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Sufficient dimension reduction for spatial point
processes using weighted principal support vector
machines

Subha Datta and Ji Meng Loh
∗

We consider sufficient dimension reduction (SDR) for spa-
tial point processes. SDR methods aim to identify a lower
dimensional sufficient subspace of a data set, in a model-
free manner. Most SDR results are based on independent
data, and also often do not work well with binary data. [13]
introduced a SDR framework for spatial point processes by
characterizing point processes as a binary process, and ap-
plied several popular SDR methods to spatial point data.
On the other hand, [29] proposed Weighted Principal Sup-
port Vector Machines (WPSVM) for SDR and showed that
it performed better than other methods with binary data.
We combine these two works and examine WPSVM for spa-
tial point processes. We show consistency and asymptotic
normality of the WPSVM estimated sufficient subspace un-
der some conditions on the spatial process, and compare
it with other SDR methods via a simulation study and an
application to real data.
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1. INTRODUCTION

High dimensional data pose computational challenges as
well as challenges for statistical modeling and inference. One
direction for addressing these challenges is Sufficent Dimen-
sion Reduction (SDR), which aims to reduce the dimension-
ality of the data while retaining all the relevant information.

Given (XT , Y )T ∈ Rp×R, a p-dimensional predictor and
a response, linear SDR assumes that a p× k matrix B with
k � p exists such that

(1) Y ⊥ X|B�X,

where ‘⊥’ denotes conditional independence, i.e. Y depends
on X only through B�X. Under (1), SDR is achieved by
estimating B, in particular, the space S(B) spanned by B,
often referred to as the dimension reduction subspace. Note
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that B itself may not be unique due to the fact that any full-
rank linear combination of the columns of B would have
the same properties. For example, if B�X is a sufficient
dimension reduction then so is (BA)�X for any k×k matrix
A of full rank. [8] introduced the central subspace, denoted
SY |X, as the intersection of all subspaces satisfying (1), and
provided conditions for it to uniquely exist.

While there are many proposed SDR methods, most do
not perform well with binary responses. For example, meth-
ods such as Slice Inverse Regression (SIR; [18]) and Principal
Support Vector Machine (PSVM; [15]) divide X according
to the response Y and if Y is binary, there is only one slice.
[29] introduced the Weighted Principal Support Vector Ma-
chines (WPSVM) method to handle SDR with binary re-
sponses better.

Most SDR methods also deal with independent data. [13]
introduced a framework for SDR with spatial point pro-
cesses, including the idea of a Central Intensity Subspace
(CIS) related to the intensity functions of the point process
(see the Appendix). By means of a fine grid imposed on the
observational window, [13] converted a spatial pattern into
a binary response, and applied some popular SDR methods
to the resulting binary response.

Our paper has a modest goal. We consider the WPSVM
SDR method for spatial point processes. [13] is the only pa-
per we know of that concerns SDR for spatial point data,
but uses SDR methods not particularly suited for binary
responses. [29] showed that WPSVM preserves the merits
of PSVM while achieving SDR for binary data, but for the
independent data regression setting. In this paper, we show
that WPSVM can be used to perform SDR for spatial point
processes, under the framework of [13]. We derive asymp-
totic properties of the WPSVM estimator for spatial point
processes under a mixing condition. We also show, via a
simulation study, that the benefit of WPSVM carries over
to the spatial point process setting.

SDR deals with high-dimensional data in a model-free
manner, and complements model-based methods such as
variable selection. Analysis of spatial point data, and more
specifically, of the relationship between the intensity func-
tion and available covariates is becoming more prevalent.
With today’s emphasis on data collection, high-dimensional
spatial point data are readily available, either directly, or by
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merging point data with other data sets (e.g. Census data).
Applications span many fields including ecology, telecom-
munications, crime analysis, earthquake analysis and trans-
portation. For example, [3] introduces a dataset of traffic
accident locations together with properties of the road (e.g.
speed limit and curvature), and attributes of the accident
(e.g. severity and time of day). [32, 37] analyzed the inten-
sity function of tree species in a rainforest using covariates
such as the slope, altitude, soil mineral concentrations and
distances to other tree species as covariates. [37] also ana-
lyzed fast food restaurant locations as a function of census
variables, zoning as well as proximity to schools. The food
access analysis of [14] using Chicago supermarket data can
be extended by including census and transit variables, for
example, and could benefit from applying SDR. In this pa-
per, we illustrate the use of WPSVM with a data set on
burglaries in London.

The paper is organized as follows. We present the
WPSVM method applied to spatial point processes and
provide theoretical results (Section 2). A kernel version of
WPSVM is presented in Section 3. Sections 4 and 5 contain
simulation study and data analysis results respectively. Sec-
tion 6 contains a brief discussion. The Appendix contains
some background material on SDR methods and central in-
tensity subspaces for point processes. Details of proofs are
also in the Appendix.

2. WPSVM FOR SPATIAL POINT
PROCESSES

Using notation similar to that in [13], let X = {X(s) : s ∈
R2} be a p-dimensional Gaussian random field with X(s) =
{X1(s), . . . , Xp(s)}� ∈ Rp. Without loss of generality, we
assume E{X(s)} = 0 and set ΣX = cov{X(s)}.

Let N be a spatial point process that results from some
stochastic mechanism conditional on X. We write N (.) as
the counting measure induced by N . For bounded Borel
sets B1, . . . ,Bk in R2, the k-th order moment measure of N
(see [11]) is defined as

(2) μ
(k)
N (B1 × · · · × Bk) = E {N (B1) . . .N (Bk) |X} .

Under certain conditions [see e.g. 30], the k-th order inten-

sity function λk(.) exists and is related to μ
(k)
N as follows:

μ
(k)
N (ds1 × · · · × dsk) = λk(s1, . . . , sk)ds1 . . . dsk,

where dsi (i = 1, . . . , k) are distinct infinitesimal sets in
R2. We assume that λk exists for all k ≥ 1. We also assume
that the central subspace forN , denoted SN|X, depends only
on the first-order intensity, more specifically, that SN|X =
S1, where S1 is the first-order intensity subspace. See the
Appendix for a description of central intensity subspaces
and their relationship to the central space. Here, intuitively,
we are assuming that the central subspace depends only on

the first-order intensity function, and higher-order intensity
functions do not come into play.

We convert N to a binary field Y as follows: for s ∈ W ,
the observation window, set

Y (s) =

{
1, if s ∈ N
−1, otherwise.

More formally, we consider ds to be a small region around
s, with P(N (ds) > 1) = o(|ds|), so that Y (s) = 1 if
N (ds) = 1 and Y (s) = −1 otherwise. [13] also used a simi-
lar characterization in their SDR framework for spatial point
processes. SDR methods can then be applied to Y (s). [13]
applied sliced inverse regression (SIR; [18]), sliced average
variance estimation (SAVE; [10]) and directional regression
(DR; [16]). The Appendix contains details of the SIR, SAVE
and DR methods.

For a binary response Y , the SIR, SAVE and DR methods
use only one slice, the one corresponding to Y = 1. This is
true for a non-spatial binary Y and also for a binary field
Y (s), like in [13]. The weighted principal support vector
machine (WPSVM; [29]) has been shown to work better for
independent binary responses due to its ability to construct
more slices. Here we apply WPSVM to possibly correlated
spatial point processes through the binary field Y (s).

Note that the conversion of a spatial point pattern to 1’s
and 0’s is a common procedure in spatial point analysis.
See, for example, [1], [2]. Although on the surface it seems
like a loss of information, the 1’s and -1’s have the covariate
values X(s) associated with each binary response. Under
the assumed model that the first-order intensity function is
a function of the covariates X, all the information for fitting
this model is retained. Furthermore, the coordinates of s
can be included as one of the covariates, which would allow
the full spatial pattern to be reproduced if needed.

If we divide the response Y (s) into slices and use a form
of SVM to find optimal hyperplanes a+bTX(s) to separate
them, we seek (a0,b0) such that
(3)

(a0,b0) = argmin
a,b

{
b�ΣXb+ λE

[
1− Ỹc(a+ b�X)

]
+

}
,

where ΣX = Var(X), [a]+ = max(a, 0), Ỹc = 1(Y ≥ c) −
1(Y < c) for a given constant c, and λ a tuning parameter.
This is the Principal SVM (PSVM) method for the model
in (1), and [15] showed that b0 is unbiased for linear SDR.

In practice, a sequence of cutoff points c denoted by
ch, h = 1, . . . , H with an associated Ỹi,ch = 1(Yi ≥ ch) −
1(Yi < ch) is used. With binary responses, such as our Y (s),
however, there is only one slice, and PSVM suffers from es-
timating at most one direction of SN|X.

Weighted PSVM uses a function gπ such that gπ(Y ) =
1 − π if Y = 1 and gπ(Y ) = π if Y = 0, for π ∈ (0, 1), and
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minimizes the objective function

Λπ(θ) = β�ΣXβ(4)

+ λE
{
gπ(Y (s))[1− Y (s)(α+ βTX(s))]+

}
,

where we have written θ for (α,β
T )T . Note that while in

PSVM, the use of Ỹc for different c produces multiple slices,
this is achieved via gπ in (4).

