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Testing high-dimensional covariance matrices with
random projections and corrected likelihood ratio
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∗
and Cheng Yong Tang

Testing the equality between two high-dimensional co-
variance matrices is challenging. As the efficient way to mea-
sure evidential discrepancy from observed data, the likeli-
hood ratio test is expected to be powerful when the null
hypothesis is violated. However, when the data dimension-
ality becomes large and may substantially exceed the sam-
ple size, likelihood ratio based approaches are encountering
both practical and theoretical difficulties. To solve the prob-
lem, we propose in this study to first randomly project the
original high-dimensional data to some lower-dimensional
space, and then to apply the corrected likelihood ratio tests
developed with the random matrix theory. We show that
our test is consistent under the null hypothesis. Through
evaluating the power function which is a challenging objec-
tive in this context, we show evidence that our test based
on random projection matrix with reasonable column size
is more powerful when the two covariance matrices are un-
equal but component-wise discrepancy could be small – a
weak and dense signal setting. Numerical studies with sim-
ulations and a real data analysis confirm the merits of our
test.
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1. INTRODUCTION

Testing the equality between two covariance matrices is
an important statistical problem. In classical multivariate
analysis, such a problem is typically solved using the golden
rule – the likelihood ratio approach – by assuming that
the two-sample data independently follow some multivari-
ate normal distributions; see the monograph [2]. It is well
recognized that the likelihood ratio approach is powerful in
the context of the conventional setting when the number
of the observations goes to infinity, while the dimension-
ality of the random vectors is fixed. However, it is known
that when the data dimensionality also diverges, both the
practical applicability and statistical properties of the con-
ventional likelihood ratio approach become challenging.
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Recently, there are increasing interests and development
for solving the testing problem with high-dimensional data;
we refer to [16] and [7] as overviews on this topic. In at-
tempts to address the challenges from large dimensional co-
variance matrices in testing problems, the random matrix
theory [3] has been influential. In the context of likelihood
ratio approaches, [4] proposed corrections to the likelihood
ratio test statistic, and established the limiting distribution
of the corrected test statistic. Along this line, [27] estab-
lished the central limit theorem for linear spectral statistics
with high-dimensional covariance matrices; see also [28].

Besides likelihood ratio based approaches, other discrep-
ancy measures are also utilized in testing statistical hy-
potheses for covariance matrices. Among them, the max-
imum element-wise discrepancy is a distinguished candi-
date. [8] considered testing for sparse covariance matrices
with the maximum element-wise discrepancy and estab-
lished the limiting distribution of the test statistic. Accom-
panying this class of testing methods, the multiplier boot-
strap approaches supported by the high-dimensional Gaus-
sian approximation [13] have demonstrated useful for ap-
proximating the distribution of the maximum discrepancy
measures. [10] investigated testing the equivalence of two
high-dimensional covariance matrices with the Gaussian ap-
proximation method and theory; [11] constructed a class of
simultaneous confidence regions for a subset of the entries
of a large precision matrix based on multiplier bootstrap
procedure. Intuitively, the maximum discrepancy is suitable
for detecting sparse and relatively stronger signals when the
null hypothesis is violated. Besides the maximum discrep-
ancy measure, other discrepancy measures by designated ag-
gregations have also been investigated in the literature for
testing problems; see, among others, [12], [22], [18], [17], [8],
[9], [15] and [24].

