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Multiple penalized regularization for clusters with
varying correlation levels∗

Wenjun Cao, Lisu Wang
†
, and Yuehan Yang

‡

In this paper, we study the high-dimensional correlated
data with multi-level correlations. These data appear fre-
quently in many fields, e.g., genes in gene pathways or stock
in industry groups. It motivates us not only to exploit these
clusters but also to distinguish the correlation levels. Be-
sides, we analyze the data without pre-specified clustering
information to covariates. A two-step method is proposed
to address the above problems. The first step focuses on
distinguishing the levels and clustering. We aim to divide
covariates into sub-vectors, considering both grouping ef-
fect and varying correlation. In the second step, we pro-
pose a joint estimation and a modified coordinate descent
algorithm. The proposed procedure estimates different cor-
related groups with different penalties. We provide the the-
oretical guarantees of this method. Numerical comparisons
show that the method works effectively on the multi-level
correlation structures. We also apply the proposed method
to financial data and get interpretable results.

Keywords and phrases: Multi-level correlations, Clus-
tering, Elastic Net, Structured sparsit.

1. INTRODUCTION

Statistical application in the fields of internet and fi-
nance can involve extremely large datasets, often coming
with complex correlated structures. For example, if we fo-
cus on modeling the financial data, S&P 500 indices, it in-
cludes ten sectors, e.g., Industrials, Information Technology,
Finance, Materials, etc. Each stock is assigned to one of the
sectors, providing a grouping structure with 10 groups. Fur-
thermore, each sector has different correlation strength, e.g.,
stocks in Finance are highly correlated; Material stocks are
correlated but not as strong as financial stocks. Generally,
in empirical analysis, important and unimportant variables
can be correlated; the correlations between covariates can
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be varying; uncorrelated data and correlated data can be
mixed. Statistical and computational methods are required
to handle the situations where the data are correlated in
various structures [7].

Correlating covariates always cause difficulties in model-
ing and predicting, such as overfitting and multicollinearity.
Penalized methods mitigate these problems by ameliorating
the estimation through regularization. The Ridge [12], for
instance, balance the bias and variance by shrinking the es-
timates with an l2 penalty. The Lasso [24] and the Elastic
Net [32], on the other hand, combining with an l1 penalty,
achieve the goal of variable shrinkage while the Ridge can-
not. These techniques perform well in general situations
[32, 8, 11]. Among, Elastic Net often outperforms the Lasso
when there are strongly correlated variables, and this kind of
data is common in high-dimensional settings. Many methods
are proposed to solve the problems with correlated datasets.
Spline-lasso [10] is designed for the data with covariates that
can be ordered in some meaningful way. The Combined L-
one and Two (CLOT) [1] is introduced for sparse regression
and compressed sensing. Yang and Yang [28] proposed an
adaptive and reversed penalty to remove the shrinking bias
and encourage the group effect. Combining with the non-
negative constraint, the Nonnegative Elastic Net [27] and a
two-step method are studied and applied to the constrained
index tracking problem in the stock market without short
sales. Correlated data with a two-level structure are consid-
ered under the Gaussian graphical models [20]. Other exten-
sions include Meier, van de Geer and Bühlmann [15], Tib-
shirani et al. [25], Hastie, Tibshirani and Wainwright [11],
etc.

Recently, researchers have tried far more regularization
to exploit groups or clusters information. Group Lasso, pro-
posed by Yuan and Lin [29] encourages the variables within
a group to have a shared pattern of sparsity. Motivated by
this proposal, the Sparse Group Lasso, proposed by [22], al-
lows sparsity for individual elements within a group; and the
Cooperative-lasso Chiquet et al. [3] encourage a shared sign
for the nonzero estimates within each group. Further, She
[21] proposed the Clustered Lasso method with exact clus-
tering. Witten, Shojaie and Zhang [26] proposed the Cluster
Elastic Net which infers clusters of features from the data
based on the correlation among covariates as well as associ-
ation with the response. Tan, Witten and Shojaie [23] pro-
posed the Cluster Graphical Lasso for improved estimation
of Gaussian graphical models.
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Above group or cluster penalized procedures exploit ex-
ternal information about the covariates to potentially ob-
tain more accurate results. However, they do not consider
the different degrees of correlation levels between groups.
Note that practical problems often come with complicated
correlations in data. Financial data for instance, often have
correlations in varying degrees among hundreds of stocks.
Companies involved in the same industry have strong cor-
relations, while some companies owned by one cartel show
weak correlations between each other. Similarly, the bank
lending data have intricate correlations ranging from the
service information, including credit rating and loan record,
to personal information and market conditions. These kinds
of data usually include strong correlated, weak correlated,
and non-correlated groups simultaneously. To address these
limitations, this paper focuses on the supervised clustering
problem considering multi-level correlations. Besides, moti-
vated by Witten, Shojaie and Zhang [26], we do not assume
that the clusters are known a priori. Instead, to obtain the
cluster information to more accurately perform the regres-
sion, we measure the correlation between covariates as well
as association with the response.