If θ0 ≡ (α0,β
T
0 )

T is the minimizer of Λπ, for a particular
π, [15] showed that the span of β0, S(β0), is a subset of the
central subspace, SN|X in our case:

Theorem 2.1. Assume that E
{
X(s)|B�X(s)

}
is a linear

function of B�X(s). Then S(β0) ⊆ SN|X = S1 under (1).

The above linearity condition assumption implies that

E

{
β�X(s)|B�X(s)

}
= β�PB (ΣX)X(s),

where PB (ΣX) = B(B�ΣXB)−1B�ΣX is a projection
matrix on S1 with respect to ΣX (see [9]). Theorem 2.1
helps us estimate the central subspace from normals of linear
WPSVM solutions β0 for different weight parameters.

Given a spatial point process observed in W , let si, i =
1, . . . , n, be the locations of these points. Further, let si,
i = n + 1, . . . , n + nd ≡ N , be additional locations in W
where no points are observed. Set

Λ̂n,π(θ) = β�Σ̂Nβ

(5)

+
λ

N

N∑
i=1

gπ(Y (si))[1− Y (si)(α+ βTX(si))]+,

where Y (si) = 1 for i = 1, . . . , n, Y (si) = −1 for i =
n+ 1, . . . , N , and X(si) are the centered covariates.

In practice, the instances where Y = 1 are obtained from
the observations of the spatial point process. From the lit-
erature, the instances where Y = −1 can be obtained in
two ways. The first is to define a fine grid so that each cell
contains 0 or 1 data point. Cells with no data points are
assigned Y = −1. [1], however, suggests that the choice of
grid size might pose complicating issues. Also, an extremely
large number of -1’s will usually be produced. The second
way is to randomly generate a set of dummy points and use
these locations for Y = −1 (see [2]). In this paper we use
the latter method, and obtain the dummy points using the
default.dummy function in the spatstat R package to gen-
erate a quasi-random regular pattern. The same procedure
can be repeated with multiple sets of dummy points to as-
sess the impact of using a random set of dummy points, but
we do not pursue that here.

Lemma 1. Suppose that the spatial point process N is ρ̃
mixing. Then (5) is a sample version of (4).

The definition of ρ̃ mixing and the proof of Lemma 1
is given in the Appendix. Briefly, for a ρ̃ mixing sequence
of random variables, disjoint subsets of these random vari-
ables become less correlated as the separation between the
subsets increases. Point processes directed by Gaussian se-
quences are typically ρ̃ mixing. Neyman–Scott processes are
another example of ρ̃ mixing spatial point processes. The
proof Lemma 1 makes use of a Theorem in [21] giving a
SLLN for ρ̃ mixing sequences.

Following [29], for finite sample estimation, we use a grid

of H values, 0 < π1 < · · · < πH < 1, and minimize Λ̂n,πh
.

Let the corresponding minimizers be (α̂n,h, β̂n,h)
�, h =

1, . . . , H. Set the candidate matrix of the linear WPSVM
to be

(6) M̂LW
n =

H∑
h=1

β̂n,hβ̂
�
n,h,

and the basis of the central subspace S1 is estimated by the

first k leading eigenvectors of M̂LW
n denoted by V̂LW

n =
(v̂LW

1 , . . . , v̂LW
k ). By using different values for the weight

parameter π, it is possible for M̂LW
n to have more than one

eigenvector with non-zero eigenvalue in binary classification.
We assume the following:

(A0) N exists in Rd and is ρ̃ mixing, and the observation
window WN ⊂ Rd is such that |WN | → ∞. Hence
n → ∞. Furthermore we assume that the number of
dummy points nd is chosen such that nd ∼ n.

(A1) X(s) has an open and convex support and satisfies
E(‖X(s)‖2) < ∞.

(A2) Given a realization of N , the conditional distribution
of X(s) given s ∈ N is dominated by Lebesgue mea-
sure. Similarly, for a set D of dummy points, the con-
ditional distribution of X(s) given s ∈ D is dominated
by Lebesgue measure.

(A3) For an arbitrary θ = θ0,
∑

y∈{−1,+1} P{Y = y,

X(s) ∈ Ψ(y,θ)} > 0, where Ψ(y,θ) = {X(s) :

(1 − yθ�X̃(s))(1 − yθ�
0 X̃(s)) < 0}, where X̃(s) =

(1,X(s)T )T .
(A4) Let U and V denote β�X(s) and δ�X(s) respec-

tively. Then a map

u �→ E {X(s)|U = u, V = v, Y = y} fU |V,Y (u|v, y)

is continuous for any linear independent vector β, δ ∈
Rp, Y ∈ {−1,+1}, and any constant v ∈ R.

(A5) Given U = u, there exists a non-negative func-
tion c0(v, y) with E(c0(V, Y )|Y ) < ∞ such that

E

{
X̃(s)|U = u, V, Y

}
fU |V,Y (U = u|V, Y ) < c0(v, y).

Assumption (A0) is a common assumption in spatial
statistics under the increasing domain asymptotic regime:
the correlation of the spatial process is limited; the obser-
vation window increases, with corresponding increase in the
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number of observed points of the process. With ρ̃mixing and
an increasing observation region, the effect of spatial corre-
lation becomes smaller and smaller even as the number of
observations increase. (A1) and (A2) are standard assump-
tions used in the SDR literature, and basically ensures that
X is well-behaved. (A3)–(A5) are regularity conditions for
Λπ(θ).

With the above assumptions, we have consistency and a
Bahadur representation for θ̂n.

Theorem 2.2 (Consistency of θ̂n). Suppose V ar {X(s)} =
ΣX is positive definite and assumption (A2) holds. Then,

θ̂n
P−→ θ0.

Theorem 2.3 (Bahadur representation of θ̂n). Under as-
sumptions (A1)–(A5),

√
n(θ̂n − θ0) = −n− 1

2H−1
θ0

n∑
i=1

Dθ0(Zi) + op(1),(7)

where

Dθ0
(Z) = (0, 2Σβ)�(8)

− λ
[
π(Y )X̃Y 1{θ�X̃Y < 1}

]
,

Hθ = 2diag(0,Σ) + λ
∑

y=−1,1

[P (Y = y)π(y)×(9)

fβ�X|Y (y − α|y)E(X̃X̃
�
|θ�X̃ = y)

]
.

The above results are for the minimizer of Λ̂n,π. The next

result concerns asymptotic normality of the matrix M̂n in
(6) from which the basis of the central subspace is obtained.

Now for a given πh, let θ0,h = (α0,h,β0,h) be the
minimizers of Λπh

(θ) and S(θ0,h,Z) = Fθ0,h
Dθ0,h

(Z) for

h = 1, . . . , H, where Fθ0,h
denotes the last p rows of H−1

θ0,h
.

Note that E(S(θ0,h,Z)) = 0, ∀h = 1, . . . , H. Thus, by The-

orem 2.3, a Bahadur representation of β̂n,h is given by

(10)
√
n
(
β̂n,h − β0,h

)
= −n− 1

2

n∑
i=1

S(θ0,h,Zi) + op(1).

Using the Bahadur representation the asymptotic normality

of the candidate matrix M̂n given by (6) can be established.

Theorem 2.4 (Asymptotic normality). Under assumptions
(A1)–(A5) and rank(M0) = k,

√
nvec(M̂n −M0) ∼ N(0,ΣM),

where M0 =
H∑

h=1

β0,hβ
�
0,h. The covariance matrix ΣM is

given by

ΣM = (Ip2 +Tp,p)×

H∑
h=1

H∑
h′=1

(β0,hβ
�
0,h′ ⊗ E(S(θ0,h,Z)S�(θ0,h′ ,Z)))×

(Ip2 +Tp,p),

where Tu,v ∈ Ruv×uv denotes a communication matrix such
that Tu,vvec(A) = vec(A�) for a matrix A ∈ Ru×v, and Iu
is a u-dimensional identity matrix. The matrix operator ⊗
denotes Kronecker product.

Theorem 2.4 allows a corollary result for V̂n, the esti-

mated leading eigenvectors of M̂n:

Corollary 1. Under assumptions (A1)–(A5) and
rank(M0) = k,

√
n vec(V̂n −V0) → N(0,ΣV),

where ΣV = (D−1U�⊗Ip)ΣM(UD−1⊗Ip), U a p×k ma-
trix with columns being the eigenvectors of M0 correspond-
ing to nonzero eigenvalues and D a k × k diagonal matrix
with elements given by the nonzero eigenvalues.

Proofs of Theorems 2.2, 2.3, and 2.4 follow those in [15],
[29] and are relegated to the Appendix.

2.1 Determination of the structural
dimension, k

In practice, the dimension of the central subspace, i.e.
the structural dimension k is not known. To estimate k in
PSVM, [15] used a cross-validated BIC (CVBIC) procedure
based on asymptotic properties of the PSVM estimator.

