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Variable selection for time-varying effects based
on interval-censored failure time data

Kaiyi Chen and Jianguo Sun
∗

Variable selection has recently attracted a great deal of
attention and correspondingly, many methods have been
proposed. In this paper, we discuss the topic when one faces
interval-censored failure time data arising from a model with
time-varying coefficients, for which there does not seem to
exist a method. For the situation, in addition to identify-
ing important variables or covariates, a desired feature of a
variable selection method is to distinguish time-varying co-
efficients from time-independent ones, which also presents
an additional challenge. To address these, a penalized max-
imum likelihood procedure is presented and in the proposed
method, the adaptive group Lasso penalty function and B-
spline functions are used. The approach can simultaneously
select between time-dependent and time-independent co-
variate effects. To implement the proposed procedure, an
EM algorithm is developed, and a simulation study is con-
ducted and suggests that the proposed method works well
in practical situations. Finally it is applied a set of real data
on Alzheimer’s disease that motivated this study.

Keywords and phrases: Adaptive Group LASSO, Cox
model, Interval-censored data.

1. INTRODUCTION

This paper discusses variable or covariate selection when
one faces interval-censored failure time data arising from the
Cox or proportional hazards (PH) model with time-varying
coefficients ([3]). It is well-known that although the standard
PH model is the most commonly used regression model for
failure time data, it has some disadvantages or limitations.
One way to relax these limitations is to allow time-varying
coefficients. An example where this is needed is given by a
medical study on a treatment whose effect may take time to
kick in and also decrease with time due to drug resistance as
with most drugs. It is apparent to be crucial to identify when
and how fast the treatment becomes effective and ineffective
in order to determine optimal treatment strategies among
other purposes ([15]).

The analysis of interval-censored failure time data has
recently attracted a great deal of attention ([2]; [14]). By
interval-censored data, we usually mean that the failure time

∗Corresponding author.

of interest is observed only to belong to an interval instead of
observed exactly. It is easy to see that interval-censored data
include right-censored data as a special case. Many authors
have discussed variable selection for right-censored data un-
der the standard PH model with constant coefficients ([4];
[16]). Several methods have also been developed for variable
selection under the same model but with interval-censored
data ([13]; [19]; [9]). In particular, [24] proposed a broken
adaptive ridge (BAR) regression approach, and [18] gener-
alized the BAR approach to high-dimensional situations and
developed a coordinate-wise optimization algorithm.

Many authors have investigated the analysis of failure
time data with time-varying coefficients ([1]; [11]; [15]).
There also exists limited literature on variable selection for
failure time data with time-varying coefficients ([8]; [22]).
In particular, [6] and [20] investigated the problem under
the PH model. The former considered the use of the adap-
tive group Lasso and group SCAD penalty functions and
discussed the L2 convergence rate of the proposed estima-
tors as well as the sparsity and oracle properties. The lat-
ter developed an adaptive group LASSO method that can
not only identify important variables but also separate the
variables with time-varying and time-independent effects.
In other words, in addition to selecting non-zero or rel-
evant coefficients, their approach can simultaneous select
both time-varying and constant coefficients. However, all
methods mentioned above apply only to right-censored data
and there is no method available for interval-censored data.
In the following, we will generalize the approach given in
[20] to interval-censored failure time data.

The rest of this paper is organized as follows. In Sec-
tion 2, after introducing some notation and the model to
be used throughout the paper, the proposed variable selec-
tion approach will be described. In the proposed penalized
maximum likelihood procedure, the adaptive group LASSO
penalty function will be employed and also we will use
B-spline functions to approximate time-varying coefficient
functions. To implement the proposed procedure, an EM al-
gorithm will be developed in Section 3. Section 4 provides
some results obtained from an extensive simulation study
conducted to assess the finite sample performance and they
suggest that the proposed procedure works well in practice.
In Section 5, we apply it to the interval-censored data aris-
ing from the Alzheimer’s Disease Neuroimaging Initiative
that motivated this study, and Section 6 contains some con-
cluding remarks.
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2. PENALIZED MAXIMUM LIKELIHOOD
VARIABLE SELECTION METHOD