We propose a two-step estimation, named Multiple penal-
ized regularization (MPR), to estimate the regression mod-
els allowing multiple correlation levels among covariates. We
first propose a simple algorithm to cluster the covariates
based on their correlations as well as association with the
response. According to the correlation levels, the proposed
method divides covariates into different clusters including
strong correlation clusters, weak correlation clusters, and
non-correlation clusters, and then, we estimate each cluster
with specific shrinkage and estimate all the coefficients si-
multaneously. For the penalties on different clusters, we use
combinations of the penalties from the Elastic Net, Lasso,
and ridge, controlling by two parameters. Single l2 regu-
larization is germane for the extremely strong correlated
variable groups which are seldom sparse, i.e., these groups
are usually dense while l2 penalty encourages grouping ef-
fect and reduces multicollinearity. Regularization containing
both l1 and l2 penalty performs well in correlated variable
groups: it simultaneously does variable selection and con-
tinuous shrinkage. For the non-correlated groups, since they
are non-correlated to the response too, a single l1 penalty
is apposite for covariates in these groups are more likely ir-
relevant. When processing data with multiple correlations
between variables, the proposed method performs well in
both low-dimensional or high-dimensional situations com-
pared to various existing methods, such as Lasso, SCAD,
MCP [30], etc. Simulations and empirical results show that
the MPR is more stable and accurate. Furthermore, we ap-
ply the proposed method to financial modeling.

This paper is organized as follows. Section 2 presents the
model, method, and algorithm. Section 3 shows the theoret-
ical properties and Section 4 shows the simulations results.
The application in Section 5 assesses the performance of

the proposed method in financial modeling. We conclude in
Section 6. Technical details are provided in the Appendix.

2. METHOD

In this section, we present the details of the proposed
method and the related algorithm. Consider the linear re-
gression problem:

y = Xβ + ε,

where y is an n response vector,X = (X1, . . . , Xp)
T ∈ Rn×p,

β is the p-dimensional regression coefficient and ε is the error
vector that εi ∼ N(0, σ2), i = 1, . . . , n. We are interested in
the case where n � p and β has at most q nonzero elements.
p and q are allowed to grow with n, and we do not index
them with n for notational simplicity. We consider the cases
where the predictors are complicatedly correlated. This kind
of data appears frequently. Financial data for example, when
we consider the index tracking problem, we set the y as
market index while X be the returns of p stocks. And the
interactions between stocks are intricate.

We consider the data involving different correlated levels
among covariates as well as association with the response,
i.e., there exist K different correlated levels (K > 2). The
sample correlations are used to be the correlation measure.
A group exists when all the variables in the group are corre-
lated to each other and their sample correlations should be
roughly close. We use the Pearson correlation coefficient, a
numerical value between −1 and 1, to express the strength
of relationship between variables. Let R = {rjj′}(p+1)×(p+1)

be the sample correlation coefficient matrix. |rjj′ | closes to 1
indicating a strong correlation. The corresponding threshold
for different groups are 0 < r∗K−1 < · · · < r∗1 < 1. Denote
A1, . . . , AK as different clustering groups, sorted high to low
levels. The proposed algorithm proceeds as follows:

Algorithm

Clustering. For k = 1, . . . ,K − 1, initialize Ak = {y}
and denote Wk = {1, ..., p}/(A1 ∪ · · · ∪ Ak−1). Repeat
the following steps:
Step 1. Compute the correlation coefficient matrix

R = {rjj′} of (XWk
, y).

Step 2. Add j′ into Ak when r∗k ≤ |rjj′ | for ∀j ∈ Ak.
Step 3. When Ak is fixed, remove y from Ak.

Denote AK = (∪K−1
k=1 Ak)

c.
Selection and estimation. Obtain the following esti-
mation:q

(1) β̂ := argmin
{1

2
‖y −Xβ‖22 +

K∑
k=1

PAk
(β)

}
,

where PAk
(β) = λ2,k‖βAk

‖22/2 + λ1,k‖βAk
‖1.

This clustering construction is quite general. In spite of the
fact that statistical modeling under the high dimensional
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setting always requires sparsity, this assumption is some-
times restrictive. For example, financial returns always de-
pend on the common risk factors, and thus if we consider
financial modeling with numerous covariates, there are a
considerable proportion of covariates are relevant to the re-
sponse [6]. It is more natural to consider all of those covari-
ates as important. Our settings fit these data well. Also, it is
natural to consider different penalty techniques in different
clusters, as they have different grouping effects. Variables
in the highly correlated group are more likely toward each
other rather than those in the weakly correlated group. The
variables in weakly correlated groups are more likely irrele-
vant to the response. Obtaining these targets requires differ-
ent strengths of penalties. We will show that the proposed
two-step estimation enjoys desirable asymptotic properties
with proper choices of tuning parameters.