We also use CVBIC for the linear WPSVM described
above. Here, the BIC-type criterion is

(11) Gn (k; η,M) =

k∑
j=1

vj − η
k log n√

n
v1,

where vj is the j-th leading eigenvalue of a candidate matrix

M and η is a tuning parameter ([29]). Hence, with M̂LW
n the

candidate matrix from linear WPSVM in (6), a reasonable

estimator of k is k̂ = argmax
k∈{1,...,p}

Gn

(
k; η, M̂LW

n

)
. Asymptotic

normality of M̂LW
n from Theorem 2.4 ensures that k̂ is con-

sistent:

Theorem 2.5. Under (A1)–(A5) and rank(M0) = k,

lim
n→∞

P

(
k̂ = k

)
= 1.

Please refer to the Appendix for the proof.
In order to use (11), a value of η is needed and we suggest

to do the following:

1. Randomly split the data into training and test sets de-
noted by {(

X(s)trj , Y (s)trj
)
: j = 1, . . . , ntr

}
418 S. Datta and J.M. Loh



and{(
X(s)tsj′ , Y (s)tsj′

)
: j′ = 1, . . . , nts(= n− ntr)

}
.

We use a chess board method to split the data ([26]) in
order to preserve the spatial correlation.

2. Apply WPSVM to the training data
(
X(s)trj , Y (s)trj

)
to obtain the candidate matrix, M̂tr

n .
3. Then for each η in a grid of values

(a) Compute

k̂tr = argmax
k=1,...,p

Gn

(
k; η, M̂tr

n

)
and use the first k̂tr leading eigenvectors, V̂

tr

n =(
v̂tr
1 , . . . , v̂

tr
̂ktr

)
, of M̂tr

n to transform the training

predictors X̃(s)trj =
(
V̂

tr

n

)�
X(s)trj .

(b) For each πh, h = 1, . . . , H, use weighted SVM

on
{(

X̃(s)trj , Y (s)trj

)
: j = 1, . . . , ntr

}
to predict

Y (s)tsj′ . Let Ŷ (s)
ts

j′,h : j′ = 1, . . . , nts, h = 1, . . . , H
be the predicted values.

(c) Calculate the associated total cost for the test
data:

TC(η) =
H∑

h=1

{
nts∑
j′=1

gπh

(
Y (s)tsj′

)
(12)

1

(
Ŷ (s)

ts

j′,h = Y (s)tsj′

)}
,

where gπh
(1) = 1− πh and gπh

(−1) = πh.

(d) select η̂ that minimizes TC(η).

4. Finally, compute k̂ = argmax
k∈{1,...,p}

Gn

(
k; η̂, M̂LW

n

)
.

We note here that there are other possible methods to de-
termine the structural dimension, such as using the eigen-
value ratio [20], which could be less computationally de-
manding. Comparing the effectiveness of various methods
for determining the structural dimension could be a direc-
tion of future research.

3. A KERNEL VERSION OF WPSVM FOR
NONLINEAR SDR

In Section 2, we considered linear WPSVM, where a hy-
perplane is used to separate the two classes of points corre-
sponding to Y = 1 and Y = −1. This is under the assump-
tion that the SN|X = S1, so that the presence or absence of
points can be explained by X. However, there are situations
where non-linear SDR can outperform linear SDR.

An advantage of WPSVM is that it can easily be ap-
plied using a kernel in place of the linear function, yield-
ing non-linear SDR within a similar framework. Setting
f(X(s);α, ψ) = α + ψ(X(s)) − E {ψ(X(s))} where ψ be-
longs to a Hilbert space, H, the corresponding objective
function ([29]) is given by

Λπ(α, ψ) = Var (ψ (X(s)))

+ λE {gπ(Y (s))[1− Y (s)f(X(s);α, ψ)]+}
= 〈ψ,Σψ〉H

+ λE {gπ(Y (s))[1− Y (s)f(X(s);α, ψ)]+} ,(13)

where Σ : H �→ H is a bounded, self-adjoint operator such
that 〈ψ1,Σψ2〉H = Cov (ψ1(X(s)), ψ2(X(s))) for ψ1, ψ2 ∈
H (see [7]). Note the similarity between (13) and (4).

[15] showed that if (a0, ψ0) is the minimizer of the ker-
nel WPSVM objective function (13), then ψ0(X(s)) is un-
biased for non-linear SDR. To obtain the sample version
of objective function (13), suppose H is spanned by Ω =
{ω1, . . . , ωd}, i.e.,

H =

⎧⎨⎩ψ : ψ(.) =

d∑
j=1

γjωj(.), γj ∈ R, j = 1, . . . , d

⎫⎬⎭ .(14)

The sample version of (13) using the basis representation
(14) is given by

Λ̂n,π(α,γ) = γ�Ω�Ωγ

+ λ

n∑
i=1

π(Y (si))[1− Y (si)
{
α+ γ�Ωi

}
]+,(15)

whereΩ is an (n×d)-dimensional matrix with i-th row given
by

Ωi = {ω1(X(si))− ω̄1, · · · , ωd(X(si))− ω̄d}� ,

and ω̄j =
n∑

i=1

ωj(X(si))/n, j = 1, . . . , d. We consider choos-

ing an appropriate Ω in Section 3.1.
[15] and [29] show how to obtain the minimizer of (15)

by solving a quadratic programming problem. We refer the
reader to [15] and [29] for details.

Then, for each πh, h = 1, . . . , H, we minimize (15) and let
the corresponding minimizers be (α̂n,h, γ̂n,h), h = 1, . . . , H.
The candidate matrix of kernel WPSVM is given by

(16) M̂KW
n =

H∑
h=1

γ̂n,hγ̂
�
n,h.

As before, the basis of the central subspace S1 is es-

timated by φ̂(x) =
{
VKW

n

}�
ω(x), where V̂KW

n =(
v̂KW
1 , . . . , v̂KW

k

)
are the first k leading eigenvectors of

M̂KW
n and ω(x) = {ω1(x), . . . , ωd(x)}�.
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3.1 Choosing Ω

In order to choose an optimal Ω for estimating the
sufficient predictor for kernel WPSVM, we follow the
suggestion in [15] to use the eigenfunctions of the lin-
ear operator Σ, where Σ is such that 〈ψ1,Σnψ2〉H =
Cov (ψ1(X(s)), ψ2(X(s))).

Specifically, let Kn be the n×n kernel matrix and Qn =
In − Jn/n, where In is an n-dimensional identity matrix
and Jn is an n-dimensional square matrix with all elements
equal to one. Following Proposition 2 from [15], PΩ is given
by (w1, . . . ,wd), where wj is the j-th leading eigenvector
of QnKnQn with corresponding eigenvalue λj , j = 1, . . . , d.
Thus the j-th basis function ωj(x), j = 1, . . . , d is given by

ωj(X(s)) =
1

λj
w�

j kn(X(s)),

where kn(X(s)) =
{
K(X(s),X(si))−

n∑
j=1

K(X(s),X(sj))

/n, i = 1, . . . , n
}
. We use d = n/4 for our simulations and

the real data example.

4. SIMULATION STUDY

We conducted a simulation study to compare WPSVM
with other dimension reduction methods, specifically, the
SIR, SAVE and DR methods. These methods are briefly de-
scribed in the Appendix. We use data generated from spatial
point models similar to those used in [13].

We first simulated a stationary multivariate Gaussian
random field {X(s)} over a 2 × 2 window to serve as the
covariates, where X(s) = {X1(s), . . . , Xp(s)}� ∈ Rp. In
our simulations, we considered p = 5, 10 and 20. For each
1 ≤ j ≤ p, {Xj(s)} is a stationary univariate Gaussian ran-
dom field with E{Xj(s)} = 0, Var{Xj(s)} = 1, and the
covariance is given by

Cov {Xj1(s1), Xj2(s2)} = 0.5|j1−j2| exp

(
−‖s1 − s2‖

γ

)
.

We used γ = 0.1 and 0.2 to vary the range of correlation.

Another quantity {ε(s)} is also independently simulated
as a stationary univariate Gaussian random field having the
same mean and covariance structure as the X’s. Conditional
on {Xj(s)} and {ε(s)} we constructed three first-order in-
tensity functions:

(I) λ1(s) = α exp {X1(s) +X2(s) + 0.4 ε(s)},
(II) λ2(s) = α exp

{
X2

1 (s)
4 + 0.4 ε(s)

}
,

(III) λ3(s) = α exp
{

X1(s)
0.5+{1.5+X2(s)}2 + 0.4 ε(s)

}
.

With these intensity functions, we generated spatial point
patterns from the inhomogeneous Poisson process model. In
each case, we chose values of the constant α > 0 such that

the expected number of events produced is 200 for a 1 × 1
window and 800 for the 2× 2 window.

We also generated inhomogeneous point patterns from a
modified Thomas model ([12, 31]). The modified Thomas
model is a Neyman–Scott model where the data points are
the locations of offspring points from parent locations. The
(unobserved) parent point process is homogeneous Poisson
with intensity κ, and offspring points are scattered around
their parent point according to an isotropic bivariate nor-
mal density with standard deviation σ. In the inhomoge-
neous version of the Thomas model, the offspring points are
thinned or retained based on a retension probability that de-
pends on an intensity function λ. These point patterns can
be generated using the rThomas function in the spatstat

R package. For this study, we used κ = 20 and 50, and
σ = 0.05 and 0.1. We used only γ = 0.1.

