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Paired-sample tests for homogeneity
with/without confounding variables
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In this article, we are concerned about testing the homo-
geneity on paired samples with or without confounding vari-
ables. These problems usually arise in clinical trials, psycho-
logical or sociological studies. We introduce new nonpara-
metric tests for equality of two distributions or two condi-
tional distributions of random vectors on paired samples.
We show that their test statistics are consistent but have
different asymptotic distributions under the null hypothe-
sis, depending on whether confounding variables exist. The
limit distribution of the test statistic is a mixed χ2 distribu-
tion when testing the equality of two paired distributions,
while it is a normal distribution when testing the equality
of two conditional distributions of paired samples. We con-
duct several simulation studies to evaluate the finite-sample
performance of our tests. Finally, we apply our tests on real
data to illustrate their usefulness in the applications.
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1. INTRODUCTION

Detecting whether two paired samples differ in their dis-
tribution functions is a common problem in statistical infer-
ence. Such a problem often arises in clinical trials, psycho-
logical, or sociological studies. Typical paired data include:
(1) repeated measurements of the same subjects in a lon-
gitudinal study, for example, determining whether a drug
has any effect on blood pressure after measuring the blood
pressure of the same set of patients before and after taking
the drug; (2) binate observations on the same individuals,
for example, examining whether there is a significant differ-
ence in the distribution of sight in the right and left eyes of
adolescents, or investigating whether tooth size profile is the
same for the left and right sides around central incisors [10];
and (3) observations of different individuals that have been
matched based on some set of characteristics, for instance,
testing whether fathers and their sons have the same height.
Please see [16, 14] for more examples.

Let (X,Y ) be a paired random vector in Euclidean space
R

p × R
p. A paired-sample testing problem intends to test
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whether the distributions of X and Y are identical even
when X and Y are dependent. Indeed, the null hypothesis
of this problem is given as follows,

H0 : X
d
= Y,(1)

where the notation “
d
=” means “identically distributed”.

Many classical methods have been used to test the iden-
tity of X and Y for p = 1. When (X,Y ) follows a bivariate
normal distribution, the paired t-test is used to determine
whether the difference between the two paired population
means is significant. Suppose the normality assumption of
(X,Y ) is not satisfied. In that case the well-known Wilcoxon
signed-rank test is frequently used to test whether X − Y
is symmetric about zero, especially, the M -test and Q-test
[23] for the distributions of X and Y being both Weibull dis-
tributions. Also, the McNemar test [15] for X and Y being
binary variables, and the test of Stuart [20] for categori-
cal variables. When X and Y are multivariate, few paired-
sample tests have been proposed, for example, the paired
Hotelling’s T 2 test can be used when (X,Y ) is normally dis-
tributed. It is still an interesting problem to develop flexible
paired-sample tests for p > 1.

Furthermore, we consider the case that (X,Y ) could be
affected by a confounding factor Z in R

r, for instance,X and
Y are the blood pressure before and after the drug treat-
ment, Z is the factor of the age of the patients, which may
affect both X and Y . To assess the treatment, we want to
eliminate the effect of Z when comparing the distributional
difference between X and Y . Thus, the problem of interest
can be formulated to test the identity of two conditional
distributions. That is, we need to test the following null hy-
pothesis

H0 : X|Z = z
d
= Y |Z = z, for all z ∈ S(Z),(2)

where S(Z) is the support of the density function of Z.
Few works of literature discussed this problem while com-
paring the difference of two conditional distributions for
independent or paired samples via regression models. See
[4, 7, 19] for more details. Lee [9] presented a covariate-
matched Mann–Whitney statistic for comparing two con-
ditional distributions for two independent samples, which
is convenient to be modified to paired samples. Koul and
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Schick [6] addressed this testing problem as a “common de-
sign” when testing the equality of two nonparametric regres-
sion curves. Among the four types of tests in [6], the first
and third types provided two Z-controlled versions of the t
test. The first class used a kernel estimator of the regression
function, while the third class avoided this by matching the
covariates. The asymptotic properties and asymptotically
optimal tests for these two classes were also discussed. Re-
cently, Guo et al. [2] proposed a test for comparing two con-
ditional means in paired samples via empirical characteristic
functions, avoiding using kernel smoothing and no assump-
tion of a specified regression model. All the tests listed above
focused on comparing conditional means or other location
parameters. Here we are interested in the overall conditional
distributions, rather than only in their means. Li et al. [11]
considered the testing for the equality of two conditional
density functions for two independent samples by a new
kernel smoothing approach. However, their approach only
considered the cases of discrete confounders.

In this paper, we propose nonparametric homogeneity
tests for the null hypotheses (1) and (2), and investigate
their statistical properties. We first apply the concept of
energy distance [22] directly but use paired samples to pro-
pose a novel test statistic for testing the equality of distri-
butions. Like the energy distance-test statistic for two in-
dependent samples, our test statistic is consistent and has
a mixed χ2 distribution in asymptotic under the null hy-
pothesis but is normal under the alternative hypothesis. For
testing the equality of conditional distributions, we further
extend our test statistic to test the equality of two condi-
tional distributions by first extending the concept of energy
distance to conditional energy distance, and then provide its
statistical properties. We find that these two test statistics
have different asymptotic distributions under the null hy-
pothesis. Numerical studies are conducted to illustrate their
usefulness in the applications.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly introduce the modified version of energy
distance for two dependent random vectors and give the
test statistic for paired samples. We obtain the asymptotic
properties of the test statistic. We also provide a bootstrap
method to approximate the p-value of the test and prove
the validity of the bootstrap. In Section 3, we extend the
homogeneity test to test the equality of conditional distri-
butions. And then, we discuss the asymptotic properties of
the new test statistic. Simulation experiments are conducted
to examine the performance of our tests in finite samples in
Section 4. In Section 5, we apply both the homogeneity and
the conditional homogeneity test on Student Performance
data. A summary and discussion are presented in Section 6.
All proofs of the main results are put in Appendix A.

2. PAIRED SAMPLES TEST

We first derived a test statistic for (1) based on the con-
cept of Energy distance. Suppose that (X ′, Y ′) is an i.i.d.

copy of (X,Y ), and both E|X| and E|Y | are finite, then we
define

(3) V (X,Y ) := 2E|X − Y ′| − E|X −X ′| − E|Y − Y ′|,

where |u| =
√
uTu is the Euclidean norm of u in R

p.
By Lemma 1 in Appendix A, V (X,Y ) ≥ 0 for any two

paired random vectors X and Y with finite moments, and
V (X,Y ) = 0 if and only if X and Y are identically dis-
tributed. Hence it’s natural to utilize the sample estimator
of V (X,Y ) to test the null hypothesis (1). Specifically, given
an i.i.d. sample Sn = {(X1, Y1), (X2, Y2), . . . , (Xn, Yn)} from
(X,Y ), we define the moment estimator of V (X,Y ) as

V̂n(X,Y ) =
1

n2

n∑
i,j=1

(
2|Xi − Yj | − |Xi −Xj | − |Yi − Yj |

)
.

