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Estimation of conditional average treatment
effect by covariates balance methods

Jun Wang and Changbiao Liu
∗

Conditional average treatment effects estimation is one
of the crucial mainstays in observational studies. The con-
ditional average treatment effect is defined as a functional
parameter which is used to describe the variation of average
treatment effect condition on some covariates. Based on the
unconfoundedness assumption, we propose the covariates
balance method to estimate the propensity score, and the
estimated propensity score is applied to the non-parametric
method to estimate the conditional average treatment ef-
fect. The proposed method is robust and superior to the
parametric approach. The proposed method has a smaller
RMSE than the true method when the propensity score
model is correct specified. Meanwhile, compared with the
kernel method, the proposed method is much more com-
putationally efficient. The proposed estimator is consistent
and asymptotic under some regularity conditions. Finally,
we apply the proposed method to estimate the effect of ma-
ternal smoking on low birth weight infants given the age of
mothers.

Keywords and phrases: Conditional average treatment
effects, Covariates balance, Heterogeneity, Propensity score,
Unconfoundedness.

1. INTRODUCTION

Although the individual treatment effect is heterogeneous
in the population, the average treatment effect (ATE) in the
population is still identifiable and estimable (see, Rosen-
baum and Rubin 1983, Hahn 1998) when the treatment as-
signment is unconfounded given the observed covariates X.
Given the heterogeneity of individual treatment effects, it
may also be of interest to estimate the curve of the aver-
age treatment effect given some covariates, we call the value
of average treatment effects given some covariates as condi-
tional average treatment effects (CATE). For example, if the
covariates is discrete (gender), the researchers may be sep-
arately concerned about estimating the average treatment
effect given male or female, if the covariates is continuous
(age), researchers are interested in estimating the average
treatment effect at a particular age or specific age interval.

Many researchers define CATE as the average treatment
effect at a certain point X1 = x1. In this case, CATE(x1)
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represents the conditional mean of the treatment effect of
any point x1 ∈ X1, where X1 denotes the support of X1, and
we consider that the changes of CATE(x1) as x1 changes.
In this paper, we mainly consider the case that X1 is con-
tinuous.

Hahn(1998), Heckman, Ichimura and Todd (1997, 1998)
introduced CATE(x) as the first stage of the ATE estimator.
Robins and Ritov (1997), Angrist and Hahn (1999), Heck-
man and Vytlacil (2005) discussed the identification and
estimation of CATE(x). Although Khan and Tamer (2010)
explicitly mentions CATE(x), however, their focus was on
ATE. Lee and Whang (2009) and Hsu (2012) considered es-
timating and testing hypotheses about CATE(x) when X
is absolutely continuous, and gave the detailed asymptotic
theory. MaCurdy, Chen and Hong (2011) also discussed the
identification and estimation of CATE(x). Abrevaya, Hsu
and Lieli (2015) extended the concept of CATE to a techni-
cally challenging situation that the conditioning covariates
X1 are continuous and form a strict subset of X. As the
unconfoundedness assumption will not generally hold con-
ditional on X1 alone. The estimation process is to estimate
CATE as a function of X, and then calculate the average
of unwanted components by integrating as for the condi-
tional distribution of X(1) given X1, where X(1) denotes the
remaining variable in X after removing X1. However, this
distribution is generally unknown and needs to be estimated.

Abrevaya Hsu and Lieli (2015) proposed to estimate the
CATE by the following two steps. First, the propensity score
that the probability of treatment conditional on X, is esti-
mated either by a kernel-based regression method or by a
parametric model method. In the second step the observed
outcomes are analyzed based on the treatment status and
the inverse of the estimated propensity score, and local av-
erages are computed around points in the support X1, us-
ing another set of kernel weights. (Intuitively, the second
stage can be interpreted as integrating it with respect to
a smoothed estimate of the conditional distribution of the
inverse propensity weighted outcomes given X1.) Particu-
larly, CATE is the conditional average treatment effect given
X1 = x1.

Kang and Schafer (2007), Smith and Todd (2005) showed
that when the estimation of propensity score is even slightly
biased, it may lead to a severe deviation in the estimation of
average treatment effects. Therefore, the estimation of the
propensity score model is wrong, then the CATE is biased.
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In this paper, we propose the estimation of the propensity
score by the covariates balance methods (Imai and Ratkovic
(2014), Wong and Chan (2018), Li et al., (2018), Zhao
(2019)). The method is robust to mild misspecification of
the propensity score model. Under some regularity condi-
tions, the proposed estimator is shown to be consistent and
asymptotically normal. The simulation results show that
the covariates balance method is superior to the paramet-
ric method when the propensity score model is misspecified.
The covariates balance method has a smaller RMSE than
the true method when the propensity score model is cor-
rectly specified, and has less computational cost than the
kernel method, the proposed method is not affected from
the dimensional changes of X.

The rest of the article is organized as follows. Section
2 introduces the CATE parameter and discusses its iden-
tification and estimation. The asymptotic properties of the
proposed estimators are developed. In Section 3, simulation
studies will be conducted to evaluate the performance of the
proposed estimator. In Section 4, we apply our method to
estimate the effect of maternal smoking during pregnancy
on low birth weight infants given the age of mothers. Con-
clusions will be made in Section 5. Proofs of theorems will
be presented in the Appendix.