For each model and parameter set, we generated 500 re-
alizations. We then applied linear WPSVM, as well as the
SIR, SAVE, and DR methods. We also estimated the struc-
ture dimensionality, k using the CVBIC procedure. For the
non-linear Model II, we applied KWPSVM as well, and com-
pared it to SAVE, DR and kernel sliced inverse regression
(KSIR; [35]), a non-linear version of SIR.

4.1 Comparision with linear WPSVM
(LWPSVM)

Our measurement of performance is based on an estima-
tion error used in [17], [36] and [13]. For an estimated B̃ and
true B0, the measurement error is given by
(17)

Δ
(
B0, B̃

)
=

∥∥∥∥B0

(
B�

0 B0

)−1
B�

0 − B̃
(
B̃�B̃

)−1

B̃�
∥∥∥∥
max

,

where ‖A‖max is the maximum absolute singular value of an

arbitrary matrix A, and 0 ≤ ‖A‖max ≤ 1. Smaller Δ(B0, B̃)
signify better performance.

For each of 500 simulated realizations corresponding to
a spatial point model, we ran linear WPSVM, SIR, SAVE
and DR, obtained the estimate B̃ and calculated Δ(B0, B̃).
Tables 1, 2, and 3 show the mean and standard deviation of
Δ(B0, B̃) for the Poisson process based on Models I, II and
III respectively.

Model I is a linear model with B0 = (1, 1, 0, · · · , 0)� ∈
Rp, with λ1(s) monotonic in B�

0 X(s). Hence, SIR is ex-
pected to perform well. DR, which includes SIR in its for-
mulation, also performs reasonably well, while SAVE per-
forms most poorly. In this case LWPSVM outperforms all
three SDR methods, with the smallest values of Δ.

For Model II, the true structural dimension is still k = 1,
with B0 = (1, 0, · · · , 0)� ∈ Rp. The intensity function is
symmetric and the performance of SIR is poor. As SAVE
and DR are both sensitive to symmetric directions, they
perform reasonably well. LWPSVM performs poorly due to
the symmetry, but is comparable with SIR. In Section 4.2
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Table 1. Mean (standard deviation) of Δ(B0, B̃) for Poisson
Model I

γ p Win
Results for:

SIR SAVE DR LWPSVM

.1

5
1× 1 .23 (.03) .67 (.12) .24 (.03) .18 (.07)
2× 2 .30 (.02) .52 (.20) .32 (.02) .08 (.03)

10
1× 1 .34 (.03) .94 (.09) .37 (.03) .31 (.07)
2× 2 .30 (.02) 1.00 (.00) .32 (.02) .20 (.05)

20
1× 1 .45 (.03) .99 (.01) .51 (.03) .43 (.07)
2× 2 .34 (.02) 1.00 (.00) .37 (.02) .26 (.04)

.2

5
1× 1 .25 (.07) .82 (.19) .30 (.08) .21 (.11)
2× 2 .29 (.02) .81 (.09) .32 (.02) .16 (.05)

10
1× 1 .35 (.05) .90 (.03) .45 (.04) .27 (.07)
2× 2 .25 (.03) 1.00 (.00) .28 (.03) .17 (.04)

20
1× 1 .42 (.05) .98 (.02) .47 (.05) .60 (.07)
2× 2 .40 (.03) .99 (.00) .47 (.03) .29 (.04)

Table 2. Mean (standard deviation) of Δ(B0, B̃) for Poisson
Model II

γ p Win
Results for:

SIR SAVE DR LWPSVM

.1

5
1× 1 .46 (.16) .33 (.07) .33 (.06) .64 (.17)
2× 2 .90 (.13) .32 (.03) .32 (.03) .88 (.12)

10
1× 1 .65 (.16) .43 (.07) .41 (.06) .86 (.09)
2× 2 .83 (.11) .40 (.05) .40 (.05) .91 (.09)

20
1× 1 .87 (.07) .52 (.06) .56 (.06) .95 (.03)
2× 2 .98 (.03) .55 (.04) .55 (.04) .99 (.02)

.2

5
1× 1 .90 (.12) .56 (.21) .57 (.21) .88 (.11)
2× 2 .52 (.10) .44 (.04) .41 (.04) .65 (.08)

10
1× 1 .86 (.13) .80 (.14) .78 (.14) .84 (.12)
2× 2 .95 (.06) .49 (.09) .50 (.09) .94 (.06)

20
1× 1 .89 (.09) .88 (.09) .85 (.10) .91 (.07)
2× 2 .94 (.04) .55 (.08) .56 (.08) .93 (.05)

we show that kernel WPSVM performs much better for this
model.

Model III is two-dimensional with B0 = {(1, 0, · · · , 0)�,
(0, 1, · · · , 0)�} ∈ Rp×2. Since, SIR can extract only one
direction it performs poorly. SAVE and DR both perform
better than SIR. LWPSVM also performs better than SIR.
Relative to SAVE and DR, the performance of LPSVM is
mixed, outperforming them in some cases but not in others.
In Section 4.2 we see that kernel WPSVM also performs
much better for this model.

Tables 4, 5, and 6 show the mean and standard deviation
of Δ(B0, B̃) for the Thomas model based on Models I, II
and III respectively. The actual performance of LWPSVM
for the Thomas model is slightly worse when compared to

Table 3. Mean (Standard Deviation) of Δ(B0, B̃) for Poisson
Model III

γ p Win
Results for:

SIR SAVE DR LWPSVM

.1

5
1× 1 1.00 (.00) .83 (.16) .80 (.17) .69 (.20)
2× 2 1.00 (.00) .44 (.20) .34 (.09) .40 (.18)

10
1× 1 1.00 (.00) .92 (.08) .91 (.09) .81 (.08)
2× 2 1.00 (.00) .62 (.14) .58 (.13) .82 (.08)

20
1× 1 1.00 (.00) .97 (.04) .97 (.04) .82 (.08)
2× 2 1.00 (.00) .90 (.11) .86 (.13) .78 (.11)

.2

5
1× 1 1.00 (.00) .77 (.18) .73 (.19) .63 (.21)
2× 2 1.00 (.00) .58 (.09) .57 (.11) .77 (.14)

10
1× 1 1.00 (.00) .82 (.09) .83 (.10) .53 (.12)
2× 2 1.00 (.00) .61 (.09) .59 (.10) .69 (.15)

20
1× 1 1.00 (.00) .99 (.02) .98 (.02) .84 (.07)
2× 2 1.00 (.00) .91 (.10) .93 (.06) .69 (.09)

Table 4. Mean (standard deviation) of Δ(B0, B̃) for Thomas
model I

p, κ, σ Win
Results for:

SIR SAVE DR LWPSVM

5, 50, .1
1× 1 .28 (.06) .91 (.16) .32 (.06) .17 (.07)
2× 2 .20 (.05) .92 (.11) .22 (.05) .14 (.06)

5, 50, .05
1× 1 .31 (.08) .90 (.14) .36 (.08) .22 (.09)
2× 2 .23 (.07) .86 (.19) .26 (.07) .16 (.05)

5, 25, .1
1× 1 .31 (.06) .92 (.13) .35 (.06) .22 (.08)
2× 2 .20 (.06) .91 (.12) .23 (.06) .14 (.05)

5, 25, .05
1× 1 .35 (.10) .88 (.15) .40 (.11) .27 (.12)
2× 2 .26 (.08) .85 (.20) .29 (.09) .18 (.07)

10, 50, .1
1× 1 .35 (.08) .98 (.01) .44 (.09) .26 (.07)
2× 2 .33 (.05) .99 (.01) .36 (.06) .22 (.06)

10, 50, .05
1× 1 .41 (.09) .98 (.02) .48 (.11) .33 (.07)
2× 2 .36 (.07) .97 (.07) .40 (.08) .24 (.07)

10, 25, .1
1× 1 .39 (.09) .98 (.01) .47 (.11) .31 (.07)
2× 2 .34 (.07) .98 (.02) .38 (.07) .24 (.06)

10, 25, .05
1× 1 .46 (.11) .98 (.02) .52 (.12) .41 (.10)
2× 2 .38 (.08) .98 (.02) .42 (.08) .28 (.08)

20, 50, .1
1× 1 .47 (.07) .98 (.01) .61 (.09) .40 (.08)
2× 2 .38 (.06) 1.00 (.01) .44 (.08) .33 (.06)

20, 50, .05
1× 1 .53 (.08) .98 (.01) .65 (.08) .46 (.08)
2× 2 .40 (.06) .99 (.01) .46 (.08) .36 (.07)

20, 25, .1
1× 1 .50 (.07) .98 (.01) .63 (.08) .43 (.08)
2× 2 .40 (.07) .99 (.01) .47 (.09) .35 (.06)

20, 25, .05
1× 1 .58 (.08) .98 (.01) .68 (.08) .55 (.09)
2× 2 .43 (.07) .99 (.01) .50 (.09) .42 (.06)
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Table 5. Mean (standard deviation) of Δ(B0, B̃) for Thomas
model II

p, κ, σ Win
Results for:

SIR SAVE DR LWPSVM

5, 50, .1
1× 1 .84 (.15) .46 (.14) .46 (.14) .85 (.17)
2× 2 .57 (.12) .45 (.04) .45 (.03) .69 (.21)