Consider a failure time study that consists of n indepen-
dent subjects and let Ti denote the failure time of interest
associated with subject i. Suppose that for subject i, there
exists a vector of covariates denoted by Xi = (Xi1, .., Xip)

T ,
and one only observes interval-censored data given by D =
{(Li, Ri], Xi}ni=1, where (Li, Ri] denotes the observed or
censored interval to which true failure time Ti belongs. It
is obviously that Li = 0 or Ri = ∞ corresponds to a left-
censored or right-censored observation. In the following, we
will assume that the censoring mechanism behind censor-
ing intervals is independent of the failure time of interest.
That is, we have independent or non-informative interval
censoring ([14]).

To describe covariate effects, we will assume that the fail-
ure time of interest Ti follows the Cox PH model given by

(1) Λ(t|Xi) = Λ0(t) exp[X
T
i β(t)]

in terms of the cumulative hazard function. In the above,
Λ0 denotes an unknown baseline cumulative hazard func-
tion and β(t) is a p-dimensional vector of time-varying coef-
ficients. Define a set of B-spline basis functions {Bl(t), l =
1, . . . , q − 1, q > 1 } with q − 1 degrees of freedom without
intercept on a prespecified time interval [0, τ ]. In the follow-
ing, suppose that β(t) can be approximated or written as
β(t) = ΘF (t), where Θ is an unknown p×q matrix of param-
eters to be estimated and F (t) = {1, B1(t), ..., Bq−1(t)}T . It
follows that one can write each unknown time varying coef-
ficient as βj(t) = ΘjF (t), where Θj denotes the jth row of
Θ, j = 1, . . . , p.

Define θ = vech(Θ), the vectorization of the matrix Θ by
row, and also define X̃T

i = (Xi1, ..., Xi1, ..., Xip, ...Xip)1×pq

and

F̃ (s) = (1, B1(s), ...Bq−1(s), ..., 1, B1(s), ...Bq−1(s))1×pq ,

the corresponding design matrix and B-spline vector, respec-
tively. Then the observed likelihood function has the form

Ln(θ,Λ0) =

n∏
i=1

{
exp

[
−
∫ Li

0

eX
T
i ΘF (s)dΛ0(s)

]

− exp

[
−
∫ Ri

0

eX
T
i ΘF (s)dΛ0(s)

]}

=

n∏
i=1

{
exp

[
−
∫ Li

0

eX̃
T
i �F̃ (s)θdΛ0(s)

]
(2)

− exp

[
−
∫ Ri

0

eX̃
T
i �F̃ (s)θdΛ0(s)

]}
,

where � denotes the component-wise multiplication. For the
variable or covariate selection, we propose to minimize the

negative penalized log likelihood function

(3) Qαn(θ,Λ0) = −ln(θ,Λ0) + P (θ;αn) ,

where ln(θ,Λ0) = log[Ln(θ,Λ0)] and P (θ;αn) denotes a
penalty function that depends on the tuning parameter αn.

Let θj denote the part of θ corresponding to the jth com-
ponent of the covariates, j = 1, ..., p. In the following, we
will consider two adaptive group LASSO (AGLasso) penalty
functions, the combined and separate penalty functions. The
former has the form

(4) P (θ;αn) = αn

p∑
j=1

Ωj ||θj || = αn

p∑
j=1

Ωj ||Θj || ,

where Ωj denotes a weight for group j, which will be taken
to be

(5) Ωj =

√
q

||θ̃j ||

by following [21] and [23]. Here θ̃j denotes an initial, consis-
tent estimator of θj that will be discussed below. It is easy
to see that the weight above tends to put more penalty on
the smaller norm of ||θ̃j ||, and this penalty treats each row
in Θ as a single group without distinguishing whether βj is
time-varying or not.