(4)

Proposition 2 in Appendix A validates that under the null
hypothesis (1), nV̂n(X,Y ) converges in law to a quadratic
form

∑∞
v=1 λvZ2

v , while Proposition 1 in Appendix A im-

plies that nV̂n(X,Y ) converges to +∞ almost surely un-
der the alternative hypothesis. So we reject (1) whenever
nV̂n(X,Y ) > cγ at the significance level of γ, where cγ is
the upper γ-quantile of

∑∞
v=1 λvZ2

v . However, it is hard to
get the exact cγ in practice since λv’s depend on the un-
known joint distribution of (X,Y ) and hence are difficult
to compute. Alternatively, we consider a bootstrap method
to approximate the p-value. Different from the procedure
proposed in [17], which resamples from the pooled sample
{X1, . . . , Xn1 , Y1, . . . , Yn2} to obtain the bootstrap samples,
we have to keep the dependence between X and Y when
resampling. Inspired by the bootstrap procedures proposed
by Konietschke et al. [5] for paired t-test, we construct a
similar bootstrap approach to approximate the p-value for
nV̂n(X,Y ) as follows:

Step 1. Calculate the statistic nV̂n(X,Y ) based on the
original sample Sn, denoted as nV̂n(Sn).
Step 2. Sample with replacement from the origin sample
Sn to obtain {(Xπ(i), Yπ(i))}ni=1, where {π(1), . . . , π(n)}
denotes a resample with replacement of {1, 2, . . . , n}.
Then, for each i = 1, 2, . . . , n, generate ei from the uni-
form distribution on {0, 1}, that is P (ei = 0) = P (ei =
1) = 1/2. Finally set X�

i = eiXπ(i)+(1−ei)Yπ(i), Y
�
i =

(1 − ei)Xπ(i) + eiYπ(i) to get the bootstrap sample
{(X�

i , Y
�
i )}ni=1 and the corresponding bootstrap statis-

tic of nV̂n(X,Y ) is nV̂ �
n .

Step 3. Repeat Step 2 for B times (say B = 399), to
obtain {nV̂ �

nb, 1 ≤ b ≤ B}, then the p-value of nV̂n is
given by

p ≈ 1 +
∑B

b=1 I(nV̂
�
nb > nV̂n(Sn))

1 +B
,

where I(·) is the indicator function.
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The next theorem shows the validity of the proposed
bootstrap method in approximating the null distribution of
the test statistic nV̂n(X,Y ).

Theorem 1. Given the original sample Sn, the bootstrap
statistic nV̂ �

n converges in law to
∑∞

v=1 λvZ2
v in Proposi-

tion 2, that is

nV̂ �
n

∣∣∣Sn �
∞∑
v=1

λvZ2
v .

The proof of Theorem 1 is given in Appendix A.

3. PAIRED SAMPLE TEST WITH
CONFOUNDERS

If the confounder vector Z exists, we propose a condi-
tional homogeneity test for the null hypothesis (2). “Con-
ditionally identically distributed” implies “identically dis-
tributed”, but not vice versa. In line with the spirit of en-
ergy distance, we introduce the conditional energy distance
between X and Y given Z = z, and derive its estimator,
which can be used to test the null hypothesis (2). More
precisely, if we denote φX|Z=z(t), φY |Z=z(t) as the condi-
tional characteristic functions of X and Y given Z = z
respectively, that is φX|Z=z(t) = E[ei〈t,X〉|Z = z] and

φY |Z=z(t) = E[ei〈t,Y 〉|Z = z], where i is the imaginary unit,
and 〈·, ·〉 represents the inner product of the two correspond-
ing vectors, then we have the following definition.

Definition 1. The conditional energy distance ε(X,Y |Z =
z) between X and Y with finite norm moments given Z = z
is defined as

ε(X,Y |z) = ‖φX|Z=z(t)− φY |Z=z(t)‖2

=
1

c(p)

∫
Rp

|φX|Z=z(t)− φY |Z=z(t)|2
|t|p+1

dt,
(5)

where c(p) = π(p+1)/2

Γ((p+1)/2) .

Typically, ε(X,Y |z) ≥ 0, ∀z ∈ S(Z) where the equal-
ity holds if and only if the null hypothesis (2) holds. If
ε(X,Y |z) is estimated directly from the definition, it seems
to be complicated because it involves the estimations of
the two conditional characteristic functions. Fortunately,
we can derive its variant in the form of conditional ex-
pectation, which gives us a concise estimator. Next, let
Wi = (Xi, Yi, Zi), i = 1, 2, . . . , n be an i.i.d. sample from
the distribution of (X,Y, Z), and

g((x1, y1), (x2, y2))

= |x1 − y2|+ |x2 − y1| − |x1 − x2| − |y1 − y2|,

then ε(X,Y |z) can be estimated by the kernel smoothing

method according to Lemma 2 in Appendix A,

ε̂n(X,Y |z)

=

∑
i<j g((Xi, Yi), (Xj , Yj))KH(Zi − z)KH(Zj − z)∑

i<j KH(Zi − z)KH(Zj − z)
,

where KH(·) is a kernel function in R
r with H being the

bandwidth matrix. ε̂n(X,Y |z) is a so-called conditional U -
statistic, a concept proposed in [21] and can be used for
testing the conditionally identically distributed of X and Y
given Z = z ∈ S(Z).

To test the null hypothesis (2), the conditionally identi-
cally distributed of X and Y given Z = z for all z ∈ S(Z),
a natural way is to weight ε(X,Y |z) by a nonnegative func-
tion, say the density function of Z, fZ(z), to get

U := E[ε(X,Y |Z)fZ(Z)].

Consequently, the null hypothesis (2) is true if and only if
U = 0. Let

Ûn :=
1

C2
n

∑
i<j

g((Xi, Yi), (Xj , Yj))KH(Zi − Zj),(6)

then as will be shown below, Ûn is a consistent estimator of
U , and is therefore a candidate of the test statistic for the
null hypothesis (2).

We next present the asymptotic properties of the test
statistic Ûn, which can be proved using the theory of U -
statistics with random kernels.

For simplicity, we choose KH to be the Gaussian kernel

KH(u) = |H|−1K(H−1 · u)

= (2π)−r/2|H|−1 exp
(
− 1

2
uTH−2u

)

in R
r, where H is a diagonal matrix diag{h1, h2, . . . , hr}

determined by the bandwidths h1, h2, . . . , hr. Assume the
regularity conditions (C1)–(C3) in Appendix A hold. The
following theorems state the limiting distributions of Ûn un-
der the null and alternative hypotheses respectively, as well
as its consistency.

Theorem 2 (Consistency). Suppose E|X|2 < ∞ and
E|Y |2 < ∞, and assume the conditions (C1)–(C3) hold,
then we have

Ûn
P−→ U .

The proof of Theorem 2 is shown in Appendix A.
Moreover, using the theory of U -statistics discussed in

Hall [3] and Lee [8], we obtain the following asymptotic dis-
tributions for Ûn.

Theorem 3 (Weak convergence under null hypothesis).
Suppose E|X|2 < ∞ and E|Y |2 < ∞, and assume that
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conditions (C1)–(C3) hold, then, under the null hypothesis
(2), we have

T̂n := n|H|1/2Ûn/σ̂n � N(0, 1),(7)

where

σ̂2
n =

2|H|
C2

n

∑
i<j

g2((Xi, Yi), (Xj , Yj))K2
H(Zi − Zj).

Theorem 4 (Weak convergence under alternative hypoth-
esis). Suppose E|X|2 < ∞ and E|Y |2 < ∞, and assume
the conditions (C1)–(C3) hold, in addition, n|H|4 → 0 as
n → ∞, then, under the alternative hypothesis, we have

√
n(Ûn − U) � N(0, 4σ2),(8)

where σ2 will be given in (12) in Appendix A.

The proofs of Theorems 3 and 4 are given in Appendix A.
Theorem 3 implies that the asymptotic null distribution

of T̂n is normal, which is very different from nV̂n(X,Y ) in
Proposition 2. This allows us to approximate p-values with-
out using the bootstrap method.