2. THE PROPOSED ESTIMATOR

2.1 The formal framework and estimator

Let D be a binary treatment variable in a population of
interest with D = 1 if the individual receives active treat-
ment and D = 0 if the individual receives control treatment.
Y (1) and Y (0) are potential outcomes given treatment sta-
tus D = 1 and D = 0, respectively. Let X be k dimensional
covariates with k ≥ 2. Suppose that a random sample of n
i.i.d. units (Yi, Xi, Di) (i = 1, · · · , n) are observed, where
Yi = DiYi(1)+(1−Di)Yi(0). In order to identify CATE, we
give the following assumption.

Assumption 1 (Unconfoundedness). D is independent of
(Y (0), Y (1)) conditional on X, i.e., (Y (1), Y (0)) ⊥ D | X.

Assumption 1 means that it rules out the existence of un-
observed confounding factors that affect treatment variable
and are also correlated with the potential outcomes, namely
D is exogenous. It is a standard identification assumption in
the treatment effect literature (Rosenbaum and Rubin 1983,
Hirano et al., 2003).

The propensity score is defined as the probability of treat-
ment variable conditional on X, i.e.,

π(X) = P (D = 1 | X).

For example, a popular choice is the logistic model

(1) πβ(X) =
exp(XTβ)

1 + exp(XTβ)
.

where β is a k-dimensional vector of unknown parameters.

Assumption 2 (Overlap). p
¯
≤ π(X) ≤ p̄ almost surely, for

some p
¯
> 0 and p̄ < 1.

Assumption 2 implies that the population includes
treated and untreated units for almost all values of X. As-
sumption 1 and 2 are often referred to as “strong ignorabil-
ity” assumption. It means that adjusting for X is sufficient
to eliminate all confounding factors.

Let X1 ∈ R
� be a strict subset of X ∈ R

k, 1 ≤ � < k, X
is absolutely continuous. The conditional average treatment
effect (CATE) given X1 = x1 is defined as

τ(x1) = E[Y (1)− Y (0) | X1 = x1].

Under the assumption 1 and 2, τ(x1) can be written as

τ(x1) = E
[
E[Y | D = 1, X]− E[Y | D = 0, X] | X1 = x1

]
,

(2)

or

(3) τ(x1) = E

[
DY

π(X)
− (1−D)Y

1− π(X)
| X1 = x1

]
.

The CATE can be identified and estimated by Equation (2)
and (3). Two regression functions require being estimated in
Equation (2) and the propensity score model need to be es-
timated in Equation (3). In this paper, we mainly consider
the case (3), and the estimation of propensity score mod-
els may suffer from dimensionality disasters (nonparametric
case) and model misspecification (parameter case). For ex-
ample, Abrevaya, Hsu and Lieli (2015) proposed a nonpara-
metric method (kernel estimation) or parameter models(eg,
logit, probit model) to estimate propensity score models. We
expand the result of Abrevaya Hsu and Lieli (2015). Kang
and Schafer (2007), Smith and Todd (2005) indicated that
the propensity score model plays an important role in es-
timating ATE, the ATE estimator would face a significant
deviation for the incorrect estimation of propensity score
models. Estimate the β by maximum likelihood estimator
(MLE), and it implies the first order condition is

1

n

n∑
i=1

sβ(Di, Xi) = 0,(4)

sβ(D,X) =
Dπ

′

β(X)

πβ(X)
−

(1−D)π
′

β(X)

1− πβ(X)
,

where π
′

β(X) = ∂πβ(X)/∂β. However, the main challenge
of this standard method is that πβ(X) may be misspecified,
which lead to the biased estimators for the parameters β.
Inspired by Imai and Ratkovic (2014), we operationalize the
covariates balance method to estimate the propensity score
to tackle the above-mentioned problem, namely,

E

{
DX̃

πβ(X)
− (1−D)X̃

1− πβ(X)

}
= 0,
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where X̃i = f(Xi) is an M-dimensional vector-valued mea-
surable function of Xi specified by the researcher. Its sample
form is

1

n

n∑
i=1

wβ(Di, Xi)X̃i =
1

n

n∑
i=1

gβ(Di, Xi),(5)

wβ(Di, Xi) =
Di − πβ(Xi)

πβ(Xi)(1− πβ(Xi))
.

When the moment condition is exactly identifiable, the mo-
ment estimation can be used to estimate the parameter; if
the moment condition is over-identifiable, the GMM meth-
ods (Hansen 1982) can be used to estimate the parameter,
namely

(6) β̂GMM = argmin
β∈Θ

ḡβ(D,X)TΣ−1
β (D,X)ḡβ(D,X),

where ḡβ(D,X)T =

(
sβ(D,X)

wβ(Di, Xi)X̃i

)
, Σβ(D,X) is the

consistent covariance estimator of ḡβ(Di, Xi),

Σβ(D,X) =
1

n

n∑
i=1

E{ḡβ(Di, Xi)ḡβ(Di, Xi)
T | Xi}.

The estimated propensity score model satisfies the fol-
lowing assumptions.

