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Local neighborhood-based approach of link
prediction in networks∗

Chunning Wang
†
and Bingyi Jing

Network structure has been widely studied in recent
decades. One particular usage of the network is to repre-
sent the relationship among nodes. Therefore, link predic-
tion plays a crucial role in network analysis. A key issue
of link prediction is to estimate the likelihood of potential
links between nodes in the network. However, the complex
network structure makes such estimation very challenging.
In this paper, we propose a link prediction method based
on nodes’ local neighborhood (LN), which constructs a lo-
cal neighborhood for each node and calculates the likelihood
of connection between nodes based on their neighbors. Fur-
ther, we extend the LN method to solve the link prediction
problems in a network with node covariates and community
structure. Experimental studies on synthetic and real net-
works demonstrate that the performance of our methods is
competitive.

AMS 2000 subject classifications: Primary 62-07; sec-
ondary 91D30.
Keywords and phrases: Network analysis, Link pre-
diction, Local neighborhood, Assortative mixing, Dis-
assortative mixing.

1. INTRODUCTION

Network has been widely employed to describe the in-
teractions and relations between individual units in many
fields, such as social networks, protein–protein interactions,
gene regulatory networks, food webs, and computer net-
works. A network consists of nodes and edges. For example,
in social networks, nodes correspond to people and edges
represent friendships; in biological networks, a node may in-
dicate a gene or a protein while edges stand for regulatory
relationships. The study of networks has attracted much at-
tention in recent years, and a large body of literature demon-
strates the development of this topic [3, 8, 35, 37]. Among
others, a vital problem in network research is link predic-
tion. The aim of link prediction is to estimate the likelihood
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of a link between two unconnected nodes on the basis of the
data of observed links (network structure) and attributes of
nodes (node covariates). We refer to [32, 31, 44, 20] for a
detailed description of link prediction. Generally, two types
of link prediction exist: predicting missing links and pre-
dicting links that may appear in the future [42]. This paper
considers the former.

Link prediction has been extensively applied to various
fields. For example, in online social networks, the system
recommends new friends to users to preserve their loyal-
ties; in biological networks, checking every potential link
between two nodes in protein–protein interaction and gene
regulatory networks is time-consuming and costly. Instead
of blindly checking all possible interactions, link prediction
is able to provide specific targets for future experiments,
hence sharply reducing the experiment cost while achiev-
ing accurate link prediction [32, 52]. In terrorist networks,
link prediction helps determine if the particular individuals
are in a same group even though their interactions are not
directly observed [31].

In recent years, many novel methods have been pro-
posed within their own application scenarios. Among them,
the similarity-based method provides the simplest frame-
work, which is determined by similarity score. A similar-
ity score is assigned for each pair of nodes that are un-
connected in the current network. All non-observed links
are sorted in descending order according to their similar-
ity scores. The higher the similarity scores, the more possi-
ble that the node pairs are connected. The similarity-based
method enjoys several advantages over other approaches.
For example, it is easy to implement with low computation
complexity. Clearly, the similarity score plays a critical role
in the method. It is an infeasible measure and unobserv-
able, which is why the design of similarity score is crucial. A
well-designed similarity score can significantly improve the
effectiveness of the approach [33]. Some methods combine
the attributes of nodes and structure of network to define
the similarity score. However, the data of node attributes are
often hard to obtain. Most existing works design the simi-
larity score index from the network topology. The similarity
indices can be classified into three categories: local similarity
indices, global similarity indices, and quasi-local indices. To
learn more details, readers can refer to the review literature
[31, 32, 44].

Other statistical models have also been proposed. Claus
et al. [11] shows that a hierarchical structure model per-
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forms well in predicting the missing links. However, it suf-
fers from computational complexity. The stochastic block
model (SBM) [24] assumes that nodes are in blocks and
the probability of an edge between two nodes is determined
by the blocks to which they belong. The main challenge in
fitting the SBM model is the estimation of the blocks them-
selves, see [2, 4, 7, 41]. The latent space model (LSM) is
introduced by Hoff et al. [23] for social networks. It mod-
els the probability of a link between nodes depending on
the positions of individuals in a latent space and on their
observed covariates. LSM has been extended in many direc-
tions, including treatment of transitivity, clustering, and ho-
mophily on observed attributes [18, 28]. Recently, a compet-
ing method called the popularity-scaled latent space model
(PSLSM) was proposed on the basis of LSM by Chang et
al. [10]. To address the degree heterogeneity in a large-scale
directed social network, nodes’ popularity index (PI) is con-
sidered for calculating the link probability between nodes.
Unlike other latent space models, PSLSM is simple to im-
plement and has a competitive result for directed networks.
The exponential random graph model [25, 13] incorporates
network statistics such as triangles, k-stars, and degrees in
an exponential family. Another popular model for network
analysis is the exchangeable random graph model, which is
characterized by a nonnegative function f named graphon;
see [51, 46, 12, 39, 16]. The link probability of two nodes is
defined as Pij = f(ui, uj), where ui and uj are latent vari-
ables. These methods always need to make some assump-
tions about graphon. Probabilistic relational models [15],
probabilistic entity relationship model [21], and stochastic
relational model [48] are some mainstream methods of prob-
abilistic models, which aim to extract the structure from the
observed network and then predict the missing links via the
learned model [32]. In addition to the network structure, the
probabilistic models also require information about node at-
tributes, thereby limiting their applications to a certain ex-
tent [40]. Despite these achievements, how to design effective
and efficient algorithms is still a big challenge.

