 3 is identical to the geometric case of Wager et al. [26].
Results of simulations are all based on 5000 Monte Carlo
data sets and given in Table 1, 2 and 3. First, we summa-
rize the results for Simulations 1 and 2 given in Table 1
and 2 (sparse case):

(a) Compared with the simple approach of difference in
means, the EL estimators with any outcome model have
significantly smaller SDs and RMSEs.

(b) Among the EL estimators with one outcome model,

the estimators using SCAD perform relatively better

than other estimators, and estimators using random

forests perform worst in sense of RMSE. As expected,

the EL estimators with multiple models perform closest

to those with SCAD, and better than all other estima-

tors when ρ = 0.5 and (n, p) = (80, 200) and when

(n, p) = (800, 1000).

(c) Using SCAD to model the covariate-outcome relation-

ship, the EL estimators perform similarly to Wager’s
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Table 2. Results of Simulation 2 based on 5000 Monte Carlo replications

ρ = 0 ρ = 0.5

Estimator Bias SD SE RMSE Cov95 Cov99 Bias SD SE RMSE Cov95 Cov99

(n, p) = (80, 200)
̂θdim 0.028 1.196 1.210 1.196 0.950 0.988 0.017 1.231 1.243 1.231 0.946 0.988
̂θwdtt(LASSO) 0.010 0.584 0.586 0.584 0.951 0.987 0.006 0.536 0.535 0.536 0.952 0.990
̂θwdtt(SCAD) 0.007 0.451 0.447 0.451 0.949 0.989 0.007 0.448 0.442 0.448 0.946 0.989
̂θwdtt(RF) 0.026 1.141 1.155 1.141 0.950 0.989 0.017 1.153 1.165 1.153 0.946 0.988
̂θmdel(LASSO) 0.008 0.539 0.541 0.539 0.953 0.987 0.006 0.494 0.489 0.494 0.951 0.989
̂θmdel(SCAD) 0.008 0.457 0.453 0.457 0.950 0.988 0.007 0.457 0.448 0.457 0.948 0.989
̂θmdel(RF) 0.023 1.130 1.129 1.131 0.948 0.987 0.013 1.105 1.112 1.105 0.951 0.987
̂θmdel(MULTI) 0.007 0.457 0.466 0.457 0.957 0.990 0.006 0.440 0.448 0.440 0.956 0.991

(n, p) = (160, 200)
̂θdim -0.018 0.859 0.853 0.859 0.947 0.988 -0.010 0.891 0.878 0.891 0.947 0.988
̂θwdtt(LASSO) 0.000 0.226 0.223 0.226 0.947 0.988 -0.001 0.217 0.215 0.217 0.949 0.988
̂θwdtt(SCAD) 0.002 0.182 0.182 0.182 0.945 0.988 0.001 0.183 0.183 0.183 0.953 0.989
̂θwdtt(RF) -0.016 0.788 0.784 0.789 0.948 0.989 -0.008 0.794 0.782 0.794 0.947 0.989
̂θmdel(LASSO) 0.001 0.208 0.207 0.208 0.950 0.989 0.000 0.201 0.201 0.201 0.952 0.987
̂θmdel(SCAD) 0.001 0.183 0.183 0.183 0.948 0.989 0.001 0.183 0.184 0.183 0.953 0.990
̂θmdel(RF) -0.011 0.655 0.675 0.655 0.958 0.992 -0.004 0.622 0.638 0.622 0.955 0.992
̂θmdel(MULTI) 0.001 0.184 0.200 0.184 0.960 0.994 0.001 0.184 0.201 0.184 0.966 0.993

(n, p) = (200, 1000)
̂θdim -0.003 0.773 0.763 0.773 0.945 0.988 -0.002 0.796 0.785 0.796 0.949 0.988
̂θwdtt(LASSO) 0.001 0.226 0.222 0.226 0.945 0.991 0.001 0.212 0.209 0.212 0.945 0.990
̂θwdtt(SCAD) 0.002 0.164 0.163 0.164 0.950 0.990 0.003 0.166 0.164 0.166 0.948 0.989
̂θwdtt(RF) -0.003 0.746 0.736 0.746 0.946 0.988 -0.002 0.758 0.748 0.758 0.949 0.987
̂θmdel(LASSO) 0.001 0.199 0.198 0.199 0.949 0.992 0.002 0.185 0.185 0.185 0.951 0.991
̂θmdel(SCAD) 0.002 0.164 0.164 0.164 0.952 0.990 0.003 0.167 0.165 0.167 0.948 0.990
̂θmdel(RF) -0.003 0.695 0.696 0.695 0.949 0.989 -0.006 0.671 0.677 0.671 0.949 0.991
̂θmdel(MULTI) 0.002 0.165 0.175 0.165 0.965 0.995 0.003 0.168 0.177 0.168 0.962 0.993

(n, p) = (800, 1000)
̂θdim 0.010 0.385 0.381 0.385 0.949 0.990 0.009 0.396 0.392 0.397 0.949 0.989
̂θwdtt(LASSO) 0.000 0.076 0.077 0.076 0.952 0.991 0.000 0.076 0.076 0.076 0.947 0.991
̂θwdtt(SCAD) -0.001 0.072 0.073 0.072 0.953 0.992 -0.001 0.072 0.073 0.072 0.955 0.991
̂θwdtt(RF) 0.009 0.354 0.350 0.354 0.947 0.990 0.009 0.351 0.348 0.352 0.946 0.990
̂θmdel(LASSO) 0.000 0.073 0.074 0.073 0.954 0.991 0.000 0.073 0.074 0.073 0.954 0.992
̂θmdel(SCAD) -0.001 0.072 0.073 0.072 0.954 0.992 -0.001 0.072 0.073 0.072 0.956 0.991
̂θmdel(RF) 0.003 0.236 0.237 0.236 0.955 0.991 0.005 0.224 0.226 0.224 0.953 0.989
̂θmdel(MULTI) -0.001 0.072 0.075 0.072 0.958 0.992 -0.001 0.072 0.075 0.072 0.958 0.992