3. THEORETICAL RESULTS

In this section, we provide the theoretical guarantee for
the proposed method. In what follows, we consider the fol-
lowing dimensions, p = O(exp(nc1)) and q = O(nc2) where
0 � c1, c2 < 1, p is the number of covariates and q is the
number of nonzero elements of beta.

We first show results on the error bound of the proposed
method. This property requires the following condition:

Condition 1. Define C = XTX/n. There exists a positive
constant κ that

vTCv � κ‖v‖22,

for all v ∈ G(S) where G(S) := {v ∈ Rp : ‖vSc‖1 �
M‖vS‖1} and M is ‘’a positive constant.

Condition 1 is the Restricted Eigenvalue condition which
is usually used to bound the l2-error between coefficients and
estimates [17, 18]. This condition holds with high probability
for quite general classes of Gaussian matrices for which the
predictors may be highly correlated [19].

Theorem 1. Suppose Condition 1 holds and assume that
there exists positive constants K1 that min(λ1) ∝ max(λ1) ∝
K1

√
n log p and ‖β‖∞ � min(λ1)/4max(λ2) where λ1 =

(λ1,1, . . . , λ1,K) and λ2 = (λ2,1, . . . , λ2,K). Then with prob-
ability as least 1− o(exp(−nc1)) that

‖β̂ − β‖2 � 8σ

κ

√
q log p

n
and ‖β̂ − β‖1 � 24σ

κ

√
q
log p

n
.

Remark 1. This result is similar to Negahban et al. [18]
which has proved the error bound of the Lasso. More de-
tails can be found in the Appendix. Note that correlations
among covariates doesn’t affect the estimator achieving the
theoretical upper bound. This error bound is a general re-
sult for penalized regularization. The estimation accuracy of

the estimate under correlated data is potentially improved,
as shown in simulations and applications.

We then discuss the model selection consistency (sign
consistency). Set S = {j ∈ {1, . . . , p} : βj �= 0} to be the

set of nonzero coefficients, |S| = q, and Ŝ = {∈ {1, . . . , p} :

β̂j �= 0} where β̂ is the estimate of MPR. Without loss of
generality, we assume that C = XTX/n, CS = XT

SXS/n
and CSc = XT

ScXS/n. Similarly, βS = {βj : j ∈ S}. We
require the following condition:

Condition 2. There exists a positive constant η > 0, with

‖CScC−1
S sign(βS)‖∞ � 1− η.

Condition 2 is the Irrepresentable condition, which is re-
quired for the most convex penalties such as l1 penalty to
achieve model selection consistency [31, 16, 11]. It is stronger
than Condition 1, which may hold in the cases where Con-
dition 2 is violated.

The following Theorem shows that under the proper tun-
ing parameters, the estimate of the proposed method is
equal in sign with the true model with high probability.

Theorem 2. Suppose Condition 2 holds and assume
that there exists positive constants K2 and K3 such that
min(λ1) ∝ max(λ1) ∝ K2(n log p)1/2 and minj∈S |βj | >
K3

√
qmax(λ1)/n where λ1 = (λ1,1, . . . , λ1,K). We have with

probability at least 1− o(exp(−nc1)) that

sign(β̂) = sign(β).

Remark 2. The above result is similar to Zhao and Yu [31]
and Jia and Yu [13] which have proved the sign consistency
of the Lasso and the Elastic Net respectively. The proof
follows their proof too. The proof of Theorem 2 begins with
the Karush-Kuhn-Tucker (KKT) condition of the proposed
method, to find a sufficient condition for sign consistency.
Because of the multiple correlations between predictors, our
KKT condition and tuning parameters are more complex
than either the Lasso or the Elastic Net. Then we use the
tail probability bound of Gaussian distribution. More details
can be found in the Appendix.

Remark 3. The theoretical results of the proposed proce-
dure and those of the elastic net are alike. The difference is
that we use different l1 and l2 penalties for different groups
which have different correlation strength, while the elastic
net is using a single l1 penalty and a single l2 penalty.