As mentioned above, most link prediction methods rely
on the assumption that those similar nodes are more likely
to be connected with each other. The assumption may be
appropriate for networks of assortative mixing. For exam-
ple, in social networks, people tend to affiliate with those
who have similar background and interests with them, such
as age and income level. The assumption, however, is chal-
lenged by disassortative networks, in which no evidence
shows the difference between the numbers of connections
among the analogous nodes and among the non-analogous
nodes. For example, predators do not typically feed on each
other in a food web. Recently, Zhao et al. [52] proposed a
link prediction model for partially observed networks (LP-
PON). They assume that similar node pairs have similar
link probabilities [52]. This method does not need the as-
sumption that similar nodes are more likely to be connected
with each other. Newman and Leicht [38] found that nodes

can be clustered according to the similarity of the connec-
tion pattern between them, where they also provided some
reasons for the importance of connection patterns in net-
work analysis. More recently, Zhang et al. [51] proposed a
novel neighborhood smoothing (NBS) to estimate the un-
derlying probability matrix whose elements represent the
possibility of links among nodes. Inspired by the works
of [38, 51, 52], in this paper, we propose a new approach
named local neighborhood-based score index (LN) to solve
the aforementioned problems. Different from the existing ap-
proaches, this approach involves forming a group for each
node that consists of its local neighbors1, and then calcu-
lates the score between nodes on the basis of their local
neighbors. The proposed method has the following advan-
tages. First, it constructs a new mechanism of link predic-
tion on the basis of network topology. The information of
the connection pattern between nodes is fully maximized by
constructing the neighborhood set. Second, it is obviously
applicable to both assortative and disassortative networks.
Third, the LN method improves the accuracy for link predic-
tion nearly without increased complexity. The methodology
is illustrated and the performance of the proposed predic-
tion methods is proven by a numerical experiment based on
simulation network and real network datasets in Section 4.

The rest of this paper is organized as follows: The link
prediction problem and some similarity indices that will be
used in the paper are stated in Section 2. The proposed
prediction method (LN) is provided in Section 3. Numerical
studies are presented in Section 4. The paper is concluded
in Section 5.

2. PRELIMINARIES

2.1 Problem description

Considering a network G(V,E) with n nodes, where V is
the set of nodes and E is the set of edges. Multiple links and
self loops are not considered in this paper. Let U denote the
universal possible link set, which contains all |V |(|V | − 1)/2
possible links, where |V | is the number of elements in set V .
Hence, U/E denotes the missing links. The purpose of link
prediction is to find the possible links in the set of U/E.
For each pair of nodes (i, j) ∈ U/E, a score Sij is assigned
to estimate the connection likelihood between nodes i and
j. All unconnected node pairs are sorted in descending or-
der according to their scores Sij , and the node pairs at the
top of order list are more likely to be connected than those
at the bottom of the order list. In other words, a higher
score indicates a higher probability of connection between
the nodes, and vice versa.

2.2 Similarity-based indices

In this section, we will briefly introduce the definitions of
similarity indices that will be used later.

1Here, we say the node A is a local neighbor of node B if they have a
similar pattern of connections with other nodes in the whole network.
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• Common Neighbors Index (CN) [14]. The CN
index assumes that two nodes sharing more common
neighbors are more likely to have a link. Let Γ(i) de-
note the set of neighbors of node i. The CN index is
defined as

SCN
ij = |Γ(i) ∩ Γ(j)|,

where | · | is the cardinality of a set.
• Adamic-Adar Index (AA) [1]. The AA index refines

the CN index by assigning more weights to lower-degree
nodes in the common neighbors set. It is defined as

SAA
ij =

∑
l∈Γ(i)∩Γ(j)

1

log dl
,

where dl denotes the degree of the node l.
• Resource Allocation Index (RA) [53]. The RA in-

dex is similar to the AA index. It is motivated by the
resource allocation process, which takes place in the
networks with complex distribution [32]. Considering a
pair of nodes (i, j) that are unconnected, node i can
send some resource to node j via their common neigh-
bors, which play the role of transmitters. In the sim-
plest case, every transmitter is assumed to be a unit of
resource and will be distributed equally to all its neigh-
bors. Consequently, the similarity between i and j may
be defined as the amount of resource that j has received
from i. The RA index is defined as

SRA
ij =

∑
l∈Γ(i)∩Γ(j)

1

dl
,

where dl denotes the degree of the node l.
• Preferential Attachment Index (PA). The mecha-

nism of PA can be used to generate evolving scale-free
networks, where the probability that a new link is con-
nected to the node i is proportional to di [5]. Motivated
by this mechanism, the PA index is defined as

SPA
ij = di × dj .

The PA index indicates that new links are more likely
to be connected with the higher-degree nodes than the
lower-degree ones.

• Jaccard Index (Jac) [26]. The Jaccard index can be
used to evaluate the similarity of the neighbor sets of
the two nodes, and is defined as

SJaccard
ij =

|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)| .

• Salton Index (Sal) [32]. This index is also called the
cosine similarity. It is defined as

SSal
ij =

|Γ(i) ∩ Γ(j)|√
di × dj

.

• Sørensen Index (Sør) [32]. The index is used mainly
for comparing the similarity between ecological commu-
nity data and is defined as

SSørensen
ij =

2|Γ(i) ∩ Γ(j)|
di + dj

.