To describe the separate penalty function, write Θj =
(Θj,1,Θj,−1). Here Θj,1 denotes the component correspond-
ing to the time-independent intercept (overall effect) or the
coefficient of the first component, one, in F (t) and Θj,−1 the
rest of parameters corresponding {B1(t), B2(t), ..., Bq−1(t)}
in F (t). Then the separate penalty function is given by

(6) P (θ;αn) = αn

p∑
j=1

{Ωj1|Θj,1|+Ωj2||Θj,−1||} ,

where Ωj1 and Ωj2 denote the weights that can be calculated
as in (5). Here we break down each βj(t) into two parts,
and if a covariate coefficient is picked out to be nonzero,
it can separate between time-varying coefficients and time-
independent coefficients.

3. PENALIZED EM ALGORITHM

Now we discuss the minimization of Qαn(θ,Λ0) given in
(3), which is not straightforward partly due to the involve-
ment of the unknown function Λ0. For this, we will develop
a penalized EM algorithm by using the technique discussed
in [17] among others. In particular, we will adopt the non-
parametric approach by treating Λ0 as a step function with
nonnegative jumps at the endpoints of the smallest intervals
that bracket the failure times of interest.

Let 0 = t0 < t1 < ..., < tm denote the sequence of time
points consisting of zero and the unique values of {Li >
0, Ri < ∞, 1 = 1, ..., n } and suppose that Λ0 is a step
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function with jump size λk at tk with λk = 0. Then the

likelihood function Ln(θ,Λ0) can be rewritten as

Ln(θ,Λ0) =
n∏

i=1

{
exp

[
−

∑
tk<Li

eX̃
T
i �F̃ (s)θλk

]

− exp

[
−

∑
tk≤Ri

eX̃
T
i �F̃ (s)θλk

]}

=

n∏
i=1

{
exp

[
−

∑
tk<Li

eX̃
T
i �F̃ (s)θλk

]}
{
1− exp

[
−

∑
Li<tk≤Ri

eX̃
T
i �F̃ (s)θλk

]}I(Ri<∞)

(7)

=

n∏
i=1

{
exp

[
−

∑
tk<Li

eX
T
ikθλk

]}
{
1− exp

[
−

∑
Li<tk≤Ri

eX
T
ikθλk

]}I(Ri<∞)

,

where XT
ik = X̃T

i � F̃ (tk).

Let {Wik, i = 1, ..., n, k = 1, ...,m } denote the

independent Poisson random variables with the means

eX
T
i ΘF (s)λk = eX

T
ikθλk. It is easy to see that the likelihood

function above can also be written as

Ln(θ,Λ0) =
n∏

i=1

{
Pr

( ∑
tk≤Li

Wik = 0

)}
{
Pr

( ∑
Li<tk≤Ri

Wik > 0

)}I(Ri<∞)

=
n∏

i=1

{
Pr

∑
tk≤Li

(Wik = 0)

}
{
1− Pr

[ ∑
Li≤tk≤Ri

(Wik = 0)

]}I(Ri<∞)

(8)

=
n∏

i=1

{
exp

[
−

∑
tk<Li

eX
T
ikθλk

]}
[
1− exp

[
−

∑
Li<tk≤Ri

eX
T
ikθλk

]]I(Ri<∞)

.

In other words, the maximization of (7) is equiva-

lent to the maximization of the likelihood function above

based on the data (Li, Ri, Xi,
∑

tk≤Li
Wik = 0, I(Ri <

∞)
∑

Li<tk≤Ri
Wik > 0), i = 1, ..., n, which motivated the

following EM algorithm.

In the EM algorithm, we treat the Wik’s as missing data,

which yields the pseudo-complete-data log likelihood func-

tion

(9)

l∗n =

n∑
i=1

m∑
k=1

I(tk ≤ R∗
i )

[
Wiklog(λkexp{XT

ikθ})

− λkexp{XT
ikθ} − log(Wik!)

]
,

where R∗
i = LiI(Ri = ∞)+RiI(Ri < ∞). Correspondingly,

based on the pseudo-complete-data, the objective function
given in (3) can be rewritten as

(10)

Q∗
αn

(θ) = −
n∑

i=1

m∑
k=1

I(tk ≤ R∗
i )

[
Wiklog(λkexp{XT

ikθ})

− λkexp{XT
ikθ} − log(Wik!)