4. SIMULATIONS

4.1 Detailed Algorithm

In this part, we introduce the detailed algorithm of the
proposed method, using the three levels estimation of MPR
as an example. Many algorithms designed for Lasso can be
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used with modifications to solve MPR. The coordinate de-
scent algorithm is refereed since it is fast and simple [9, 8].
Based on the coordinate descent algorithm, we wish to par-
tially optimize with respect to βj , in other words, the algo-
rithm minimizes one coordinate while keeping others fixed.
To obtain the proposed estimation, at each iteration, we
calculate all parameters in turn. Let

R(β) =
1

2n
‖y −Xβ‖22 +

K∑
k=1

PAk
(β),

where PAk
(β) = λ2,k‖βAk

‖22/2 + λ1,k‖βAk
‖1. Given β̃k(k �=

j) and calculating the first derivative of R(β), if β̃j > 0, we
have

∂R

∂βj
|β=β̃ = −(1/n)

n∑
i=1

xij(yi−xT
i β̃)+λ2,kβ̃j+λ1,k, j ∈ Ak.

If β̃j < 0, the expression is similar, and β̃j = 0 is treated
separately. Following the same notations of Friedman et al.
[9], we use the soft-thresholding operator S(z, γ) to express
the coordinate-wise update:

S(z, γ) = sign(z)(|z|−γ)+ =

⎧⎨
⎩

z − γ if z > 0 and γ < |z|
z + γ if z < 0 and γ < |z|
0 if γ ≥ |z|.

Let ∂R
∂βj

|β=β̃ = 0, the coordinate-wise update has the follow-

ing form:

(2) β̃j ←
S( 1n

∑n
i=1 xij(yi − ỹ

(j)
i ), λ1,k)

1 + λ2,k
, j ∈ Ak,

where ỹ
(j)
i = (1/n)

∑
j �=k xikβ̃k is the fitted value excluding

the contribution from xij . Based on the coordinate-wise up-

date (2), we obtain β̂ until the iteration convergence. Start-
ing with any value of β̃, e.g., the zero vector in p dimensions,
the update (2) is repeated for j = 1, 2, . . . , p, 1, 2, . . . , p, . . . .
During each iteration, we calculate all parameters in turn.
When p is large, the computational cost is large too, and
thus we give the following modification to improve calcula-
tion speed. Based on

yi − ỹ
(j)
i = (yi − xT

i β̃) + xij β̃j ,

we have

(3)
1

n

n∑
i=1

xij(yi−ỹ
(j)
i ) =

1

n

n∑
i=1

xij(yi−xT
i β̃)+

1

n

n∑
i=1

x2
ij β̃j .

Through (2) and (3), we obtain an equivalent form of the
coordinate-wise update:
(4)

β̃j ←
S(λ2,kβ̃j + λ1,k + 1

n

∑n
i=1 x2

ij β̃j , λ1,k)

1 + λ2,k
, j ∈ Ak,

If β̃j = 0 at the last iteration, it is easy to obtain that β̃j

has the following form through the next iteration:

β̃j = S(λ1,k, λ1,k)/(1 + λ2,k) = 0, j ∈ Ak,

indicating that β̃j will remain zero until convergence. In this
case, we modify the algorithm by dealing with the active set
at each iteration. More specifically, if we obtain β̃j = 0, we

will no longer calculate β̃j during the next iterations and
delete the predictors whose coefficients have been shrunk
to 0. As the number of irrelevant variables is always much
larger than that of relevant variables, this modification ef-
fectively saves the computational cost.

4.2 Simulation results

In this section, we use simulation studies to exhibit the
performance of the proposed method comparing with the
Lasso [24], Elastic-Net [32], MCP [30] and SCAD [5]. We
use the R package glmnet to run Lasso and Elastic-Net [8],
the results of MCP and SCAD are based on the R pack-
age ncvreg [2]. We use cross-validation to select the tuning
parameters.

Consider the following linear model

yi =

p∑
ij

xijβj + εi, i = 1, . . . , n,

where εi ∼ N(0, 1) and xij ∼ N(0,Σ). Let Σ = {σjj′}p×p,
σjj′ = 0.9 denotes the strong correlation and σjj′ = 0.3 de-
notes the weak correlation. We consider the following corre-
lation structure: let the first 10 variables strongly correlated;
the second 10 variables weakly correlated; and the rest vari-
ables non-correlated. We consider two different dimensional
setting, (n, p) = (200, 40), (200, 400), and two different coef-
ficients settings: 1) the first 15 coefficients are set as nonzero,
equal to 3, and others are set to zero; 2) the first 10 coeffi-
cients are set as nonzero, equal to 3, and others are set to
zero.

Selection and estimation performance of the five methods
is compared in four scenarios. The l2 norm error (‖β̂−β‖2),
the l1-norm(‖β̂−β‖1) error, MSE (the mean-squared error)
and the estimated number of nonzero coefficients (NZ) are
computed. Also, the false positive rate (FPR) and the true
positive rate (TPR) are defined as following:

FPR =
|j ∈ {1, ..., p} : β̂j �= 0 and βj = 0|

|j ∈ {1, ..., p} : βj = 0| ,

TPR =
|j ∈ {1, ..., p} : β̂j �= 0 and βj �= 0|

|j ∈ {1, ..., p} : βj �= 0| .