• Hub Promoted Index (HPI) [32]. The HPI index
promotes link formation between low-degree nodes and
hubs [34], defined as

SHPI
ij =

|Γ(i) ∩ Γ(j)|
min(di, dj)

.

• Hub Depressed Index (HDI) [32]. The HDI index
is analogous to the above index but has an opposite
goal. It is defined as

SHDI
ij =

|Γ(i) ∩ Γ(j)|
max(di, dj)

.

• Leicht-Holme-Newman Index (LHNI) [30]. It is
defined as

SLHN1
ij =

|Γ(i) ∩ Γ(j)|
di × dj

• Katz Index (Katz) [27]. The Katz index is based
on the path ensemble method. It sums over all paths
between nodes i and j. Its expression is

SKatz
ij =

∞∑
k=1

βk · |pathskij |,

where β is a free parameter and pathskij is the set of all
paths with length k from i to j.

• Local Path Index (LP) [32]. The LP index consid-
ers the information of all paths with lengths 2 and 3
between nodes i and j. It can be defined as

SLP
ij = (A2)ij + ε(A3)ij ,

where ε is a free parameter and A is the adjacency ma-
trix of the network.

3. METHODOLOGY

Consider a network with n vertices. Let A be the adja-
cency matrix of the network. The relationship between two
nodes in the network can be represented by a n×n adjacency
matrix A = (Aij)n×n, where

Aij =

{
1 if there is an edge from i to j,

0 otherwise.

Adjacency matrix representation provides a concise math-
ematical structure of the topology of networks. Each row
Ai· of the adjacency matrix represents the link relationship
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Figure 1. Directed network (a) and undirected network (b).

from node i to the other nodes. In this paper, we shall con-
sider the link prediction problem for directed and undirected
networks, as displayed in Figure 1. Therefore, the adjacency
matrix A can be either symmetric (for undirected networks)
or asymmetric (for directed networks).

Our approach has two key steps. The first step is to con-
struct a local neighborhood Ni for the node i, i = 1, ..., n.
Second, each pair of nodes, i and j, is assigned a score
Sij based on their local neighborhoods. The details of the
method are given in the following sections.

3.1 Construction of local neighborhood

We define a matrix C = (Cij)n×n to measure the level
of distinction of connection patterns, where Cij denotes the
level of the distinction of the connection pattern between
node i and j. Here, we demonstrate the level of distinction
of connection patterns via the inverse proportion of the sim-
ilarity of the connection patterns between the same nodes.
Precisely, we define the Cij as

Cij = 1/Wij ,

where Wij denotes the similarity of the connection pattern
between nodes i and j. That is, Wij would be large if nodes
i and j have a similar pattern of connections with other
nodes.

Various ways can be used to define the Wij . A simple
choice is

(1) Wij := |{m : Aim = Ajm}|,

where |·| denotes the cardinality of a set. However, this mea-
sure is not very efficient because many networks are sparse,
and most elements of Ai· may be 0, which means that most
of Wij in Equation (1) would be large. To avoid the effect of
network sparsity, a choice of Wij is the Jaccard index [26].
For an undirected network, the Jaccard index is defined as

(2) Wij =
|Γ(i) ∩ Γ(j)|
|Γ(i) ∪ Γ(j)| ,

where Γ(i) = {l : Ail = 1} denotes the set of nodes that are
connected with the node i. Therefore, a larger Jaccard index

implies that two nodes tend to have more common connec-
tions, which means they have a similar patterns of connec-
tions with other nodes. For directed networks, we consider
the “in” links and “out” links separately in the definition of
(2)

(3) Wij =
|Γr(i) ∩ Γr(j)|
|Γr(i) ∪ Γr(j)|

+
|Γc(i) ∩ Γc(j)|
|Γc(i) ∪ Γc(j)|

,

where Γr(i) = {l : Ail = 1} and Γc(i) = {l : Ali = 1}.
Now we are ready to construct a local neighborhood Ni of

the ith node from the matrix C. By the definition of C, the
local neighborhood Ni should be a collection of the nodes
such that Ci·s are small (under some specified threshold of
tolerance). Here, we adopt the method proposed by [51] to
construct the local neighborhood Ni, which is defined as:

Ni = {k : Cik < Qi(α), k �= i},

where Qi(α) is the αth quantile of the set {Cik, k �= i},
with α serving as a tuning parameter. Quantile is chosen
as the threshold because it is a data-driving choice (soft
threshold) and shows significant advantage in the stability
of performance compared with an absolute (hard) threshold,

and we choose α = (log n/n)
1
2 as in [51], where n is the

number of nodes in a network.

3.2 Calculating the score between nodes

Now, we calculate the scores between nodes. On the basis
of the set of the local neighborhood Ni, we define the score
of the node pair (i, j), SLN

ij , as the proportion of nodes in
Ni that are connected to the node j. Specifically, for an
undirected network, we define SLN

ij by

(4) SLN
ij =

1

|Ni|
∑
k∈Ni

Akj +
1

|Nj |
∑
k∈Nj

Aki,

and for a directed network, it is defined by

(5) SLN
ij =

1

|Ni|
∑
k∈Ni

Akj .

After the scores of all unconnected node pairs are calcu-
lated using the LN method, these node pairs are sorted in
descending order of the scores. The higher the ranking, the
more likely the node pairs are to be connected.

