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Asymptotic in a class of network models with a
difference private degree sequence∗
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The asymptotic properties of parameter estimators with
a difference private degree sequence have been derived in β-
model with common binary values, but the general asymp-
totic properties in network models are lacking. Therefor,
we will establish the unified asymptotic result including the
consistency and asymptotical normality of the parameter
estimator in a class of network models with a difference pri-
vate degree sequence. Simulations are provided to illustrate
asymptotic results.
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1. INTRODUCTION

With the rapid development of Internet technology, a
variety of Internet platforms (Alibaba, Tencent, Facebook,
etc.) can collect and record users’ online browsing records,
consumption records or application usage records, which
can help these enterprises improve user experience and op-
timize services. However, these data involve a lot of pri-
vate information of users, it is necessary to protect the
privacy of data. In order to protect the privacy and secu-
rity of personal data in the network, it must be protected
before publishing network information [Zhou, Pei and Luk
(2008), Yuan, Lei and Yu (2011), Cutillo, Molva and Strufe
(2010), Lu and Miklau (2014)]. In the analysis of this data
privacy, a common method is to add noise into the origi-
nal data Dwork and Smith (2006). However, the analysis of
noisy data poses a challenge to statistical inference, espe-
cially the analysis of unstructured network data with noise
[Fienberg (2012); Chang, Kolaczyk and Yao (2020)].

In order to protect data privacy information, many
data privacy protection algorithms have been proposed
in recent years [e.g. Dwork and Smith (2006), Sweeney
(2002), Zhang et al. (2019), Machanavajjhala et al. (2007),
Li, Li and Venkatasubramanian (2007)]. Sweeney (2002)
provided a formal protection model named k-anonymity and
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a set of accompanying policies for deployment. However, k-
anonymity cannot resist homogeneity attacks. In order to
solve this problem, L-diversity and T-closeness methods are
proposed to improve k-anonymity by Machanavajjhala et al.
(2007) and Li, Li and Venkatasubramanian (2007). How-
ever, these methods are difficult to define all the possi-
ble background knowledge possessed by the attacker, and
can not provide a strict degree of privacy protection.
Dwork and Smith (2006) proposed a differential privacy
technology to solve all possible background knowledge of
attackers, and provided a quantitative evaluation method
for privacy protection level. In the analysis of network data
privacy, a common method is the perturbation algorithm
based on the network graph structure, such as modifying
the network graph structure by adding, deleting and ex-
changing operations, which makes the difference between
the published data and the original data, thus playing the
role of privacy protection. At the same time, it also keeps
the original scale of the social network, and has higher data
availability than the clustering method Yuan, Lei and Yu
(2011).

Although many differentially private algorithms have
been developed to publish network data or its aggregated
network statistics safely, statistical inference of noisy data
is still in its infancy. In many network models, how to use
noise data to accurately estimate model parameters and an-
alyze the asymptotic properties of the estimators are still
unknown or not well studied. There are some new advances
in statistical inference using differential privacy sequences
of undirected graphs. The specific way is to add noise into
the degree sequence, such as using Laplace Mechanism to
release the sufficiency degree sequence of the graph, and
to reduce the error between the true sequence and the re-
lease sequence Karwa and Slavković (2016). When noise is
added to the degree sequence of network data, the estima-
tion of node parameters in the network is inconsistent. And
then Karwa and Slavković (2016) paid attention to the dis-
crete Laplace distribution noise addition process through de-
noising method and obtained the asymptotic properties of
the parameter estimator on the β-model to achieve valid in-
ference. Because the observed network degree sequence con-
tains noise, Pan and Yan (2019) used the moment equation
to infer the degree parameters with the noisy random vari-
ables from the discrete Laplace distribution in undirected
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binary weighted network without de-noising process. Mor-
ever, Fan, Zhang and Yan (2020) derived the uniformly con-
sistency and asymptotic normality of the parameters esti-
mators for undirected finite weighted network. The asymp-
totic properties of parameter estimators for ordered net-
works with noise have also been proved by Luo and Qin
(2021). In directed binary weighted network, Yan (2020)
considered the discrete Laplace distribution noise addition
process through de-noising method and without de-noising
process, and obtained the asymptotic properties of the pa-
rameter estimator on the β-model.

In this paper, our main contribution is to provide the
unified asymptotic theoretical framework of the parameter
estimator in undirected networks with a differentially pri-
vate degree sequence, which is different from the maximum
likelihood estimator. First, we show that the estimator of
the parameter in a class of undirected networks based on
the moment equation in which the unobserved original se-
quence is directly replace by differentially private degree se-
quence. This is motivated by Yan (2020), who directly used
the noisy degree sequence to estimate parameter and showed
the consistency and asymptotic normality of the estimator.
Second, the probability-mass or density function of the edge
aij only depends on the sum of αi + αj , where αi denotes
the strength parameter of vertex i. And then the aij values
are more general. In other words, aij can take finite discrete
weighting, continuous weighting, infinite discrete weighting
and so on. Finally, we consider a general probability mass
function or density function for the edges, which is different
from Luo et al. (2020) only study the finite discrete weighted
networks.

For the rest of this article, we state as follows. In Section
2, we give the definitions of edge differential privacy and
differential privacy degree sequence. In Section 3, we give
a uniform asymptotic result which contains the consistency
and asymptotic normality of the parameter estimator, when
the number of parameters goes to infinity. In Section 4, we
illustrate several applications on our main results. In Sec-
tion 5, we carry out the simulation studies to evaluate the
theoretical results. Proofs are in the Appendix.

2. ESTIMATION FROM A DIFFERENTIALLY
PRIVATE DEGREE SEQUENCE

We consider an undirected random graph Gn with no self-
loops on n vertices labeled by 1, 2, ..., n. Let aij be the weight
of edge (i, j). For convenience, let aii = 0, i = 1, . . . , n, so
there are no self-loops. We assume that aij , 1 ≤ i < j ≤
n are mutually independent. Let di =

∑
j �=i ai,j . We have

d = (d1, ..., dn)
T is the degree sequence of Gn. Consider

a probability distribution P on the adjacency matrix A =
(aij)n×n of the undirected random graph Gn, with each edge
aij having the form of the probability distribution

(2.1) P (aij = a) = f((αi + αj)a),

or the density function f((αi + αj)a), where f(·) where αi

is the strength parameter of vertex i. If edge only take two
states “present” or “absent”, then a is the dichotomous val-
ues “1” or “0”. In this case, we can choose logistic func-
tion as f function. This model was coined the β-model
by Chatterjee, Diaconis and Sly (2011). In communication
networks, if edges denote the number of emails between
two persons, then a takes values form the set N0; and if
edges denotes the calling time, then a take nonnegative real
values. The maximum entropy models Hillar and Wibisono
(2013) can be used as f function. Notice that E(aij) only
depends on the sum αi+αj . Denote μ(αi+αj) = E(aij) and
α = (α1, . . . , αn). According to Yan, Qin and Wang (2016),
we have the following the moment equations

(2.2) di =

n∑
j=1;j �=i

μ(αi + αj), i = 1, . . . , n.

If di contain sensitive information about individuals and
their relationship (e.g., sexual relationships, email ex-
changes), directly publishing these sensitive data with
anonymized or unanonymized nodes could cause severe pri-
vacy problems or even lead to legal actions. In this section,
we first give a brief introduction to differential privacy. Then
we release the degree sequence under edge differential pri-
vacy.

2.1 Differential privacy

Following Hay M. and D. (2009), we use edge differential
privacy here. Let δ(G,G′) be the number of edges on which
G and G′ differ. The formal definition of edge differential
privacy is as follows.

Definition 2.1 (Edge differential privacy). Let ε > 0 be a
privacy parameter. Let G and G′ be arbitrarily two neigh-
boring graphs that differ in exactly one edge. A randomized
mechanism Q(·|G) is ε-edge differentially private if

sup
G,G′∈G,δ(G,G′)=1

sup
S∈S

log
Q(S|G)

Q(S|G′)
≤ ε,

where G is the set of all undirected graphs of interest on n
nodes and S is the set of all possible outputs.