We simulate 100 replicates for every scenario. Results are
summarized in Table 1. As one can see, MPR performs bet-
ter than other methods in both model selection and esti-
mation accuracy. When the relevant covariates have both
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Table 1. Performance comparison for four simulation examples.

Method l2-error l1-error NZ FPR TPR MSE

(n, p, q) = (200, 40, 10)

MPR 0.33(0.07) 0.86(0.20) 10.00(0.00) 0.00(0.00) 1.00(0.00) 1.07(0.10)
Lasso 0.70(0.17) 1.81(0.47) 10.00(0.00) 0.00(0.00) 1.00(0.00) 1.08(0.10)

Elastic Net 0.68(0.16) 1.75(0.43) 10.00(0.00) 0.00(0.00) 1.00(0.00) 1.15(0.10)
MCP 2.03(1.54) 4.43(3.31) 9.47(0.66) 0.00(0.00) 0.95(0.06) 1.36(0.49)
SCAD 1.07(0.97) 2.46(1.79) 9.95(0.35) 0.00(0.00) 0.99(0.03) 1.05(0.23)

(n, p, q) = (200, 40, 15)

MPR 0.50(0.09) 1.61(0.34) 15.60(0.73) 0.02(0.03) 1.00(0.00) 1.00(0.09)
Lasso 0.80(0.17) 2.48(0.52) 16.10(1.03) 0.04(0.04) 1.00(0.00) 1.01(0.09)

Elastic Net 0.78(0.17) 2.43(0.53) 16.77(1.11) 0.07(0.04) 1.00(0.00) 1.05(0.09)
MCP 0.73(0.28) 2.12(0.64) 15.08(0.27) 0.00(0.01) 1.00(0.01) 0.94(0.10)
SCAD 0.71(0.16) 2.12(0.47) 16.15(1.07) 0.05(0.04) 1.00(0.00) 0.93(0.09)

(n, p, q) = (200, 400, 10)

MPR 0.35(0.03) 0.99(0.07) 10.00(0.00) 0.00(0.00) 1.00(0.00) 1.85(0.10)
Lasso 0.74(0.17) 1.93(0.49) 10.00(0.00) 0.00(0.00) 1.00(0.00) 1.21(0.10)

Elastic Net 0.62(0.14) 1.61(0.39) 10.01(0.09) 0.00(0.00) 1.00(0.00) 1.17(0.10)
MCP 4.08(1.66) 9.92(5.36) 9.50(1.36) 0.00(0.00) 0.84(0.09) 2.30(0.77)
SCAD 10.17(1.09) 31.61(3.22) 6.42(1.67) 0.00(0.00) 0.52(0.09) 9.65(1.57)

(n, p, q) = (200, 400, 15)

MPR 0.47(0.07) 1.51(0.24) 15.36(0.56) 0.00(0.00) 1.00(0.00) 1.14(0.09)
Lasso 0.94(0.16) 3.02(0.55) 15.24(0.49) 0.00(0.00) 1.00(0.00) 1.37(0.10)

Elastic Net 0.94(0.16) 3.01(0.55) 15.25(0.50) 0.00(0.00) 1.00(0.00) 1.38(0.10)
MCP 2.11(1.56) 5.03(3.64) 15.15(1.11) 0.00(0.00) 0.96(0.05) 1.34(0.50)
SCAD 2.09(1.54) 4.98(3.61) 16.05(2.26) 0.00(0.01) 0.98(0.04) 1.31(0.47)

strong and weak correlations. MCP and SCAD tend to over-
select the irrelevant variables. Lasso and Elastic Net iden-
tify the relevant covariates and reach a good MSE. However,
MPR still outperforms them in l1-error and l2-error.

5. EMPIRICAL ANALYSIS

In this section, we apply the proposed method to the in-
dex tracking problem in financial modeling. Index tracking
is one of the most popular topics in finance. Index tracking,
also referred to as passive portfolio management, aims to
replicate a specific index to match its performance. Malkiel
[14] has shown that the average return of indexed funds,
e.g., passive portfolio management, is higher than that of
other funds, with an average annual difference of 3 percent-
age points. Active portfolio management with a high level
of scientific management and management standards often
cannot beat the market for a long time. Besides, since index
tracking does not need to beat the market, this strategy re-
quires taking on smaller market risk than is quired for active
portfolio management.

One advantage of applying the proposed method to the
index tracking is that this is a high-dimensional data mod-
eling problem as the number of stocks is often hundreds
or thousands, whereas the number of observations (days) is
tens or hundreds. MPR can select a few rather than many
stocks to track the performance of the index. Compared
to the full replication or active portfolio management, this

method offers a lower-cost route to investing in an entire
market.