Assumption 3 (Estimated propensity score). π̂(Xi) is es-
timated by the covariates balance methods, and satisfies
supx∈X |π̂(x)− π(x)| = Op(n

−1/2) for all x ∈ X .
Given the estimator of propensity score π̂(X), we esti-

mate τ(x1) by the following formal

(7) τ̂(x1) =

1
nh�

∑n
i=1

(
DiYi

π̂(Xi)
− (1−Di)Yi

1−π̂(Xi)

)
K
(
X1i−x1

h

)
1

nh�

∑n
i=1 K

(
X1i−x1

h

) ,

the kernel-based local average about x1, where K(·) is a ker-
nel function and h is a smoothing parameter (bandwidth).

2.2 Asymptotic properties of τ̂ (x1)

We estimate the propensity score model by the covari-
ates balance methods. We derive the asymptotic properties
of the CATE estimator based on the following regularity
conditions.

Assumption 4 (i) X denotes the support of X,
supx∈X E[Y (d)2 | X = x] < ∞ for d = 0, 1; (ii) the den-
sity of X f(x) is bound away from 0 on X , the functions
md(x) = E[Y (d) | X = x] for d = 0, 1, π(x) and f(x) are
(s ≥ k) times continuously differentiable on X .

Assumption 5 (Kernels). K(u) is a kernel of order s, is
symmetric around zero, and is s times continuously differ-
entiable.

Assumption 6 (Bandwidths). The bandwidths h satisfies
the following conditions as n → ∞:
(1) h → 0 and nh� → ∞;
(2) nh�h2s → 0.

Define the function ψ(x, y, d) is

ψ(x, y, d) =
dy

π(x)
− (1− d)y

1− π(x)
.

The following theorem states our main theoretical result.

Theorem 1. Suppose that Assumptions 1–6 are satisfied,
and

∫
|K(u)|2+δdu < ∞ for some δ > 0. For each point x1

in the support of X1, we have
(a),

√
nh�(τ̂(x1)− τ(x1)) =

1√
nh�

1

f1(x1)

×
n∑

i=1

(
ψ(Xi, Yi, Di)− τ(x1)

)
K

(
X1i − x1

h

)
+ op(1),

and (b),

√
nh�(τ̂(x1)− τ(x1))

d−−→ N

(
0,

‖K‖22σ2
ψ(x1)

f1(x1)

)
,

where f1(x1) is the probability density function of x1,

‖K‖2 =
( ∫

K(u)2du
)1/2

, and σ2
ψ(x1) = E[(ψ(X,Y,D) −

τ(x1))
2 | X1 = x1].

3. SIMULATION STUDY

In this section we present a simulation study aim at eval-
uating the finite sample properties of τ̂(x1) in Section 2.1.

First, the data generation process in the similar way as
Imai and Ratkovic (2014) and Kang and Schafer (2007).
Considering two cases: k = dim(X) ∈ {2, 4}. In the first
place, let X = (X1, X2) be given by

X1 = ε1, X2 = ε2

where ε1 ∼ unif[−0.5, 0.5], ε2 ∼ N(0, 1). The potential out-
comes are generated as follow

Y1 = X1(1 + 2X1)
2(−1 +X1)

2 + 2.5X2 + v1,

Y (0) = 2.5X2 + v0,

where vd ∼ N(0, 0.252) d = 0, 1, and is independent with
ε1, ε2. Therefore the CATE(x1) is

CATE(x1) = E[Y (1) | X1 = x1]− E[Y (0) | X1 = x1]

= x1(1 + 2x1)
2(−1 + x1)

2.

The propensity score is generated as follows

P (D = 1 | X) =
exp(X1 +X2)

1 + exp(X1 +X2)
.
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We estimate CATE(x1), x1 ∈ {−0.4,−0.2, 0, 0.2, 0.4}, for
the samples size n = 500 and n = 2000. The following four
scenarios are considered:
(i). The true propensity score is a logistic regression with
X, which is denoted as True;
(ii). The incorrect propensity score model is a logistic re-
gression with X∗

i = (X∗
1i, X

∗
2i) being the linear predictor;

where X∗
1i = exp(X1i/2), X

∗
2i = X2i/(1 + exp(X1i)) + 10,

which is denoted as Misspecification;
(iii). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect toX∗

i , which
is denoted as CBPS;
(iv). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect to Xi, which
is denoted as CBPS1. The simulation result is reported in
Table 1–2 for the number of Monte Carlo repetitions is 1000.
As shown in Table 1–2, we find that the inverse probabil-
ity weighted estimator encounter a large bias and RMSE
when the propensity score model is misspecified. The CBPS
estimator has a much lower RMSE for the true propensity
score estimator, and the true propensity score model is stan-
dard logistic regression with Xi being the linear predictor,
the CBPS method reduces RMSE at the expense of some
increase in bias. Therefore the CBPS estimator is also com-
parable with the true propensity score estimator. The true
propensity score estimator is a maximum likelihood estima-
tor, while the CBPS estimator is a moment estimator. In
general, the maximum likelihood estimator makes stricter
assumptions than the moment estimator and is thus typi-
cally less robust. The covariates balance method is superior

to the parametric method for the propensity score model
is misspecified. Moreover, the covariates balance method is
robust for the specification of propensity score models.