If the outputs are the network statistics, then a sim-
ple algorithm to guarantee edge differential privacy is the
Laplace Mechanism [e.g., Dwork and Smith (2006)] that
adds the Laplace noise. When f(G) is integer, one can
use a discrete Laplace random variable as the noise as in
Karwa and Slavković (2016), where it has the probability
mass function:

(2.3) P (X = x) =
1− λ

1 + λ
λ|x|, x ∈ {0,±1, . . .}, λ ∈ (0, 1).

To this end, Dwork and Smith (2006) introduced the def-
inition of global sensitivity by the maximum l1-norm among
various dataset pairs (G,G′).
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Lemma 1 (Lemma 1 in Karwa and Slavković (2016)). Let
f : G → Rk. Let e1, . . . , ek be independent and identically
distributed discrete Laplace random variables with the pa-
rameter λ in (2.3). Then the discrete Laplace mechanism
outputs f(G) + (e1, . . . , ek) is ε-edge differentially private,
where ε = −Δ(f) log λ and

Δ(f) = max
δ(G,G′)=1

‖f(G)− f(G′)‖1.

Furthermore, Lemma 1 still holds if the continuous
Laplace distribution with density function e−|x|/λ/λ is re-
placed by the discrete version. Based on the definition of dif-
ferential privacy, Dwork and Smith (2006) found that any
function of a differentially private mechanism is also dif-
ferentially private, as follow: Let f be an output of an
ε-differentially private mechanism and g be any function.
Then g(f(G)) is also ε- differentially private. This result in-
dicates that any post-processing done on the noisy degree
sequence obtained as an output of a differentially private
mechanism is also differentially private.

2.2 Estimation

When network data containing sensitive individuals’ and
their relationships’ information can not be directly made
public due to privacy concerns. To guarantee the confi-
dence information not be disclosed, they must be care-
fully treated before being made public. A simple method
to deal with the privacy problem is the anonymiza-
tion technique by removing identifiers from a network
and releasing an anonymized isomorphic network, but
it had been demonstrated that it is easy to attack
[e.g. Narayanan and Shmatikov (2009), Wondracek et al.
(2010)]. Dwork and Smith (2006) develop a rigorous defi-
nition of differential privacy(DP) to achieve privacy protec-
tion. Using the Laplace mechanism[Hay M. and D. (2009),
Karwa and Slavković (2016)] to provide privacy protec-
tion, in which the independently and identically dis-
tributed Laplace random variables are added into the in-
put data. This mechanism satisfies “differential privacy”
Dwork and Smith (2006). Here, we release the degree se-
quences of undirected networks using the Laplace mecha-
nism and use the moment equations for inferring the degree
parameters.

We assume that random variables {ei}ni=1 is mutually
independent and distributed by discrete Laplace distribu-
tions with parameters λn = exp(−εn/2) and E(ei) = 0(i =
1, ..., n), where εn is privacy parameter. Then we observe the
noisy sequence d̃ instead of d, where

(2.4) d̃i = di + ei, i = 1, . . . , n

Then, the moment equations are

(2.5) d̃i =

n∑
j=1;j �=i

μ(αi + αj), i = 1, . . . , n.

We use the moment equations to estimate the degree param-
eter with the noisy sequence d̃ instead of d. Define a system
of functions:

Fi(α)= d̃i − E(di)= d̃i − (
n∑

j=1;j �=i

μ(αi + αj)), i=1, . . . , n,

F (α)=(F1(α), . . . , Fn(α))�.

Under this case, since adding or removing an edge change
the degree at most two node, by 1 each, the global sensitiv-
ity for the degree sequence d is 2. Therefore, we have the
privacy parameter εn := −ΔG(f) log λ = −2 log λ. The so-
lution to F (α) = 0 is the estimator of α induced by the
moment equation d̃ = E(d). Henceforth, we use α̂ to de-
note the estimator of α satisfying F (α̂) = 0. Let F ′(α)
denote the Jacobin matrix of F (α) on α. We assume that
the parameters of sub-exponential distributions are known.
The Laplace random variables X with the density f(x) =
(2λ)−1e(−|x|/λ) is sub-exponential, where κ = λ. This is due
to that E|X|p = λp−1Γ(p) and Γ(n + s) < n1−sΓ(n + 1)
[Gautschi (1959)] for s ∈ (0, 1) and arbitrarily positive inte-
ger n. The parameter κi measures how large a noise is. The
larger the parameter κi is, the bigger the noise, providing
more protection.

3. ASYMPTOTIC RESULTS

In this section, we will derive the asymptotic results for
the estimator.

3.1 Notation

For a subset C ⊂ Rn, let C0 and C denote the in-
terior and closure of C, respectively. For a vector x =
(x1, . . . , xn)

� ∈ Rn, denote by ‖x‖∞ = max1≤i≤n |xi|, the
	∞-norm of x. For an n × n matrix J = (Ji,j), let ‖J‖∞
denote the matrix norm induced by the 	∞-norm on vectors
in Rn, i.e.

(3.1) ‖J‖∞ = max
x �=0

‖Jx‖∞
‖x‖∞

= max
1≤i≤n

n∑
j=1

|Ji,j |.

Let D be an open convex subset of Rn. We say an n× n
function matrix G(x) whose elements Gij(x) are functions
on vectors x, is Lipschitz continuous on D if there exists a
real number λ such that for any v ∈ Rn and any x,y ∈ D,

(3.2) ‖G(x)(v)−G(y)(v)‖∞ ≤ λ‖x− y‖∞‖v‖∞,

where λ may depend on n but is independent of x and y.
For every fixed n, λ is a constant. Given m,M > 0, we
say an n × n matrix V = (vij) belongs to the matrix class
Ln(m,M) if V is a diagonally balanced matrix with positive
elements bounded by m and M ,

(3.3)
vii =

∑n
j=1,j �=i vij , i = 1, . . . , n,

m ≤ vij ≤ M, i, j = 1, . . . , n; i �= j.
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We use V to denote the Jacobian matrix induced by the mo-
ment equations and show that it belongs to the matrix class
Ln(m,M). We require the inverse of V, which doesn’t have
a closed form. Yan and Xu (2013) proposed approximating
the inverse V−1 of V by a matrix S = (sij), where

(3.4) sij =
δij
vii

and δij is the Kronecker delta function. We also use S to
approximate V−1, whose approximate errors are given in
Proposition 1 of the Yan, Zhao and Qin (2015).

3.2 Main results

Before presenting the asymptotic results, we first give the
following proposition and assumptions, whose proof is given
in Appendix.

Proposition 1. Assume that
(C1) V := V ar(d) ∈ Ln(m,M);

(C2) (di − E(di))/v
1/2
ii are asymptotically standard normal

as n → ∞.
If κ2M/m2 = o(n), then for any fixed k, the first k el-
ements of S(d̃ − E(d)) are asymptotically normal distri-
bution with mean zero and covariance matrix given by
the upper k × k submatrix of the diagonal matrix B =
diag(1/v11, . . . , 1/vnn), where S is the approximate inverse
of V defined at (3.4).

Remark 1. Since di is the sum of n independent random
variables, Yan, Qin and Wang (2016) have verified the re-
sult of the Proposition C2 without the noisy sequence by
the central limit theorem for the bounded case which can
be implied by Liapounov’s central limit theorem [Chung
(2001)]. Here, we have derived the central limit theorem
for the bounded case with the noisy sequence and need the
Propositions 1 to prove the Theorem 1.

Given α with qn ≤ αi + αj ≤ Qn, assume A ∼ Pα. We
need the following conditions to prove the two Theorems 1
and 2:
(C3) If F ′(α) ∈ Ln(m,M), F ′(α) is Lipschitz continuous
with ϑ = (n− 1)φ1, where φ1 := φ1(qn, Qn).
(C4) With probability approaching one,
(3.5)

max
i=1,...,n

|d̃i−E(d̃i)|≤φ2(
√

(n− 1) log(n− 1)+κ0log(n+ 1)).

where φ2 := φ2(qn, Qn).
(C5) F ′(α) ∈ Ln(m,M) or −F ′(α) ∈ Ln(m,M), where
m = m(qn, Qn) and M = M(qn, Qn).