A detail needs to be pointed out that although the LN
method still follows the principle that a larger SLN

ij corre-
sponds to a higher likelihood that the nodes i, j are to be
connected, the calculation principle of SLN

ij is completely
different from the calculation based on similar score indexes.
As mentioned before, in assortative networks, the assump-
tion that similar nodes are more likely form links is valid.
One just needs to define an appropriate similarity score that
effectively measures the degree of similarity between nodes.
Classical indexes, such as AA, RA, and Katz, perform well in
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link prediction. However, the above assumption is no longer
valid in disassortative networks. At this time, the similarity
indexes, especially defined by CN and its variations, are no
longer valid because they assume that the more common
neighbors between nodes, the more likely nodes are to be
connected. However, in disassortative networks such as food
webs, although predators have many common prey objects,
they obviously do not feed on each other. To address this
issue, we propose the LN method. In this method, we collect
those nodes that have a similar pattern of connections with
node i to construct its neighborhood Ni. After the neigh-
borhood Ni is constructed, a natural idea to predict the
possibility that node i is connected to j is to compute the
proportion of nodes in Ni that connects to j. After all, nodes
in Ni and node i have a similar pattern of connections with
other nodes. If more nodes in Ni are connected to j, then the
probability that node i and j are connected is also greater,
which indicates a larger SLN

ij . From the data analysis results
in Section 4, especially in the food webs, the performance of
the LN method is relatively better.

Remark 3.1. We may also consider other designs for W .
For instance, one may use

Wij =
|Γr(i) ∩ Γr(j)|+ |Γc(i) ∩ Γc(j)|
|Γr(i) ∪ Γr(j) ∪ Γc(i) ∪ Γc(j)|

.

We can also consider a two-dimension similarity index
(Wij ,W

′
ij) as follows:

Wij =
|Γr(i) ∩ Γr(j)|
|Γr(i) ∪ Γr(j)|

, W ′
ij =

|Γc(i) ∩ Γc(j)|
|Γc(i) ∪ Γc(j)|

.

We design W using Equation (2) for undirected networks
and Equation (3) for directed networks in this paper.

Remark 3.2. For the definition of Wij in Equations (2)
and (3), Wij may be 0, especially in a sparse network. If
Wij equals 0, then Cij is defined as ∞. According to the
definition of neighborhood of node i, if Cij = ∞, the node
j will be excluded from the neighborhood of node i. In other
words, we collect only those nodes with a small value of Cij

to construct the neighborhood of node i.

Remark 3.3. If the node covariates are observed and re-
lated to the structure of network, then we can define Cij as

1
Wij+λFij

, where Fij measures the similarity between nodes

covariates and λ is a parameter to tune the weights of the
network structure information and node covariates infor-
mation. In this case, Cij represents the distinction between
nodes i, j, which is measured by the connection pattern and
the node covariates. We use LNC to denote the extension
method of the LN after adding node covariates. The effec-
tiveness of the extension method is verified by simulation
data and a real dataset in Section 4.

Remark 3.4. Many empirical networks display an inher-
ent tendency to cluster. In some cases, compared with the

members of the inter-community, the members of the intra-
community should have more similar patterns of connection
to other nodes [38]. If the network has community struc-
tures, then our method can also be extended by adding appro-
priate community information to W. Modularity proposed
by Newman [36] is used to evaluate the qualities of detected
communities. They defined a modularity matrix M with ele-
ments Mij = Aij − didj

2M , where M denotes the total number
of edges in the network. If node i and j are in the same
community, then the contribution of the node pair to the
modularity is Mij. According to [9], we call Mij the modu-
larity contribution of nodes i and j. The value of modularity
contribution Mij measures the difference between the num-
ber of real edges and the number of expected edges between
nods i and j. A larger Mij means the nodes have a higher
chance of being in the same community [9]. To avoid the ac-
curacy of link prediction results being affected by the quality
of community detection, we choose Mij as the information
of the network community and add it to Wij after normal-
izing. In a simple case, Cij can be defined as 1

Wij+Mij
. Let

LNM denotes the extension method of the LN after adding
the modularity contribution. We will test the performance
of the LNM on simulation networks and apply it for link
prediction on four real datasets in Section 4.

4. NUMERICAL EVALUATION

In this section, we first introduce the datasets and evalu-
ation metrics. Then we experimentally evaluate the perfor-
mance of our proposed method on synthetic networks and
real networks. In each network, the parameter of the LN
method is set as α = (log n/n)

1
2 , where n denotes the total

number of nodes in the network.

4.1 Datasets

The following well-known network datasets are used in
our analysis:

• Zachary karate club network dataset (Karate):
The dataset contains social ties among the members of
a university karate club collected by Wayne Zachary in
1977, which is available on http://networkrepository.
com/soc-karate.php;

• Jazz musicians network dataset (Jazz): It is a col-
laboration network between jazz musicians, available on
http://konect.cc/networks/arenas-jazz/;

• US Air Transportation Network (USAir): This
dataset contains 332 US airports with the largest
amount of traffic from publicly available data and is
available on http://vlado.fmf.uni-lj.si/pub/networks/
data/;

• Yeast: This is a biological dataset of a protein–
protein interaction network, available on http://vlado.
fmf.uni-lj.si/pub/networks/data/;

• C. elegans: This is a neural network of the nematode
worm C. elegans, available on http://www-personal.
umich.edu/∼mejn/netdata/;
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• FWFW: This is an Ecology Network dataset that de-
scribes the food web of the Florida ecosystem and is
available on http://vlado.fmf.uni-lj.si/pub/networks/
data/;

• StMarks: This is an Ecology Network dataset that de-
scribes the food-webs and is available on http://vlado.
fmf.uni-lj.si/pub/networks/data/;

• Everglades: This is a network of food web in Ever-
glades Graminoids during the wet season, available on
http://vlado.fmf.uni-lj.si/pub/networks/data/.