Next, Abrevaya et al. (2015) considered that CATE was
estimated by estimating propensity scores by nonparametric
methods, which it suffers from the curse of dimensionality
when the dimension of X is large. To investigate the impact
of the curse of dimensionality on the covariates balancing
method, we also consider the following modification to the
DGP: let dim(X) = 4, namely, X = (X1, X2, X3, X4)

X1 = ε1, X2 = ε2, X3 = ε3, X4 = ε4,

where ε1 ∼ unif[−0.5, 0.5], εi ∼ N(0, 1), i = 2, 3, 4. The
potential outcome is

Y (1) = X1(1 + 2X1)
2(−1 +X1)

2 + 1.5X2 + 1.5X3

+ 1.5X4 + v1,

Y (0) = 1.5X2 + 1.5X3 + 1.5X4 + v0,

where vd ∼ N(0, 0.252), d = 0, 1 and is independent of
ε1, ε2, ε3, ε4. The propensity score is

π(X) =
exp

(
0.5(X1 +X2 +X3 +X4)

)
1 + exp

(
0.5(X1 +X2 +X3 +X4)

) .
We estimate CATE(x1), x1 ∈ {−0.4,−0.2, 0, 0.2, 0.4}, for

the samples size n = 500 and n = 2000. The following four
scenarios are considered:

Table 1. Estimation the CATE by the four methods for n = 500 and 1000 repetitions with dim(x) = 2

Parameter True Misspecification CPBS CBPS1
x1 Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

h = 0.102n−1/9 = 0.044
0.4 0.46656 0.061 0.763 0.763 2.027 0.476 2.082 0.519 0.556 0.760 0.130 0.651 0.664
0.2 0.25088 0.002 0.666 0.667 2.039 0.469 2.093 0.403 0.569 0.697 0.189 0.616 0.644
0 0 0.087 0.671 0.670 2.021 0.467 2.074 0.193 0.608 0.638 0.166 0.618 0.639

-0.2 -0.10368 -0.023 0.880 0.879 2.026 0.489 2.084 -0.022 0.744 0.744 0.161 0.691 0.709
-0.4 -0.03136 0.064 0.746 0.747 2.008 0.489 2.066 -0.161 0.734 0.751 0.217 0.649 0.684

h = 0.067n−1/9 = 0.029
0.4 0.46656 -0.046 0.969 0.970 2.030 0.576 2.110 0.517 0.684 0.857 0.121 0.819 0.828
0.2 0.25088 0.034 0.846 0.847 2.030 0.587 2.113 0.398 0.721 0.823 0.182 0.788 0.808
0 0 0.013 0.854 0.853 2.019 0.585 2102 0.196 0.771 0.795 0.169 0.785 0.802

-0.2 -0.10368 -0.039 1.128 1.128 2.021 0.603 2.109 -0.040 0.967 0.967 0.144 0.889 0.900
-0.4 -0.03136 0.065 0.922 0.923 2.017 0.592 2.102 -0.150 0.935 0.946 0.230 0.811 0.843

Table 2. Estimation the CATE by the four methods for n = 2000 and 1000 repetitions with dim(x) = 2

Parameter True Misspecification CPBS CBPS1
x1 Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

h = 0.102n−1/9 = 0.044
0.4 0.46656 0.016 0.401 0.401 2.070 0.264 2.087 0.510 0.309 0.434 0.073 0.379 0.386
0.2 0.25088 -0.018 0.369 0.369 2.022 0.260 2.039 0.296 0.317 0.434 0.039 0.360 0.362
0 0 -0.003 0.390 0.390 2.019 0.247 2.034 0.095 0.369 0.458 0.054 0.380 0.384

-0.2 -0.10368 0.005 0.412 0.412 2.036 0.262 2.053 -0.134 0.438 0.458 0.064 0.398 0.403
-0.4 -0.03136 0.007 0.406 0.406 1.973 0.259 1.990 -0.374 0.464 0.596 0.066 0.382 0.387

h = 0.067n−1/9 = 0.029
0.4 0.46656 0.023 0.504 0.505 2.078 0.318 2.102 0.518 0.380 0.642 0.081 0.476 0.483
0.2 0.25088 -0.018 0.464 0.465 2.019 0.321 2.102 0.295 0.397 0.494 0.038 0.452 0.453
0 0 -0.015 0.490 0.490 2.011 0.303 2.034 0.084 0.461 0.469 0.043 0.475 0.477

-0.2 -0.10368 0.007 0.524 0.523 2.037 0.325 2.062 -0.131 0.558 0.573 0.066 0.504 0.509
-0.4 -0.03136 0.009 0.510 0.510 1.974 0.320 1.999 -0.372 0.594 0.701 0.068 0.481 0.486
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(i). The true propensity score model is a logistic regression
with X, which is denoted as True;
(ii). The incorrect propensity score model is a logistic regres-
sion with X∗ = (X∗

1 , X
∗
2 , X

∗
3 , X

∗
4 ) being the linear predictor,

where X∗
1i = exp(X1i/2), X

∗
2i = X2i/(1 + exp(X1i)) + 10,

X∗
3i = (X1iX3i/25 + 0.6)3, X∗

4i = (X1i +X4i + 20)2, which
is denoted as Misspecification;
(iii). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect toX∗

i , which
is denoted as CBPS;
(iv). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect to Xi, which
is denoted as CBPS1. The simulation result is reported in
Table 3–4 for the number of Monte Carlo repetitions is 1000.
We can observe that the misspecified estimator encounter
a greater bias and RMSE than CBPS methods when the
propensity score model is misspecified, the CBPS can yield
robust estimator of conditional average treatment effects.
The covariates balancing method does not encounter the
curse of dimensionality from Table 3–4. In other words, the
covariates balancing method can still be used to estimate
the propensity score when the dimensional ofX is large. The
CBPS estimator has a much lower RMSE than the propen-
sity score estimator that the propensity score is standard
logistic regression with Xi being the linear predictor, and
the CBPS reduces RMSE at the expense of some increase
in bias.