]
+ P (θ;αn).

In the E-step of the EM algorithm, we need to calculate the
following expectation

E(Wik)

=
λkexp{XT

ikθ}I(Li < tk ≤ Ri, Ri < ∞)

1− exp

{∑
tk≤Li

λkexp{XT
ikθ} −

∑
tk≤Ri

λkexp{XT
ikθ}

} .

(11)

In the M-step of the EM algorithm, with respect to the
baseline jump sizes λk’s, we have the closed-form solution

(12) λk =

∑n
i=1 I(tk ≤ R∗

i )Ê(Wik)∑n
i=1 I(tk ≤ R∗

i )exp{XT
ikθ}

, k = 1, ...,m .

With respect to estimation of the parameter θ, by following
[20], we will modify the iterative group shooting algorithm
(IGSA). More specifically, define

G(θ|Λ0) = −∂l∗n(θ,Λ0)

∂θ
, H(θ|Λ0) = −∂2l∗n(θ,Λ0)

∂θ∂θT
,

the partial gradient vector and the partial Hessian matrix
of θ, respectively. Suppose that the true value (θ̃, Λ̃0) sat-
isfies G(θ̃, Λ̃0) = 0, and let X be the pseudo design ma-
trix defined such that X

T
X is the Cholesky decomposition

of H or H(θ|Λ̃0) = X
T
X. Also define the pseudo response

vector Y = (XT )−1[H(θ|Λ̃0)θ −G(θ|Λ̃0)]. Then the second-
order Taylor expansion of (10) yields the following quadratic
form

(13)
1

2
||Y − Xθ||+ αn

p∑
j=1

Ωj ||θj || ,

which transfers the minimization of (10) to a penalized least
square problem.
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By [21], the necessary and sufficient conditions for θ to
be a solution to the penalized least square (13) are

−X
T
j (Y − Xθ) +

αjθj
||θj ||

= 0, θj �= 0,(14)

|| − X
T
j (Y − Xθ)|| ≤ αj , θj = 0,(15)

where αj = αΩj . Note that the closed-form solution of Yuan
and Lin ([21]) is not applicable here because X is a triangular
matrix but not group-orthonormal. The condition (14) is
equivalent to

(16) Sj =

(
X

T
j Xj +

αjIq
||θj ||

)
θj ,

where Sj = X
T
j (Y − Xθ−j) with θ−j = (θT1 , ..., θ

T
j−1, 0

T ,

θTj+1, ..., θ
T
p )

T )T . This gives the iterative update of θj as

(17) θ
(k)
j =

(
X

T
j Xj +

αjIq

||θ(k−1)
j ||

)−1

Sj .

Let v be an integer, denoting the number of iterations.
Then given the tuning parameter αn, the developed EM
algorithm can be summarized as follows.

• Step 1: Choose the initial estimate θ(0) as discussed

below and set λ
(0)
k = 1/m, k = 1, ...,m.

• Step 2: At the v-th step, calculate the conditional ex-
pectation Ê(Wik|θ(v), λ(v)) given in (11).

• Step 3: Also at the v-th step, update the λk’s by using
(12).

• Step 4: Again at the v-th step, update the first deriva-
tive and the second derivative of the log-likelihood as

G =

n∑
i=1

m∑
k=1

I(tk ≤ R∗
i )Ê(Wik|θ(v), λ(v))

[
Xik

−
∑n

j=1 I(tk ≤ R∗
j )Xjkexp{XT

jkθ
(v)}∑n

j=1 I(tk ≤ R∗
j )exp{XT

jkθ
(v)}

]
,

H = −
n∑

i=1

m∑
k=1

I(tk ≤ R∗
i )Ê(Wik|θ(v), λ(v))

[
S(2)(θ(v))

S(0)(θ(v))
−

(
S(1)(θ(v))

S(0)(θ(v))

)⊗2]
,

where ⊗ means an inner product and S(b)(θ(v)) =∑n
u=1 I(tk ≤ R∗

u)X
⊗b
uk exp{XT

ukθ
(v)}, b = 0, 1, 2.