(C6) |μ′′(θ̂ij)| = Op(φ3), where θ̂ij = t(αi+αj)+(1−t)(α̂i+
α̂j), 0 ≤ t ≤ 1, where φ3 := φ3(qn, Qn)

(C7) Assume that κ0 = log (λ2+3λ)
3λ+1 , where λ ∈ (0, 1).

Remark 2. We use the Newton-Kantovorich Theorem,
Lemma 5 in the Appendix, to prove the consistency of the
moment estimator by constructing the Newton’s iterative

sequence. C3 requires that the Jacobin matrix F ′(α) is Lip-
schitz continuous and C4 guarantees that the 	∞ norm of
Fi(α) = d̃i − E(di)(i = 1, ..., n) is bounded in the magni-
tude of (n log n)1/2, with probability approaching one. Con-

dition C6 requires that the second derivative of μ(θ̂ij) is
mainly determined by qn and Qn. Under condition C7, since
adding or removing an edge change the degree at most two
node, by 1 each, the global sensitivity for the degree se-
quence d is 2. Therefore, we have the privacy parameter
εn := −ΔG(f) log λ = −2 log λ.

Then, we have the following asymptotic results, whose
proof is given in Appendix.

Theorem 1 (Consistency). Assume that (C3)-(C5) and
(C7) hold and

c3M
2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)) = o(1)

(3.6)

M4φ1φ2

m6(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)) = o(1)

(3.7)

then as n → ∞, with probability approaching one, the esti-
mator α̂ exists and satisfies

||α̂− α||∞

(3.8)

= Op(
c3M

2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)))

= op(1)

where ‖X‖∞ = max1≤i≤n

∑n
j=1 |xij |.

Remark 3. In the Theorem 1, We use the Newton-
Kantovorich Theorem to prove the consistency of the es-
timator α̂ by constructing the Newton’s iterative sequence.
This indicates that the estimator of the parameter α in-
volving noisy sequences is accurate under the non-denoised
process.

Theorem 2 (Asymptotic normality). If inequality (3.8)
and conditions (C1),(C2),(C6) and (C7), and if
(3.9)
c3M

6φ2φ3

m9(n− 1)2
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))2 = o(1),

and κ2M/m2 = o(n), then for any fixed k ≥ 1, as n → ∞,
the vector consisting of the first k elements of (B−1)1/2(α̂−
α) is asymptotically standard multivariate normal, where

(B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

The proof of the theorem is in Appendix.

4. APPLICATIONS

In this section, we will apply the asymptotic result in
Theorems 1 and 2 through different network models.
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4.1 Generalized-β model

The beta model has been researched by many
authors[e.g. Rinaldo et al. (2013); Yan and Xu (2013);
Karwa and Slavković (2016); Chatterjee, Diaconis and Sly
(2011)]. When using its discrete version to model weighted
networks with finite discrete weights, Fan, Zhang and Yan
(2020) have proved the asymptotic results for differentially
private generalized β-models with parameters increasing.
Assume that aij , 1 � i �= j � n, take values from the
set Ω = {0, 1, ...r0 − 1} with r0 a fixed constant, and are
distributed independently with

P (aij = a) =
ea(αi+αj)∑r0−1

k=0 ek(αi+αj)

Then, the moment equations are

(4.1) d̃i =

n∑
j=1;j �=i

r0−1∑
a=0

ea(α̂i+α̂j)∑r0−1
k=0 ek(α̂i+α̂j)

, i = 1, . . . , n.

We use the moment equations to estimate the degree param-
eter with the noisy sequence d̃ instead of d. Correspondingly

Fi(α) = d̃− E(d)

= d̃i −
n∑

j=1;j �=i

r0−1∑
a=0

ea(αi+αj)∑r0−1
k=0 ek(αi+αj)

, i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))�.

Let F ′(α) be the Jacobin matrix of F (α) at α, then for
i, j = 1, . . . n,

∂Fi

∂αi
=

n∑
j=1;j �=i

∑
0≤k<l≤q−1(k − l)2e(k+l)(αi+αj)

(
∑q−1

a=0 e
a(αi+αj))2

,

∂Fi

∂αj
=

∑
0≤k<l≤q−1(k − l)2e(k+l)(αi+αj)

(
∑q−1

a=0 e
a(αi+αj))2

, j=1, . . . n; j �= i.

From Ln(m,M) in (3.3), we can see that F ′(α) ∈ Ln(m,M)

with m = (2(1 + e
Qn

))−1 and M =
q2n
2 if qn � αi +

αj � Qn, i �= j. Both theorem 1 and 2 can be applied.
Fan, Zhang and Yan (2020) have derived that the estimator
of the parameter is asymptotically consistent and normally
distributed with a differentially private degree sequence and
provided the numerical evaluations on asymptotic proper-
ties of the parameter estimator.

4.2 Weighted network with continuous
weights

When using the maximum entropy distributions to model
weighted graphs with continuous weights, Rinaldo et al.
(2013) have derived the consistency of the MLE and
the corresponding asymptotic normality has been done in

Yan, Zhao and Qin (2015). They showed that aij , 1 ≤ i �=
j ≤ n, are mutually independent exponential random vari-
ables with density

f(a) =
1

(αi + αj)
e−(αi+αj)a, αi + αj > 0.

We use the moment equations to estimate the degree pa-
rameter with the noisy sequence d̃ instead of d. The moment
estimating equations are

(4.2) d̃i =

n∑
j=1;j �=i

1

α̂i + α̂j
, i = 1, . . . , n.

Correspondingly

Fi(α) = d̃− E(d) = d̃i −
n∑

j=1;j �=i

1

αi + αj
, i = 1, . . . , n,

F (α) = (F1(α), . . . , Fn(α))�.

Here, we consider the symmetric parameter space

D = {α ∈ Rn : qn≤αi + αj≤Qn, 1≤ i<j≤n, 0<qn<Qn}.

Let F ′(α) be the Jacobin matrix of F (α) at α, then for
i, j = 1, . . . n,

∂Fi

∂αi
=

n∑
j=1;j �=i

1

(αi + αj)2
,

∂Fi

∂αj
=

1

(αi + αj)2
, j = 1, . . . n; j �= i.

Consequently, when qn ≤ αi + αj ≤ Qn for any i �= j,

1

Q2
n

≤ | ∂Fi

∂αj
| ≤ 1

q2n

Recall the definition of Ln(m,M), we can see that F ′(α) ∈
Ln(m,M), where m = 1

Q2
n
and M = 1

q2n
. Let

gij(α) = (
∂2Fi

∂α1∂αj
, . . . ,

∂2Fi

∂αn∂αj
)T .

It is easy to verify that

∂2Fi

∂α2
i

= −
n∑

j=1;j �=i

2

(αi + αj)3
and

∂2Fi

∂αj∂αi
= − 2

(αi + αj)3
.

and

(4.3) |∂
2Fi

∂α2
i

| ≤ (n− 1)× 2

q3n
, | ∂2Fi

∂αj∂αi
| � 2

q3n
.

This leads to that ‖gii(α)‖1 ≤ (n − 1) 4
q3n
, where ‖x‖1 =∑

i |xi| for a general vector x. Note that when i �= j and

k �= i, j, ∂2Fi

∂αk∂αj
= 0.
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Therefore, we have ||gij(α)||1 ≤ 2
q3n
, for j �= i. By using

the mean value theorem for vector-valued functions in (Lang
(1993), p.341), for a vector v, we have

||(F ′(x)− F ′(y))v||∞

= ||v||∞ max
i

∑
j

| ∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)|

= ||v||∞ max
i

∑
j

|
∫ 1

0

gT
ij(tx+ (1− t)y)dt(x− y)|

≤ ||v||∞||x− y||∞ max
i

∑
j,k

|
∫ 1

0

gT
kij(tx+ (1− t)y)dt|

≤ 8

q3n
(n− 1)||v||∞||x− y||∞.

Henceforth, F ′(α) is Lipschitz continuous with the Lipschitz
real number λ in terms of λ = (n− 1)φ1, where λ is defined
in (C5). We can choose φ1 = 8

q3n
, then condition (C3) holds.