Wong and Chan (2018) proposed a method to control
the covariates functional balance over a reproducing-kernel

Hilbert space (Aronszajn, 1950), which is unlike regression
splines, smoothing splines, it did not require preselection of
the number of knots and their locations. This method can
estimate the individual effect Yi(1) − Yi(0) by the covari-
ates functional balance weight. Thus, the conditional aver-
age treatment effect can be estimated by (7). In the following
simulation, we also consider the following the DGP which
is similar to Abrevaya et al. (2015) and Imai and Ratkovic
(2014):

X1 = ε1, X2 = ε2, X3 = ε3, X4 = ε4,

here εi ∼ iid unif[−0.5, 0.5], i = 1, 2, 3, 4. The potential out-
come is

Y (1) = X1(1 + 2X1)
2(−1 +X1)

2 + 1.5X2 + 1.5X3

+ 1.5X4 + v1,

Y (0) = 1.5X2 + 1.5X3 + 1.5X4 + v0,

vd ∼ N(0, 0.252), d = 0, 1 and is independent of εi, i =
1, 2, 3, 4. The propensity score is

π(X) =
exp

(
0.5(X1 +X2 +X3 +X4)

)
1 + exp

(
0.5(X1 +X2 +X3 +X4)

) .
We estimate CATE(x1), x1 ∈ {−0.4,−0.2, 0, 0.2, 0.4} by

the following methods:
(i). The true propensity score model is a logistic regression
with X, which is denoted as True;

Table 3. Estimation the CATE by the four methods for n = 500 and 1000 repetitions with dim(x) = 4

True Misspecification CPBS CBPS1
x1 Paremeter Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

h = 0.102n−1/13 = 0.044
0.4 0.46656 -0.013 0.599 0.598 2.041 0.519 2.106 0.930 0.448 1.032 0.203 0.537 0.574
0.2 0.25088 0.001 0.601 0.601 1.666 0.470 1.730 0.908 0.457 1.016 0.222 0.528 0.573
0 0 0.009 0.587 0.587 1.356 0.444 1.427 0.873 0.457 0.985 0.232 0.527 0.575

-0.2 -0.10368 0.011 0.619 0.619 1.099 0.429 1.180 0.826 0.468 0.949 0.239 0.537 0.587
-0.4 -0.03136 0.010 0.660 0.660 0.840 0.465 0.960 0.779 0.502 0.927 0.235 0.583 0.628

h = 0.067n−1/9 = 0.029
0.4 0.46656 -0.006 0.731 0.730 2.060 0.618 2.151 0.938 0.544 1.084 0.210 0.657 0.689
0.2 0.25088 -0.009 0.775 0.774 1.655 0.581 1.754 0.899 0.582 1.071 0.212 0.677 0.709
0 0 -0.009 0.750 0.750 1.336 0.555 1.446 0.855 0.578 1.032 0.214 0.677 0.709

-0.2 -0.10368 0.009 0.794 0.794 1.096 0.545 1.224 0.822 0.596 1.015 0.237 0.686 0.725
-0.4 -0.03136 0.014 0.799 0.798 0.834 0.564 1.006 0.780 0.606 0.988 0.239 0.701 0.740

Table 4. Estimation the CATE by the four methods for n = 2000 and 1000 repetitions with dim(x) = 4

True Misspecification CPBS CBPS1
x1 Paremeter Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

h = 0.102n−1/13 = 0.044
0.4 0.46656 -0.018 0.319 0.319 2.091 0.270 2.108 0.880 0.242 0.913 0.073 0.304 0.312
0.2 0.25088 -0.004 0.319 0.319 1.670 0.247 1.688 0.838 0.252 0.875 0.087 0.305 0.317
0 0 0.013 0.317 0.317 1.364 0.231 1.383 0.796 0.252 0.835 0.105 0.304 0.322

-0.2 -0.10368 0.007 0.322 .0322 1.112 0.229 1.135 0.745 0.258 0.788 0.100 0.310 0.326
-0.4 -0.03136 0.002 0.341 0.340 0.841 0.241 0.874 0.682 0.276 0.735 0.095 0.323 0.337

h = 0.067n−1/9 = 0.029
0.4 0.46656 -0.009 0.390 0.389 2.108 0.327 2.133 0.889 0.297 0.937 0.082 0.370 0.379
0.2 0.25088 -0.001 0.408 0.408 1.667 0.308 1.695 0.839 0.318 0.897 0.089 0.389 0.399
0 0 0.010 0.403 0.403 1.357 0.284 1.386 0.790 0.314 0.851 0.101 0.385 0.398