• Step 5: Update θ by using (17) based on the modified
IGSA.

• Step 6: Repeat Steps 2–5 until the convergence.

For the implementation of the algorithm above, one needs
to choose the initial estimate for θ in Step 1 and a con-
vergence criterion in Step 6. For the former, we suggest to

use the regular maximum likelihood estimate without the
penalty function, which can be obtained by using the R func-
tion survreg() in the package survival, which fits parametric
models to interval-censored data. To check the convergence,
any criterion could be used and a natural one, which will be
used below, is to apply the sum of the absolute differences
of the estimates at two successive iterations.

To apply the variable selection procedure above, it is ap-
parent that one also needs to choose q, the degrees of free-
dom for the B-spline functions, and the tuning parameter
αn. For the former, we suggest to try different values and
compare the obtained results, and more comments on this
will be given below. On the selection of the tuning parame-
ter αn, different methods could be used and in the numerical
studies below, the generalized cross-validation (GCV) crite-
rion will be employed. More specifically, the grid approach
will be used to choose αn that minimizes

GCV (αn) =
−ln(θ)

n[1− p(αn)/n]2
.

In the above, p(αn) = tr{H + αnD)−1H}, which can be
viewed as the number of effective parameters, where D =
diag{diag(Ω1/||Θ1), . . . , diag(Ωp/||Θp)} andH denotes the
second derivative of the log likelihood function.

4. A SIMULATION STUDY

An extensive simulation study was conducted to evaluate
the finite sample performance of the variable selection pro-
cedure proposed in the previous sections. In the study, the
covariates were generated from either the Bernoulli distri-
bution with the probability of success 0.5 independently or
the multivariate normal distribution with mean zero, vari-
ance one and the covariance 0.5(j−k) between the jth and
kth components, j, k = 1, . . . , p. For regression coefficients
β(t), we considered three settings with the non-zero coeffi-
cients given as follows

• Setting 1: β1(t) = t and β2 = 0.5;
• Setting 2: β1(t) = 0.5 + sin(πt2 ) and β2 = 0.5;
• Setting 3: β1(t) = −1 − cos(πt)I(0 ≤ t ≤ 1), β2(t) =

0.5 + sin(π/2t), β3 = 1 and β4 = −1.

Let s denote the number of non-zero coefficients. Then we
have that s = 2 for Settings 1 and 2 and s = 4 for Setting
3.

Given the covariates Xi’s and β(t), we generated the fail-
ure times Ti’s by solving the equations Si(t|Xi, β(t)) = ui,
i = 1, ..., n, where the ui’s were generated independently
from the uniform distribution over (0, 1) and

Si(t|Xi, β(t)) = exp

[
−

∫ t

0

exp(XT
i β(s))dΛ0(s)

]

with Λ0(t) = t. For the generation of interval-censored
data, to mimic clinical studies, we assumed that there exist
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Table 1. Simulation results on the average numbers of true
non-zero coefficient (NTP) and false non-zero coefficients

(NFP) and MSE

n p Setting NTP NFP MSE

400 10 1 1.98 0.02 0.0937
2 1.93 0.03 0.0621
3 4 0.23 0.0204

20 1 2 0.1 0.0941
2 1.94 0.16 0.0634
3 4 0.5 0.0201

600 10 1 2 0.03 0.0405
2 1.98 0.05 0.0163
3 4 0.25 0.0184

20 1 2 0.09 0.0779
2 1.97 0.14 0.0157
3 4 0.48 0.0143

M = 10 or 20 equally spaced examination time points over
(0, τ) and each subject was observed at each of these time
points with probability 0.5. Let τ = 2 in all simulation set-
tings. Then for subject i, the observed interval (Li, Ri] was
determined by setting Li and Ri as the largest, real exami-
nation time point that is smaller than Ti and the smallest,
real examination time point that is greater than Ti, respec-
tively. The results given below are based on n = 400 or 600,
p = 10 or 20, with 100 replications, and the quadratic B-
spline with 5 degree of freedom and equally spaced knots
over time (0, τ) for the non-zero coefficients.