• Lawyer: This is a network of corporate law partnership
that was created in a Northeastern US corporate law
firm and is available on http://moreno.ss.uci.edu/data.
html.

The nine real datasets we consider are from different
fields, including social networks, transportation networks,
biological networks, and ecology networks. Furthermore,
among the datasets, four datasets are undirected networks
(Karate, Jazz, USAir, and Yeast) and the others are di-
rected networks. For the undirected networks, Karate [49] is
a social network of friendship collected by Zachary at a US
university in the 1970s; Jazz [17] is a collaboration network
that consists of jazz bands, in which each node is a jazz mu-
sician and an edge denotes that two musicians have played
together in a band; USAir [6] is a US air transportation
system network; Yeast [43] is a protein–protein interaction
network in budding yeast that has large components, con-
taining 2,375 nodes and 11,693 interactions. For the directed
networks, C. elegans [45] is a neural network of the nematode
worm C. elegans; FWFW, StMarks, and Everglades are all
the food web networks, where FWFW is the food web of the
Florida ecosystem, and StMarks and Everglades are the food
webs in St. Marks River Flow and Everglades Graminoids,
respectively. The Lawyer [29] dataset represents the friend-
ship among 69 lawyers after 2 isolated nodes are removed.
Each node has seven attributes.

The graphic statistics of these network datasets are sum-
marized in Table 1. In the table, V and E refer to the total
numbers of nodes and edges in the network, respectively.
AD denotes the value of average degree of the network, and
C is the clustering coefficient.

Table 1. Summarized statistics of the nine networks

Network Type Datasets V E AD C

undirected

Karate 34 78 4.588 0.588

Jazz 198 2742 27.697 0.633

USAir 332 2126 12.807 0.749

Yeast 2375 11693 9.847 0.388

directed

C. elegans 297 2345 7.896 0.174

FWFW 128 2106 16.453 0.177

StMarks 54 353 5.116 0.210

Everglades 69 911 13.203 0.303

with covariates Lawyer 69 575 8.33 0.407

4.2 Evaluation metrics

Recall that U denotes the set of all possible links and
E the set of all observed links. We randomly divide the
observed links E into two sets: the training set Et, and the
probe set Ep. Following the common practice, the training
set Et contains 90% elements of E, and the remaining 10%
elements are left to form the probe set. That is, we randomly
delete 10% links, from the whole link set E. This yields a
new network, namely, the training set Et, from which the
scores of those deleted links (or node pairs) and the other
possible links are computed according to formulas (4) and
(5).

To quantify the accuracy of prediction methods, we con-
sider two standard metrics that are commonly used for eval-
uating the performance of link prediction methods: precision
[22] and the area under the receiver operating characteris-
tic curve (AUC) [19]. To implement, the basic preparation
for the two metrics is the same [47]. Both metrics are based
on the information of the same training and probe sets. We
state the precision first. According to our prediction rule, we
predict that two nodes are connected if the score is in the top
of the score lists. Therefore, on the basis of the scores cal-
culated from the training set, suppose that the top L links
are selected and thus they are predicted to be connected.
Furthermore, assume that Lr links in the top list are also
the elements of the probe set, that is, they are predicted
correctly. The precision is defined as the ratio of the true
positive and total positive, that is,

precision =
Lr

L
.

In the numerical experiment, we set L = 20 for networks
with fewer than 1,000 links and L = 100 for networks with
more than 1,000 links.

Secondly, we consider the AUC. AUC evaluates the per-
formance of link prediction methods according to the rank
list. Given the rank of all non-observed links, it can be in-
terpreted as the probability that a randomly chosen missing
link in Ep is given a higher score than a randomly chosen
nonexistent link in U − E. If among n independent com-
parisons, there are n′ times the missing link having a high
similarity score and n′′ times are the same, then the calcu-
lation of AUC can be written as follows:

AUC =
n′ + 0.5n′′

n
.

A high AUC value corresponds to a better the prediction
result.

4.3 Simulation studies

In this section, we compare the performance of LN and
other methods on simulated networks, including the classic
indices introduced in Section 2 and recently proposed meth-
ods, such as PI [10], LPPON [52], and NBS [51] in simulation
1. Further, we compare the performance of LN with that of
its two extension methods LNM and LNC in simulation 2.
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4.3.1 Simulation 1

The first simulation investigates the performance of all
methods under different types of network structure. We gen-
erate a stochastic block model with three clusters, where
each cluster has 100 nodes. We first consider the assortative
network. In this case, we define

B1 =

⎛
⎝ 0.3 0.12w 0.08w
0.12w 0.3 0.08w
0.08w 0.08w 0.25

⎞
⎠ .

The within-cluster link probabilities between nodes i and j
are 0.3, 0.3, and 0.25. The link probability is 0.12w if nodes i
and j come from clusters 1 and 2 and 0.08w for other cases,
in which w ∈ [0.2, 1]. A small w corresponds the stronger
assortativity of the network. In the disassortative network,
we generate a directed network. In this case, we set

B2 =

⎛
⎝ 0.1 0.2v 0.18v
0.12v 0.1 0.2v
0.12v 0.12v 0.09

⎞
⎠ .