Second, it is easy to find that the stock data has multiple
correlation levels, while MPR is proposed to handling this
kind of data. We will show in the following that combining
statistical modeling and MPR can track the behavior of the
index well. It means that the portfolios obtained by this
method replicate the market well and thus stand a good
chance of gaining nice investment returns. Other discussions
of applying statistical modeling on this problem also can be
found in Fan et al. [7], Yang and Yang [28], etc.

We consider S&P500 index from June 2018 till De-
cember 2019 and divide the dataset into 18 rolling pe-
riods (https://www.wind.com.cn/NewSite/edb.html). Each
period includes training (= 100 days) data and testing
(= 20 days) data. The training data is used for modeling
and the testing data is used for forecasting. Let yt repre-
sents the return of the S&P500 index on day t and xjt rep-
resents the return of stock j on day t. Then we can describe
the relationship between yt and xjt by the following linear
regression model:

yt =

500∑
j=1

xjtβj + εt.

We divide stocks into three groups, identifying a non-
correlated group, a weakly correlated group, and a highly
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correlated group. Based on data, we observe that if the cor-
relation coefficient threshold is set above 0.6, the sizes of
strongly correlated groups are always less than 20, while
when the correlation coefficient threshold is set below 0.3,
the sizes of uncorrelated groups are always less than 50. To
ensure that all the stocks are divided clearly with each group
is large enough to show their difference, we choose 0.3 and
0.6 as the thresholds, and in this case, each group contains
about 150 to 200 stocks.

We compare five methods, including MPR, Lasso, Elastic-
Net, SCAD, and MCP. We choose the tuning parameter
to select around 150 constituent stocks for each method.
To measure the performance of above methods, we use the
tracking error and tracking difference. Let ŷt be the pre-
dicted value of yt, errt = yt − ŷt, Rt = ln(ŷt/ŷt−1) and
Rtm = ln(yt/yt−1), tracking error and tracking difference
are defined as following:

TrackingErroryear =
√
252×

√∑
(errt −mean(err))2/(T − 1),

TrackingDifferenceyear =
252

T

T∑
t=1

(Rt −Rtm),

where mean(err) is the mean of errt, t = 1, ..., T . The vari-
ance is always regarded as a risk measure, e.g., high variance
is associated with higher risk. The tracking error, a standard
deviation percentage difference, is often used to describe the
risk of the obtained portfolios. During the empirical analysis
and compared to other methods, the portfolio obtained by
the MPR achieves the smallest and stablest tracking error.
This result indicates that the MPR offers lower volatility
and higher risk-adjusted returns.

The left panel of Figure 1 shows the tracking errors on
18 testing sets. The tracking error produced by MPR is
more stable and lower than other mentioned methods. Com-
pared with the other methods, MPR substantially reduces
the tracking error by 28%-81%. The right panel of Figure 1
shows the tracking differences on 18 testing sets. As one
can see, the tracking difference of MPR is much closer to 0
compared to that of other methods. More specifically, MPR
produces the tracking difference in which the absolute values
are lower by 30%-90%, showing that it fits the real market
yields better. Figure 2 shows the predicted performance of
five methods.

Figure 3 discusses the characteristics of the chosen stocks
in each industry, comparing the amount and the total mar-
ket capitalization of the chosen stocks from MPR with those
of the constituent stocks in each industry. As shown in the
left panel of Figure 3, the percentage of chosen stocks in
each industry are alway between 23%to 50%, except utili-
ties and energy industry. Health care and IT are the two
most chosen industries from MPR, whose total market cap-
italization reach 42% and 23%. As shown in the left panel
of Figure 3, the proportion of total market capitalization

Figure 1. Tracking error and Tracking Difference of MPR,
Elastic Net, Lasso, SCAD, and MCP.

between chosen stocks and total stocks are always higher
than 20%, except energy industry. The chosen stocks from
Utilities and Telecommunications service have the highest
proportion in total market capitalization, 77.7% and 65.7%
respectively, followed by the real estate, 56.7%, daily con-
sumption, 39.3%.

6. CONCLUSION

In this paper, we propose a two-step method, named Mul-
tiple penalized regularization (MPR), for estimating high-
dimensional regression models with multi-level correlated
predictors. The proposed method is a two-step estimation.
The first step serves as a clustering step, in which predic-
tors are classified into different groups, e.g., strong corre-
lation groups, weak correlation groups, and non-correlation
groups. The second step is a joint estimation solved by the
modified coordinate descent algorithm. We prove the theo-
retical guarantees of the proposed method. The simulation
study shows the advantages of the proposed method com-
pared to other methods. In the empirical part, we apply the
MPR to track S&P 500 Index and summarize the tracking
errors and tracking differences, all these results are effective
and meaningful.
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Figure 2. Predicted performance of MPR, Elastic Net, SCAD,
and MCP tracking the index.