Table 1 presents the results on the covariate selection ob-
tained with the use of the combined penalty function under
the three settings for non-zero coefficients with M = 20 and
discrete covariates. Note that for the situation, it was as-
sumed that we know which coefficients are time-varying and
which ones are constant and all zero coefficients are treated
to be constants. In the table, we calculated the average num-
ber of true non-zero coefficients selected (NTP), the average
number of zero coefficients selected (NFP), and the average
of the mean square errors (MSE). Here the MSE was deter-

mined by the average of [β̂(t)− β(t)]T [β̂(t)− β(t)] over 100
equally spaced time points in (0, τ). The results suggest that
the proposed variable selection approach seems to perform
well and especially, as expected, the performance became
better when the sample size increased.

Figure 1. Estimated curves of the two nonzero time-varying
coefficients under Setting 3 with p = 10.

To give more details about the results presented in Table
1, Table 2 shows the frequency of the selection among 100
replications for each of the 10 covariates under the three
settings with p = 10. Note that for Settings 1 and 2, the
first two covariates have non-zero coefficients and for Setting
3, the first four covariates have non-zero coefficients. Figure
1 displays the estimated curves of the two nonzero time-
varying coefficients under Setting 3 also with p = 10 and
with the black solid line representing the mean estimate.
For comparison, the true curve is also included in the red
solid line. Again these results indicate that the proposed
variable selection and estimation method appears to work
well.

Note that in Table 1, we set M = 20. To see the possible
effect of M on the variable selection, we repeated the study
giving Table 1 except with M = 10 and Table 3 presents the
results on the variable selection under Setting 2. Note that

Table 2. Simulation results on the number of times that each covariate was selected over 100 replications with p = 10

n Setting X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

400 1 100 98 0 0 1 0 0 0 1 0
2 94.17 99 0 1 0 0 0 0 1 1
3 100 100 100 100 3 3 4 3 7 3

600 1 100 100 1 0 1 0 0 1 0 0
2 97.67 100 2 0 1 0 1 1 0 0
3 100 100 100 100 5 4 3 5 3 5
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Table 3. Simulation results on the average numbers of true non-zero coefficient (NTP) and false non-zero coefficients (NFP)
and MSE under Setting 2

M = 10 M = 20
n p NTP NFP MSE NTP NFP MSE

400 10 1.76 0.01 0.0654 1.93 0.03 0.0621
20 1.74 0.02 0.0631 1.94 0.16 0.0634

600 10 1.84 0 0.0566 1.98 0.05 0.0163
20 1.74 0.02 0.0784 1.97 0.14 0.0157

Table 4. Simulation results on the average numbers of true
non-zero coefficient (NTP) and false non-zero coefficients
(NFP) and MSE with multivariate normal covariates and

p = 20

n M Setting NTP NFP MSE

400 10 1 1.99 0.39 0.1896
2 1.97 0.37 0.0362

20 1 2 0.48 0.1027
2 2 0.52 0.0024

600 10 1 2 0.4 0.1565
2 1.99 0.23 0.0397

20 1 2 0.37 0.07626
2 2 0.37 0.0040

Table 5. Simulation results on the average numbers of true
non-zero coefficient (NTP) and false non-zero coefficients
(NFP) and MSE with the separate penalty function and

p = 10

Covariates n M NTP NFP MSE

Binary 400 20 1.98 0.01 0.1757
10 1.99 0.01 0.1815

600 20 1.96 0.05 0.1863
10 1.98 0.02 0.1755

Normal 400 20 1.98 0.10 0.1758
10 2 0.15 0.1772

600 20 1.98 0.05 0.1831
10 1.98 0.15 0.1808

a smaller M means less information about the failure time
of interest. Table 3 suggests that it does have some effects
on NTP but not much on NFP and MSE. Table 4 gives the
results on the variable selection obtained under the same set-
up as with Table 1 except based on the multivariate normal
covariates under Settings 1 and 2 and with p = 20. One
can see that they gave similar conclusions as Tables 1 and
3 and again indicate that the proposed variable selection
procedure works well.