According to Theorem 3, we reject the null hypothesis
(2) whenever |T̂n| > zγ/2 at the significance level of γ, where
zγ/2 is the upper γ/2 quantile of the standard normal distri-
bution. Combining this and Theorem 4, we can obtain the
asymptotic power of test T̂n as

1− Φ
( σ̂nzγ/2

2
√
n|H|

σ−1 −
√
nUσ−1/2

)

+Φ
(
−

σ̂nzγ/2

2
√

n|H|
σ−1 −

√
nUσ−1/2

)
,

which converges to 1 as n → ∞. Hence the test is consistent.

Remark 1. Theorems 2–4 also hold for X and Y being two
discrete random vectors, if we replace f(x, y|z) in (C3) by
p(x, y|z), the conditional joint probability of (X,Y ) given
Z = z.

Remark 2. Our test statistic relies on the density estimator
of Z. Here the kernel density estimator we use may work
for low-dimensional Z. For high-dimensional Z, we could
use some alternative estimators such as the estimators in
[12, 13].

4. SIMULATIONS

In this section, we conduct comprehensive simulation
studies S.1-S.3 to evaluate the finite-sample performance
of the tests we proposed for testing the homogeneity with
and without confounding variables for paired samples. We
use the bootstrap procedure presented in Section 2 with the
number of bootstrap samples B = 399 to obtain the p-value
of V̂n, while we calculate the p-value of T̂n directly by the
normal approximation. Performance of the tests is based on

the Type-I error and power. We use the significance level of
0.05 and each simulation is replicated 1000 times.

In S.1, we wish to show the difference between the
two concepts of “identically distributed” and “condition-
ally identically distributed” combining V̂n and T̂n. Con-
sider the following five cases: (1) X = Z + ε1, Y = Z + ε2
with Z ∼ N(0, 0.52) and ε1, ε2 ∼ N(0, 1); (2) The same
setting as in (1) except that Y = −Z + ε2; (3) X =
Z+ε1, Y = 1−Z+ε2 with Z ∼ U(0, 1) and ε1, ε2 ∼ U(−1, 1);
(4) X = (1 + ε)Z, Y = (1 + ε)(1 − Z) with ε ∼ B(1, 0.3)
and Z ∼ U(0, 1); (5) X = Z + ε1, Y = −Z + ε2 with Z
following the multivariate normal distribution N3(0,Σ) and
ε1, ε2 ∼ N3(0, I3), where Σ is the matrix with elements equal
to 1 on the diagonal and 0.52 everywhere else and I3 is the
identity matrix. Z, ε1, ε2, ε are independently generated in all
the settings. Obviously, X and Y are both identically dis-
tributed and conditionally identically distributed given Z
in case (1), whereas, they are identically distributed but not
conditionally identically distributed given Z in cases (2)–
(5). Table 1 presents the simulation results for each case
with the sample sizes varying from 30 to 200. It can be seen
from Table 1 that V̂n controls the Type-I errors well around
0.05 in all the cases, while T̂n accurately detects the differ-
ence between the conditional distributions of X and Y given
Z with desirable powers in cases (2)–(5) as well as controls
reasonably the sizes in case (1).

In S.2, we aim to examine the empirical performance of
V̂n with different dimensions of the two paired vectors. For
the dimension p = 1, we generate two dependent variablesX
and Y with identical or distinct distributions by the Gaus-
sian copula. Both continuous and discrete distributions are
considered for X and Y . Seven distributions including the
three normal distributions N(0.5, 1), N(1, 1), N(0.5, 2), the
exponential law with mean 2, denoted as Exp(2), the gamma
distribution with parameters equal to 2 and 4, denoted as
Ga(2, 4), the beta distribution with parameters equal to 2,
denoted as Beta(2, 2), and the uniform distribution U(0, 1)
are considered for the continuous cases. The binomial dis-
tribution B(5, 0.4), the negative binomial NB(2, 0.5) and
the Poisson distribution P (2) are considered for the discrete
cases. Table 2 displays the performance of V̂n compared with
the classical paired t-test and the Wilcoxon sign-ranked test,
denoted as Wn, with a sample size n = 200. As expected,
both t-test and Wilcoxon sign-ranked test lose powers when
X and Y differ in distribution but have the same location. In
contrast, V̂n has remarkable performance in detecting these
differences.

For the multivariate cases, we consider the dimensions of
X and Y to be p = 2 and p = 5. We firstly draw (X,Y0) from
the multivariate normal distribution N2d(0,Σ), where Σ is
a matrix with elements equal to 1 on the diagonal and 0.3
everywhere else, then define Y as the following nine cases
(1) Y = Y0; (2) Y = Y0 + 0.5; (3) Y = Y0 + 1; (4) Y =
Y0 + 1.5; (5) Y =

√
2Y0; (6) Y =

√
3Y0; (7) Y = 2Y0;

(8) Y = (Y (1), Y (2), . . . , Y (p))′ with Y (j) = 2Φ(Y
(j)
0 )−1, j =
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Table 1. Empirical sizes and powers of V̂n and T̂n for the five cases in S.1

Case H0 Test n = 30 n = 50 n = 100 n = 150 n = 200

1 X
d
= Y V̂n 0.032 0.050 0.032 0.046 0.043

X|Z d
= Y |Z T̂n 0.045 0.067 0.048 0.044 0.042

2 X
d
= Y V̂n 0.035 0.053 0.043 0.043 0.044

X|Z d
= Y |Z T̂n 0.153 0.252 0.495 0.692 0.819

3 X
d
= Y V̂n 0.040 0.038 0.055 0.048 0.044

X|Z d
= Y |Z T̂n 0.734 0.925 0.999 1.000 1.000

4 X
d
= Y V̂n 0.041 0.056 0.049 0.052 0.046

X|Z d
= Y |Z T̂n 1.000 1.000 1.000 1.000 1.000

5 X
d
= Y V̂n 0.035 0.038 0.030 0.040 0.054

X|Z d
= Y |Z T̂n 0.996 1.000 1.000 1.000 1.000

Table 2. Empirical sizes and powers of V̂n, compared with the
classical t-test and the Wilcoxon sign-ranked test in S.2 with

a sample size n = 200

X Y V̂n t Wn

N(0.5, 1) N(0.5, 1) 0.054 0.053 0.054
N(1, 1) 1.000 1.000 1.000

N(0.5, 2) 1.000 0.050 0.041
Exp(2) 1.000 0.054 0.054
Ga(2, 4) 1.000 0.058 0.051

Beta(2, 2) 1.000 0.053 0.053
U(0, 1) 1.000 0.057 0.054

Exp(2) Exp(2) 0.048 0.056 0.052
Ga(2, 4) 0.995 0.058 0.344

Beta(2, 2) 1.000 0.068 0.646
U(0, 1) 1.000 0.056 0.445

Ga(2, 4) Ga(2, 4) 0.054 0.062 0.052
Beta(2, 2) 1.000 0.058 0.245

U(0, 1) 0.992 0.062 0.095

Beta(2, 2) Beta(2, 2) 0.050 0.051 0.052
U(0, 1) 0.994 0.055 0.046

U(0, 1) U(0, 1) 0.051 0.048 0.042

B(5, 0.4) B(5, 0.4) 0.051 0.056 0.056
NB(2, 0.5) 1.000 0.038 0.111

P (2) 0.869 0.044 0.048

NB(2, 0.5) NB(2, 0.5) 0.050 0.060 0.053
P (2) 0.992 0.050 0.077

P (2) P (2) 0.044 0.053 0.051

1, 2, . . . , p, where Φ(·) is the standard normal distribution

function; (9) The same setting as in (8) except that Y (j) =

(Y
(j)
0 )2, j = 1, 2, . . . , p. Table 3 shows the performance of V̂n,

compared with the classical Hotelling’s T 2 test. As expected
from the theory, Hotelling’s T 2 performs better in detecting
the location shift of normal distributions in cases (1)–(4),
however it seems to lose powers in cases (5)–(9), where X
and Y differ in distribution but have the same means.