Bias = average bias of 5000 Monte Carlo estimators, SD = sample standard deviation of estimators, SE = average of model-based
standard error, RMSE = empirical root mean square error, Cov95 = proportion of 95% Wald confidence intervals covering the true
θ, Cov99 = proportion of 99% Wald confidence intervals covering the true θ.

estimators in terms of SD and RMSE. However, when
Lasso or random forests model are adopted, the EL
estimators outperform Wager’s estimators. In Simula-
tion 1, compared with Wager’s estimators with random
forests, the EL estimators with random forests have an
average of 15.9% reduction in RMSE for ρ = 0 and
6.3% reduction in RMSE for ρ = 0.5. In simulation 2,
compared with Wager’s estimators with random forests,
the EL estimators with random forests have an average
of 14.5% reduction in RMSE for ρ = 0 and 18.4% re-

duction in RMSE for ρ = 0.5. The reduction is more
obvious when n is larger.

(d) The SEs of the EL estimators with one outcome model
are very close to their corresponding SDs, and the cov-
erage probabilities of the EL estimators with one model
are close to the nominal levels. However, the variances
of the EL estimators with multiple models are slightly
overestimated, but in a reasonable range.

Results in Table 3 are summarized as follows (dense case):
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Table 3. Results of Simulation 3 based on 5000 Monte Carlo replications

ρ = 0 ρ = 0.5

Estimator Bias SD SE RMSE Cov95 Cov99 Bias SD SE RMSE Cov95 Cov99

(n, p) = (80, 200)
̂θdim 0.003 0.489 0.490 0.489 0.949 0.990 0.002 0.732 0.737 0.732 0.949 0.990
̂θwdtt(LASSO) 0.002 0.453 0.451 0.453 0.946 0.987 0.000 0.435 0.432 0.435 0.945 0.985
̂θwdtt(SCAD) 0.004 0.458 0.460 0.458 0.946 0.988 0.002 0.497 0.497 0.497 0.945 0.984
̂θwdtt(RF) 0.002 0.478 0.478 0.478 0.947 0.991 0.000 0.667 0.671 0.667 0.948 0.990
̂θmdel(LASSO) 0.003 0.464 0.452 0.464 0.943 0.987 0.000 0.425 0.422 0.425 0.945 0.988
̂θmdel(SCAD) 0.003 0.469 0.459 0.469 0.940 0.987 0.003 0.510 0.507 0.510 0.946 0.984
̂θmdel(RF) 0.003 0.489 0.478 0.489 0.940 0.987 -0.002 0.583 0.599 0.582 0.952 0.992
̂θmdel(MULTI) 0.005 0.470 0.446 0.470 0.932 0.983 0.001 0.433 0.425 0.433 0.943 0.986

(n, p) = (160, 200)
̂θdim -0.002 0.350 0.346 0.350 0.947 0.989 -0.005 0.527 0.521 0.527 0.948 0.989
̂θwdtt(LASSO) -0.001 0.259 0.255 0.259 0.950 0.989 -0.002 0.220 0.219 0.220 0.948 0.990
̂θwdtt(SCAD) 0.000 0.260 0.256 0.260 0.949 0.988 -0.001 0.257 0.254 0.257 0.949 0.990
̂θwdtt(RF) -0.002 0.336 0.332 0.336 0.946 0.990 -0.003 0.447 0.442 0.446 0.948 0.989
̂θmdel(LASSO) -0.001 0.260 0.255 0.260 0.946 0.989 -0.002 0.211 0.211 0.211 0.952 0.989
̂θmdel(SCAD) 0.000 0.266 0.261 0.266 0.947 0.988 -0.001 0.262 0.260 0.262 0.951 0.991
̂θmdel(RF) -0.003 0.326 0.322 0.326 0.945 0.988 0.000 0.304 0.317 0.304 0.959 0.992
̂θmdel(MULTI) 0.000 0.258 0.250 0.258 0.942 0.988 -0.002 0.212 0.215 0.212 0.952 0.991

(n, p) = (200, 1000)
̂θdim 0.001 0.663 0.660 0.663 0.945 0.988 -0.001 1.113 1.109 1.113 0.947 0.988
̂θwdtt(LASSO) 0.001 0.640 0.641 0.640 0.950 0.989 0.002 0.753 0.758 0.753 0.950 0.990
̂θwdtt(SCAD) 0.001 0.645 0.646 0.645 0.949 0.989 0.003 0.864 0.867 0.864 0.950 0.991
̂θwdtt(RF) 0.002 0.655 0.653 0.655 0.946 0.988 0.000 1.064 1.062 1.064 0.948 0.988
̂θmdel(LASSO) 0.002 0.651 0.643 0.651 0.947 0.987 -0.001 0.735 0.740 0.735 0.953 0.990
̂θmdel(SCAD) 0.002 0.654 0.646 0.654 0.946 0.987 0.002 0.858 0.861 0.858 0.949 0.991
̂θmdel(RF) 0.002 0.661 0.653 0.661 0.946 0.987 0.001 0.959 0.978 0.958 0.952 0.991
̂θmdel(MULTI) 0.001 0.653 0.640 0.653 0.945 0.985 -0.002 0.734 0.737 0.734 0.952 0.989