Since aij is an exponential random variable with rate αi+
αj , By Lemma A1[Yan, Leng and Zhu (2016)], aij−1/(αi+
αj) is sub-exponential with parameter 2/(αi + αj) � 2/qn.
Note that aij − 1/(αi + αj), 1 � i �= j � n are independent
sub-exponential random variables. Therefore, we can apply
the concentration inequality in Theorem 7 with κ1 = 2/qn
and

ε1 = (
4 log n

γ11(n− 1)q2n
)1/2.

Assume n is sufficiently large such that ε1/κ1 =√
logn/γ11(n− 1) � 1. According to Hillar and Wibisono

(2013), for each i = 1, ..., n, we have

(4.4) max
i

|di − E(di)| ≤
√

4

γ11q2n
(n− 1) log (n− 1),

and by lemma 4, it yields that

max
i=1,...,n

|d̃i − E(di)| ≤ max
i

|di − E(di)|+max
i

|ei|

≤ Op(

√
1

q2n
(n− 1) log (n− 1) + κ0log(n+ 1)))

(4.5)

Thus condition C4 and C7 holds. We have

M4φ1φ2

m6(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

= O(
Q6

n

q8n(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)))

If Qn

qn
= o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/8, then (3.7) is sat-

isfied. By Theorem 1, the uniform consistency of α̂.

Corollary 3. If Qn

qn
= o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/8,

then as n goes to infinity, with probability approaching one
α̂ exists and satisfies

||α̂− α||∞

(4.6)

= Op(
c3M

2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)))

= op(1)

Now di =
∑

i �=j aij is sums of n − 1 independent expo-
nential random variables. The covariance matrix d − E(d)
is F ′(α) denote by V , Such that condition C1 holds. By the
central limit theorem for the bounded case in (Loève (1977),

p.289), we know that v
−1/2
ii is asymptotically standard nor-

mal if vii diverges. Since

(n− 1)

Q2
n

≤ vii ≤
(n− 1)

q2n
, i = 1, ..., n

If Qn = o(n1/2), then vii−→∞ and κ2
0M/m2 = o(n) such

that conditions of Proposition 1 hold. By (4.3), we have

|μ′′(θij)| � (n−1)
q2n

. We have

(4.7)
c3M

6φ2φ3

m9(n− 1)2
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))2 = o(1),

Corollary 4. If Qn

qn
= o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/18,

then for any fixed k, as n−→∞ the vector consisting the first
k elements of (B−1)1/2(α̂ − α) is asymptotically standard

multivariate normal, where (B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

4.3 Poisson models

Assume that each aij is poisson distributed with param-
eter αi + αj > 0. Following Yan, Qin and Wang (2016), we
showed that aij , 1 ≤ i �= j ≤ n, are distributed indepen-
dently with

P (aij = a) =
ea(αi+αj)

a!
exp(eαi+αj )

We use the moment equations to estimate the degree pa-
rameter with the noisy sequence d̃ instead of d. The moment
estimating equations are

(4.8) d̃i =

n∑
j=1,j �=i

eα̂i+α̂j , i = 1, . . . , n.

Here, we do not call α̂ the moment estimator since equa-
tion (4.13) are not the true moment equations. In this sub-
section, we consider the parameter space

D={α ∈ Rn : −Qn≤αi + αj≤Qn, Qn>0, 1≤ i<j≤n}
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The Jacobin matrix F
′
(α) of F (α) can be calculated as fol-

lows. For i, j = 1, ..., n Note the solution to the equation
F(α) = 0 is the estimator. Then the Jacobin F

′
(α) of F(α)

can be calculated as follows. For i = 1, ..., n

∂Fi

∂αi
= −

n∑
j=1,j �=i

eαi+αj ,

∂Fi

∂αj
= −eαi+αj , j = 1, ..., n− 1, j �= i

Therefore, we have

1

eQn
≤ |∂Fi

∂αi
| ≤ eQn

Recall the definition of Ln(m,M). We can see that
−F

′
(α) ∈ Ln(m,M), where m = 1

eQn
and M = eQn . Let

gij(α) = (
∂2Fi

∂α1∂αj
, ....,

∂2Fi

∂αn∂αj
)

It is easy to verify that

∂2Fi

∂α2
i

= −
n∑

j=1,j �=i

eαi+αj

and

∂2Fi

∂α2
j

= −eαi+αj

Let gkij = ∂2Fi/(∂αkαj) and gij = (g1ij , ..., gnij). It is easy
to derive that

gkij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−
∑

l �=i e
αi+αl , k = i = j

eαi+αk , k �= i, i = j
eαi+αk , i �= j, k = j
eαk+αj , k = i, i �= j

0, otherwise

By the mean-value theorem for vector-value functions (Lang
(1993), p.341) we have

‖(F ′(x)− F ′(y))v‖∞ = ‖v‖∞ max
i

∑
j

| ∂Fi

∂αj
(x)− ∂Fi

∂αj
(y)|

= ‖v‖∞ max
i

n∑
j=1

|
∫ 1

0

gij(tx+ (1− t)y)dt|

≤ ‖v‖∞‖x− y‖∞ max
i

∑
j,k

|
∫ 1

0

gkij(tx+ (1− t)y)dt|

≤ 4eQn(n− 1)‖v‖∞‖x− y‖∞

It shows that F
′
(x) is Lipschitz continuous with the lipschitz

coefficient λ0 = 4eQn(n − 1). The above calculation show
that

m = 1,M = eQn , φ1 = 4eQn

Henceforth, F ′(α) is Lipschitz continuous with the Lipschitz
real number λ0 in terms of λ0 = (n − 1)φ1, where λ0 is
defined in (C5). We can choose φ1 = 4eQn , then condition
(C3) holds.

To prove C4, we should introduce the following lemma.

Lemma 2. With probability at least 1−O(n−1), we have

max
i=1,...,n

|di − E(di)| ≤ Op(
√
(n− 1) log(n− 1))

Proof. Note that di is a sum of n − 1 independent random
variables. By Hoeffding’s inequality [Hoeffding (1963)], we
have
(4.9)

P(|di − E(di)| ≥
√

n logn) ≤ 2 exp(
−2n log n

(n− 1)
) = O(

1

n2
)

Combining (4.9) and lemma 4, It yields that
(4.10)

max
i=1,...,n

|d̃i−E(di)| ≤ max
i

|di−E(di)|+max
i

|ei|

= Op(
√

(n−1) log(n−1)+κ0log(n+1))

This shows condition (C4) holds with φ3 given in the above
equation.

Thus condition C4 and C7 holds. We have

M4φ1φ2

m6(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

= O(
e12Qn

(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1)))

If eQn = o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/12, then (3.7) is

satisfied. By Theorem 1, the uniform consistency of α̂.

Corollary 5. If eQn = o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/12,

then as n goes to infinity, with probability approaching one
α̂ exists and satisfies

||α̂−α||∞=Op(
e7Qn

(n−1)
(
√

(n−1) log (n−1)+κ0log(n+1)))

(4.11)

=op(1)

Now di =
∑

i �=j aij is sums of n − 1 independent expo-
nential random variables. The covariance matrix d − E(d)
is F ′(α) denote by V , Such that condition C1 holds. By the
central limit theorem for the bounded case in (Loève (1977),

p.289), we know that v
−1/2
ii is asymptotically standard nor-

mal if vii diverges. Since

(n− 1) ≤ vii ≤ (n− 1)eQn , i = 1, ..., n
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If eQn = o(n1/2), then vii−→∞ and κ2
0M/m2 = o(n)

such that conditions of Proposition 1 hold. Accord-
ing to Yan, Qin and Wang (2016), we have |μ′′(θij)| �
Op(e

Qn×ee
7Qn(log n)1/2n−1/2

). We have

c3M
6φ2φ3

m9(n− 1)2
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))2

= o(
e18Qn

(n− 1)2
(
√
(n− 1) log (n− 1) + κ0log(n+ 1))2),

(4.12)

Corollary 6. If eQn = o( (n−1)

(
√

(n−1) log (n−1)+κ0log(n+1))
)1/36,

then for any fixed k, as n−→∞ the vector consisting the first
k elements of (B−1)1/2(α̂ − α) is asymptotically standard

multivariate normal, where (B−1)1/2 = diag(v
1/2
11 , . . . , v

1/2
nn ).