In S.3, we investigate the performance of T̂n when test-
ing the equality of two conditional distributions for paired
samples. To implement T̂n, in all of the following studies,
we choose the kernel function KH(.) to be the normal den-

sity, and set the bandwidths hk = σ̂Z(k)( 4
(r+2)n )

1
r+4 , k =

1, 2, . . . , r following the Silverman’s rule of thumb, with
σ̂Z(k) being the sample standard deviation of the k-th co-
ordinative of Z.

Firstly, we consider the case that X,Y are both univari-
ate, i.e. p = 1. For the sake of comparison, the test proposed
in Guo et al. [2] with the form

Dn,β :=
1

n2

n∑
i,j=1

(Xi − Yi)(Xj − Yj) exp
(
−|Zi − Zj |β

)
,

0 < β ≤ 2,

is considered. Suppose Z = (Z1, . . . , Zr) ∼ Nr(0, Ir), ε1 ∼
N(0, 1), ε2 ∼ N(0, 1), u ∼ U(−1, 1), and Z, ε1, ε2, u are in-
dependent, let X = βTZ + ε1, where β = (1, 1, . . . , 1)/

√
r.

Then Y is defined as follows:

• Case 1 Y = βTZ + ε2;
• Case 2 Y = βTZ + ε2 + 0.2;
• Case 3 Y = βTZ + ε2 + 0.4;
• Case 4 Y = βTZ + 0.3ε2;
• Case 5 Y = βTZ + 2ε2 + 0.3;
• Case 6 Y = βTZ + u.

r = 1, 2, 3 are considered for the dimensions of Z.
Table 4 presents the empirical sizes and powers of T̂n and

Dn,β(β = 0.5, 1, 1.5) with samples n = 100, 200, where the
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Table 3. Empirical sizes and powers of V̂n compared with the Hotelling’s T 2 test for multivariate X and Y in S.2

Case Test
p = 2 p = 5

n = 30 n = 50 n = 100 n = 150 n = 200 n = 30 n = 50 n = 100 n = 150 n = 200

1
V̂n 0.027 0.031 0.042 0.043 0.043 0.021 0.024 0.037 0.049 0.042

Hotelling′s T 2 0.051 0.040 0.049 0.052 0.049 0.063 0.050 0.044 0.056 0.054

2
V̂n 0.692 0.930 0.999 1.000 1.000 0.935 1.000 1.000 1.000 1.000

Hotelling′s T 2 0.803 0.966 1.000 1.000 1.000 0.969 1.000 1.000 1.000 1.000

3
V̂n 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hotelling′s T 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

4
V̂n 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Hotelling′s T 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

5
V̂n 0.120 0.341 0.793 0.968 0.997 0.189 0.597 0.993 1.000 1.000

Hotelling′s T 2 0.048 0.044 0.048 0.049 0.045 0.057 0.049 0.048 0.059 0.052

6
V̂n 0.483 0.868 1.000 1.000 1.000 0.821 0.998 1.000 1.000 1.000

Hotelling′s T 2 0.051 0.047 0.045 0.050 0.045 0.056 0.055 0.047 0.056 0.046

7
V̂n 0.781 0.991 1.000 1.000 1.000 0.988 1.000 1.000 1.000 1.000

Hotelling′s T 2 0.044 0.048 0.047 0.049 0.046 0.058 0.054 0.046 0.057 0.047

8
V̂n 0.384 0.809 0.998 1.000 1.000 0.716 0.996 1.000 1.000 1.000

Hotelling′s T 2 0.042 0.039 0.059 0.045 0.047 0.048 0.053 0.047 0.050 0.045

9
V̂n 0.243 0.533 0.963 1.000 1.000 0.135 0.414 0.968 1.000 1.000

Hotelling′s T 2 0.074 0.078 0.051 0.052 0.054 0.071 0.079 0.075 0.058 0.062

p-values of Dn,β are based on 399 times of Wild bootstrap
used in Guo et al. [2]. From Table 4, we see that all of the
tests control the Type-I errors well around 0.05 in Case
1, where X and Y are conditional identically distributed
given Z. But the Type-I errors of Dn,β are sometimes lit-
tle lower than the nominal level when r = 3. As expected,
Dn,β(β = 0.5, 1, 1.5) perform better than T̂n in Case 2 and
Case 3, where the conditional distributions of X and Y
given Z only differ in location. It’s not surprising since Dn,β

is a consistent test for detecting the difference between the
two conditional means. In Case 4 and Case 6, where the
conditional distributions of X and Y are distinct but the
mean is the same, Dn,β(β = 0.5, 1, 1.5) lose powers com-

pletely, whereas, our test T̂n detects the distributional differ-
ence with desirable powers. InCase 5, whereX and Y differ
in mean and variance given Z, T̂n and Dn,β(β = 0.5, 1, 1.5)

can identify the differences well, but T̂n is far superior to
Dn,β(β = 0.5, 1, 1.5).

We also consider the cases that X and Y are both dis-
crete variables. Two types of distributions are considered
for Z = (Z1, Z2, . . . , Zr). One is the normal distribution,
with mean 0 and variance of 3 for r = 1, and the mul-
tivariate normal distribution with mean vector of 0 and
covariance matrix Σ = 3Ir for r = 2, 3. Another one is
the r-variate distribution with i.i.d. uniform distribution on
[−2, 2] marginals, denoted by U [−2, 2]r. Conditioning on Z,
we generate X and Y from the Bernoulli distributions with
P (X = 1|Z) = Φ((Z1 + Z2 + . . . + Zr)/r) and P (Y =

1|Z) = Φ(a(Z1 + Z2 + . . . + Zr)/r), respectively. We set
a = 1, 0.1, 0.2, 0.3, 0.4 to vary the difference between P (X =
1|Z) and P (Y = 1|Z). Results are presented in Table 5.

Table 5 reveals that T̂n can control the Type-I errors well
around 0.05 when a = 1. The powers of T̂n share a decreas-
ing trend with the increase of a in the sense that the differ-
ence between X and Y reduces as a gets close to 1. Mean-
while, the powers of T̂n decrease sharply as the dimension
of Z increases from 1 to 3, which is a common phenomenon
of the kernel-based test.

Next, we consider the cases that X, Y are multivariate.
Suppose Z ∈ R

2, X0 ∈ R
p, Y0 ∈ R

p. We generate (Z,X0, Y0)
from the multivariate normal distribution N2+2p(0,Σ) with
Σ = (σij)(2+2p)×(2+2p), σij = 1, i = j else σij = 0.32, i �=
j, i, j = 1, 2, . . . , 2 + 2p. Then we consider the following two
settings:

• Setting 1 X = X0, Y = a+
√
1 + aY0.

• Setting 2 X = exp(X0), Y = exp(a+
√
1 + aY0).

Let a = 0, 0.15, 0.30, 0.45, 0.60 in both settings, and p =
2, 4, 8 are considered for the dimensions of X and Y . Table 6
shows the performance of T̂n with samples n = 100, 200.
From Table 6, we find that T̂n controls the Type-I errors
reasonably around 0.05 when a = 0, and it becomes more
and more powerful as a increases from 0.15 to 0.6.