If nodes i and j in the same cluster, then the link probability
is 0.1, 0.1, and 0.09. The link probability from cluster 1 to
2 or 2 to 3 is 0.2v, the link probability from cluster 1 to
3 is 0.18v, and 0.12v for other cases, in which v ∈ [1, 2].
The larger v means that the disassortative of the network is
stronger.

Figure 2 shows the mean of AUC for various meth-
ods as the degree of network assortativity (disassortativity)
changes. Figure 2(a) shows that, with the increase in w,
the assortativity of the network becomes weaker, and the
AUC values of most methods decrease. However, the AUC
value of the LN method is always higher than the others.
Figure 2(b) shows a similar conclusion. As v increases, the
AUC value of LN also increases, while the AUC values of
other methods do not changed much. Overall, the simula-
tion results show that the LN method can deal with both
assortative and disassortative networks effectively.

Figure 2. Mean of AUC vs. the degree of network
assortativity (a) and disassortativity (b). Each result is
obtained by averaging 50 realizations with a probe set

containing 10% random links.

4.3.2 Simulation 2

In the second simulation, we compare the performances
of LN, LNM, and LNC. We generate a network with node
covariates. Each network contains 300 nodes, and node i’s
covariates Xi are generated from a Gaussian mixture distri-
bution with three components. Specifically, we first generate
independent three centers μl ∼ N(0, η2Ip), l = 1, 2, 3, p = 5.
Then, for each μl, we generate 100 nodes, with Xi ∼
N(μl, Ip). Finally, each Aij is generated from Bernoulli dis-
tribution, that is,

Aij ∼ Bernoulli(pij),

where pij is obtained from the distance model in [23],

logit(pij) = −||Xi −Xj ||,

where || · || denotes the Euclidean norm. The covariates Xi

of node i can be regarded as the position of the node in
the “social space” [52]. The above model can generate both
directed and undirected networks. For undirected networks,
we just set Aij = Aji.

The node covariates are continuous variables and af-
fect the probabilities of links. Thus, we define the simi-
larity of node covariates by Gaussian similarity function
Fij = exp{−||Xi−Xj ||2/(2σ2)} with σ = 1. To evaluate the
performance of the LN method and its extension methods,
we randomly delete 10% edges in each simulated network
as the test set and report the mean of AUC based on 50
repetitions. The results are shown in Table 2. As we know,
μl will become more separated as η become larger, which
means the nodes become more “clustered”. Table 2 shows
that the performance of each method improved as the nodes
became more “clustered”. According to the simulation, the
connection probabilities between nodes are directly affected
by the node covariates. As expected, from the second and
third columns of Table 2, we can see that the LNC method,
which uses both network topology and node covariates, per-
forms better than the LN method, which uses only network
topology. From the second and fourth columns of Table 2,
we can derive the same conclusion. In summary, the perfor-
mance of the LN can be slightly improved as node covariates
or community information is included.

Table 2. Mean of AUC for simulated network based on 50
replications. For LNC, the parameter λ = 1

η2 Cij

only using Wij

(LN)
using Wij and Fij

(LNC)
using Wij and Mij

(LNM)

1 0.6525 0.7506 0.6579
4 0.7133 0.7958 0.7203
9 0.7515 0.8171 0.7607
16 0.8165 0.8816 0.8275
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Figure 3. Prediction accuracy measured by AUC as a function
of α. The eight graph lines show the average AUC values for
different networks with α changing from 0.01 to 1. The values
of 	 correspond to the α values obtained using

√
logn/n.

4.4 Real-world dataset

4.4.1 Selection of the parameter α

The size of node i′s local neighborhood Ni is controlled
by adjusting the parameter α. An appropriate α must be
chosen. In real dataset analysis, we still use α =

√
logn/n

proposed by [51], where n is the number of nodes in a net-
work. Further, by discussing the influence of the change of
parameter α on the empirical results, we demonstrate the
effectiveness of this parameter selection method proposed
by [51].

In eight real networks, we measure the performance of our
method by AUC as α varies. For each dataset, the results are
averaged over 50 replications, as presented in Figure 3. Let
α∗ denote the corresponding α value obtained by

√
logn/n.

From Figure 3, we can find that for most datasets, the AUC
values returned by LN method at α∗ (	 in Figure 3) are
the highest. In the Karate, Jazz, and FWFW datasets, the
highest AUC values of LN corresponding to α values are
near α∗, not far from α∗. In general, LN performs well when
α is chosen as

√
logn/n.

4.4.2 Comparison of LN with other methods

We first examine the performances of the 16 methods,
which are the same as the one in simulation 1.

For directed networks, the local similarity indices are de-
fined as in [50]; see Table 3. Here, Γr(i) = {l : Ail = 1},
Γc(i) = {l : Ali = 1}, dri = |Γr(i)| and dci = |Γc(i)|.