-0.2 -0.10368 0.007 0.407 0.407 1.111 0.289 1.148 0.744 0.328 0.813 0.100 0.392 0.405
-0.4 -0.03136 0.010 0.407 0.407 0.841 0.294 0.890 0.684 0.334 0.761 0.103 0.388 0.401
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Table 5. Estimation the CATE by the five methods for n = 1000 and 1000 repetitions with dim(x) = 4

Parameter True Misspecification CPBS CBPS1 Kernel
x1 Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE Bias SE RMSE

h = 0.102n−1/13 = 0.060
0.4 0.46656 -0.018 0.440 0.440 2.076 0.396 2.113 0.904 0.336 0.965 0.129 0.403 0.423 -0.042 0.163 0.168
0.2 0.25088 -0.030 0.444 0.445 1.668 0.326 1.700 0.862 0.328 0.922 0.122 0.397 0.415 0.030 0.169 0.172
0 0 0.009 0.418 0.418 1.366 0.318 1.403 0.830 0.345 0.899 0.156 0.399 0.428 0.533 0.347 0.635

-0.2 -0.10368 0.024 0.428 0.428 1.119 0.315 1.163 0.796 0.348 0.869 0.172 0.405 0.440 0.055 0.199 0.206
-0.4 -0.03136 -0.011 0.481 0.481 0.840 0.332 0.903 0.718 0.358 0.803 0.142 0.436 0.458 -0.036 0.210 0.213

h = 0.067n−1/13 = 0.039
0.4 0.46656 -0.011 0.537 0.537 2.092 0.468 2.144 0.911 0.409 0.923 0.135 0.494 0.512 -0.055 0.307 0.311
0.2 0.25088 -0.044 0.583 0.584 1.656 0.405 1.705 0.852 0.417 0.861 0.110 0.510 0.521 -0.012 0.334 0.334
0 0 0.002 0.539 0.539 1.356 0.397 1.413 0.820 0.439 0.837 0.148 0.512 0.533 0.598 0.482 0.768

-0.2 -0.10368 0.017 0.555 0.555 1.111 0.395 1.180 0.789 0.439 0.813 0.164 0.522 0.547 0.013 0.377 0.377
-0.4 -0.03136 0.024 0.155 0.157 0.091 0.235 0.252 0.082 0.215 0.215 0.037 0.144 0.148 0.020 0.122 0.123

(ii). The incorrect propensity score model is a logistic regres-
sion with X∗ = (X∗

1 , X
∗
2 , X

∗
3 , X

∗
4 ) being the linear predictor;

where X∗
1i = exp(X1i/2), X

∗
2i = X2i/(1 + exp(X1i)) + 10,

X∗
3i = (X1iX3i/25 + 0.6)3, X∗

4i = (X1i +X4i + 20)2, which
is denoted as Misspecification;
(iii). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect toX∗

i , which
is denoted as CBPS;
(iv). The just-identified CBPS estimation with the covari-
ates balancing moment conditions with respect to Xi, which
is denoted as CBPS1;
(v). The method is proposed by Raymond et al. (2018),
which is denoted as Kernel. The simulation result is reported
in Table 5 for the number of Monte Carlo repetitions is 1000
and n = 1000. We find that the covariates balance method
performs well than the parameter method when the propen-
sity score model is misspecified, and the RMSE is small
for the kernel method, however the kernel method reduces
RMSE at the cost of calculation, where the CBPS and kernel
method take 0.4 and 14 seconds to run once, respectively.
As far as the computation is considered parametric methods
are computationally faster than the non-parametric meth-
ods. In general, the covariates balance method is superior to
the parametric method when the propensity score model is
misspecified, computationally faster than the kernel meth-
ods, and is robust for the propensity score models.

4. EMPIRICAL STUDIES

Many studies showed that smoking and drinking is gen-
erally regarded as one of the major modifiable risk factors
for low birth weight, such as Almond et al., (2005), Misra
et al., (2005), Jackson et al. (2007), Walker et al., (2009).
This dataset is considered by Cattaneo (2010) and Wang et
al. (2019), and they considered how to estimate the effect of
maternal smoking during pregnancy on low birth weight.

Many researchers attempted to estimate the effect of ma-
ternal smoking on low birth weight (Currie and Almond,
2011, Cattaneo, 2010, Wang et al., 2019). In this paper, our
goal is to consider how to explore the heterogeneity of this
effect across subpopulations by using the values of some con-
tinuous covariates. In particular, X1 denotes mother’s age,

Table 6. Baseline characteristics of the all, smoker and
nonsmoker

Characteristics All Smoker Nonsmoker
(n = 4642) (n1 = 864) (n0 = 3778)

lbweight 0.060± 0.238 0.110± 0.313 0.050± 0.216
alcohol 0.032± 0.177 0.091± 0.288 0.019± 0.136
mage 26.505±+5.619 25.167± 5.301 26.810± 5.646
medu 12.690± 2.521 11.639± 2.168 12.930± 2.534

nprenatal 10.758± 3.681 9.862± 4.208 10.963± 3.518
prenatal 1.202± 0.508 1.308± 0.630 1.176± 0.473

that is, we are interested in estimating how the expected
smoking effect changes with age, while averaging out all
other confounders.