Finally, we are interested in the performance of T̂n with a
large sample size, say n = 10000. Let X = Z1+Z2+ε1, Y =
Z1 + Z2 + aZ1Z2 + (1 + aZ1)ε2, where Z = (Z1, Z2) ∼
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Table 4. Empirical sizes and powers of T̂n compared with the test Dn,β((0 < β ≤ 2) for univariate X and Y in S.3

Cases Test
r = 1 r = 2 r = 3

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

Case 1

T̂n 0.045 0.049 0.043 0.040 0.059 0.046
Dn,0.5 0.046 0.050 0.040 0.047 0.038 0.044
Dn,1 0.048 0.051 0.040 0.043 0.029 0.034
Dn,1.5 0.051 0.052 0.038 0.043 0.018 0.033

Case 2

T̂n 0.177 0.331 0.126 0.200 0.100 0.151
Dn,0.5 0.250 0.463 0.275 0.468 0.258 0.453
Dn,1 0.233 0.444 0.229 0.416 0.186 0.390
Dn,1.5 0.221 0.427 0.194 0.370 0.131 0.296

Case 3

T̂n 0.610 0.883 0.468 0.771 0.313 0.577
Dn,0.5 0.777 0.970 0.773 0.973 0.766 0.972
Dn,1 0.750 0.961 0.722 0.957 0.681 0.951
Dn,1.5 0.732 0.954 0.663 0.933 0.540 0.901

Case 4

T̂n 1.000 1.000 0.996 1.000 0.918 1.000
Dn,0.5 0.037 0.044 0.040 0.052 0.030 0.046
Dn,1 0.037 0.046 0.032 0.045 0.025 0.045
Dn,1.5 0.041 0.050 0.029 0.040 0.020 0.050

Case 5

T̂n 0.942 1.000 0.799 0.995 0.557 0.944
Dn,0.5 0.221 0.440 0.235 0.432 0.231 0.422
Dn,1 0.211 0.412 0.205 0.380 0.173 0.356
Dn,1.5 0.209 0.393 0.182 0.335 0.136 0.268

Case 6

T̂n 0.465 0.919 0.257 0.617 0.168 0.380
Dn,0.5 0.038 0.050 0.039 0.041 0.039 0.040
Dn,1 0.047 0.050 0.041 0.041 0.031 0.038
Dn,1.5 0.045 0.046 0.037 0.038 0.031 0.041

Table 5. Empirical sizes and powers of T̂n with sample sizes n = 100, 200 for discrete X and Y in S.3

Z a
r = 1 r = 2 r = 3

n = 100 n = 200 n = 100 n = 200 n = 100 n = 200

1 0.057 0.042 0.052 0.050 0.041 0.047

0.1 0.967 1.000 0.694 0.966 0.361 0.719

Nr(0, 3Ir) 0.2 0.863 0.998 0.546 0.873 0.268 0.521

0.3 0.681 0.966 0.380 0.698 0.189 0.352

0.4 0.449 0.813 0.244 0.457 0.127 0.220

1 0.049 0.053 0.049 0.048 0.053 0.057

0.1 0.974 1.000 0.635 0.919 0.285 0.584

U [−2, 2]r 0.2 0.906 1.000 0.471 0.813 0.217 0.441

0.3 0.767 0.989 0.352 0.653 0.155 0.315

0.4 0.577 0.906 0.235 0.455 0.121 0.227

N2(0,Σ) with Σ = (σij)r×r, σij = 1, i = j else σij = 0.6, i �=
j, i, j = 1, 2; ε1, ε2

i.i.d∼ N(0, 1), independent with Z, and a

is a constant. Set a = 0, 0.03, 0.06, 0.09, 0.12, 0.15. Table 7

reports the empirical sizes and powers of T̂n with a sample

size n = 10000. In this table, we see that T̂n can detect

accurately the subtle difference between the two conditional

distributions and enjoys growing powers as a increases, as

well as controls the Type-I error reasonably around 0.05

when a = 0.

5. REAL DATA ANALYSIS

In this section, we use the Student Performance dataset
to illustrate our proposed tests. Student achievement
in secondary education of two Portuguese schools dur-
ing the year 2005–2006 were approached in the dataset,
which was collected using school reports and question-
naires. The original data is available from UCI Ma-
chine Learning Repository http://archive.ics.uci.edu/ml/
datasets/Student+Performance. Attributes of the data in-
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Table 6. Empirical sizes and powers of T̂n with sample sizes
n = 100, 200 for multivariate X and Y in Setting 1 and

Setting 2, S.3

a
Setting 1 Setting 2

n = 100 n = 200 n = 100 n = 200

p = 2 0 0.050 0.046 0.040 0.038
0.15 0.095 0.178 0.144 0.286
0.30 0.399 0.747 0.567 0.886
0.45 0.807 0.987 0.904 0.999
0.60 0.969 1.000 0.995 1.000

p = 4 0 0.048 0.044 0.048 0.042
0.15 0.155 0.271 0.272 0.491
0.30 0.640 0.941 0.821 0.992
0.45 0.959 1.000 0.994 1.000
0.60 0.999 1.000 1.000 1.000

p = 8 0 0.046 0.041 0.049 0.050
0.15 0.213 0.450 0.415 0.753
0.30 0.863 0.998 0.983 1.000
0.45 0.999 1.000 1.000 1.000
0.60 1.000 1.000 1.000 1.000

Table 7. Empirical sizes and powers of T̂n with a sample size
n = 10000 in S.3

a 0 0.03 0.06 0.09 0.12 0.15

0.044 0.085 0.370 0.910 1.000 1.000

clude student grades, demographic, social, and school-
related features. Two datasets are provided regarding the
performance in two distinct subjects: Mathematics and Por-
tuguese language. In each subject, students were evaluated
in three periods during the school year and got three cor-
responding grades denoted by G1, G2, and G3 (the final
grade). Cortez and Silva [1] used the data to predict stu-
dent performance (G3, the final grade) and analysed the
factors that affect student achievement via data mining ap-
proaches. Different models and different data mining ap-
proaches showed the importance of previous grades G1 and
G2 on predicting the final grade G3.

In this work, we aim to test the difference among the
three evaluations. We use the merged data consisting of the
three grades for both Mathematics and Portuguese language
of 382 students. Each grade is standardized to eliminate
the influence of different teachers who gave the scores. We
use zG1, zG2, zG3 to denote the standardized joint grades
of the two subjects at baseline, the second, and the last
evaluations, respectively. Figure 1 shows the scatter plots of
Mathematics and Portuguese language grades for the three
times evaluations, indicating the evident positive correla-
tion of these two subjects. Moreover, in the baseline evalu-
ation, the students’ scores in both subjects were uniformly
distributed, while in the second evaluation, students with
unusually low scores in Mathematics were clearly isolated.
In the last evaluation, students with unusually low scores

Figure 1. Scatter plots of Mathematics and Portuguese
language for the three times of evaluations.

in Portuguese language were also clearly separated, with
the grades of the remaining students being distributed more
compact than those of zG1 and zG2. In summary, there ex-
ist apparent differences among the three evaluations. If we
mistakenly ignore the dependence among the three grades,
and use the eqdist.etest() in the R package energy [18] to test
the pairwise differences among the three evaluations, we will
get the resulting p-values of 0.316 for zG1 and zG2, 0.132
for zG2 and zG3, and 0.018 for zG1 and zG3, respectively.
Consequently, we will conclude incorrectly no significant dif-
ference between zG1 and zG2, nor was there a significant
difference between zG2 and zG3, while the difference only
exists between zG1 and zG3.