In the future work, we plan to extend our proposal to
more complicated data set with more complicated models.
For example, most existing work includes this paper assumes
that the models are correctly specified or have fixed dimen-
sionality, yet both features of model misspecification and
high dimensionality are prevalent in practice [4]. It would
be worthwhile to study how to compare different models
when models are unspecified under correlated data.

APPENDIX

We first provide Lemma 1 that shows the solution of MPR
satisfies the requirement of Condition 1

Lemma 1. Assume εi are i.i.d. Gaussian random variables
with mean 0 and variance σ2, i = 1, . . . , n. We have with a
positive constant M that

‖β̂Sc‖1 � M‖β̂S − βS‖1.

Proof of Lemma 1. We first have the following inequality
based on the definition of β̂:

1

2
‖y −Xβ̂‖22 +

K∑
k=1

(λ2,k‖β̂Ak
‖22/2 + λ1,k‖β̂Ak

‖1)

� 1

2
‖y −Xβ‖22 +

K∑
k=1

(λ2,k‖βAk
‖22/2 + λ1,k‖βAk

‖1).

We first have

1

2
‖y −Xβ̂‖22 −

1

2
‖y −Xβ‖22 +

K∑
k=1

λ2,k(‖β̂Ak
‖22 − ‖βAk

‖22)/2

=
1

2
(β̂ − β)T(XTX + λ2I)(β̂ − β)− εTX(β̂ − β)

+
K∑

k=1

λ2,kβ
T

Ak
(β̂Ak

− βAk
),

where λ2 = (λ2,11A1 , . . . , λ2,K1AK
). Based on ‖β‖∞ �

min(λ1)/4max(λ2) where λ1 = (λ1,1, . . . , λ1,K) and λ2 =
(λ2,1, . . . , λ2,K):

βT

Ak
(β̂Ak

− βAk
) � ‖β‖∞‖β̂Ak

− βAk
‖1

� 1

4
min(λ1)‖β̂Sk

− βSk
‖1 +

1

4
min(λ1)‖β̂Sc

k
‖1;

based on {2‖W‖∞ � min(λ1)/
√
n}:

2εTX(β̂ − β) � min(λ1)‖β̂S − βS‖1 +min(λ1)‖β̂Sc‖1;

and combined with ‖β̂S‖1+‖β̂S−βS‖1 � ‖β‖1, the following
inequality holds:

(β̂ − β)T(XTX + λ2I)(β̂ − β) + 2

K∑
k=1

λ1,k‖β̂Sc
k
‖1

� 2εTX(β̂ − β)− 2

K∑
k=1

λ2,kβAk
(β̂Ak

− βAk
)

+ 2

K∑
k=1

λ1,k‖β̂Sk
− βSk

‖1

�
K∑

k=1

λ1,k‖β̂Sc
k
‖1 + 7/2

K∑
k=1

λ1,k‖β̂Sk
− βSk

‖1.

Since

(β̂ − β)T(XTX + λ2I)(β̂ − β) � 0,

assuming that min(λ1) ∝ max(λ1), we have that with a
positive constant M

‖β̂Sc‖1 � M‖β̂S − βS‖1.

Proof of Theorem 1. Set

F (β) =
1

2
‖y −Xβ‖22 +

K∑
k=1

λ2,k

2
‖βAk

‖22 +
K∑

k=1

λ1,k‖βAk
‖1

and

V (u) = F (β̂)− F (β),

where û =
√
n(β̂ − β), and thus we have û := argminV (u).

Set

V (u) =
1

2

(
‖y −Xβ̂‖22 − ‖y −Xβ‖22

)

+

K∑
k=1

λ2,k

2

(
‖β̂Ak

‖22 − ‖βAk
‖22
)
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Figure 3. The left panel shows the amount of the chosen stocks comparing the amount of the constituent stocks in each
industry. The right panel shows the total market capitalization of the chosen stocks comparing the constituent stocks in each
industry. We use the ‘Chosen’ tag to denote the stocks chosen by MPR in all 18 rolling periods, and the ‘Total’ tag represents

all the stocks that S&P 500 contains.

+

K∑
k=1

λ1,k

(
‖β̂Ak

‖1 − ‖βAk
‖1
)

� 1

2
H1 +

K∑
k=1

λ2,k

2
Hk,2 +

K∑
k=1

λ1,kHk,3.

Denote C = XTX/n and W = XTε/
√
n. We have

H1 = uTCu− 2uTW, H2 = uT

Ak
uAk

/n+ 2uT

Ak
βA1/

√
n,

H3 � −‖uSk
‖1/

√
n+ ‖uSc

k
‖1/

√
n,

and thus

V (u) � 1

2
uTCu/n− uTW/n+

K∑
k=1

λ2,ku
T

Ak
βAk

/
√
n

−
K∑

k=1

λ1,k‖uSk
‖1/

√
n+

K∑
k=1

λ1,k‖uSc
k
‖1/

√
n

By RE condition (Condition 1) and Lemma 1, uTCu �
κ‖u‖22. We also have

−uTW � −‖uS‖2‖WS‖2 − ‖WSc‖∞‖uSc‖1.