The variables are included in this analysis: lbweight (the
baby’s weight), mbsmoke (1 if a mother smoked while preg-
nant; = 0 otherwise), alcohol (= 1 if alcohol is consumed
during pregnant; = 0 otherwise), mage (mother’s age), medu
(mother’s education attainment), nprenatal (number of pre-
natal care visits) and prenatal (trimester of first prenatal
care visit). Among the n = 4642 subjects, n1 = 864 mothers
smoked during pregnancy (i.e., mbsmoke = 1), while n0 =
3778 mothers did not smoke during pregnancy (i.e., mb-
smoke = 0). The baseline characteristics of the smoker and
nonsmoker are summarized in Table 6, we can get a straight-
forward conclusion that the covariates are unbalanced be-
tween the treatment groups form Table 6. We estimate the
CATE function over a grid of between the 20–30 years of the
age distribution. We report five different CATE estimators
corresponding to bandwidths h1 = 0.25σ̂, 0.5σ̂, 0.8σ̂, 1σ̂, 2σ̂
for the three methods, where σ̂ is the sample standard de-
viation of X1 (mother’s age).

The results based on various methods are shown in figure
1(a)–1(e) for five different bandwidths.

From the figure 1(a)–1(e), we obtained that the propen-
sity score of parameters methods, with the increase of age,
and the effect of smoking on low birth weight changes from
positive to negative. The reason may be that the propensity
score model is not a logistic model with linear prediction
of observed covariates, but the parametric method is a lo-
gistic model with linear prediction of observed covariates.
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Figure 1. The effect of mothers’ smoking on infant birth weight at a given age, with h = 0.25σ, 0.5σ, 0.75σ, σ, 2σ.

Therefore, it leads to inconsistent results with the existing
literature. The CBPS and Kernel methods with the increase
in age, and the influence of smoking on low birth children
are very significant. Therefore, it indicates that maternal
smoking has a negative influence on infant birth weight, and
that this effect increased with maternal age, this impact be-
comes more prevalent. Mothers are not advised to smoke
while pregnant.

5. CONCLUSION

In this paper, we consider the estimation of the con-
ditional average treatment effect, a functional parameter
which is considered to describe the variation of average
treatment effect conditional on some covariates. We pro-
pose the covariates balance method to estimate the propen-
sity score model, then the nonparametric method is used to
estimate the conditional average treatment effect. The co-
variates balance method performs well than the parametric
method when the propensity score model is misspecified.
That’s because when the propensity score model is mis-
specified, the covariates balance method still considers the
propensity score of covariates balance property. The para-
metric method that the propensity score model is estimated
by maximum likelihood method, the maximum likelihood

method does not satisfy covariates balance property. There-
fore, the covariates balance method utilizes more informa-
tion than MLE method. The covariates balance method
has a smaller RMSE than the parametric method when
the propensity score model is correctly specified, and has
less computational cost than the kernel method. The co-
variates balance method is robust for the misspecification
of propensity score models. The true propensity score es-
timator is a maximum likelihood method estimator, while
the CBPS estimator is a moment estimator. In general, the
maximum likelihood method estimator makes stricter as-
sumptions than the moment estimator, and and the pro-
posed method is not affected from the dimensional changes
of X. The proposed estimator is consistent and asymptot-
ically normal under some regularity conditions. Finally, we
applied the proposed method to estimate the effect of ma-
ternal smoking on low birth weight infants given the age of
mothers. The results showed that maternal smoking has a
negative influence on infant birth weight, and that this effect
increased with maternal age.

In the future, we will consider that the covariates balance
methods to estimate propensity score models was applied to
multiple treatments, panel data and the presence of unob-
served confounding frameworks.
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APPENDIX: PROOF

Let {Wi = (Xi, Yi, Di)}ni=1 are independent and identi-
cally distributed. We consider the case � = 1, and we can
write the proposed CATE estimator as

√
nh(τ̂(x1)− τ(x1)) =

1√
nh

∑n
i=1 K

(
X1i−x1

h

)
1
nh

∑n
i=1 K

(
X1i−x1

h

)
×

[
ψ(Wi, π̂(Xi))− τ(x1)

]
.

As

1

nh

n∑
i=1

K
(X1i − x1

h

)
p−−→ f1(x1),

under the assumptions, we have

1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψ(Wi, π̂(Xi))− τ(x1)

]

=
1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψ(Wi, π(Xi))− τ(x1)

]

=
1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψπ(Wi, π

∗(Xi))
]

× (π̂(Xi)− π(Xi)
)
,

where π∗(Xi) is between π̂(Xi) and π(Xi) and

ψπ(Wi, π
∗(Xi)) = − DiYi

π∗2(Xi)
− (1−Di)Yi

(1− π∗(Xi))2
.

The second term is considered as

1√
nh

∣∣∣∣∣
n∑

i=1

K
(X1i − x1

h

)[
ψπ(Wi, π

∗(Xi))
]

× (π̂(Xi)− π(Xi)
)∣∣∣∣∣

≤
√
nh sup

x∈X
|π̂(x)− π(x)|·

1√
nh

∣∣∣∣∣
n∑

i=1

K
(X1i − x1

h

)[
ψπ(Wi, π

∗(Xi))
]∣∣∣∣∣

where the first factor is op(1) by the Assumption 3 and the
second term is Op(1) by the Assumption 4, 5, 6. Therefore,

1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψ(Wi, π̂(Xi))− τ(x1)

]

=
1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψ(Wi, π(Xi))− τ(x1)

]
+ op(1).