Table 8 lists the bootstrap p-values of nV̂n for testing the
pairwise differences among the three evaluations on Math-
ematics and Portuguese language. The small p-values show
that nV̂n correctly detects the pairwise differences among
the three evaluations, which coincides with what Figure 1
shows.

Finally, we test the difference between the last two eval-
uations of performances conditioning on the first perfor-
mance to examine whether the students’ basic level affects
the second and the last performances in different ways. In
doing so, we set the bandwidths by the same approach
as in the previous simulation studies. The resulting test
statistic T̂n = 14.5483 and the corresponding p-value is
5.98721×10−48. Consequently, we reject the null hypothesis
that the second and last performances are identically dis-
tributed given the first performance. This means that there
is a significant difference between the second and last per-
formances at the same basic level. This is not difficult to un-
derstand, because the dependency of the last performance
on the basic level (that is the first performance) is not as
strong as that of the second performance on the basic level.
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Table 8. p-values for testing the differences among the three
evaluations on Mathematics and Portuguese language. Each
p-value is approximated based on B = 399 times of bootstrap

resamples

Compared grades nV̂n p-values

zG1 v.s. zG2 3.715160 0.0025
zG2 v.s. zG3 5.591203 0.0025
zG1 v.s. zG3 10.61590 0.0025

6. SUMMARY AND DISCUSSION

In this paper, we discuss the problems of testing the ho-
mogeneity or conditional homogeneity of paired samples,

formulated as H0 : X
d
= Y and H0 : X|Z = z

d
= Y |Z =

z, for all z ∈ S(Z) respectively. We first introduce the modi-
fied version of energy distance for two paired random vectors
and provide the test statistic V̂n for the paired-sample test.
We also present a bootstrap method to approximate the
p-value of V̂n and prove the validity of the bootstrap. Com-
pared with the energy distance for two independent vectors
and its application, V̂n only differs in the bootstrap proce-
dure. We further extend the concept of energy distance to
conditional energy distance, and then derive the test statis-
tic T̂n to deal with the conditional homogeneity test. We
have proved that T̂n is asymptotically normal under both
the null and alternative hypotheses as well as its consistency.

We adopt Euclidean distance for simplicity here, but the
distance | · | involved in V̂n and T̂n can be extended for
| · |α for α ∈ (0, 2). Proper α may potentially improve the
power of the two tests with the Type-I error under control.
And how to choose a proper α in practice is worth further
investigation.
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APPENDIX A. TECHNICAL DETAILS

The following conditions (C1)–(C3) are assumed for the
kernel function K(u) in Section 3.

(C1)
∫
Rr uK(u)du = 0,

∫
Rr K(u)du = 1,

∫
Rr |K(u)|du <

∞,
∫
Rr K2(u)du < ∞,

∫
Rr |u|2K(u)du < ∞.

(C2) |H| → 0 and n|H| → ∞, as n → ∞. This requires
h1, h2, . . . , hr to be chosen appropriately according to
n.

(C3) The density function of Z and the conditional joint
density of (X,Y ) given Z = z, denoted by f(x, y|z),
are twice differentiable and all of the derivatives are
bounded.

The following lemma gives an equivalent moment condi-
tion for X and Y to be identically distributed.

Lemma 1. For a paired random vector (X,Y ) in R
p ×R

p,
V (X,Y ) is defined in (3) if their norm moments E|X| < ∞
and E|Y | < ∞, then V (X,Y ) ≥ 0 and the equality holds if
and only if X and Y are identically distributed.

Lemma 1 is straightforward since V (X,Y ) is indeed the
energy distance ε(X,Y ′) of two independent random vectors
X and Y ′ proposed in [22]. Hence, V (X,Y ) ≥ 0 and it equals
to zero if and only if X and Y ′ are identically distributed,
i.e. X and Y are identically distributed. Lemma 1 states a
discrepancy between two random variables can be expressed
as a moment form.

Next, we investigate the statistical properties of V̂n(X,Y )
in (4). It is clear that V̂n(X,Y ) is an one-sample V -statistic,
so we could derive its asymptotic behaviour expediently.

Proposition 1. Suppose E|X| < ∞ and E|Y | < ∞, then
V̂n(X,Y ) converges to V (X,Y ) almost surely, that is,

V̂n(X,Y )
a.s.−−→ V (X,Y ).

The proof of Proposition 1 is straightforward according
to Theorem 3 in Chapter 3 of Lee [8] and thus omitted.

Proposition 2. Suppose E|X|2 < ∞, E|Y |2 < ∞, then un-
der the null hypothesis that X,Y are identically distributed,
nV̂n(X,Y ) converges to a limit distribution in law, that is,

nV̂n(X,Y ) �
∞∑
v=1

λvZ2
v ,(9)

where Zv ∼ N(0, 1), i.i.d., and λv’s are non-negative con-
stants that depend on the joint distribution of (X,Y ).

Proof of Proposition 2. Denote F (x, y) as the joint distri-
bution function of (X,Y ), and

g((x, y), (x′, y′)) = |x− y′|+ |x′ − y| − |x− x′| − |y − y′|,

then

V̂n(X,Y ) =
1

n2

n∑
i,j=1

g((Xi, Yi), (Xj , Yj)).
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Since E[g((X,Y ), (X ′, Y ′))
∣∣(X,Y )] = 0 under the null hy-

pothesis that X and Y are identically distributed. V̂n(X,Y )
is a degenerate V -statistic of order 1. According to [8], we
have

nV̂n(X,Y ) �
∑
v

λvZ2
v ,

where λv’s are the eigenvalues of the integral equation

∫
g((x, y), (x′, y′))ρ(x, y)dF (x, y) = λρ(x′, y′),

and Zv’s are independent standard normal random vari-
ables. Moreover, since X and Y are identically distributed,
which implies F (x, y) = F (y, x) for any (x, y) ∈ R

p × R
p,

therefore, λv’s are also the eigenvalues of the integral equa-
tion ∫

g((x, y), (x′, y′))ρ(x, y)d
(
1/2F (x, y) + 1/2F (y, x)

)

= λρ(x′, y′).

(10)

Proof of Theorem 1. Conditional on the original sample Sn,
(X�

i , Y
�
i ), i = 1, 2, . . . , n are independent and identically dis-

tributed on the points

{(X1, Y1), (Y1, X1), . . . , (Xn, Yn), (Yn, Xn)}

with equal probability of 1
2n . Let E

�(·) be E(·|Sn), then for
the V -statistic

V̂ �
n =

1

n2

n∑
i,j=1

g((X�
i , Y

�
i ), (X

�
j , Y

�
j )),

we have

E�[g((X�
1 , Y

�
1 ), (X

�
2 , Y

�
2 ))

∣∣(X�
1 , Y

�
1 )]

=
1

2n

n∑
j=1

g((X�
1 , Y

�
1 ), (Xj , Yj))

+
1

2n

n∑
j=1

g((X�
1 , Y

�
1 ), (Yj , Xj))

= 0,

due to g((x, y), (x′, y′))+g((x, y), (y′, x′)) ≡ 0, and therefore

E�[g((X�
1 , Y

�
1 ), (X

�
2 , Y

�
2 ))]

= E�
{
E�[g((X�

1 , Y
�
1 ), (X

�
2 , Y

�
2 ))

∣∣(X�
1 , Y

�
1 )]

}

= 0.