4.4 Weighted graphs with infinite discrete
weights

When considering weighted graphs with discrete weights,
Hillar and Wibisono (2013) has proved the consistency
of MLEs. Yan, Zhao and Qin (2015) further establish the
asymptotic normality of MLE with the discrete weights case,
when the total number of parameter goes to infinity. Let
A = (ai,j) be the adjacency matrix of Gn, where ai,j is an
indictor variable of the undirected edge from node i to node
j. If there exists an undirected edge from i to j, let ai,i = 0
for convenience. And aij have the following probability dis-
tribution:

P (aij = a) = (1− e−(αi+αj))e−(αi+αj)a, αi + αj > 0

The estimate equation are
(4.13)

d̃i =

n∑
j=1

e−(αi+αj)

1− e−(αi+αj)
=

n∑
j=1

1

e(αi+αj) − 1
, i = 1, ..., n

Here, we do not call α̂ the moment estimator since equa-
tion (4.13) are not the true moment equations. In this sub-
section, we consider the symmetric parameter space

D = {α ∈ Rn : 0 < qn ≤ αi +αj ≤ Qn for 1 ≤ i < j ≤ n}

The Jacobin matrix F
′
(α) of F (α) can be calculated as fol-

lows. For i, j = 1, ..., n Note the solution to the equation
F(α) = 0 is the estimator. Then the Jacobin F

′
(α) of F(α)

can be calculated as follows. For i = 1, ..., n

∂Fi

∂αi
=

n∑
j �=i

e(αi+βj)

[e(αi+βj) − 1]2
,

∂Fi

∂αj
=

e(αi+βj)

[e(αi+βj) − 1]2
, j �= i.

Therefore, when qn ≤ αi + αj ≤ Qn for any i �= j, we
have

eQn

(eQn − 1)2
≤ |∂Fi

∂αi
| ≤ eqn

(eqn − 1)2

Recall the definition of Ln(m,M). We can see that

−F
′
(α) ∈ Ln(m,M), where m = eQn

(eQn−1)2
and

M = eqn

(eqn−1)2 . Both theorem 1 and 2 can be applied.

Luo, Qin and Wang (2020) have derived that the estimator
of the parameter is asymptotically consistent and normally
distributed with a differentially private degree sequence. In
this paper, we will provide the numerical evaluations on
asymptotic properties of the parameter estimator.

4.5 Rayleigh distribution

In this subsection, we will consider a Rayleigh distribu-
tion for edges in which the moment equations are differ-
ent from the maximum likelihood equations. The density
for the Rayleigh distribution with the parameter σ > 0 is
f(x) = xσ−2 exp(−x2/(2σ2)) [Papoulis (1991), p.78]. The
square root of the sum of the square of two independent
normal random variables with mean zero and the same vari-
ance gives rise to the Rayleigh distribution. Assume aij is
the Rayleigh distribution with the parameter e(αi+αj)/2 such
that αi ∈ R. Then the density of aij at the point a is

f(a) =
a

eαi+αj
e−a2/(2eαi+αj ).

It is easily verified that E(aij) =
√
π/2e(αi+αj)/2. We use

the moment equations to estimate the degree parameter
with the noisy sequence d̃ instead of d. The estimating equa-
tions are

(4.14) d̃i =
n∑

j �=i;j=1

√
π

2
e(α̂i+α̂j)/2, i = 1, . . . , n.

Since the equations (4.14) are similar to the moment equa-
tions (4.8) for the Poisson model, the arguments for deriv-
ing the asymptotic results of the moment estimator are also
similar and we omit them here.

5. SIMULATION

In this section, we will evaluate the asymptotic results
for different network model(weighted networks with contin-
uous, infinite discrete weights and Possion weights) through
numerical simulations. Following Yan, Zhao and Qin (2015)
and Fan, Zhang and Yan (2020), the settings of parame-
ter values take a linear form. Specifically, for the case
with continuous weights, we set α = L + i ∗ L2/n, i =
1, ..., n; for the case with infinite discrete weights, we set
α = 0.1 + i ∗ L/n, i = 1, ..., n; for the case with Pos-
sion model, we set α = −0.3 + i ∗ L/n, i = 1, ..., n.
A variety of L are chosen: L = 1, log(log(n)), log(n)1/2

for continuous weights; L = 0, log(log(n)), log(n)1/2 for
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Table 1. Weighted networks with continuous weights: Estimated coverage probabilities of αi − αj for pair (i, j) as well as the
length of confidence intervals, and the P value of shapiro.test, and the probabilities that the MLE does not exist, multiplied by

100

n (i, j) L = 1 L = log(log(n)) log(n)1/2

ε = 2

100 (1,2) 94.76/1.95/0.26/0 94.56/3.63/0.46/0 90.96/6.18/9.3e−7/0
(50,51) 94.98/1.66/0.34/0 93.84/2.97//0.005/0 93.24/4.86/3.4e−5/0

(99,100) 94.68/1.39/0.29/0 94.76/2.31/0.63/0 93.88/3.53/3.0e−3/0

200 (1,2) 94.58/0.96/0.47/0 94.82/1.79/0.41/0 94.44/2.69/0.67/0
(100,101) 94.82/1.17/0.74/0 94.38/2.36/0.89/0 93.40/3.78/0.11/0
(199,200) 95.02/1.37/0.37/0 94.16/2.91/0.005/0 92.68/4.85/0.001/0

ε = log(n)/n1/4

100 (1,2) 94.90/1.38/0.44/0 94.82/2.31/0.77/0 92.96/3.54/2e−4/0
(50,51) 94.92/1.67/0.91/0 93.40/2.97/6e−4/0 91.76/4.78/1.0e−8/0

(99,100) 94.32/1.95/0.14/0 92.70/3.64/0.03/0 80.56/6.20/4e−15/0

200 (1,2) 94.54/0.97/0.59/0 94.72/1.79/0.28/0 93.24/2.69/0.32/0
(100,101) 94.70/1.67/0.63/0 93.76/2.36/0.36/0 92.58/3.78/2e−3/0
(199,200) 94.96/1.36/0.11/0 93.38/2.91/8e−4/0 90.62/4.85/8e−8/0

infinite discrete weights; L = 0, log(log(n)), log(n)1/2;

L = −log(log(log(n)))1/2,−log(log(n))2/3,−log(log(n))1/2

for Possion model. We simulate two distinct value for ε:

one is fixed (ε = 2) and the other tend to zero with

n(ε = log(n)/n1/4), Here we discuss two values for n,

n = 100 and 200. Each simulation is repeated 5000 times.

Note that by Theorem (2), ξ̂ij = (α̂i + α̂j − (αi +

αj))/(1/v̂ii+1/v̂ii)
1/2 is asymptotically normal distribution,

where v̂ii is the estimator of vii by replacing αi with α̂i. The

quantile-quantile(QQ) plots of ξij are drawn. Further, we

also record the coverage probability of the 95% confidence

interval for αi − αj , the length of the confidence interval,

and the frequency that the MLE did not exist.

For ε = 2, log(n)/n1/4, the QQ-plots under n = 100 and

200 are similar. Thus, we here only show the QQ-plots for

ξ̂ij under the case of ε = 2 and n = 100 in Figure 1, Figure 2

and Figure 3. In this figure, the horizontal and vertical axes

are the theoretical and empirical quantiles, respectively, and

the straight lines correspond to the reference line y = x. In

Figure 1, we can see that when the weights are continuous

and L = 1, log(log(n)) and log(n)1/2, the empirical quan-

tiles coincide with the theoretical ones very well. For infinite

discrete weights in Figure 2, when L = log(n)1/2, the QQ-

plots of pair (n − 1, n) has a little deviation. In Figure 3,

when L = −log(log(log(n)))1/2,−log(log(n))1/2, for pairs

(n/2 − 1, n/2) (n − 1, n) have notable deviations. The cov-

erage probability of the 95% confidence interval for αi−αj ,

the length of the confidence interval, and the frequency that

the MLE did not exist, which are reported in Table 1, Ta-

ble 2 and Table 3. We can see that the length of estimated

confidence interval increases as L increases for fixed n, and

decreases as n increases for fixed L.The coverage frequencies

are lower than the nominal level 95%.