Conditional on ‖β‖∞ � min(λ1)/4max(λ2), {2‖W‖∞ �
min(λ1)/

√
n} where λ1 = (λ1,1, . . . , λ1,K) and λ2 =

(λ2,1, . . . , λ2,K), we have
{
2‖WS‖2 � √

qmin(λ1)/
√
n
}
and

K∑
k=1

λ1,k‖uSc
k
‖1/

√
n � ‖WSc‖∞‖uSc‖1.

The lower bound of V (u) becomes

V (u) � ‖u‖2
{κ
2
‖u‖2 −

min(λ1)
√
q√

n

}
.

Based on
min(λ1)√

n
= K1

√
log p, above inequality implies

that

‖û‖2 � 8σ

κ

√
q log p.

Otherwise, we would have V (û) > 0, which means the min-
imum of V (u) does not be attained.

Proof of Theorem 2. We first use the Karush-Kuhn-Tucker
(KKT) conditions for the proposed method. Given the clus-
tering information, i.e., A1, ,̇AK , the conditions can be writ-
ten as

1

n
XT(y −Xβ̂) =

K∑
k=1

λ2,kβ̂Ak
+

K∑
k=1

λ1,kγAk
,(5)

γj ∈
{

{sign(β̂j)} if β̂j �= 0

[− 1, 1] if β̂j = 0
, for j = 1, . . . , p.(6)

According to KKT conditions, β̂ is a solution of (1) if and

only if β̂ satisfies (5) and (6). Let β̂S , βS , β̂Sc , and β̂Sc be

the S and Sc entries of β̂ and β, respectively.

Denote A1, . . . , AK as different clustering groups. For no-
tational simplicity and also without loss of generality, we
assume that (1, . . . , p) = (A1, . . . , AK). Then we set Sk =
Ak ∩ S and S∗

k = Ak/Sk. Thus, we have S = (S1, . . . , SK)
and Sc = (S∗

1 , . . . , S
∗
K). As shown in [31], to prove the sign

consistency of MPR, it suffices to prove with high probabil-
ity that

|β̂S − βS | < |βS |, β̂Sc = 0.

Following the same notations of Theorem 1, i.e., denote û =√
n(β̂ − β), C = XTX/n and W = XTε/

√
n. Among, the S
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entries of β̂ can be described by

(CS + λ2,SI/n)û = WS − λ2,SIβS/
√
n− λ1,S(γ)/

√
n,

where λ2,S = (λ2,11S1 , . . . , λ2,K1SK
)T and λ1,S(γ) =

(λ1,1γS1 , . . . , λ1,KγSK
). Combined with |β̂S − βS | < |βS |,

|
√
nWS − λ2,SIβS − λ1,S(γ)| < (CS + λ2,SI))|βS |

Thus, proving the sign consistency suffices to prove

√
n|(CS + λ2,SI))

−1WS | < |βS | − C−1
S λ1,S(γ),

|CSc û+WSc | � λ∗
1/
√
n,

where λ∗
1 = (λ1,11S∗

1
, . . . , λ1,K1S∗

K
)T. The former inequality

holds under the proper choice of λ1 = (λ1, . . . , λK), which
will be discussed later, and the tail probability bound of
Gaussian distribute with minj∈S |βj | > K3

√
q(max(λ1))/n

where K3 is a positive constant. Combine the above two
inequality, to prove the latter inequality suffices to prove

√
n|CSc(CS + λS · I)−1WS −WSc |

� λ∗
1 − |CSc(CS + λS · I)−1λ1,S(γ)|.

To obtain the above inequality, we require the following in-
equality with a positive constant vector η∗:

|CScC−1
S λ1,S(γ)| < λ∗

1 − η∗.

When min(λ1) ∝ max(λ2), above inequality holds when Ir-
representable condition (Condition 2) holds. Now we discuss
the convergence rate, which is determined by the tail prob-
ability bound of Gaussian distribute. Since ε is the error
vector that εi ∼ N(0, σ2), i = 1, . . . , n, we have

P (‖XTε/
√
n‖∞ > 2σ(log p)1/2)

�
p∑

j=1

P (|XT

j ε/
√
n| > 2σ(log p)1/2)

< p · exp(−4σ2 log p

2σ2
) = 1/p.

With min(λ1) ∝ max(λ1) ∝ K2(n log p)1/2 and
minj∈S |βj | > K3

√
q(max(λ1))/n, completed the proof.
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