(n, p) = (800, 1000)
̂θdim 0.004 0.330 0.330 0.330 0.951 0.991 0.008 0.553 0.555 0.553 0.950 0.991
̂θwdtt(LASSO) 0.001 0.155 0.155 0.155 0.954 0.990 0.001 0.111 0.111 0.111 0.953 0.990
̂θwdtt(SCAD) 0.000 0.138 0.139 0.138 0.954 0.992 -0.001 0.165 0.167 0.165 0.950 0.993
̂θwdtt(RF) 0.004 0.320 0.321 0.320 0.951 0.991 0.008 0.495 0.495 0.495 0.949 0.991
̂θmdel(LASSO) 0.001 0.146 0.146 0.146 0.953 0.989 0.001 0.104 0.104 0.104 0.953 0.989
̂θmdel(SCAD) 0.000 0.139 0.140 0.139 0.954 0.991 0.000 0.168 0.169 0.167 0.950 0.992
̂θmdel(RF) 0.003 0.294 0.299 0.294 0.953 0.991 0.007 0.301 0.306 0.301 0.958 0.989
̂θmdel(MULTI) 0.000 0.134 0.135 0.134 0.955 0.992 0.001 0.104 0.105 0.104 0.957 0.989

Bias = average bias of 5000 Monte Carlo estimators, SD = sample standard deviation of estimators, SE = average of model-based
standard error, RMSE = empirical root mean square error, Cov95 = proportion of 95% Wald confidence intervals covering the true
θ, Cov99 = proportion of 99% Wald confidence intervals covering the true θ.

(a) When ρ = 0 and n is small compared to the dimension
of covariates ((n, p) = (80, 200), (200, 1000)), compared
with the simple approach of difference in means, there
is no significant reduction in RMSE for the EL estima-
tors. Otheriwse, compared with the difference in means
estimators, the EL estimators with any outcome model
have significantly smaller SDs and RMSEs.

(b) When ρ = 0 and n is small compared to the di-
mension of covariates, there is no significant difference
among different estimators. In other cases, among the

EL estimators using one outcome model, the estima-
tors with Lasso generally perform best and the estima-
tors with random forests perform worst in the sense of
RMSE. As expected, the EL estimators with multiple
ML models perform closest to the ones with the best
model.

(c) Under Lasso or SCAD model, the EL estimators per-
form similarly to Wager’s estimators in terms of RMSE.
However, under random forests model, the EL esti-
mators significantly outperform Wager’s estimators.
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Table 4. Point and interval estimates of θ for ACTG 175 data

Estimator Estimate SE Relative Efficiency 95% Confidence Interval 99% Confidence Interval

5-Fold Cross Validation
̂θdim 46.811 6.760 1.000 (33.56, 60.06) (29.40, 64.22)
̂θtdzl(Forward-1) 49.896 5.139 1.738 (39.82, 59.97) (36.66, 63.13)
̂θtdzl(Forward-2) 51.589 5.070 1.797 (41.65, 61.53) (38.53, 64.65)
̂θZhang(Forward-1) 49.872 5.128 1.738 (39.82, 59.92) (36.66, 63.08)
̂θZhang(Forward-2) 51.395 5.028 1.808 (41.54, 61.25) (38.44, 64.34)
̂θwdtt(LASSO) 49.785 5.233 1.669 (39.53, 60.04) (36.31, 63.26)
̂θwdtt(SCAD) 49.508 5.216 1.680 (39.29, 59.73) (36.07, 62.94)
̂θwdtt(RF) 53.442 5.253 1.656 (43.15, 63.74) (39.91, 66.97)
̂θmdel(LASSO) 49.938 5.200 1.690 (39.75, 60.13) (36.54, 63.33)
̂θmdel(SCAD) 49.483 5.197 1.692 (39.30, 59.67) (36.10, 62.87)
̂θmdel(RF) 53.160 5.216 1.680 (42.94, 63.38) (39.72, 66.60)
̂θmdel(MULTI) 50.396 5.150 1.723 (40.30, 60.49) (37.13, 63.66)

10-Fold Cross Validation
̂θdim 46.811 6.760 1.000 (33.56, 60.06) (29.40, 64.22)
̂θtdzl(Forward-1) 49.896 5.139 1.738 (39.82, 59.97) (36.66, 63.13)
̂θtdzl(Forward-2) 51.589 5.070 1.797 (41.65, 61.53) (38.53, 64.65)
̂θZhang(Forward-1) 49.872 5.128 1.738 (39.82, 59.92) (36.66, 63.08)
̂θZhang(Forward-2) 51.395 5.028 1.808 (41.54, 61.25) (38.44, 64.34)
̂θwdtt(LASSO) 49.854 5.224 1.675 (39.62, 60.09) (36.40, 63.31)
̂θwdtt(SCAD) 49.991 5.210 1.684 (39.78, 60.20) (36.57, 63.41)
̂θwdtt(RF) 53.885 5.262 1.651 (43.57, 64.20) (40.33, 67.44)
̂θmdel(LASSO) 50.059 5.178 1.705 (39.91, 60.21) (36.72, 63.40)
̂θmdel(SCAD) 49.979 5.177 1.705 (39.83, 60.13) (36.64, 63.32)
̂θmdel(RF) 53.542 5.212 1.682 (43.33, 63.76) (40.12, 66.97)
̂θmdel(MULTI) 50.665 5.140 1.730 (40.59, 60.74) (37.42, 63.90)

SE = standard error, Relative Efficiency = (SE2 of corresponding estimator)/(SE2 of ̂θdim).

For example, when (n, p) = (160, 200) and ρ = 0.5,

the RMSE of θ̂mdel(RF) is 0.304 while the RMSE of

θ̂wdtt(RF) is 0.446.
(d) When ρ = 0 and (n, p) = (80, 200), the variances of EL

estimators are underestimated and the coverage rates of
the EL estimators are smaller than the nominal levels,
but still in a reasonable range.