Figure 1. Weighted networks with continuous weights: The
QQ plots of ξij with red color for ξ̂ij (n = 100, and ε = 2).

6. DISCUSSION

We have established a unified asymptotic theory for the
moment estimator in a class of network models with a dif-
ference private degree sequence, and the edge weights are
allowed to be binary, continuous or infinitely discrete and
the number of vertices goes to infinity. In this class of mod-
els, we show that the estimator of the parameter in a class of
undirected networks based on the moment equation in which
the unobserved original sequence is directly replace by dif-
ferentially private degree sequence. In our simulation studies
show that when the privacy parameter ε is small, the private
estimate fails to exist with positive frequencies according to
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Table 2. Weighted networks with infinite discrete weights: Estimated coverage probabilities of αi − αj for pair (i, j) as well as
the length of confidence intervals, and the P value of shapiro.test, and the probabilities that the MLE does not exist,

multiplied by 100

n (i, j) L = 1 L = log(log(n)) log(n)1/2

ε = 2

100 (1,2) 95.76/0.11/0.05/0 95.48/0.37/3e−3/1.4 95.56/0.46/e−3/54.94
(50,51) 95.02/0.11/0.08/0 95.42/0.99/e−3/1.4 95.34/1.47/3e−4/54.94

(99,100) 95.26/0.11/0.49/0 94.77/1.76/4e−8/1.4 98.71/2.95/4e−14/54.94

200 (1,2) 95.24/0.08/0.09/0 95.12/0.26/0.09/0 94.70/0.31/0.32/17.24
(100,101) 95.28/0.08/0.44/0 95.06/0.75/0.20/0 94.56/1.08/0.13/17.24
(199,200) 95.10/0.08/0.11/0 94.44/1.35/3e−3/0 95.60/2.33/1.1e−15/17.24

ε = log(n)/n1/4

100 (1,2) 95.76/0.11/0.06/0 95.40/0.37/6e−3/3.84 96.50/0.50/0.09/74.32
(50,51) 95.00/0.11/0.08/0 94.76/0.99/5.2e−3/3.84 93.22/1.47/1.5e−3/74.32

(99,100) 95.30/0.11/0.48/0 93.53/1.78/6.7e−10/3.84 97.27/2.97/1.2e−9/74.32

200 (1,2) 95.22/0.08/0.08/0 95.09/0.26/0.12/0.26 94.46/0.31/0.12/38.60
(100,101) 95.32/0.43/0.04/0 94.79/0.75/0.21/0.26 93.45/1.09/0.18/38.60
(199,200) 95.10/0.11/0.01/0 93.10/1.36/8e−3/0.26 94.33/2.36/6.4e−1538.60

Table 3. Poisson model: Estimated coverage probabilities of αi −αj for pair (i, j) as well as the length of confidence intervals,
and the P value of shapiro.test, and the probabilities that the MLE does not exist, multiplied by 100

n (i, j) L = −log(log(log(n)))1/2 L = −log(log(n))2/3 −log(log(n))1/2

ε = 2

100 (1,2) 89.20/0.20/0.12/0 92.28/0.17/e−3/9.62 92.63/0.18/4e−3/17.48
(50,51) 94.82/0.18/8.6e−4/0 98.43/0.16/1.2e−5/9.62 98.34/0.16/1.2e−5/17.48

(99,100) 97.98/0.18/1.2e−5/0 99.95/0.16/3.5e−10/9.62 99.87/0.16/1.3e−9/17.48

200 (1,2) 86.80/0.14/0.21/0 91.88/0.13/0.09/0.10 92.11/0.13/0.03/0.46
(100,101) 94.50/0.13/0.01/0 99.07/0.12/3e−4/0.10 98.65/0.12/3.1e−4/0.46
(199,200) 96.32/0.13/0.03/0 99.97/0.11/1.3e−7/0.10 99.96/0.11/3.1e−6/0.46

ε = log(n)/n1/4

100 (1,2) 88.30/0.20/5.9e−3/0.18 91.35/0.17/0.02/22.42 91.47/0.18/0.09/34.58
(50,51) 94.51/0.18/5.2e−3/0.18 97.95/0.16/4.9e−5/22.42 97.91/0.16/9.3−3/34.58

(99,100) 96.91/0.18/7.8e−6/0.18 99.82/0.16/2.4e−8/22.42 99.72/0.16/5.5e−8/34.58

200 (1,2) 89.34/0.14/0.02/0 92.48/0.12/0.08/1.18 92.65/0.12/0.01/4.02
(100,101) 95.80/0.13/0.02/0 99.02/0.11/8.5e−5/1.18 98.89/0.12/9.3e−4/4.02
(199,200) 98.22/0.12/3.3e−3/0 99.87/0.11/5.5e−8/1.18 99.89/0.11/3.6e−7/4.02

simulations, especially when the network dataset is sparse.
And how to sample based on noise degree sequence of the
networks is a problem for further study[Ai et al. (2021)].
The conditions in Theorems 1 and 2 induce an interesting
trade-off between the private parameter measuring the mag-
nitude of the noise and the growing rate of the parameter
α. In particular, the conditions guaranteeing the asymptotic
normality are stronger than those guaranteeing the consis-
tency. If the parameter Qn is large, α can be allowed to be
relatively large. Simulation studies suggest that the condi-
tions on ε might be relaxed. It can be noted that the asymp-
totic behavior of the parameter estimator depends not only
on εn, but also on the configuration of all the parameters.
We would like to investigate this problem in the future.

Interdependence is a common phenomenon in social net-
works. A more complex dependent case is that other network
statistics, such as triangle measuring transitivity effect, are

involved [Fienberg (2012)]. In this paper, we assume that
the network edges are mutually independent. This assump-
tion holds when we only consider the distribution of the
vertex degrees. If edges are dependent, as long as the mo-
ment condition is correct, we should be able to obtain a
consistent estimator since our method is driven by moment
condition. However, without the mutual independence as-
sumption, the resulting estimator’s asymptotic distribution
is not clear. We would like to investigate this problem in the
future.

7. APPENDIX SECTION

7.1 Preliminaries

We present several results that we will use in this section.
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Figure 2. Weighted networks with infinite discrete weights:
The QQ plots of ξij with red color for ξ̂ij

(n = 100, and ε = 2).

Figure 3. Weighted networks with Poisson weights: The QQ
plots of ξij with red color for ξ̂ij (n = 100, and ε = 2).

7.1.1 Concentration inequality for sub-exponential random
variables

A random variable X is sub-exponential with parameter
κ > 0 [Vershynin (2012)] if

(7.1) [E|X|p]1/p ≤ κp for all p ≥ 1.

Sub-exponential random variables satisfy the following
concentration inequality.

Theorem 7 (Corollary 5.17 in Vershynin (2012)). Let
X1, ..., Xn be independent centered random variables, and
suppose each Xi is sub-exponential with parameter κi. Let
κ = maxi=1,..,n κi. Then for every ε ≥ 0,

(7.2) P(
1

n

n∑
i=1

Xi| ≥ ε) ≤ 2 exp[−γn ·min(
ε2

κ2
,
ε

κ
)],

where γ > 0 is an absolute constant.

Note that if X is a κ-sub-exponential random variable
with finite first moment, then the centered random variable
X − E(X) is also sub-exponential with parameter 2κ. This
follows from the triangle inequality applied to the p-norm,
followed by Jensen’s inequality for p ≥ 1:

[E|X − E[X]|p]1/p ≤ [E|X|p]1/p + |E[X]| ≤ 2[E|X|p]1/p

By Lemma 1 in Yan (2020), we derived that the discrete
Laplace distributions is also sub-exponential with parameter
2(log 1

λ )
−1 for the discrete case. In other words, the discrete

Laplace distributions is a special case of the sub-exponential
case. In order to prove the maxi |ei|, we should give the
maximal inequality for sub-exponential random variable.