Table 4 compares the prediction accuracy quantified by
precision. The highest precision among the 16 methods in
each dataset is highlighted in boldface. From Table 4, we see
that our proposed method performs the best in four network
datasets: Karate, C. elegans, FWFW, and StMarks, while
the AA method works the best in the Jazz dataset, the RA
shows the best performance in the USAir dataset, LPPON
shows the best result in the Yeast dataset, and NBS per-
forms the best for the Everglades dataset. Moreover, the

Table 3. Similarity indices for directed networks

Index Sij for directed netwoerk

CN |Γr(i) ∩ Γc(j)|

AA
∑

k∈Γr(i)∩Γc(j)

1
log dr

k

RA
∑

k∈Γr(i)∩Γc(j)

1
dr
k

PA dri × dcj

Jaccard |Γr(i)∩Γc(j)|
|Γr(i)∪Γc(j)|

Salton |Γr(i)∩Γc(j)|√
dri×d

cj

Sørensen 2|Γr(i)∩Γc(j)|
dri +dcj

HPI |Γr(i)∩Γc(j)|
min(dri ,d

c
j)

HDI |Γr(i)∩Γc(j)|
max(dri ,d

c
j)

LNHI |Γr(i)∩Γc(j)|
dri×dcj

LN method shows a strong ability to deal with the directed
networks, performing the best on three of the four directed
networks: C. elegans, FWFW, and StMarks. The PI index
does not perform well in undirected networks, probably be-
cause the index itself is designed for directed networks. For
the networks in which the LN method does not perform
the best, it still shows satisfactory performance in most of
cases. We derive a similar conclusion from Table 5; clearly
the LN method is more preferred. Under the AUC metric,
the LN method again performs the best in the Karate, C.
elegans, FWFW, and StMarks datasets, as well as in the
Everglades dataset. For the other three networks, the RA
method shows the best performance on the Jazz and USAir
datasets, and LPPON still shows the best performance on
the Yeast dataset. Therefore, our proposed LN method ap-
pears to be the best one among the 16 prediction methods.

In addition, we delete 10% of edges at random and cal-
culate the receiver operating characteristic (ROC) curve for
predicting the missing links on four networks, as shown in
Figure 4. Again, the LN method performs better than the
other methods.

In Figure 5, we display the complete graphs of the values
of precision against the threshold number L, which inves-
tigates the dependence pattern between the precision and
threshold number L, for all eight network datasets. In the
graphs, the precision curves are plotted against 10 differ-
ent values of L, where L are for 2 (10) to 20 (100) with
step 2 (10), for the network dataset with links fewer (more)
than 1,000, respectively. From Figure 5, we see that for most
datasets, the precision curve decreases when the threshold
number L increases, with the Yeast network as the only
exception, in which the precision curve changes to be rela-
tively flat. This finding demonstrates that the LN method
achieves the highest precision in most networks, uniformly
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Table 4. Mean of precision for real networks. Each result is obtained by averaging 100 realizations with a probe set containing
10% random links. Parameters in Katz and LP are tuned to their optimal values subject to maximal precision. The highest

values are emphasized in bold

method
Karate Jazz USAir Yeast C. elegans FWFW StMarks Everglades

precision

CN 0.0965 0.8136 0.5810 0.6811 0.0710 0.0883 0.1325 0.2665
AA 0.0930 0.8318 0.6034 0.7013 0.0613 0.1166 0.1125 0.4080
RA 0.0980 0.8142 0.6246 0.4910 0.0707 0.1252 0.1345 0.4812
PA 0.0615 0.1936 0.4577 0.5021 0.0354 0.1791 0.2115 0.3705
Jac 0.0105 0.7526 0.0206 0.0050 0.0090 0.0162 0.0310 0.0721
Sal 0.0065 0.7650 0.0195 0.0050 0.0121 0.0299 0.0605 0.1250
Sør 0.0105 0.7526 0.0206 0.0052 0.0097 0.0162 0.0311 0.0720
HPI 0.0435 0.0456 0.0021 0.0170 0.0715 0.1212 0.0800 0.0050
HDI 0.0190 0.7058 0.0256 0.0050 0.0090 0.0119 0.0020 0.0605
LHNI 0.0055 0.0670 0.0062 0.0012 0.0119 0.0052 0.0053 0.0005
Katz 0.0933 0.8046 0.5904 0.6554 0.0661 0.0882 0.1027 0.0205
LP 0.0931 0.7786 0.5860 0.6670 0.0662 0.0881 0.1330 0.2575
PI 0.0195 0.0000 0.0055 0.0000 0.0344 0.0892 0.1915 0.4093

LPPON 0.1005 0.5482 0.2951 0.8380 0.0055 0.2684 0.1120 0.5310
NBS 0.1125 0.7692 0.5797 0.6033 0.1371 0.3559 0.3683 0.6275
LN 0.1325 0.8038 0.6157 0.5316 0.1603 0.4461 0.3982 0.5585

Table 5. Mean of AUC for real networks. Each result is obtained by averaging 100 realizations with a probe set containing
10% random links. Parameters in Katz and LP are tuned to their optimal values subject to maximal AUC. The highest values

are emphasized in bold

method
Karate Jazz USAir Yeast C. elegans FWFW StMarks Everglades

AUC

CN 0.7080 0.9549 0.9338 0.8967 0.7847 0.7306 0.7024 0.7555
AA 0.7403 0.9619 0.9449 0.8972 0.7899 0.7346 0.6990 0.7637
RA 0.7487 0.9707 0.9505 0.8974 0.7907 0.7381 0.6985 0.7622
PA 0.7238 0.7682 0.8869 0.8276 0.7836 0.8366 0.7973 0.8798