5.2 Analysis of ACTG 175 data set

In this section, we apply our proposed MDEL method
to data from 2139 HIV-infected patients enrolled in AIDS
Clinical Trials Group Protocol 175 (ACTG175) Study
[8]. It is a double-blinded randomized experiment which
was designed to study the treatment of patients receiv-
ing three different drugs and their combinations. Patients
whose CD4 cell counts from 200 to 500 per cubic mil-
limeter were randomly assigned to different antiretrovi-
ral regimens: zidovudine (ZDV) monotherapy, ZDV + di-
danosine (ddI), ZDV + zalcitabine, and ddI monother-
apy. We follow the work of Tsiatis et al. [25], Huang,
Qin and Follmann [11], and Zhang [30], where two treat-
ment groups are considered: patients who received ZDV
monotherapy alone, with n0 = 532 and patients who

received either ZDV + ddI, or ZDV + zalcitabine, or

ddI alone, with n1 = 1607. Pre-treatment baseline co-

variates are five continuous variables: cd40 = CD4 count

(cells/mm3), cd80 = CD8 count (cells/mm3), age = age

(years), wtkg = weight (kg), karnof = Karnofsky score

(scale of 0–100), and seven binary variables: hemo =

hemophilia, homo = homosexual activity, drug = history

of intravenous drug use, race = race (0=white, 1=non-

white), gender=gender (0=female), anti=antiretroviral his-

tory (0=naive, 1=experienced), and symp=symptomatic

status (0=asymptomatic).

In the previous work of Tsiatis et al. [25], Zhang [30],

and Tan et al. [22], Forward-1, a forward stepwise regression

model allowing for linear terms of covariates, and Forward-

2, a forward stepwise regression model allowing for linear,

quadratic and interaction terms of baseline variables, are

adopted. Our proposed MDEL approach enables us to con-

sider a much richer feature set. Therefore, we take linear

and quadratic terms of continuous variables, linear and in-

teraction terms of binary variables, and interaction terms of
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above two sets of coordinates as our final feature set, i.e.,

FACTG175 =
{
(cd40+cd80+age+wtkg+karnof+1)

2

×
(
(hemo+homo+drug+race+gender +anti+symp+1)

2

− hemo2 − homo2 − drug2 − race2 − gender2 − anti2

− symp2
)}

.

This leads to 608 explanatory variables (excluding the in-
tercept) and we adopt Lasso, SCAD, and random forests to
estimate the variable-outcome relationship using this feature
set. Table 4 displays the estimates, standard errors, and con-
fidence intervals of our proposed approach and some existing
approaches described in Section 2 and 3.

Here, θ̂mdel(ML) denotes the point estimator of our
MDEL approach, where the choices of ML include LASSO,
SCAD, RF, and MULTI. Here, RF indicates the random
forests method, and MULTI means we make use of multi-
ple ML methods (LASSO, SCAD, and RF) in our MDEL
method.

For inference on θ, both 95% and 99% Wald confidence
intervals are provided. The results of Table 4 give us strong
evidence to reject the null hypothesis that there is no differ-
ence in treatment effect between two groups with different
therapies. It is worth to note that, despite a much richer
feature set with p = 608 variables is considered, our pro-
posed approach does not improve the estimation efficiency.
This indicates that the original explanatory variables are
adequate for modeling η(d)(·), d = 0, 1. However, our data
analysis result of ACTG 175 data set is still meaningful be-
cause we provide further reliability to use the original set of
explanatory variables.

5.3 Analysis of GSE118657 data set

Gene Expression Omnibus dataset (GSE118657, avail-
able at https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE118657 and R-package GEOquery) is a Phase II/III
randomized controlled trial examining the use of lactofer-
rin to prevent nosocomial infections in critically ill patients
undergoing mechanical ventilation [16, 14]. This data set
consists of longitudinal measurements of 61 patients, among
which 32 patients were randomized to receive lactoferrin and
the remaining ones were assigned to the placebo group. We
are interested in studying the effect of lactoferrin on the
length of stay in ICU. For covariate-adjustment, we con-
sider four important variables of patients before receiving
the treatment-age, sex, SOFA score, and APACHE II score,
denoted by Xb, and the first-day gene expression data of
patients, denoted by Xg. In the following data analysis,
approaches of Zhang [30] and Tsiatis et al. [25] are based
on modelling E[Y |Xb, D = d], d = 0, 1 with Forward-1 or
Forward-2 model. To make use of information of the gene
expression data, we model E[Y |Xb, Xg, D = d], d = 0, 1 by
ML methods and subsequently apply the approach of Wa-
ger et al. [26] and our proposed MDEL approach. Since

the dimension of X = (Xb, Xg), p ≈ 50000, is too high,
we use sure independent screening (SIS) method [7] to fil-
ter out variables that are relatively weak-correlated with
the response, and reduce the dimension of X to a low
level, say dX = O(n), before modelling E[Y |X,D = 1] and
E[Y |X,D = 0].

Results given in Table 5 indicate that there is no improve-
ment about the length of stay in ICU for patients after the
use of lactoferrin. Our approach with multiple ML methods,
θ̂mdel(MULTI), is more efficient than other estimators with
the shortest confidence intervals.

6. CONCLUSIONS AND FURTHER
DISCUSSIONS

In this paper, we propose a machine learning and data-
splitting based EL approach to make statistical inference on
the average treatment effect in randomized controlled tri-
als. Our approach not only maintains the advantages of the
traditional EL approaches, but also overcomes the disadvan-
tage that the traditional EL approaches usually make invalid
inference in high-dimensional settings. Compared with the
regression adjustment approach proposed by Wager et al.
[26], our proposed approach has two attractive character-
istics, which are illustrated by our simulation studies: (i).
Our MDEL estimator performs better when we use random
forests to estimate the nuisance parameters; (ii). Our MDEL
estimator with multiple ML models is likely to perform as
good as the oracle model, which is known as the multiple
robustness property.