Proof (b), we rewrite

√
nh

(
τ̂(x1)− τ(x1)

)

=
1√
nh

n∑
i=1

K
(X1i − x1

h

)[
ψ(Wi, π(Xi))− τ(x1)

]
+ op(1)

=
1√
nh

1

f1(x1)

n∑
i=1

[
ψ(Wi, π(Xi))− τ(X1i)

]
K
(X1i − x1

h

)(8)

+
1√
nh

1

f1(x1)

n∑
i=1

[
τ(X1i)− τ(x1)

]
K
(X1i − x1

h

)(9)

+ op(1)

It can be easily proved that

E
[(

ψ(Wi, π(Xi))− τ(X1i)
)
Kin

]
= 0,

where we write Kin = K
(

X1i−x1

h

)
to make it explicit that

this quantity depends on n through h. For each n, the ran-

dom variables
{[

ψ(Wi, π(Xi)) − τ(X1i)
]
Kin

}n

i=1
are inde-

pendent and one can apply Lyapunov’s CLT for triangular
arrays to (8) to obtain the asymptotic distribution (Chung
1974, p. 209), namely

1√
nh

1

f1(x1)

n∑
i=1

[
ψ(Wi, π(Xi))− τ(X1i)

]
K
(X1i − x1

h

)
d−−→ N(0, σ2),

where

σ2 = lim
n→∞

E

[
h−1

(
ψ(Wi, π(Xi))− τ(X1i)

)2K
2
(

X1i−x1

h

)
f2
1 (x1)

]
.

Let σ2(u) = E
[(

ψ(Wi, π(Xi))− τ(X1i)
)2

| X1 = u
]
,

σ2 = lim
n→∞

E

[
h−1

(
ψ(Wi, π(Xi))− τ(X1i)

)2K
2
(

X1i−x1

h

)
f2
1 (x1)

]

= lim
n→∞

∫
E

[
h−1

(
ψ(Wi, π(Xi))− τ(X1i)

)2

×K2
(X1i − x1

h

)
/f2

1 (x1) | X1 = u

]
f1(u)du

= lim
n→∞

∫
h−1σ2(u)K2

(u− x1

h

)
/f2

1 (x1)f1(u)du

= lim
n→∞

∫
σ2(x1 + hu)K2(u)/f2

1 (x1)f1(x1 + uh)du

=σ2(x1)

∫
K2(u)duf1(x1)/f

2
1 (x1) =

σ2(x1)
∫
K2(u)du

f1(x1)
.
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Next, the bias term (9) can be written as

Bn =
1√
nh

1

f1(x1)

n∑
i=1

[
τ(X1i)− τ(x1)

]
K
(X1i − x1

h

)

=
1

f1(x1)

1√
nh

n∑
i=1

[
τ(X1i)− τ(x1)

]
K
(X1i − x1

h

)

=
1

f1(x1)

1√
nh

n∑
i=1

εi

=
1

f1(x1)
bn.

where εi =
(
τ(X1i)−τ(x1)

)
K
(

X1i−x1

h

)
, bn = 1√

nh

∑n
i=1 εi.

We should show that bn converges to zero in probability. For
this purpose, we need to show that E[bn] → 0, Varbn → 0
as n → ∞.

First,

E[bn] =(nh)−1/2
n∑

i=1

E[εi] = (nh)1/2E[h−1ε]

=(nh)1/2
∫ (

τ(x1 + hu)− τ(x1)
)

×K(u)f1(x1 + hu)du

=(nh)1/2
(
h2μ2

[
τ (1)f

(1)
1 + τ (2)f1/2

])
+ o(h4)

→ 0, for (nh)1/2h2 → 0.

where τ (i) and f
(i)
1 denote i-th derivative, μ2 =

∫
u2K(u)du.

Because the {εi}ni=1 are i.i.d. we have

Var(bn) = E[b− n2]− E2[bn]

=
1

nh

n∑
i=1

E[ε2i ]−
1

nh
(

n∑
i=1

E[εi])

=
E[ε2]

h
− n

h
E2[ε].

As n → ∞,

E[ε2]

h
=h−1E

[
K2

(X1i − x1

h

)
(τ(X1i)− τ(x1))

]
=

∫ (
τ(x1 + hu)− τ(x1)

)2

K2(u)f1(x1 + hu)du → 0,

and

nE2[ε]

h
=nh

[∫ (
τ(x1 + hu)− τ(x1)

)
K(u)f1(x1 + hu)du

]2

→ 0,

Thus Var(bn) → 0, bn
p−−→ E[bn] → 0, it implying that

bn = 0p(1), Namely

1√
nh

1

f1(x1)

n∑
i=1

[
τ(X1i)− τ(x1)

]
K
(X1i − x1

h

)
= op(1).

Therefore has no bearing on the limit distribution, namely

√
nh(τ̂(x1)− τ(x1))

d−−→ N

(
0,

‖K‖22σ2
ψ(x1)

f1(x1)

)
.

Pagan and Ullah (1999) gave the discussion about higher
order kernels, the proof of the case � > 1 is omitted here.
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