5, 50, .05
1× 1 .83 (.16) .52 (.18) .52 (.17) .86 (.15)
2× 2 .62 (.17) .47 (.05) .47 (.05) .76 (.20)

5, 25, .1
1× 1 .85 (.16) .50 (.18) .50 (.17) .88 (.13)
2× 2 .63 (.15) .44 (.05) .45 (.05) .74 (.21)

5, 25, .05
1× 1 .85 (.15) .60 (.21) .61 (.19) .87 (.14)
2× 2 .71 (.19) .46 (.08) .46 (.08) .80 (.21)

10, 50, .1
1× 1 .90 (.10) .55 (.11) .54 (.11) .94 (.08)
2× 2 .77 (.12) .49 (.04) .50 (.04) .94 (.09)

10, 50, .05
1× 1 .91 (.11) .60 (.12) .61 (.12) .94 (.09)
2× 2 .81 (.13) .51 (.05) .52 (.06) .95 (.09)

10, 25, .1
1× 1 .93 (.09) .58 (.11) .59 (.10) .95 (.08)
2× 2 .79 (.12) .51 (.04) .52 (.05) .95 (.07)

10, 25, .05
1× 1 .92 (.09) .67 (.14) .68 (.13) .94 (.08)
2× 2 .84 (.13) .54 (.07) .55 (.07) .94 (.09)

20, 50, .1
1× 1 .94 (.06) .77 (.13) .77 (.13) .97 (.03)
2× 2 .88 (.07) .62 (.06) .64 (.07) .98 (.02)

20, 50, .05
1× 1 .94 (.05) .86 (.10) .86 (.10) .97 (.03)
2× 2 .92 (.08) .62 (.07) .63 (.08) .98 (.03)

20, 25, .1
1× 1 .94 (.06) .82 (.12) .82 (.12) .97 (.05)
2× 2 .89 (.08) .61 (.09) .63 (.09) .98 (.03)

20, 25, .05
1× 1 .96 (.04) .86 (.11) .86 (.11) .97 (.04)
2× 2 .93 (.08) .63 (.07) .64 (.07) .98 (.03)

the Poisson case. This is true for the SIR, SAVE and DR
methods also. We find that the performance improves with
larger κ and/or larger σ, which is expected, as the spatial
correlation is less. We also find that the performance im-
proves with the 2 × 2 window. With the same correlation
range but a larger observation window, the effect of corre-
lation is less, hence the increased performance. Compared
with the competing methods, LWPSVM still performs well,
with the same relative performance against SIR, SAVE and
DR as we saw in the Poisson case: performing the best un-
der Model I, poorly under Model II due to symmetry and
with mixed performance under Model III.

Hence we find that WPSVM performs well against SIR,
SAVE and DR, and the empirical performance of WPSVM
matches what we expect from the theory.

4.1.1 Structural dimensionality

Here we describe the performance of the CVBIC proce-
dure (Section 2.1) for determining the structural dimension
of the three spatial point models. Only results for the 1× 1
window are shown. Table 7 contains the empirical probabil-

Table 6. Mean (standard deviation) of Δ(B0, B̃) for Thomas
model III

p, κ, σ Win
Results for:

SIR SAVE DR LWPSVM

5, 50, .1
1× 1 1.00 (.00) .51 (.16) .51 (.17) .46 (.15)
2× 2 1.00 (.00) .44 (.14) .39 (.14) .50 (.19)

5, 50, .05
1× 1 1.00 (.00) .63 (.19) .62 (.20) .60 (.19)
2× 2 1.00 (.00) .51 (.17) .48 (.18) .52 (.19)

5, 25, .1
1× 1 1.00 (.00) .60 (.20) .61 (.20) .53 (.17)
2× 2 1.00 (.00) .67 (.20) .65 (.20) .68 (.19)

5, 25, .05
1× 1 1.00 (.00) .50 (.14) .47 (.16) .60 (.21)
2× 2 1.00 (.00) .57 (.19) .54 (.19) .64 (.22)

10, 50, .1
1× 1 1.00 (.00) .69 (.16) .71 (.18) .75 (.12)
2× 2 1.00 (.00) .64 (.17) .64 (.19) .70 (.14)

10, 50, .05
1× 1 1.00 (.00) .79 (.16) .78 (.17) .82 (.12)
2× 2 1.00 (.00) .68 (.16) .66 (.19) .73 (.15)

10, 25, .1
1× 1 1.00 (.00) .73 (.16) .75 (.18) .79 (.13)
2× 2 1.00 (.00) .85 (.14) .85 (.15) .89 (.10)

10, 25, .05
1× 1 1.00 (.00) .70 (.16) .68 (.17) .75 (.17)
2× 2 1.00 (.00) .77 (.17) .76 (.16) .82 (.14)

20, 50, .1
1× 1 1.00 (.00) .94 (.10) .94 (.09) .88 (.07)
2× 2 1.00 (.00) .80 (.14) .80 (.15) .83 (.09)

20, 50, .05
1× 1 1.00 (.00) .98 (.05) .97 (.05) .93 (.07)
2× 2 1.00 (.00) .88 (.13) .87 (.12) .87 (.08)

20, 25, .1
1× 1 1.00 (.00) .94 (.09) .94 (.08) .90 (.07)
2× 2 1.00 (.00) .98 (.04) .97 (.04) .96 (.04)

20, 25, .05
1× 1 1.00 (.00) .86 (.13) .86 (.13) .90 (.07)
2× 2 1.00 (.00) .94 (.08) .95 (.07) .92 (.07)

ities (proportion) of correctly estimating the true value of k
out of 100 independent simulations.

In general, the procedure seems to perform better for
Model I, with p = 5 possible covariates, and correlation
parameter γ = 0.1, though the actual proportions are not
high. However, we note that the highest empirical propor-
tion consistently occurs at the true value of k. Hence, in
practice, we can still use the CVBIC procedure on a real
data set, selecting the value of k that has highest empirical
probability.

4.2 Kernel WPSVM (KWPSVM)

An advantage of WPSVM is that a kernel technique can
be easily used with the procedure, allowing it to deal with
non-linear problems with minimal adjustments to the fitting
procedure. In Section 4.1, we saw that LWPSVM did not
perform well for Model II, which is a non-linear model. Here,
we show results from applying kernel WPSVM to the simu-
lated data. We compare KWPSVM with the SAVE, DR and
kernel sliced inverse regression (KSIR; [35]) methods. KSIR,
as the name suggests, is a nonlinear version of the SIR.
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Table 7. Empirical probabilities (proportion) of correctly
estimating the true k based on 100 independent simulations

for 1× 1 window

Model γ
Results for:

p = 5 p = 10 p = 20

I
0.1 0.40 0.64 0.51
0.2 0.19 0.31 0.11

II
0.1 0.58 0.29 0.10
0.2 0.31 0.22 0.08

III
0.1 0.42 0.30 0.19
0.2 0.42 0.26 0.18

Table 8. Mean (standard deviation) of p-values from
Wilcoxon rank sum test based on 100 simulation replications

for Poisson Model II

γ p Window
Results for:

SAVE DR KSIR KWPSVM

.1

5
1× 1 .17 (.22) .17 (.22) .36 (.30) .00 (.00)
2× 2 .40 (.28) .40 (.27) .50 (.23) .00 (.00)

10
1× 1 .27 (.27) .26 (.27) .41 (.31) .00 (.00)
2× 2 .45 (.26) .45 (.26) .49 (.31) .00 (.00)

20
1× 1 .18 (.22) .14 (.19) .27 (.30) .00 (.00)
2× 2 .46 (.27) .46 (.27) .40 (.29) .00 (.00)

.2

5
1× 1 .56 (.27) .53 (.28) .48 (.30) .00 (.00)
2× 2 .00 (.01) .00 (.01) .23 (.29) .00 (.00)

10
1× 1 .43 (.29) .34 (.30) .51 (.29) .00 (.00)
2× 2 .40 (.28) .39 (.28) .52 (.26) .00 (.00)

20
1× 1 .53 (.27) .40 (.30) .48 (.30) .00 (.00)
2× 2 .21 (.25) .18 (.25) .40 (.28) .00 (.00)

Note that for kernel WPSVM, there is no estimated B, so
we cannot use the distance measure Δ (17) to measure the
performance. Commonly used techniques include computing
the correlation between the response and the estimated suf-
ficient predictor, and the Hotelling T 2 statistic, which [29]
used. Using the correlation is inappropriate with binary re-
sponses. The same is true for the Hotelling T 2 since the un-
derlying assumptions of normality and independence do not
hold. Instead, we use the Wilcoxon rank sum test to measure
the performance. Specifically, we test if the estimated suffi-
cient predictors can separate out the two populations of data
and dummy points. For each SDR method, we compute the
p-values for 100 independent realizations from Model II. The
smaller the p-values, the more evidence toward class separa-
tion. Tables 8 and 9 summarize the results for the Poisson
and Thomas models respectively. We find that the mean
p values for KWPSVM are consistently smaller than those
from the other methods, both for the Poisson model and
for the Thomas model, suggesting that KWPSVM achieves
greater outperformance in terms of separation of the classes
when the decision curve is non-linear.