Thus, V̂ �
n is a degenerate V -statistic of order 1. Again,

according to [8], we have

nV̂ �
n �

∑
v

λvZ2
v ,

where Zv’s are independent standard normal random vari-
ables, and λv’s are the eigenvalues of the integral equation

∫
g((x, y), (x′, y′))ρ(x, y)dF �(x, y) = λρ(x′, y′),

with F �(x, y) being the limit joint distribution function of
(X�

1 , Y
�
1 ). Obviously

F �(x, y) = lim
n→∞

1/2(Fn(x, y) + Fn(y, x))

= 1/2F (x, y) + 1/2F (y, x).

Hence λv’s are exact the eigenvalues of the integral equa-
tion (10), which implies that nV̂ �

n converges in distribution
to the null distribution of the test nV̂n(X,Y ) in Proposi-
tion 2.

The following lemma states that ε(X,Y |z) in (5) has an
equivalent expression.

Lemma 2. ε(X,Y |z) can be rewritten in the form of

ε(X,Y |z) = E[g((X1, Y1), (X2, Y2))|Z1 = Z2 = z].

Proof of Lemma 2. Given the event Z = z, we have

|φX|Z=z(t)− φY |Z=z(t)|2

= φX|Z=z(t)φX|Z=z(t) + φY |Z=z(t)φY |Z=z(t)

− φX|Z=z(t)φY |Z=z(t)− φY |Z=z(t)φX|Z=z(t)

= E[exp(i〈t,X1 −X2〉)
∣∣Z1 = z, Z2 = z]

+ E[exp(i〈t, Y1 − Y2〉)
∣∣Z1 = z, Z2 = z]

− E[exp(i〈t,X1 − Y2〉)
∣∣Z1 = z, Z2 = z]

− E[exp(i〈t, Y1 −X2〉)
∣∣Z1 = z, Z2 = z]

= 1− E[exp(i〈t,X1 − Y2〉)
∣∣Z1 = z, Z2 = z]

+ 1− E[exp(i〈t, Y1 −X2〉)
∣∣Z1 = z, Z2 = z]

− (1− E[exp(i〈t,X1 −X2〉)
∣∣Z1 = z, Z2 = z])

− (1− E[exp(i〈t, Y1 − Y2〉)
∣∣Z1 = z, Z2 = z]).

According to the equation

∫
Rp

1− exp(i〈t,X〉)
|t|p+1

dt = c(p)|X|

in [22], we obtain

ε(X,Y |Z = z)

=

∫
Rp

|φX|Z=z(t)− φY |Z=z(t)|2
c(p)|t|p+1

dt

= E
[ ∫

Rp

(1− exp(i〈t,X1 − Y2〉)
c(p)|t|p+1

+
1− exp(i〈t, Y1 −X2〉)

c(p)|t|p+1
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− 1− exp(i〈t,X1 −X2〉)
c(p)|t|p+1

− 1− exp(i〈t, Y1 − Y2〉)
c(p)|t|p+1

)
dt
∣∣∣Z1 = z, Z2 = z

]

= E
[
|X1 − Y2|+ |X2 − Y1| − |X1 −X2|

− |Y1 − Y2|
∣∣∣Z1 = z, Z2 = z

]
= E[g((X1, Y1), (X2, Y2))|Z1 = Z2 = z].

Proof of Theorem 2. Let

Pn(W1,W2) = g((X1, Y1), (X2, Y2))KH(Z1 − Z2),

Pn1(Wi) = E(Pn(W1,W2)|Wi), i = 1, 2,

and

σ2
n1 = V ar(Pn1(W1)), σ2

n2 = V ar(Pn(W1,W2)).

We use two steps to prove the consistency of Ûn.
step 1: Ûn = E[Ûn] + op(1).
By Lee [8], we have

V ar(Ûn) =
C1

2C
1
n−2

C2
n

σ2
n1 +

C2
2C

0
n−2

C2
n

σ2
n2

=
4(n− 2)

n(n− 1)
σ2
n1 +

2

n(n− 1)
σ2
n2,

where

σ2
n1 = V ar(Pn1(W1))

= V ar(E(Pn(W1,W2)|W1)]

≤ V ar(Pn(W1,W2))

≤ EP 2
n(W1,W2),

σ2
n2 = V ar(Pn(W1,W2)) ≤ EP 2

n(W1,W2),

and

EP 2
n(W1,W2)

=

∫ [
g((x1, y1), (x2, y2))KH(z2 − z1)

]2

· f(x1, y1, z1)f(x2, y2, z2)dx1dy1dz1dx2dy2dz2

= |H|−1

∫ [
g((x1, y1), (x2, y2))K(z12)

]2

· f(x1, y1, z1)f(x2, y2, z1 +Hz12)dx1dy1dz1dx2dy2dz12

= O(
1

|H| ).

Therefore, we get

V ar(Ûn) =
4(n− 2)

n(n− 1)
σ2
n1 +

2

n(n− 1)
σ2
n2

≤ O(
1

n|H| ) +O(
1

n
)O(

1

n|H| )

= o(1).

So

Ûn = E[Ûn] + op(1),

by the Chebyshev’s inequality.
step 2: EÛn = E[ε(X,Y |Z)fZ(Z)] +O(|H|2).
It is easy to verify that

EÛn = EPn(W1,W2)

= E[g((X1, Y1), (X2, Y2))KH(Z1 − Z2)]

= |H|−1

∫
g((x1, y1), (x2, y2))K(H−1(z2 − z1))

· f(x1, y1, z1)f(x2, y2, z2)dx1dx2dy1dy2dz1dz2

=

∫
g((x1, y1), (x2, y2))K(z12)f(x1, y1|z1)fZ(z1)

· fZ(z1 +Hz12)f(x2, y2|z1 +Hz12)dx1dx2dy1dy2dz1dz12

=

∫
g((x1, y1), (x2, y2))K(z12)f(x1, y1|z1)f2

Z(z1)

· f(x2, y2|z1)dx1dx2dy1dy2dz1dz12 +O(|H|2)

=

∫ [
g((x1, y1), (x2, y2))f(x1, y1|z1)

· f(x2, y2|z1)dx1dx2dy1dy2

]
f2
Z(z1)dz1 +O(|H|2)

=

∫
E[g((X1, Y1), (X2, Y2))|Z1 = z, Z2 = z]f2

Z(z)dz

+O(|H|2)
= E[ε(X,Y |Z)fZ(Z)] +O(|H|2).

Thus, combining the results in step 1 and step 2, we finally
obtain

Ûn
P−→ U = E[ε(X,Y |Z)fZ(Z)].

Proof of Theorem 3. We can rewrite Ûn as

Ûn =
1

C2
n|H|1/2

∑
i<j

ϕn(Wi,Wj),

where

ϕn(Wi,Wj) = |H|1/2Pn(Wi,Wj)

= |H|1/2g((X1, Y1), (X2, Y2))KH(Zi − Zj).

We use Theorem 1 in Hall [3] to derive the asymptotic dis-
tribution of Ûn under H0 in the following steps.

Step 1: Under H0, E(ϕn(W1,W2)|W1) = 0.
Note that

E(ϕn(W1,W2)|W1)

= |H|1/2E(Pn(W1,W2)|W1)

= |H|−1/2

∫
g((x1, y1), (x2, y2))K(H−1(z2 − z1))

· f(x2, y2, z2)dx2dy2dz2
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= |H|1/2
∫

g((x1, y1), (x2, y2))K(z12)

· fZ(z1 +Hz12)f(x2, y2|z1 +Hz12)dx2dy2dz12

= |H|1/2
∫ {∫

g((x1, y1), (x2, y2))

· f(x2, y2|z1 +Hz12)dx2dy2

}
K(z12)fZ(z1 +Hz12)dz12

= 0.