Lemma 3. For any sub-exponential random variable
{Xi}ni=1, we have

E( max
i=1,..,n

|Xi|) ≤ ψ−1
1 (n) max

i=1,..,n
‖Xi‖ψ1(7.3)

= log(1 + n) max
i=1,..,n

‖Xi‖ψ1 ,

where the definition of the sub-exponential norm is
‖X‖ψ1 := inf{C > 0 : E(|X|/C) � 2} [The definition is
given in the Definition 4.2 of Zhang and Chen (2021).] for
ψ1(x) = ex − 1.

Proof. Form Jenesen’s inequality, for C ∈ (0,∞) and
ψ1(x) = ex − 1, we get

ψ1E( max
i=1,..,n

|Xi|/C) ≤ E( max
i=1,..,n

ψ1(|Xi|/C))

≤
n∑

i=1

Eψ1(|Xi|/C)) ≤ n
(7.4)

where the last inequality is by the definition of
sub-exponential norm: Eψ1(|Xi|/t) � 1. Let C =
maxi=1,..,n ‖X‖ψ1 . Applying the non-decreasing property of
ψ1(x) (so does its inverse function ψ−1

1 (x) = log(x + 1)),
the (7.4) implies E(maxi=1,..,n |Xi|/C) � ψ−1

1 (n) by oper-
ating the map ψ−1

1 , and so we have (7.3).

Note that {ei}ni=1 are mutually independent and dis-
tributed by discrete Laplace distributions and have the
probability function in (2.3). The following lemma gives the
proof of the maxi=1,..,n |ei|.
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Lemma 4. Let {ei}ni=1 are mutually independent and dis-
tributed by discrete Laplace distributions and have the prob-
ability function in (2.3). If t < log λ−1, then φ−1

|ei|(t) =

log (1+λ)t−2(1−λ)
λ(1+λ)t , where the moment generating function of

|ei| is φ|ei|(t) = Eet|ei|. Moreover, we have

maxi=1,..,n|ei| ≤ Op(log(1 + n) log
(λ2 + 3λ)

3λ+ 1
)(7.5)

= Op(κ0 log(1 + n))

Proof. In order to satisfy the condition of Lemma 4.1 in
Zhang and Chen (2021), we first need to prove the existence
of ‖ei‖ψ1 . That is, the moment generating function φ|ei|(t) =

Eet|ei| of |ei| exists.

φ|ei|(t) = Eet|ei| =
+∞∑

i=−∞

1− λ

1 + λ
λ|i|et|i|

= 2

+∞∑
i=0

1− λ

1 + λ
λ|i|et|i| − 1− λ

1 + λ

= 2× 1− λ

1 + λ
× 1− limr→∞ λr+1et(r+1)

1− λet
− 1− λ

1 + λ

If t < log λ−1, then limr→∞ λr+1et(r+1) = 0. Therefor,

φ|ei|(t) = (1−λ)(1+λet)
(1+λ)(1−λet) . And the inverse of function φ|ei|(t)

is φ−1
|ei|(t) and equal to log (1+λ)t−(1−λ)

λ(1+λ)t+λ(1−λ) . By Lemma 4.1

in Zhang and Chen (2021), we have ‖ei‖ψ1 = 1/φ−1
|ei|(2) =

log (λ2+3λ)
3λ+1 . And by Lemma 3, we have E(maxi=1,..,n |ei|) ≤

log(1 + n)maxi=1,..,n ‖ei‖ψ1 = log(1 + n) log (λ2+3λ)
3λ+1 . By

Theorem 11.14 of Severini (2005), we have maxi=1,..,n|ei| ≤
Op(log(1 + n) log (λ2+3λ)

3λ+1 ) = Op(κ0 log(1 + n)).

7.1.2 Convergence rate for the Newton iterative sequence

For a subset C ⊂ Rn, let C0 and C denote the interior
and closure of C in Rn, respectively. Let Ω(x, r) denote the
open ball {y : ‖x− y‖ < r}, and Ω(x, r) be its closure. We
use Newton’s iterative sequence to prove the existence and
consistency of the moment estimates relying on results of
Gragg and Tapia (1974).

Lemma 5. Let F (x) = (F1(x), . . . , Fn(x))
� be a function

vector on x ∈ Rn. Assume that the Jacobian matrix F ′(x)
is Lipschitz continuous on an open convex set D with the
Lipschitz constant λ. Given x0 ∈ D, assume that [F ′(x0)]

−1

exists,

‖[F ′(x0)]
−1‖∞≤ℵ, ‖[F ′(x0)]

−1F (x0)‖∞≤δ, h=2ℵϑδ≤1,

Ω(x0, t
∗) ⊂ D0, t∗ :=

2

h
(1−

√
1− h)δ=

2

1 +
√
1− h

δ≤2δ,

where ℵ and δ are positive constants that may depend on
x0 and the dimension n of x0. Then the Newton iterates
xk+1 = xk−[F ′(xk)]

−1F (xk) exist and xk ∈ Ω(x0, t
∗) ⊂ D0

for all k ≥ 0; x̂ = limxk exists, x̂ ∈ Ω(x0, t∗) ⊂ D and
F (x̂) = 0. Thus if t∗ → 0, then ‖x̂− x0‖ = o(1).

7.1.3 Approximate inverse for the matrix V

Lemma 6 (Yan and Xu (2013)). For a matrix A = (aij),
take ‖A‖ := maxi,j |aij |. If V ∈ Ln(m,M) at (3.3), and n
is large enough,

‖V−1 − S‖ ≤ c1M
2

m3(n− 1)2
,

where S is defined at (3.4) and c1 is a constant that does
not depend on M , m, and n.

Lemma 7 (Yan, Zhao and Qin (2015)). If V ∈ Ln(m,M),
for large enough n,

‖V−1‖∞ ≤ ‖V−1 − S‖∞ + ‖S‖∞

≤ c1nM
2

m3(n− 1)2
+

1

m
(

1

n(n− 1)
+

1

n− 1
)

≤ c2M
2

nm3
,

where c2 is a constant that does not depend on M , m, and
n.

Before presenting the asymptotic results, we first prove
the following proposition.
Proof of Proposition 1: By d̄i = di + ei, we can anal-
ysis the asymptotic normality of the following proposition

in two parts, i.e., (di − E(di))/v
1/2
ii and (ei − E(ei))/v

1/2
ii .

On the one hand, Yan, Qin and Wang (2016) have verified
the result of the first part by the central limit theorem for
the bounded case which can be implied by Liapounov’s cen-
tral limit theorem [Chung (2001)]. On the other hand, we
can easily obtain the stochastic order of the second part by
Chebyshev inequality.

Let d̄i = di + ei, i = 1, · · · , r, then

(7.6)
d̄i − E(di)√

vii
=

di − E(di)√
vii

+
ei√
vii

, i = 1, · · · , r.

Now, we only discuss the property of
ei√
vii

. Note that

{ei}ni=1 is independently discrete Laplace random vari-
ables. In fact, by Chebyshev inequality and lemma 5.2 in
Fan, Zhang and Yan (2020), for any constant τ > 0, as n
goes to infinity, we have

P (| ei
vii

| > τ) = P (|ei| > τvii)

≤ V ar(ei)

τ2v2ii
≤ 4M

τ2(n− 1)m2
× 2λ

(1− λ)2

If M/m2 = o(n), then

v
1/2
ii [S(d̃i − E(di))]i =

di − E(di)

v
1/2
ii

+
ei
vii

=
di − E(di)

v
1/2
ii

+op(1)
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Therefore, for any fixed k, d̃i − E(di)/v
1/2
ii , i = 1, ..., k, are

asymptotically independent and standard normal distribu-
tions.