Table 9. Mean (standard deviation) of p-values from
Wilcoxon rank sum test based on 100 simulation replications

for Thomas model II

p, κ, σ Wi
Results for:

SAVE DR KSIR KWPSVM

5, 50, .1
1× 1 .26 (.28) .25 (.28) .38 (.29) .00 (.00)
2× 2 .05 (.12) .05 (.12) .16 (.24) .00 (.00)

5, 50, .1.05
1× 1 .25 (.29) .23 (.30) .30 (.31) .00 (.00)
2× 2 .13 (.24) .13 (.24) .31 (.33) .00 (.00)

5, 25, .1.1
1× 1 .27 (.28) .25 (.27) .35 (.30) .00 (.00)
2× 2 .10 (.23) .10 (.23) .24 (.35) .00 (.00)

5, 25, .1.05
1× 1 .27 (.33) .23 (.31) .23 (.28) .00 (.00)
2× 2 .16 (.29) .16 (.29) .20 (.31) .00 (.00)

10, 50, .1.1
1× 1 .24 (.31) .23 (.31) .38 (.31) .00 (.00)
2× 2 .11 (.22) .11 (.22) .18 (.24) .00 (.00)

10, 50, .05
1× 1 .24 (.28) .22 (.28) .30 (.29) .00 (.00)
2× 2 .12 (.25) .12 (.25) .16 (.29) .00 (.00)

10, 25, .1
1× 1 .28 (.31) .26 (.30) .36 (.32) .00 (.00)
2× 2 .06 (.13) .06 (.13) .29 (.31) .00 (.00)

10, 25, .05
1× 1 .29 (.33) .24 (.32) .23 (.28) .00 (.00)
2× 2 .15 (.26) .14 (.25) .17 (.25) .00 (.00)

20, 50, .1
1× 1 .22 (.29) .15 (.26) .39 (.31) .00 (.00)
2× 2 .06 (.14) .05 (.13) .25 (.32) .00 (.00)

20, 50, .05
1× 1 .30 (.31) .20 (.29) .34 (.32) .00 (.00)
2× 2 .07 (.19) .06 (.19) .26 (.31) .00 (.00)

20, 25, .1
1× 1 .30 (.31) .15 (.23) .36 (.31) .00 (.00)
2× 2 .15 (.28) .14 (.27) .18 (.26) .00 (.00)

20, 25, .05
1× 1 .28 (.31) .13 (.26) .23 (.28) .00 (.00)
2× 2 .20 (.29) .18 (.27) .21 (.28) .00 (.00)

5. APPLICATION TO DATA ON
BURGLARIES IN LONDON

Here, we briefly describe the use of WPSVM on a data
set of burglaries that occurred in London in January 2013.
[25] analyzed a larger version of the data and performed
a Bayesian analysis of cell counts, and the authors have a
Github repository with the raw and processed data avail-
able. Besides burglary locations, the processed data pro-
vided by [25] include covariate values on a fairly dense grid
of points corresponding to the centroids of census regions
called lower super-output areas (LSOA). Each LSOA con-
tains between 400 to 1200 households. The covariates can
be classified into three categories corresponding to reward,
effort and risk that criminology studies have identified as
possible factors affecting burglary target selection. Exam-
ples of the covariates are number of households, home prices,
accessibility, residential turnover and ethnic heterogeneity.
See [25] for more detailed information on the data and crim-
inology background.
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Figure 1. Locations of burglaries in London in January 2013.

Figure 1 shows plots of the January 2013 burglary lo-
cations. We generated a set of dummy points, and to each
data and dummy point we associate covariate values ob-
tained from the LSOA centroid closest to that point. We
then apply linear and kernel WPSVM to the data. For ker-
nel WPSVM we use a Gaussian kernel K

(
X(s),X(s)�

)
=

exp(−‖X(s)−X(s)�‖2/2σ2) with bandwidth parameter σ
equal to the median of the pairwise Euclidean distances be-
tween the two classes. The same set of values of π and λ
were used.

Figure 2 shows 2D histograms of the dummy and data
points plotted using the first three estimated bases of the
central subspace. Note that we do not expect to achieve
complete separation of data and dummy points, since the
dummy points are scattered over the whole observation re-
gion and there will be many dummy points close to the data
points. We find that the data points are slightly more con-
fined to a smaller region than the dummy points. The peaks
for the dummy and data points are also at slightly different
locations.

If we examine sufficient predictors obtained with LW-
PSVM, we find that the loadings lean heavily on these
covariates: ethnic heterogeneity, number of houses, oc-
cupation variation, urban-suburban proportion, household
fractions (single parent etc), population turnover, and
sports/entertainment points of interest (POIs). This agrees
with some findings in criminology studies on factors affecting
crime rates – number of dwellings [33], residential turnover
[4], rate of single-parent households [28], and ethnic diversity
[27, 6] for example.

This also agrees generally with [25]. The model in [25] had
several components to account for spatial heterogeneity and
these components have slightly different covariate effects.
However, in general, they found that number of households,

POIs, accessibility, ethnic heterogeneity, occupation varia-
tion and residential turnover to be in all three model com-
ponents. Residential turnover and house prices have oppo-
site effects in their model components. These effects might
cancel out and not show up in our SDR method which is
applied to the data globally.

Figure 3 shows similar 2D histograms for kernel WPSVM,
with greater separation between the data and dummy points
compared with LWPSVM. A scatter plot version of Figure 3
is shown in Figure 4. As expected, there is still quite a lot of
overlap. However, not only are the peaks for the dummy and
data points at different locations, some of the dummy and
data points are in separate regions. The better performance
of KWPSVM agrees with [25], who found that a linear model
was inadequate, and used a 3-component Bayesian model to
capture differing local effects.

6. DISCUSSION

As seen from the simulation results, WPSVM may have
an advantage over other SDR methods when used with spa-
tial point patterns. This is because we characterize a spa-
tial point pattern into a correlated binary response, and
WPSVM is designed for binary classification where the other
methods are known to falter. Another advantage of WPSVM
is the ease with which a kernel technique can be imple-
mented to deal with non-linear problems, so that the same
procedure covers both linear SDR and non-linear SDR. Ap-
plication to the rainforest data also gave favorable results.

The translation of a spatial point pattern to a binary re-
sponse involves placing a set of dummy points. It is clear
that a dummy point right in the middle of a cluster of
point data locations cannot reasonably be separated by any
method. The dummy points are meant to represent locations
with no point observations. As an extreme example, a set of
dummy points where each dummy point is right next to a
point process location would be useless. Hence, it might be
possible to further improve SDR performance by modifying
how the dummy points are generated. A way to do this is
by thinning the initial set of dummy points using an ad-hoc
estimate of the intensity function of the trees, before apply-
ing an SDR procedure. The commonly used kernel estimate
([12]) serves this purpose well.

Specifically, we generate the dummy points as before, and
apply independent thinning on the set of dummy points with
retention probability 1− λ̂(s)/maxs λ̂(s), where λ̂ is a ker-
nel estimate of the intensity function. We tried thinning in
our simulations, and there was a slight performance boost
to kernel WPSVM, though not so much for linear WPSVM
or the other competing SDR methods. Future work includes
fine-tuning the use of thinning to achieve greater perfor-
mance.

A criticism of WPSVM is a loss of interpretability. This is
true of SDR methods in general. The role of sufficient dimen-
sion reduction is complementary to other techniques, such
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Figure 2. 2D histograms of data (right) and dummy (left) points using the first and second LWPSVM bases (top row) and
using the first and third LWPSVM bases (bottom row).

as variable selection methods. Also, there is work that em-
ploy sparse SDR to improve interpretability (e.g. [16, 19]).
Some of these ideas can be extended to WPSVM.

WPSVMmay fail to work when the number of predictors,
p is larger than the number of observations, n. One way to
tackle this is to use a penalty term for β. However, this adds
an extra level of complexity to an already complex problem.
Another way is to use joint screening, which seeks to elimi-
nate uninformative features to reduce dimensionality before
further analysis. One caveat is that screening methods are
heavily dependent on a model assumption whereas SDR is
model free. Nonparametric methods have been explored for
variable screening and its applicability towards WPSVM is
part of future work. Additional future work includes SDR
methods for the second- and higher-order central intensity
subspaces.

APPENDIX A

Central subspace (CS) and Central intensity sub-
space (CIS)

We denote the linear subspace spanned by the column
vectors of a matrix B ∈ Rp×d by S(B). In the context of (1),
S(B) is called a sufficient dimension reduction subspace, and

the intersection of all such dimension reduction subspaces
is denoted the central subspace, SY |X. [8, 9] provided mild
conditions under which SY |X uniquely exists and has the
lowest dimension among all dimension reduction subspaces.

For a spatial point process, [13] suggested that a suf-
ficient dimension reduction subspace S(B) would be such
that, for any positive integer k, and any bounded Borel sets
B1, . . . Bk ⊆ R2

{N (B1) . . .N (Bk)} ⊥ {X(B1), . . . ,X(Bk)} given(18) {
B�X(B1), . . . ,B

�X(Bk)
}
,

where X(B) = {X(s) : s ∈ B}. The central subspace SN|X
is then the intersection of all dimension reduction subspaces
satisfying (18). Like in [13], we assume that SN|X uniquely

exists and has a basis given by B0 ∈ Rp×k, where k =
dim

(
SN|X

)
is the structural dimension of SN|X.