For future work, we plan to (i). study the asymptotic
theory of the proposed EL estimator with multiple models;
(ii). generalize our proposed approach to high-dimensional
observational studies by modelling propensity scores and im-
posing additional constraints about the propensity scores.

APPENDIX: LEMMAS AND PROOFS

Lemmas

Lemma 1 (Chernozhukov et al. [4]; Conditional conver-
gence implies unconditional). Let {Xm} and {Ym} be ran-
dom vectors. (a) If for εm → 0, P (||Xm||> εm|Ym) → 0 as
m → ∞, then P(||Xm||> εm) → 0 as m → ∞. (b) Let {Am}
be a sequence of positive constants. If ||Xm||= Op(Am) con-
ditional on Ym, then ||Xm||= Op(Am) holds unconditionally.

Lemma 2. Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
= Ĝ

(
Xi, ĝ

(d)
k , ξ̈(d)

)
+

Op(
1√
n
), i ∈ I

(d)
k for k = 1, · · · ,K and d = 0, 1.

Proof. Simple algebra gives

Ĝ

(
Xi, ĝ

(d)
k , ξ̈(d)

)
− Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
=

1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

(
ĝ
(d)
k (Xi)− E

[
ĝ
(d)
k (Xi)

∣∣∣ (Wj)j∈I
(d)c

k

])
.
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Table 5. Point and interval estimates of θ for GSE118657 data with 5-fold cross validation

Estimator Estimate SE Relative Efficiency 95% Confidence Interval 99% Confidence Interval

dX = 100
̂θdim -8.489 13.737 1.000 (-35.41, 18.44) (-43.87, 26.90)
̂θtdzl(Forward-1) -7.769 13.701 1.005 (-34.62, 19.08) (-43.06, 27.52)
̂θtdzl(Forward-2) -10.993 13.965 0.968 (-38.36, 16.38) (-46.96, 24.98)
̂θZhang(Forward-1) -7.933 13.204 1.082 (-33.81, 17.95) (-41.94, 26.08)
̂θZhang(Forward-2) -10.083 14.413 0.908 (-38.33, 18.17) (-47.21, 27.04)
̂θwdtt(LASSO) -9.310 13.789 0.993 (-36.34, 17.72) (-44.83, 26.21)
̂θwdtt(SCAD) -10.493 14.165 0.941 (-38.26, 17.27) (-46.98, 25.99)
̂θwdtt(RF) -13.732 14.065 0.954 (-41.30, 13.83) (-49.96, 22.50)
̂θmdel(LASSO) -8.540 12.970 1.122 (-33.96, 16.88) (-41.95, 24.87)
̂θmdel(SCAD) -8.661 12.181 1.272 (-32.53, 15.21) (-40.04, 22.71)
̂θmdel(RF) -8.647 13.457 1.042 (-35.02, 17.73) (-43.31, 26.02)
̂θmdel(MULTI) -7.237 10.755 1.632 (-28.32, 13.84) (-34.94, 20.46)

dX = 500
̂θdim -8.489 13.737 1.000 (-35.41, 18.44) (-43.87, 26.90)
̂θtdzl(Forward-1) -7.769 13.701 1.005 (-34.62, 19.08) (-43.06, 27.52)
̂θtdzl(Forward-2) -10.993 13.965 0.968 (-38.36, 16.38) (-46.96, 24.98)
̂θZhang(Forward-1) -7.933 13.204 1.082 (-33.81, 17.95) (-41.94, 26.08)
̂θZhang(Forward-2) -10.083 14.413 0.908 (-38.33, 18.17) (-47.21, 27.04)
̂θwdtt(LASSO) -10.720 14.094 0.950 (-38.34, 16.90) (-47.02, 25.58)
̂θwdtt(SCAD) -11.145 14.072 0.953 (-38.73, 16.44) (-47.39, 25.10)
̂θwdtt(RF) -15.856 14.167 0.940 (-43.62, 11.91) (-52.35, 20.64)
̂θmdel(LASSO) -8.193 12.881 1.137 (-33.44, 17.05) (-41.37, 24.99)
̂θmdel(SCAD) -6.061 12.325 1.242 (-30.22, 18.10) (-37.81, 25.69)
̂θmdel(RF) -8.648 13.420 1.048 (-34.95, 17.66) (-43.22, 25.92)
̂θmdel(MULTI) -7.202 11.924 1.327 (-30.57, 16.17) (-37.92, 23.51)

SE = standard error, Relative Efficiency = (SE2 of corresponding estimator)/(SE2 of ̂θdim).

The proof is completed by the Central Limit Theorem and
lemma 1.

Proofs

Proof of Proposition 1

Proof. Let n∗
d = nd

K . n∗
d is an integer as I

(d)
k , k =

1, · · · ,K are of equal size for d = 0, 1. Write (Wi)i∈I
(d)
k

=

{W d
k1,W

d
k2, · · · ,W d

kn∗
d
} for k = 1, · · · ,K and d = 0, 1 with

random orders. Let Tudj = 1
K

K∑
k=1

[
Ĝ

(
Xd

kj , ĝ
(d)
k , ξ̂(d)

)]
u
for

u = 1, · · · , r, j = 1, · · · , n∗
d and d = 0, 1. It suffices to prove

that 0 is contained in the convex hull of {Tud1, · · · , Tudn∗
d
}

with probability tending to 1 as n → ∞ for u = 1, · · · , r and
d = 0, 1. To prove it, it suffices to show that for any given u
and d, P( max

1≤j≤n∗
d

Tudj ≤ 0) → 0 and P( min
1≤j≤n∗

d

Tudj ≥ 0) → 0.