Therefore, we also have

Eϕn(W1,W2) = E[E(ϕn(W1,W2)|W1)] = 0.

Step 2: As n −→ ∞,

E[G2
n(W1,W2)] + n−1E[ϕ4

n(W1,W2)]

(E[ϕ2
n(W1,W2)])2

−→ 0,

where

Gn(w1, w2) = E[ϕn(w1,W )ϕn(w2,W )]

= |H|E[Pn(w1,W )Pn(w2,W )].

Obviously,

E[ϕ2
n(W1,W2)]

= |H|
∫ [

g((x1, y1), (x2, y2))KH(z2 − z1)
]2

· f(x1, y1, z1)f(x2, y2, z2)dx1dy1dz1dx2dy2dz2

=

∫ [
g((x1, y1), (x2, y2))K(z12)

]2

· f(x1, y1, z1)f(x2, y2, z1 +Hz12)dx1dy1dz1dx2dy2dz12

=

∫
K2(u)du

∫ [
g((x1, y1), (x2, y2))

]2
· f(x1, y1, z)f(x2, y2, z)dx1dx2dy1dy2dz +O(|H|).

Therefore (E[ϕ2
n(W1,W2)])

2 = O(1).

Analogously to E[ϕ2
n(W1,W2)], we can obtain that

E[ϕ4
n(W1,W2)] = O( 1

|H| ). Furthermore,

E[G2
n(W1,W2)]

= |H|2E
[ ∫

(g((x1, y1), (x, y))g((x2, y2), (x, y))

KH(Z1 − z)KH(Z2 − z)f(x, y, z)dxdydz
]2

=
1

|H|2
∫ [ ∫

g((x1, y1), (x, y))g((x2, y2), (x, y))

K(H−1(z − z1))K(H−1(z − z2))f(x, y, z)dxdydz
]2

· f(x1, y1, z1)f(x2, y2, z2)dx1dx2dy1dy2dz1dz2

=

∫ [ ∫
g((x1, y1), (x, y))g((x2, y2), (x, y))

K(z3)K(H−1(z1 − z2) + z3)f(x, y, z1 +Hz3)dxdydz3

]2
· f(x1, y1, z1)f(x2, y2, z2)dx1dx2dy1dy2dz1dz2

= |H|
∫ [ ∫

g((x1, y1), (x, y))g((x2, y2), (x, y))

K(z3)K(z4 + z3)f(x, z2 +H(z3 + z4))dxdydz3

]2
· f(x1, y1, z2 +Hz4)f(x2, y2, z2)dx1dx2dy1dy2dz2dz4

= O(|H|).

Therefore, under the conditions n|H| −→ ∞ and |H| −→ 0,
we obtain that

EG2
n(W1,W2)) + n−1Eϕ4

n(W1,W2)

(Eϕ2
n(W1,W2))2

=
O(|H|) +O( 1

n|H| )

O(1)

−→ 0.

According to Theorem in Hall [3], it follows that

n|H|1/2Ûn√
2Eϕ2

n(W1,W2)
� N(0, 1).

Finally, we show that σ̂2
n is a consistent estimator of

2Eϕ2
n(W1,W2). Note that

σ̂2
n =

2|H|
C2

n

∑
i<j

[
g((Xi, Yi), (Xj , Yj))

]2K2
H(Zi − Zj)

=
1

C2
n

∑
i<j

2ϕ2
n(Wi,Wj),

which implies that Eσ̂2
n = 2Eϕ2

n(W1,W2).

Moreover,

V ar(σ̂2
n)

=
C1

2C
1
n−2

C2
n

V ar(ϕn1(W1)) +
C2

2C
0
n−2

C2
n

V ar(2ϕ2
n(W1,W2))

=
4(n− 2)

n(n− 1)
V ar(ϕn1(W1)) +

2

n(n− 1)
V ar(2ϕ2

n(W1,W2)),

where ϕn1(W1) = E(2ϕ2
n(W1,W2)|W1).

Notice that

V ar(ϕn1(W1)) = V ar(E(2ϕ2
n(W1,W2)|W1))

≤ V ar(2ϕ2(W1,W2))

≤ 4E(ϕ4
n(W1,W2))

= O(
1

|H| ).

We therefore obtain that V ar(σ̂2
n) = o(1), which implies

that σ̂2
n is a consistent estimator of Eσ̂2

n = 2Eϕ2
n(W1,W2).

Thus (7) holds.
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Proof of Theorem 4. According to the H-decomposition [8],
Ûn can be rewritten as

Ûn = EÛn + C1
2H

(1)
n + C2

2H
(2)
n

= EÛn + 2 · 1
n

∑
i=1

ψn(Wi) +
1

C2
n

∑
i<j

ψn(Wi,Wj),
(11)

where

ψn(Wi) = E(Pn(Wi,Wj)|Wi)− EÛn,

ψn(Wi,Wj) = Pn(Wi,Wj)− ψn(Wi)− ψn(Wj)− EÛn.

Since EÛn = U +O(|H|2) under the alternative hypothesis,
so

√
n(Ûn − U) = O(

√
n|H|2) +

√
n · 2

n

∑
i=1

ψn(Wi)

+

√
n

C2
n

∑
i<j

ψn(Wi,Wj),

where O(
√
n|H|2) = o(1) due to the assumption that

n|H|4 −→ 0 as n −→ ∞.
Notice that

V ar
(√n

C2
n

∑
i<j

ψn(Wi,Wj)
)
=

2

n− 1
V ar(ψn(W1,W2))

=
2

n− 1
(σ2

2n − 2σ2
1n)

≤ 2

n− 1
(σ2

2n + 2σ2
1n)

≤ 2

n− 1
O(

1

|H| )

= o(1),

which implies that

√
n

C2
n

∑
i<j

ψn(Wi,Wj)
P−−−−→

n→∞
0.

Moreover,

V ar(ψn(W1)) = V ar(E(Pn(W1,W2)|W1))

= E[E(Pn(W1,W2)|W1)]
2 − (E(Pn(W1,W2)))

2

= E[E(Pn(W1,W2)|W1)]
2 − (EÛn)

2

=

∫ [ ∫
g((x1, y1), (x2, y2))KH(z1 − z2)

· f(x2, y2, z2)dx2dy2dz2

]2
f(x1, y1, z1)dx1dy1dz1

− U2 +O(|H|2)

=

∫ [ ∫
g((x1, y1), (x2, y2))K(z12)

· f(x2, y2, z1 −Hz12)dx2dy2dz12

]2
f(x1, y1, z1)dx1dy1dz1

− U2 +O(|H|2)

=

∫ [ ∫
g((x1, y1), (x2, y2))f(x2, y2|z1))dx2dy2

]2

· f2
Z(z1)f(x1, y1, z1)dx1dy1dz1 − U2 +O(|H|2)

= σ2 +O(|H|2)

with

σ2 =

∫ [ ∫
g((x1, y1), (x2, y2))f(x2, y2|z1))dx2dy2

]2
· f2

Z(z1)f(x1, y1, z1)dx1dy1dz1 − U2.

(12)

Therefore

√
n(Ûn − U) d

=
√
n · 2

n

∑
i=1

ψn(Wi)

� N(0, 4σ2)

by the central limit theorem and Slutsky’s Theorem.
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