Note that all results given above were obtained with
the use of the combined penalty function. Table 5 gives
the variable selection results obtained with the use of the
separate penalty function and p = 10 for both discrete
and continues covariates. Here instead of the settings used
above, we considered two non-zero coefficients given by

Table 6. Simulation results on the numbers of times that the
INT and TV components were selected with the separate

penalty function and p = 10

Covariates n M X1 X2

INT. TV INT. TV

Binary 400 20 0 100 98 10
10 0 100 96 16

600 20 0 100 99 14
10 0 100 98 10

Normal 400 20 0 100 98 10
10 0 100 98 12

600 20 0 100 100 4
10 0 100 99 4

β1(t) = −1 − cos(πt)I(0 ≤ t ≤ 1) and β2 = 1. One can
see from the table that the results are similar to those given
above based on the combined penalty function. Note that
for the situation, it was assumed that there is no knowl-
edge about the time dependence of covariate effects and all
coefficients were treated to be time-varying. It is expected
that the method can identify the constant coefficients from
the time-varying ones. To see this, Table 6 reports the fre-
quencies that the intercept (INT.) component and the time
varying (TV) component for each of the two nonzero effects
were selected. One can see that the first covariate X1 was
correctly selected to have time-varying effects all the time,
while the second covariate X2 was also correctly selected to
have constant (INT.) effects over 95%.

To further see the results given in Table 5, Figure 2 shows
the estimated curves of the two nonzero coefficients with the
black and red solid lines representing the mean estimate and
the true curve, respectively. One can see that the estimated
β1(t) is reasonably well except near t = 0 as expected and
the estimated β2 is straight lines most of the time as indi-
cated in Table 6. In the simulation study, we also considered
other set-ups, including different true Λ0(t) and different
values for p, s and M , and obtained similar results.

5. ANALYSIS OF THE ALZHEIMER’S
DISEASE NEUROIMAGING INITIATIVE

Now we apply the penalized maximum likelihood vari-
able selection procedure proposed in the previous sections to
the data arising from the Alzheimer’s Disease Neuroimaging
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Figure 2. The red line, black line and blue lines are the true
curve of coefficient, the mean of estimated curve of
coefficient over 100 replicates. The gray lines are 100

replicates. All figures are for normal continues covariates and
M = 20, p = 10.

Initiative (ADNI). It is an on-going multisite longitudinal
study with the primary goal being to investigate if various
possible risk factors, including demographic factors, clinical
factors and biological markers, can be used to measure the
progression to Alzheimer’s disease (AD). In the study, the
participants, recruited from 57 sites in the United States
and Canada, are classified into three groups and by follow-
ing others, we will focus on the subjects in the mild cognitive
impairment (MCI) group. Among others, one variable of in-
terest, the focus here, is the time from the baseline visit to
the AD conversion. Since the participants are only exam-
ined only during their clinical visits, only interval-censored
observations are available for the AD conversion time.

For the analysis, by following others, we will consider
the 310 MCI subjects with the complete information on 25
demographic, clinical and subject’s MRI volumetric data-
related risk factors ([12], [5], [10], [7]). The demographic
factors include gender (1 for male and 0 for female), race
(1 for white and 0 for others), marital status (1 for married
and 0 otherwise), age, years of receiving education (PTE-
DUCAT), and apolipoprotein E genotype (APOE4). The
clinical factors consist of the participant’s AD Assessment
Scale scores of 11 and 13 items (ADAS11 and ADAS13),
the delayed word recall score in ADAS (ADASQ4), the clin-
ical dementia rating scale-sum of boxes score (CDRSB),

the mini-mental state examination score (MMSE), Rey
auditory verbal learning test score of immediate recall
(RAVLT.imediate), the learning ability (RAVLT.learning),
the total number of words that were forgotten in the RAVLT
delayed memory test (RAVLT.forgetting), the percentage
of words that were forgotten in the RAVLT delayed mem-
ory test (RAVLT.perc.forgetting), the participants’ digit
symbol substitution test score (DIGITSCOR), the trails B
score (TRABSCOR), and the functional assessment ques-
tionnaire score (FAQ). The participants’ MRI volumetric
data-related factors include ventricles, hippocampus, whole
brain (WholeBrain), entorhinal, fusiform gyrus (Fusiform),
middle temporal gyrus (MidTemp), and intracerebral vol-
ume (ICV).