Now, we only prove that P( max
1≤j≤n∗

d

Tudj ≤ 0) → 0 and

the proof of P( min
1≤j≤n∗

d

Tudj ≥ 0) → 0 will be similar. Let

T q
udj =

[
ĝ
(d)
q (Xd

qj)
]
u
−
[
ξ̂
(d)
q

]
u
for q = 1, · · · ,K. It is easy to

check that Tudj =
1
K

K∑
q=1

T q
udj . Simple calculation gives

P( max
1≤j≤n∗

d

Tudj ≤ 0) = P( max
1≤j≤n∗

d

1

K

K∑
q=1

T q
udj ≤ 0)

≤ P( min
1≤q≤K

max
1≤j≤n∗

d

T q
udj ≤ 0).

Therefore, it suffices to prove that P( max
1≤j≤n∗

d

T q
udj ≤ 0) → 0

for q = 1, · · · ,K. The proof below follows the technique of
Jing, Yuan and Zhou [13]. For a given q, let νudj = ψ(T q

udj),
where ψ(x) is a nondecreasing, twice differentiable function
with bounded first and second derivatives such that

(8) ψ(x) =

⎧⎨⎩ 0, if x ≤ 0
a(x), if 0 < x < ε
1, if x ≥ ε

with 0 < a(x) < 1 for 0 < x < ε. Simple algebra gives that,
conditional on (Wi)i∈I

(d)c
q

,

P

(
max

1≤j≤n∗
d

T q
udj ≤ 0

)
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=P
(
νud1 = 0, · · · , νudn∗

d
= 0
)

=P
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n∗
d
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It suffices to show that, conditional on (Wi)i∈I
(d)c
q

,

(a) Var(νud1) ≤ 1.
(b) lim

n→∞
Eνud1 ≥ c > 0.

(c) Cov(νud1, νud2) → 0.

(a) holds because 0 ≤ νud1 ≤ 1. Simple algebra indicates
that

T q
udj =

[
ĝ(d)q (Xd

qj)
]
u
− E

[[
ĝ(d)q (Xd

qj)
]
u

∣∣∣ (Wi)i∈I
(d)c
q
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−
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+ E
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qj)
]
u

∣∣∣ (Wi)i∈I
(d)c
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]
= Qu(X

d
qj , ĝ

(d)
q ) + Remq

ud.

Under condition (A1), The Central Limit Theory (CLT)
and Lemma 1 gives Remq

ud = Op(
1√
n
). A Taylor expansion

yields

νudj = ψ(T q
udj) = ψ(Qu(X

d
qj , ĝ

(d)
q )) + CnRem

q
ud,

where Cn < C for some constant C. Therefore, it is

easy to verify that Eνudj → E
[
ψ(Qu(X

d
qj , ĝ

(d)
q ))

]
. Note

that conditional on (Wi)i∈I
(d)c
q

, E
[
Qu(X

d
qj , ĝ

(d)
q )
]
= 0 and

Var
(
Qu(X

d
qj , ĝ

(d)
q )
)

> 0 (By condition (A1)). Therefore,

we have P(Qu(X
d
qj , ĝ

(d)
q ) > 0) > 0, which implies that

E
[
ψ(Qu(X

d
qj , ĝ

(d)
q ))

]
> 0 conditional on (Wi)i∈I

(d)c
q

. This

completes the proof of (b). (c) is obvious because conditional

on (Wi)i∈I
(d)c
q

, ψ(Qu(X
d
q1, ĝ

(d)
q )) and ψ(Qu(X

d
q2, ĝ

(d)
q )) are in-

dependent and CnRem
q
ud → 0 with probability tending to

1. This completes the proof.

Proof of Proposition 2

Proof. For fixed d, from 1
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)⎡⎣1
− 1

1 + λ̂�
d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
⎤⎦

=
1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)

− 1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)⊗2

λ̂d

1 + λ̂�
d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

) .
Therefore, we have

(9)

1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)

=
1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)⊗2

λ̂d

1 + λ̂�
d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

) .
For fixed k, conditional on (Wi)i∈I

(d)c

k

, the Central Limit

Theorem indicates that

1

|I(d)k |

∑
i∈I

(d)
k

(
ĝ
(d)
k (Xi)− ξ̂

(d)
k

)
− E

[
ĝ
(d)
k (X)− ξ̂

(d)
k

∣∣∣ (Wi)i∈I
(d)c

k

]
= Op(

1√
n
).

Then, lemma 1 gives 1

|I(d)k |

∑
i∈I

(d)
k

(
ĝ
(d)
k (Xi)− ξ̂

(d)
k

)
= Op(

1√
n
)

unconditionally. Hence, the left term of (9) is

1

nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)

=
1

K

K∑
k=1

1

|I(d)k |

∑
i∈I

(d)
k

(
ĝ
(d)
k (Xi)− ξ̂

(d)
k

)
=Op(

1√
n
).