Since the probability distribution of N can be uniquely
determined by the moment measures (2) (see [38]), and each
k-th order moment measure can be expressed in terms of in-
tensity functions up to order k, the probability distribution
ofN can be specified using the full set of k-th order intensity
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Figure 3. 2D histograms of data (right) and dummy (left) points using the first and second kernel bases (top row) and using
the first and third kernel bases (bottom row).

Figure 4. Scatter plots of data (blue-green) and dummy (orange-red) points using the first and second kernel bases (left) and
using the first and third kernel bases (right).

426 S. Datta and J.M. Loh



functions. If for some function fk(.) and matrix B,

(19) λk(s1, . . . , sk) = fk
{
B�X(s1), . . . ,B

�X(sk)
}
,

the span of B, S(B), is the k-th order sufficient intensity
dimension reduction subspace of N ([13]). If Sk, the inter-
section of all dimension reduction subspaces satisfying (19),
is itself a sufficient intensity dimension reduction subspace,
then it should be the smallest and [13] called it the k-th
order central intensity subspace (CIS). For the purposes of
this paper, we assume that the CIS exists.

Since by definition, the CS contains all information of
X about N , it contains all information of X on any sum-
mary function of N , including the k-th order intensity func-
tions {λk(.) : k ≥ 1}. Clearly, Sk ⊆ SN|X, for any k ≥ 1,
so that

⋃
k≥1 Sk ⊆ SN|X. [13] also argued that the re-

verse relationship holds too, i.e., SN|X ⊆
⋃

k≥1 Sk, so that
SN|X =

⋃
k≥1 Sk.

Most analyses of spatial point processes involve only the
first- and second-order intensity functions (see e.g. [12, 22]).
Like [13], we assume SN|X = S1∪S2, known as the coverage
condition. In fact, they use SN|X = S1. We do the same here,
and focus only on estimating S1. This holds for a spatial
point process whose k-th order intensity function is such
that

(20) λk(s1, . . . , sk) = λ1(s1) . . . λ1(sk)gk(s1, . . . , sk),

where gk(s1, . . . , sk) is free of any covariates for all k ≥
2. This means that only the first order intensity function
depends on the covariates X.

SIR, SAVE and DR methods
We describe here briefly the SIR, SAVE and DR methods

for SDR as applied to spatial point processes by [13], and
which we compare WPSVM to. For more details, we refer
the reader to [13] as well as the original papers introducing
these methods ([18, 10, 16])

For SIR, the spatial point process is treated as a binary
random field and E(X(s)|s ∈ N ) is estimated by B̂SIR =

1
N (W )

∑
s∈N∩W X(s). The estimate B̂SIR converges toBSIR,

and under condition 19 and a p-dimensional random field X,
it can be shown that S(BSIR) ⊆ S1.

The SAVE method uses the conditional covariance of
the predictors given the response, estimating BSAVE =
[cov(X(s)|s ∈ N ) − Ip]

2 by B̂SAVE = [Σ̂ − Ip]
2 where

Σ̂ = 1
N (W )

∑
s∈N∩W X(s)X(s)� − B̂SIRB̂

�
SIR. [13] describes

conditions under which B̂SAVE converges to BSAVE in prob-
ability, and S(BSAVE) = S1. Finally, the DR method com-
bines SIR and SAVE, and estimates

BDR = 2E(E2[X(s)X(s)� − Ip|s ∈ N ])

+ 2E2(E[X(s)|s ∈ N ]E[X(s)�|s ∈ N ])

+ 2E(E[X(s)�|s ∈ N ]E[X(s)|s ∈ N ])×
E(E[X(s)|s ∈ N ]E[X(s)�|s ∈ N ]),

where, like for SAVE, S(BDR) = S1.

Definition of ρ̃-mixing and a strong law for ρ̃-mixing
random variables

In this work, we assume that the spatial point processes
are ρ̃ mixing. Suppose {ξn}n∈N is a sequence of random vari-
ables on a probability space (Ω,M,P). For any U ⊂ N, de-
fine FU = σ{ξk : k ∈ U}. Let

ρ(F ,G) = sup {|corr(f, g)| : f ∈ L2(F), g ∈ L2(G)}

for σ-fields F ,G ⊂ M. [5] defined the coefficient of depen-
dence, ρ̃(n) = sup {ρ(FU ,FV )} for n ≥ 0, with supremum
taken over all pairs of nonempty finite sets U, V ⊂ N such
that dist(U, V ) = minu∈U,v∈V |u− v| ≥ n.

Definition 1. A sequence of random variables {ξn}n∈N is
said to be a ρ̃-mixing sequence if limn→∞ ρ̃(n) < 1. Since,
0 ≤ ρ̃(n) ≤ ρ̃(n − 1) ≤ · · · ≤ ρ̃(1) ≤ 1, this is equivalent to
ρ̃(n0) < 1, for some n0 ≥ 1.

To show that (5) is a sample version of the SVM objective
function (4), we make use of a theorem in [21]. First, let
f(x), g(x) be real positive functions defined on the same
domain [h,+∞), 0 ≤ h ≤ 1 and ψ(x) = f(x)g(x). Note
that f(x) or g(x) may not be well defined at h, but if so,
limx→h+ f(x)g(x) exists, and we can let ψ(h) be equal to
this limit.

Theorem A.1 ([21]). Let f(x), g(x), ψ(x) be functions as
described above and satisfy the following conditions:

(i) f(x) is increasing on its domain, and lim
x→+∞

f(x) =

+∞;
(ii) ψ(x) is strictly increasing on [h,+∞), lim

x→+∞
ψ(x) =

+∞, and its range is [0,+∞);
(iii) there exists constants a, b ∈ R such that for every t ∈

R, t2
∫ +∞
ψ−1(|t|)

dx
ψ2(x) ≤ aψ−1(|t|) + b.

Let {ξn, n ∈ N} be a sequence of ρ̃-mixing identically dis-
tributed random variables. Set

An = E(ξnI{|ξn|<ψ(n)}), and Bn =
1

f(n)

n∑
k=1

ξk −Ak

g(k)
.

If E(ψ−1(|ξ1|)) < ∞, then Bn
a.s.−−→ 0 as n → ∞.

Corollary 2. If f(x) = x1/p, with 0 < p < 2, g(x) =
1, ψ(x) = f(x)g(x) = x1/p, x ∈ [0,+∞), then we get a
Marcinkiewicz type SLLN, Bn = 1

n1/p

∑n
k=1(ξk − Ak) → 0

a.s. as n → ∞. For p = 1 we get precisely the following:

1

n

n∑
k=1

(
ξk − E

(
ξkI{|ξk|<k}

))
→ 0 a.s. as n → ∞,

which is the standard SLLN for ρ̃-mixing sequences.

Using the above corollary, with ξk = gπ(Y (si))[1 −
Y (si)(α + βTX(si)))]+, we see that (5) is then a sample
version of (4).
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The proofs for Theorems 2–5 follow those in [29] very
closely. We include them here for completeness.

Proof of Theorem 2.2: Consistency
The proof makes use of following theorem and lemma by

[23] and [24] respectively:

Theorem A.2 ([23]). If there is a function Q0(θ);θ ∈ Θ
such that

(i) Q0(θ) is uniquely minimized at θ0;
(ii) Θ is compact;
(iii) Q0(θ) is continuous;

(iv) Q̂n(θ) converges uniformly in probability to Q0(θ) i.e.,

sup
θ∈Θ

|Q̂n(θ)−Q0(θ)| P−→ 0,

then θ̂n
P−→ θ0.

Lemma 2 ([24]). Suppose An(s) is a sequence of convex
random functions defined on an open convex set S ∈ Rp,
which converges in probability to some A(s), for each s.

Then sup
s∈K

|An(s) − A(s)| P−→ 0, for each compact subset K

of S .

Looking at the objective function (4), we observe that
the first quadratic term of Λπ(θ) is strictly convex, since Σ
is positive definite and (a+ b)+ ≤ a+ + b+, ∀a, b ∈ R. Thus,
Λπ(θ) is strictly convex and has a unique minimizer, θ0.
Similarly, the sample version of the objective function given

by (5) is also convex by the same logic. Since, Σ̂n
P−→ Σ and

using Theorem A.1 we have that Λ̂n,π(θ) converges to Λπ(θ)
pointwise. By the above lemma, pointwise convergence =⇒
uniform convergence. Furthermore, since all four conditions

of Theorem A.2 hold, θ̂n
P−→ θ0.

Proof of Theorem 2.3: Bahadur representation
Let mπ(θ,Z) = θ�Σ̃θ+λπ(Y )[1−Y θ�X̃]+, where Σ̃ =

diag(0,Σ). From (4) we can see that Λπ(θ) = E(mπ(θ,Z)).
The proof of the theorem depends on the following three
claims.