To apply the proposed method, we first used the sep-
arate penalty functions and identified three time-varying
coefficients corresponding to RAVLT.immediate, FAQ and
MidTemp. Then we used the combine penalty function with
treating the three coefficients above as time-varying ones
and all other as constant coefficients. Table 7 presents the
selected covariates by the proposed approach and for com-
parison, we also obtained and include the selected covariates
by the same method but assuming that all covariates had
constant effects (ALasso). Here as in the simulation study,
the quadratic B-spline with 5 degrees of freedom was used.
In the table, in addition to the estimated effects, we also
give the estimated standard errors obtained based on the
bootstrap procedure with 200 bootstrap samples.

It can be seen from Table 7 that the proposed method
selected less covariates than the method that assumed that
all covariates had constant effects. However, all of the three
covariates with significant effects based on the latter were
selected by the proposed procedure, which also suggested
that they had time-varying effects. Figures 3–5 display the
three estimated time-varying coefficients along with the 95%
pointwise confidence bands given by the bootstrap proce-
dure based on 200 bootstrap samples. They suggest that
both covariates RAVLT.immediate and MidTemp clearly
seem to indeed have significantly negative time-varying ef-
fects and the largest effect of RAVLT.immediate occurred
earlier than that of MidTemp. We also performed the analy-
sis with the use of the B-spline with other degrees of freedom
and obtained similar results.

6. CONCLUDING REMARKS

This paper discussed variable selection for interval-
censored failure time data arising from Cox model with
time-varying coefficients. For the problem, a penalized max-
imum likelihood procedure was presented and in the pro-
posed method, the adaptive group Lasso penalty function
and B-splines were used. For the implementation of the pro-
cedure, an innovated EM algorithm was developed with the
use of Poisson random variables in data augmentation. To
assess the performance of the proposed approach, an exten-
sive simulation study was conducted and indicates that the
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Table 7. The selected factors along with their estimated effects for the ADNI based on the proposed method (AGLasso) and
the ALasso approach

Covariates ALasso AGLasso
Coef. Std.Err Coef. Std.Err

White 0.9314 0.6965 1.0435 2.649
AGE −0.1954 0.1501 −0.2334 0.7801

APOE4 −0.1954 0.1501 −0.1763 0.2318
DAS13 0.2727 0.9394 0.1291 0.3551

RAVLT.immediate −0.5024 0.1646 See Figure 3
RAVLT.perc.forgetting 0.0539 0.2584

DIGITSCOR −0.0463 0.1503
FAQ 0.3404 0.0994 See Figure 4

Entorhinal −0.2450 0.1359 −0.1455 0.1393
MidTemp −0.4816 0.1628 See Figure 5

ICV 0.1087 0.2889

Figure 3. The estimated time-varying effects for
RAVLT.immediate.

Figure 4. The estimated time-varying effects for FQA.

approach works well for practical situations. Also it was ap-
plied to an AD study to help identifying some time-varying
risk factors for the AD conversion.

In the proposed procedure, two penalty functions, com-
bined and separate penalty functions, were provided. For
a practical problem, as discussed in Section 5, we suggest
to first apply the latter on all coefficients to separate time-

Figure 5. The estimated time-varying effects for MidTem.

varying coefficients from time-independent coefficients. The
combined penalty function is then employed to provide more
accurate estimation results. Also in the proposed approach,
for simplicity, we only considered time-independent covari-
ates and treated the baseline cumulative hazard function
Λ0(t) as a step function. It is straightforward to generalize
the presented method to the situation with time-dependent
covariates but the implementation would be more complex.
On estimation of Λ0(t), instead of treating it as a step func-
tion, one could also employ B-spline functions to approxi-
mate it as with time-varying coefficients. The method pre-
sented above will still be valid with some minor modifica-
tions.
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