Proof. Proof of Theorem 1. To prove this theorem, it is suffi-
cient to show that the Newton-Kantovorich conditions hold.
We only give the proof in case F ′(α) ∈ Ln(m,M). The proof
when −F ′(α) ∈ Ln(m,M) is similar, and we omit it. In
Newton’s iterative step, we take the true parameter vector
α as the start point α0 := α. The Jacobian matrix F ′(α) of
F (α) can be calculated as follows. For i, j = 1, . . . , n,

∂Fi

∂αj
= μ′(αi + αj) and

∂Fi

∂αi
=

n∑
j=1;j �=i

μ′(αi + αj).

and then V = F ′(α) ∈ Ln(m,M) and W = V−1 − S. By

lemma 7, we have ℵ = c2M
2

nm3 . Note that F(α) = d̃ − E(d).
By Hoeffding (1963) inequality, we have

P (|di − E(di)| ≥
√

(n− 1) log (n− 1))

≤2 exp

⎛⎜⎝−
2
(√

(n− 1) log(n− 1)
)2

(n− 1)

⎞⎟⎠
≤ 2

(n− 1)2
.

Since

P
(
max

i
|di − E(di)| ≥ x

)
≤

∑
i

P (|di − E(di)| ≥ x),

we have

P
(
max

i
|di − E(di)| ≥

√
(n− 1) log (n− 1)

)
≤ 2

(n− 1)
→ 0, as n → ∞.

Therefore, with probability approaching one, we have

(7.7) max
i

|di − E(di)| ≤
√

(n− 1) log (n− 1),

By lemma 4, for each i = 1, ..., n we have

(7.8) maxi=1,..,n|ei| ≤ Op(κ0 log(1 + n)).

it yields that

max
i=1,...,n

|d̃i−E(di)|≤max
i

|di−E(di)|+max
i

|ei|

≤Op(
√

(n−1) log (n−1)+κ0log(n+1))

(7.9)

This shows condition (C4) holds. Assuming C4, by Lemma 6

we have

‖[F ′(α)]−1F (α)‖

≤ n‖W‖‖F (α)‖∞ +max
i

|Fi(α)|
vii

≤ (
c1nM

2

(n− 1)2m3
+

1

m(n− 1)
)

× φ2(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

≤ c3M
2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

where c3 is a constant. Therefore, we can choose

δ =
c3M

2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

If condition 4.11 holds, by C3

h=2ℵϑδ= c2M
2

nm3
× (n− 1)φ1

× c3M
2φ2

m3(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

=
M4φ1φ2

m6(n− 1)
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))

=o(1)

By Lemma 5, ||α̂ − α||∞ =

Op(
c3M

2φ2

m3(n−1) (
√
(n− 1) log (n− 1) + κ0log(n+ 1))).By

C5, (3.5) holds with probability approaching one such
that (4.11) holds if (3.6) is satisfied.

Proof. Proof of Theorem 2. The aim of proving Theorem 2
is to establish the following equation

(α̂− α)i = [S(d̄− E(d))]i + op(n
−1/2).

This will follow directly the from [W{d̄ − E(d)}]i =
op(n

−1/2), n → ∞, and by proposition 2. To this end, we
should prove the following conditions. Let V = cov{d̄ −
E(d)},V = cov{d− E(d)} and E = cov(e). For 1 ≤ i ≤ n,
the random variables di and ei are mutually independent,
then

cov(d̄i−E(di), d̄j−E(dj))

=cov(di+ei−E(di), dj+ej−E(dj))

=cov(di−E(di), dj+ej−E(dj))+cov(ei, dj+ej−E(dj))

=cov(di−E(di), dj−E(dj))+cov(di−E(di), ej)

+cov(ei, dj−E(dj))+cov(ei, ej)

=cov(di−E(di), dj−E(dj))+cov(ei, ej).

Two cases are discussed:
Case 1. If i �= j, then cov(d̄i−E(di), d̄j −E(dj)) = cov(di−
E(di), dj − E(dj));
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Case 2. If i = j, then cov(d̄i−E(di), d̄j −E(dj)) = Var(di−
E(di)) + Var(ei).
Thus the elements of the matrix V are denoted by v̄ij =
vij , v̄ii = vii +Var(ei), i, j = 1, · · · , n. Let U = cov[W{d̄−
E(d)}] with W = V−1 − S, then

U = WVWT = W(V +E)WT = WVWT +WEWT .

On the one hand, WVWT = (V−1−S)−S(I−VS), where
n× n matrix I is an identity matrix.
By (2.2), we obtain

∣∣{S(I−VS)}ij
∣∣ = ∣∣ (δij − 1)vij

viivjj

∣∣ ≤ 2M

m2(n− 1)2
.(7.10)

By Lemma 5.4 and (5.7), we have

‖WVWT ‖ ≤ c1M
2

m3(n− 1)2
+

2M

m2(n− 1)2
≤ O

(
M2

m3n2

)
.

On the other hand,

∥∥(WEWT )ij
∥∥ =

∥∥ n=1∑
k=1

wikekwkj

∥∥ ≤ max
k

|ek|
n∑

k=1

∣∣wik

∣∣∣∣wkj

∣∣
≤ nmax

k
|ek|‖W‖2 ≤ c1nM

4

m6(n− 1)4

× 2κ0
log(n+ 1)

γ
.

≤ O(
κ0M

4log(n+ 1)

m6(n− 1)3
)

Hence, ‖U‖ ≤ O
(

M2

m3n2 + κ0M
4log(n+1)

m6(n−1)3

)
. Furthermore, by

Chebyshev inequality, for any constant a > 0, we get

P

(
[Wn{d̄− E(d)}]i

n−1/2
≥ a

)
≤ P

(
[Wn{d̄− E(d)}]i ≥ an−1/2

)
≤

n[cov{Wn(d̄− E(d))}]i
a2

≤ O

(
M2

m3n
+

κ0M
4 log(n+ 1)

m6(n− 1)2

)
.

If M2/m3 = o(n), (3.6) and (3.7) hold, then

(7.11) ‖U‖ = op(n
−1/2)

Let r̂ij = α̂i + α̂j − αi − αj and assume

max
i �=j

|r̂ij |=O(
c3M

2φ2

m3(n−1)
(
√
(n−1) log (n−1)+κ0log(n+1))).

For i = 1, · · · , n, by the Taylor’s expansion, we get

d̄i − E(di) =
∑
j �=i

(μ(α̂i + α̂j)− μ(αi + αj))

=
∑
j �=i

[μ′(αi + αj)((α̂i + α̂j)− (αi + αj))] + hi,

where hi = 1
2

∑
j �=i μ

′′(r̂ij)[((α̂i + α̂j) − (αi + αj))]
2 and

r̂ij = tij(αi + αj) + (1 − tij)(α̂i + α̂j), tij ∈ (0, 1). Writing
the above expressions into a matrix, we have

d̄− E(d) = V(α̂−α) + h,

thus

α̂−α = V −1
n (d̄− E(d)) + V −1

n h,

where h = (h1, · · · , hn)
T . Assume that μ′′(r̂ij) = O(φ3).

Then

|hi| ≤
1

2
(n− 1)φ3r̂

2
ij ,

Therefore,

|(V−1h)i| = |(Sh)i|+ |(Wh)i|

≤ max
i

|hi|
vii

+ ‖W‖
∑
i

|hi|

≤ O

(
3φ3r̂

2
ij

m3
+

c2M
2

m3(n− 1)2
× 1

2
n(n− 1)φ3r̂

2
ij

)

≤ O

(
M2φ3

m3
× c3M

4φ2

m6(n− 1)2
(
√
(n− 1) log (n− 1)

+ κ0log(n+ 1))2
)

≤ O

(
c3M

6φ2φ3

m9(n− 1)2
(
√

(n− 1) log (n− 1) + κ0log(n+ 1))2
)

If
(

c3M
6φ2φ3

m9(n−1)2 (
√

(n− 1) log (n− 1) + κ0log(n+ 1))2
)

=

o(n1/2), then (V−1h)i = o(n−1/2).
By Theorem 2, (3.8) holds with probability approaching

1. And by C6, μ′′(r̂ij) = O(φ3). Consequently, by (7.11), we
have

(α̂− α)i = [S(d̄− E(d))]i + op(n
−1/2)

=
d̄i − E(di)

vii
+ op(n

−1/2).

Hence, Theorem 2.2 follows directly from Lemma 5.1. Fi-
nally, we conclude the proof by multiplying

√
vii to left and

right of the last display.
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