(a) mπ(θ,Z) satisfies the Lipschitz condition with respect
to θ. That is, for any θ1,θ2 ∈ Θ there exists an inte-
grable function Q(Z) such that

(21) |mπ(θ1,Z)−mπ(θ2,Z)| ≤ Q(Z)‖θ1 − θ2‖

Note that the first term θ�Σθ of mπ(θ,Z) is a continu-
ous and deterministic function with respect to θ. Thus,
it is enough to check the Lipschitz condition of the sec-
ond term. Let m̃π(θ,Z) = π(Y )[1−Y θ�X̃]+. Then for
any θi = (αi,βi) ∈ Θ, i = 1, 2, we have

m̃π(θ1,Z)− m̃π(θ2,Z) =

π(Y )[1− Y (α1 + β�
1 X)]+ − π(Y )[1− Y (α2 + β�

2 X)]+

≤ π(Y )|(α2 − α1 +X�(β2 − β1)|,
since |u+ − v+| ≤ |u− v|, ∀u, v ∈ R

≤ π(Y )(1 + ‖X‖2) 1
2 ‖θ1 − θ2‖.

Also, E[π(Y )(1 + ‖X‖2) 1
2 ] ≤ E[(1 + ‖X‖2) 1

2 ] ≤ (1 +

E‖X‖2) 1
2 < ∞ by (A1). Thus, mπ(θ,Z) satisfies the

Lipschitz condition.
(b) For every θ ∈ Θ,mπ(θ,Z) is differentiable for almost

every Z.
The first term is differentiable and once again it is
enough to show that m̃π(θ,Z) is almost surely differen-
tiable. Let Nθ(m̃π) = {z : m̃π(., z) is not differentiable
at θ}, then P [Z ∈ Nθ(m̃π)] =

∑
y=−1,1

P (Y = y)P (X ∈

{x : α+β�x = y}|Y = y) = 0 by (A2). Thus, mπ(θ,Z)
is almost surely differentiable with respect to any θ ∈ Θ.

(c) Λπ(θ) is twice differentiable with respect to θ with Hes-
sian matrix Hθ given by (9).
To show this, we use the following lemmas from [15]:

Lemma 3 (Lemma 2 of [15]). Suppose that m : Θ ×
ΩZ → R satisfies the following conditions

(i) (almost surely differentiable) for each θ ∈
Θ, P [Z ∈ Nθ(m)] = 0;

(ii) (Lipschitz condition) there is an integrable func-
tion c(z), independent of θ, such that for any
θ1,θ2 ∈ Θ, |m(θ2, z)−m(θ1, z)| ≤ c(z)‖θ2−θ1‖.

Then Dθ(m(θ,Z)) is integrable, E(m(θ,Z)) is differ-
entiable, and DθE(m(θ,Z)) = E(Dθm(θ,Z)).

Lemma 4 (Lemma 3 of [15]). Suppose that U and V
are linearly dependent random variables and h(u) is a
measurable Rk-valued function, and

(i) the joint distribution of (U, V ) is dominated by the
Lebesgue measure;

(ii) for each v, the function u �→ h(u, v)fU |V (u|v)
is continuous, where fU |V denotes the conditional
probability density function of U given V ;

(iii) for each component hi(u, v) of h(u, v), there is a
function ci(v) ≥ 0 such that |hi(u, v)|fU |V (u|v) ≤
ci(v), and E(ci(V )) < ∞.

Then, for any constant a, the function ε �→
E[h(U, V )1(U + εV < a+ εη)] is differentiable at ε = 0
with derivative

Dε=0E[h(U, V )1(U + εV < a+ εη)] =(22)

fU (a)E[(η − V )h(U, V )|U = a].

Lemma 5 (Lemma 4 of [15]). Suppose that U and V
are linearly dependent random variables and h(u) is a
measurable Rk-valued function, and

(i) the distribution of U is dominated by the Lebesgue
measure;

(ii) h(u)fU (u) is continuous.

428 S. Datta and J.M. Loh



Then, for any constant a, the function ε �→
E[h(U)1(U + εV < a + εη)] is differentiable at ε = 0
with derivative given by (22)

Already having established (a) and (b) above we apply
Lemma 3 and show

∂

∂θ
Λπ(θ) =

∂

∂θ
E(mπ(θ,Z))

= E

(
∂

∂θ
mπ(θ,Z)

)
= 2Σ̃θ − λE[π(Y )X̃Y 1{θ�X̃Y < 1}],

where Σ̃ = diag(0,Σ). Therefore we have the second
derivative given by

∂2

∂θ∂θ�Λπ(θ)

=
∂

∂θ

(
2Σ̃θ − λE[π(Y )X̃Y 1{θ�X̃Y < 1}]

)
= 2Σ̃− λ

∂

∂θ
E[π(Y )X̃Y 1{θ�X̃Y < 1}]

= 2Σ̃− λ
∑

y=−1,1

P (Y = y)π(y)×

∂

∂θ
E[X̃y1{θ�X̃y < 1}|Y = y](23)

If we let Ay(θ) = E[X̃y1{θ�X̃y < 1}|Y = y], then we
only need to prove the differentiability of Ay(θ). First
for Y = +1,

∂

∂θ
A+1(θ) =

∂

∂θ
E[X̃1{θ�X̃ < 1}]

= −fβ�X|Y (1− α|1)E[X̃X̃
�|θ�X̃ = 1](24)

by applying Lemmas 4 and 5 and under the assumptions
(A2)–(A5). Similarly, for Y = −1,

∂

∂θ
A−1(θ)

=
∂

∂θ
E[X̃1{−θ�X̃ < 1}]

= −fβ�X|Y (−1− α| − 1)E[X̃X̃
�|θ�X̃ = −1](25)

We plug (24) and (25) into (23) and get the second
derivative of Λπ(θ) denoted by Hθ in (9).

Under the consistency established in Theorem 2.2, (7) is a
consequence of Theorem 5.23 of [34], given (a)–(c) are true.

Proof of Theorem 2.4: Asymptotic normality

Let S̄n(θ0,h,Z) = n−1
n∑

i=1

S(θ0,h,Zi), the sample mean

of S(θ0,h,Z). From (10) we have,

vec(M̂n −M0)

=

H∑
h=1

β̂n,h ⊗ β̂n,h −
H∑

h=1

β0,h ⊗ β0,h

=
H∑

h=1

(
β0,h − S̄n(θ0,h,Z) + op(n

− 1
2 )
)
⊗

(
β0,h − S̄n(θ0,h,Z) + op(n

− 1
2 )
)
−

H∑
h=1

β0,h ⊗ β0,h

= −
H∑

h=1

(
β0,h ⊗ S̄n(θ0,h,Z) + S̄n(θ0,h,Z)⊗ β0,h

)
+

H∑
h=1

S̄n(θ0,h,Z)⊗ S̄n(θ0,h,Z) + op(n
− 1

2 )

= −
H∑

h=1

(
β0,h ⊗ S̄n(θ0,h,Z) + S̄n(θ0,h,Z)⊗ β0,h

)
+ op(n

− 1
2 )

We use the following properties of the matrix T.

Ti1,i2 = T�
i2,i1

A⊗B = Ti1,i3(B⊗A)Ti4,i2 ,

for A ∈ Ri1×i2 and B ∈ Ri3×i4 .

Thus,

√
n{vec(M̂n)− vec(M0)} =

− n− 1
2

n∑
i=1

((
Ip2 +Tp,p

) H∑
h=1

β0,h ⊗ S̄n(θ0,h,Zi)

)
+ op(1)

and the result follows from the Central Limit Theorem.

Proof of Theorem 2.5: Structural dimensionality

We have k̂ = argmax
k∈{1,...,p}

Gn

(
k; η, M̂n

)
, where M̂n is the

candidate matrix of the linear WPSVM as defined in (6).
Now,

Gn

(
k̂; η, M̂n

)
−Gn

(
k; η, M̂n

)
=

̂k∑
j=1

ν̂j −
k∑

j=1

ν̂j − η
k̂ logn√

n
ν1 + η

k logn√
n

ν1

=

̂k∑
j=1

νj −
k∑

j=1

νj − η
(k̂ − k) log n√

n
ν1 +Op

(
n−1/2

)
,(26)
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where νi and ν̂i are the j-th leading eigenvalues of M0 and

M̂n respectively. The last part of (26) is due to the fact that

d∑
j=1

ν̂i =

d∑
j=1

νi +Op

(
n−1/2

)
, ∀ d = 1, . . . , p,

which can be derived as a consequence of Theorem 2.4 and
the continuous mapping theorem.

Suppose that k̂ = k. Thus, we have the following two
cases:

Case 1: k̂ < k: With increase in sample size, we can
see that (26) converges to a negative value, since

rank(M0) = k and
̂k∑

j=1

νj −
k∑

j=1

νj < 0. This leads

to a contradiction.
Case 2: k̂ > k: Similarly, consider a large n and we have

Gn

(
k̂; η, M̂n

)
−Gn

(
k; η, M̂n

)
=

− η
(k̂ − k) log n√

n
ν1 +Op

(
n−1/2

)
< 0,

which leads to a contradiction.

The desired result follows.

Received 5 April 2021
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