Turn to the right term of (9), and let νd = λ̂d

||λ̂d||
, where ||·||

is the Euclidean norm. We have

1 + λ̂�
d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
≤1 + ||λ̂d||ν�d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)
≤1 + 2||λ̂d||

√
r max
k∈{1,···,K}

max
j=1,···,r

max
i∈Ik

∣∣∣[ĝ(d)k (Xi)]j

∣∣∣ .
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Condition (A1), lemma 11.2 in Owen [19], and lemma 1
indicate that

max
k∈{1,···,K}

max
j=1,···,r

max
i∈Ik

∣∣∣[ĝ(d)k (Xi)]j

∣∣∣ = op(n
1/2)

Multiplying ν�d on both sides of (9), we have

||λ̂d||
1

nd

K∑
k=1

∑
i∈I

(d)
k

ν�d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)⊗2

νd

≤ν�d
nd

K∑
k=1

∑
i∈I

(d)
k

Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)(
1 + 2||λ̂d||

√
r max
k∈{1,···,K}

max
j=1,···,r

max
i∈Ik

∣∣∣[ĝ(d)k (Xi)]j

∣∣∣) .

Condition (A2) implies

1

nd

K∑
k=1

∑
i∈I

(d)
k

ν�d Ĝ

(
Xi, ĝ

(d)
k , ξ̂(d)

)⊗2

νd 
 1.

It follows from all above results that

||λ̂d||≤ Op(
1√
n
)(1 + 2||λ̂d||op(n1/2)).(10)

Equation (10) indicates that ||λ̂d||= Op(
1√
n
). This completes

the proof.

Proof of Proposition 3

Proof. First, we consider the case d = 1 and the case
d = 0 will be similar. Taylor expansion, Proposition 1, and
Lemma 2 lead to
(11)

0 =
√
n
1

n1

K∑
k=1

∑
i∈I

(1)
k

Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

)
1 + λ̂�

1 Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

)
=

1√
n

K∑
k=1

∑
i∈Ik

Di

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

)

−
√
n
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

Di

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

)⊗2

λ̂1 + op(1)

=
1√
n

K∑
k=1

∑
i∈Ik

Di − δ

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)

−
√
n
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

Di

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)⊗2

λ̂1 + op(1).

Therefore, we have
(12)

√
nλ̂1 = S̈(1)−1

n

1√
n

K∑
k=1

∑
i∈Ik

Di − δ

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)
+ op(1).

Under condition (A3), by Taylor expansion, Proposition 1,
Lemma 2, and (12), we have
(13)

√
n
(
θ̂
(1)
mdel − θ1

)
=
√
n

K∑
k=1

∑
i∈Ik

Dip̂i (Yi − θ1)

=
1√
n

K∑
k=1

∑
i∈Ik

Di

δ

Yi − θ1

1 + λ̂�
1 Ĝ

(
Xi, ĝ

(1)
k , ξ̂(1)

) + op(1)

=
1√
n

K∑
k=1

∑
i∈Ik

Di

δ
(Yi − θ1)

− 1√
n

K∑
k=1

∑
i∈Ik

Di

δ
(Yi − θ1) Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)
λ̂1 + op(1)

=
1√
n

K∑
k=1

∑
i∈Ik

Di

δ
(Yi − θ1)

− J̈ (1)�

n S̈(1)−1

n

1√
n

K∑
k=1

∑
i∈Ik

Di − δ

δ
Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)
+ op(1)

=
1√
n

K∑
k=1

∑
i∈Ik

[
Di

δ
(Yi − θ1)

−Di − δ

δ
J̈ (1)�

n S̈(1)−1

n Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)]
+ op(1)

It is easy to give the form of
√
n
(
θ̂
(0)
mdel − θ0

)
in a similar

way:

√
n
(
θ̂
(0)
mdel − θ0

)
=

1√
n

K∑
k=1

∑
i∈Ik

[
1−Di

1− δ
(Yi − θ0)

−Di − δ

1− δ
J̈ (0)�

n S̈(0)−1

n Ĝ

(
Xi, ĝ

(0)
k , ξ̈(0)

)]
+ op(1).

Above results give that

√
n
(
θ̂mdel − θ

)
=

1√
n

K∑
k=1

∑
i∈Ik

[
Di

δ
(Yi − θ1)

−Di − δ

δ
J̈ (1)�

n S̈(1)−1

n Ĝ

(
Xi, ĝ

(1)
k , ξ̈(1)

)
− 1−Di

1− δ
(Yi − θ0)

+
Di − δ

1− δ
J̈ (0)�

n S̈(0)−1

n Ĝ

(
Xi, ĝ

(0)
k , ξ̈(0)

)]
+ op(1).

This completes the proof.
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Proof of Theorem 4

Proof. When r = 1, conditional on (Wi)i∈I
(d)c

k

, the Holder

Inequality gives that

E
[∣∣∣ĝ(d)k (X)− η(d)(X)

∣∣∣ ∣∣∣ (Wi)i∈I
(d)c

k

]
≤
√

E

[(
ĝ
(d)
k (X)− η(d)(X)

)2∣∣∣∣ (Wi)i∈I
(d)c

k

]
.

Therefore, we have E
[∣∣∣ĝ(d)k (X)− η(d)(X)

∣∣∣ ∣∣∣ (Wi)i∈I
(d)c

k

]
→

0 in probability as n → ∞ for k = 1, · · · ,K. Let
G(Xi, η

(d), θd) = η(d)(Xi) − θd. For simplicity, write

ς
(d)
k (Xi) = ĝ

(d)
k (Xi)−η(d)(Xi). It is straightforward to show

that Ĝ

(
Xi, ĝ

(d)
k , ξ̈(d)

)
− G(Xi, η

(d), θd) = ς
(d)
k (Xi) + op(1)

by lemma 1. Following (11), it is easy to verify that
(14)

0 =
1√
n

∑
i∈I

Di − δ

δ
G(Xi, η

(1), θ1)

−
√
n
1

n

∑
i∈I

Di

δ
G(Xi, η

(1), θ1)
2λ̂1 + op(1)

+
1√
n

K∑
k=1

∑
i∈Ik

Di − δ

δ
ς
(1)
k (Xi) +

1√
n

K∑
k=1

∑
i∈Ik

ς
(1)
k (Xi)

2λ̂1

− 2√
n

K∑
k=1

∑
i∈Ik

Di

δ
ς
(1)
k (Xi)G(Xi, η

(1), θ1)λ̂1.