Jaccard 0.6049 0.9611 0.8990 0.8905 0.7571 0.6072 0.6353 0.7032
Salton 0.6406 0.9671 0.9250 0.9102 0.6048 0.7169 0.6759 0.7645
Sørense 0.6049 0.9611 0.8990 0.8905 0.7742 0.7013 0.6885 0.6808
HPI 0.7165 0.9493 0.8840 0.9091 0.7845 0.6998 0.7059 0.7119
HDI 0.5907 0.9519 0.8926 0.8904 0.7726 0.7031 0.6863 0.6721
LHNI 0.5996 0.9030 0.7744 0.9059 0.7697 0.6692 0.6833 0.5984
Katz 0.7403 0.9512 0.9245 0.9215 0.8139 0.6477 0.6592 0.7852
LP 0.7481 0.9475 0.9272 0.9415 0.8136 0.6429 0.6527 0.7827
PI 0.5703 0.5475 0.6693 0.8495 0.7682 0.7385 0.7030 0.7502

LPPON 0.8212 0.8888 0.8979 0.9645 0.7641 0.8101 0.7111 0.7396
NBS 0.8316 0.9337 0.9371 0.9095 0.8147 0.9093 0.8446 0.9226
LN 0.8318 0.9413 0.9247 0.9386 0.8777 0.9355 0.8619 0.9292

in the threshold number L. We also observe that the meth-
ods based on classical similarity indices, such as CN and
AA, do not perform well, particularly in the directed net-
works, whereas NBS shows better performances on some
datasets.

We also discuss the robustness of LN against other meth-
ods by varying the ration of probe sets from 10% to 50%.
The results are shown in Figure 6. As the information of
known edges decreases, LN achieves higher accuracy com-
pared with other methods, which suggests that LN has a
reasonable robustness.

To summarize, in view of the results based on two metrics
of precision and AUC, the LN method shows the overall best
performance, and it works well particularly in the food web
datasets. The main reason is that the LN approach employs
the nodes’ neighbors to calculate the scores (those neighbors
always have similar connection patterns with the node), and
provide useful information about network structure in the
prediction. In addition, unlike the classical similarity score
indices, the LN captures useful connection structure infor-
mation on networks. Finally, the LN method can handle
both assortative and disassortative networks.

Local neighborhood-based approach of link prediction in networks 331



Figure 4. ROC curves for link prediction on four networks;
10% of edges are missing at random.

4.4.3 Comparison of LN with its extension methods

On the basis of the evaluation criteria of AUC, we first

compare the predictive performance of LNC and LN on the

Lawyer network. The Lawyer friendship network contains

69 nodes after 2 isolated nodes are removed. Each node

has seven attributes describing their personal information,

namely, formal status (fs), office location (ol), practice (p),

gender (g), law school (ls), age, and years with the firm

(yf). The first five attributes are categorical variables, and

the remaining attributes are continuous variables. The con-

tinuous attribute variables are transformed into categorical

attribute variables to facilitate the calculation of attribute

similarity. Specifically, if the age is less than 40, then reset

the attribute of age as 0; otherwise, it is set as 1. A sim-

ilar reset is made for the year of firm, with the threshold

selected as 7. Then, the similarity between nodes covariates

Fij is defined as

Fij = (I{fsi=fsj} + I{oli=olj} + I{pi=pj}

+ I{gi=gj} + I{lsi=lsj} + I{agei=agej}

+ I{yfi=yfj})/7,

Figure 5. Precision as a function of L. For each L, the result
is obtained by averaging over 50 independent realizations with

a probe set containing 10% random links.

Table 6. Mean of AUC for the Lawyer friend network based
on 50 replications. Parameters in LNC are tuned to their

optimal values subject to maximal AUC

data set
Cij

using Wij

(LN)
using Wij and Fij

(LNC)

Lawyer 0.8273 0.8349

and the numerical results are shown in Table 6. In this exper-
iment, we choose the parameter λ = 0.5 subject to maximal
AUC. As we can see, the performance of the LNC method
is slightly better than that of the LN method.

We also explore the performances of LN and LNM on
four undirected networks; the results are shown in Table 7.
After the information of modularity is added, the perfor-
mance of LNM is slightly better than that of LN on three
networks. However, the opposite results were found on the
Karate network, possibly because simply replacing commu-
nity information with modularity information is not appro-
priate for Karate data.
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Figure 6. Value of AUC vs. the ratio of the probe sets on all
datasets. For each ratio, the result is obtained by averaging
over 50 independent realizations with probe set containing

10% random links.

Table 7. Mean of AUC for real network based on 50
replications

data set
Cij

using Wij

(LN)
using Wij and Mij

(LNM)

Karate 0.8318 0.8240
Jazz 0.9413 0.9546
UsAir 0.9247 0.9519
Yeast 0.9386 0.9427

5. CONCLUSIONS

In this paper, we propose the LN method for link predic-
tion by constructing nodes’ local neighborhoods. First, we
construct a local neighborhood Ni for each node i, in which
node i and its neighbors have a similar pattern of connec-
tions with other nodes in the network. Second, the score be-
tween nodes i, j is defined as the proportion of nodes in Ni

that are connected to the node j. By calculating the scores
in this way, our method captures useful connection structure
information and is not limited to the assumption of classical

methods that similar nodes are more likely to be connected
with each other. As a result, it can effectively handle both
assortative mixing and disassortative mixing networks. The
performance of the proposed method is demonstrated with
eight real network datasets, including four undirected net-
works and four directed networks. Experiment results show
that our method either outperforms or works comparatively
with the other existing methods. In addition, we extend the
LN method to solve the link prediction problems in a net-
work with node covariates and community structure. Ex-
perimental studies on synthetic and real networks show that
including additional useful information can improve the per-
formance of the LN method.
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