Now, we bound

A =
1√
n

K∑
k=1

∑
i∈Ik

Di − δ

δ
ς
(1)
k (Xi),

B =
1√
n

K∑
k=1

∑
i∈Ik

ς
(1)
k (Xi)

2λ̂1

and

C =
1√
n

K∑
k=1

∑
i∈Ik

Di

δ
ς
(1)
k (Xi)G(Xi, η

(1), θ1)λ̂1,

respectively. Conditional on (Wi)i∈I
(1)c

k

, the mean of

1√
|Ik|

∑
i∈Ik

Di−δ
δ ς

(1)
k (Xi) is zero and the variance is given by

E[(D − δ)2] · E
[
ς
(1)
k (X)2

∣∣∣ (Wi)i∈I
(1)c

k

]
,

which converges to zero in probability as n → ∞. Then
A = op(1) by the Chebyshev’s Inequality and lemma 1. B

vanishes in probability because
√
nλ̂1 = Op(1). For C, the

Cauchy-Schwarz Inequality gives that

C ≤
√
nλ̂1

1

K

K∑
k=1

√
1

|Ik|
∑
i∈Ik

ς
(1)
k (Xi)2

×

√√√√ 1

|Ik|
∑
i∈Ik

(
Di

δ
G(Xi, η(1), θ1)

)2

.

Conditional on (Wi)i∈I
(d)c

k

, the right term of above inequal-

ity converges to 0 in probability as n → ∞; therefore

C = op(1) by lemma 1. Above results give that

√
nλ̂1

=E
[
G(Xi, η

(1), θ1)
2
]−1 1√

n

n∑
i=1

Di − δ

δ
G(Xi, η

(1), θ1)

+ op(1).

Similarly, it is easy to check that

√
nλ̂0

=E
[
G(Xi, η

(0), θ0)
2
]−1 1√

n

n∑
i=1

Di − δ

1− δ
G(Xi, η

(0), θ0)

+ op(1).

Using the above results, Taylor expansion indicates that

√
n
(
θ̂
(1)
mdel − θ1

)
=

1√
n

n∑
i=1

Di

δ
(Yi − θ1)

− 1√
n

n∑
i=1

Di

δ
(Yi − θ1)G(Xi, η

(1), θ1)λ̂1 + op(1)

=
1√
n

n∑
i=1

{
Di

δ
(Yi − θ1)

− Di − δ

δ
E

[
D

δ
(Y − θ1)G(X, η(1), θ1)

]
×E
[
G(X, η(1), θ1)

2
]−1

G(X, η(1), θ1)

}
+ op(1).

Following from

E

[
D

δ
(Y − θ1)G(X, η(1), θ1)

]
=
P(D = 1)

δ
E
[
(Y − θ1)G(X, η(1), θ1)|D = 1

]
=E
[
E [(Y − θ1)|X,D = 1]G(X, η(1), θ1)

]
=E
[
G(X, η(1), θ1)

2
]
,
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we have

√
n
(
θ̂
(1)
mdel − θ1

)
=

1√
n

n∑
i=1

{
Di

δ
(Yi − θ1)−

Di − δ

δ

(
η(1)(Xi)− θ1

)}
+ op(1)

=
1√
n

n∑
i=1

{
Di

δ

(
Yi − η(1)(Xi)

)
+
(
η(1)(Xi)− θ1

)}
+ op(1).

Similarly, when d = 0, it is easy to verify that

√
n
(
θ̂
(0)
mdel − θ0

)
=

1√
n

n∑
i=1

{
1−Di

1− δ

(
Yi − η(0)(Xi)

)
+
(
η(0)(Xi)− θ0

)}
+ op(1).

Therefore, we have

√
n
(
θ̂mdel − θ

)
=

1√
n

n∑
i=1

{
Di

δ

(
Yi − η(1)(Xi)

)
− 1−Di

1− δ

(
Yi − η(0)(Xi)

)
+η(1)(Xi)− η(0)(Xi)− θ

}
+ op(1).

This completes the proof.

Proof of Theorem 5

Proof. Following the proof of Theorem 4, it is easy to verify
that

Ĵ (d)
n =

1

nd

K∑
k=1

∑
i∈I

(d)
k

YiĜ

(
Xi, η

(1), θ1

)
+ op(1)

and

Ŝ(d)
n =

1

n

K∑
k=1

∑
i∈Ik

Ĝ

(
Xi, η

(1), θ1

)2
+ op(1).

Then, some algebra gives

σ̂2
mdel =

1

n

∑
d=0,1

K∑
k=1

∑
i∈I

(d)
k

nd

n
p̂i

{
n

n1
Di(Yi − η(1)(Xi) + θ1

(15)

− θ̂
(1)
mdel) + η(1)(Xi)− θ1 −

n

n0
(1−Di)(Yi

−η(0)(Xi) + θ0 − θ̂
(0)
mdel)− η(0)(Xi) + θ0

}2

+ op(1)

=
1

n2

n∑
i=1

{
Di

δ

(
Yi − η(1)(Xi)

)

− 1−Di

1− δ

(
Yi − η(0)(Xi)

)
+η(1)(Xi)− η(0)(Xi)− θ

}2

+ op(1).

This completes the proof.

SUPPLEMENTARY FILES

The R-code of the modified Newton-Raphson algorithm
for the empirical likelihood optimization problem is avail-
able at http://intlpress.com/site/pub/files/ supp/sii/2022/
0015/0003/SII-2022-0015-0003-s001.zip.
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