Practically, despite the merits of using the corrected like-
lihood ratio testing approaches supported by the random
matrix theory, there are remaining limitations and chal-
lenges in high-dimensional testing problems. In particular,
the likelihood ratio test is powerful; but it becomes not ap-
plicable, theoretically and practically, when the data dimen-
sionality exceeds the sample size. This constitutes a major
challenge for addressing high-dimensional testing problems.
As for the approaches based on the maximum element-wise
discrepancy, on the other hand, a natural concern is that
they may be less powerful in case many but weaker element-
wise violations occur when the null hypothesis is violated.
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In this study, we develop a new testing procedure with the
corrected likelihood ratio approach, accommodating high-
dimensional testing problems. The foundational building
block of our methods is the random matrix theory supported
corrected likelihood ratio tests of, for example, [4] and [27].
With the likelihood ratio based discrepancy measure, our
procedure is capable of capturing the evidence from violat-
ing the null hypothesis in a most efficient way. To address the
challenges from testing with high-dimensional random vec-
tors, we propose to reduce the dimensionality of the problem
with random projections – projecting the high-dimensional
vectors to some lower-dimensional space. Practically, ran-
dom projections form a class of computationally efficient
dimension reduction approaches and they have appealing
properties in maintaining the geometric properties of the
high-dimensional data; see [6] and [25]. In the context of
testing high-dimensional mean vectors, [21] proposed ran-
dom projection based tests, and showed that the projected
test has the potential of achieving higher power compared
with alternative statistical tests for high-dimensional mean
vectors; see also [23] for high-dimensional mean test with
random projections. Nevertheless, the random projection
based testing approaches remain less explored in the context
of covariance matrices, in particular concerning the power.

Concretely, our approach first applies random projections
to high-dimensional random vectors, and then applies the
corrected likelihood ratio approach for testing the equal-
ity of the covariance matrices. We demonstrate that un-
der the null hypothesis, the proposed test with projected
high-dimensional random vectors follows the standard nor-
mal distribution with appropriate centering and normaliz-
ing. Since the asymptotic power function of the test takes
a complicated form, we carefully develop a numerical eval-
uation. Our results show evidence that our approach can
indeed be more powerful for testing high-dimensional co-
variance matrix. Compared with the maximum discrepancy
based approaches, we show clear evidence favoring our test
especially when the component-wise discrepancy is small.
Our numerical studies with simulations and data analysis
confirm the promising performance of the proposed testing
approach.

The rest of this article is organized as follows. The
methodology is presented in Section 2, followed by its prop-
erties studied in Section 3. Numerical investigations contain-
ing simulation studies and a real data analysis are given in
Section 4. We conclude the paper with some discussions in
Section 5.

2. METHODOLOGY

2.1 Overview

Let X = (X1, · · · , Xp)
T

and Y = (Y1, · · · , Yp)
T

be
two p-dimensional random vectors with means μ1 =
(μ11, · · · , μ1p)

T
and μ2 = (μ21, · · · , μ2p)

T
, and covariance

matrices Σ1 = (σ1,kl)1≤k,l≤p and Σ2 = (σ2,kl)1≤k,l≤p, re-
spectively. We are interested in testing the equality of the
two covariance matrices:

H0 : Σ1 = Σ2 vs H1 : Σ1 �= Σ2.(1)

For testing (1), we observe two random samples, denoted
by {Xi}n1

i=1 and {Yi}n2
i=1 that are mutually independent, and

identically follow the respective distributions of X and Y .

Working with the multivariate normal distribution, the
likelihood ratio test applies. In particular, with regular cases,
the test statistic is:

(2) λ =

∣∣∣N1

n1
S1

∣∣∣n1/2 ∣∣∣N2

n2
S2

∣∣∣n2/2

∣∣∣ N1

n1+n2
S1 +

N2

n1+n2
S2

∣∣∣(n1+n2)/2
,

where S1, S2 are the empirical covariance matrices of
{Xi}n1

i=1 and {Yi}n2
i=1 respectively, and | · | is the determi-

nant of a matrix, Ni = ni−1, i = 1, 2. Standard theory says
that when p is fixed, as min(n1, n2) → ∞, −2 log λ converges
to χ2

p(p+1)/2 distribution asymptotically under H0; see [2].

Correction and adjustment to the likelihood ratio test
statistic (2) have been well studied. To correct the bias and
improve the coverage accuracy, [5] proposed a modified like-
lihood ratio statistic −2 log λ∗ that simply replaces all ni

(i = 1, 2) appearing in (2) by the associative Ni.

Clearly, the chi-square limiting distribution results from
asymptotic quadratic form. When p is also diverging with
n1, n2, the chi-square limiting distribution may provide poor
approximation to the test statistic; see [4]. Further, the like-
lihood ratio statistic (2) even fail to define when p is larger
than ni (i = 1, 2), because the determinants therein are seen
as zeros.

Further adjustments are thus developed for large sam-
ple covariance matrices, supported with the random matrix
theory [3]. A prominent result for the properties of the cor-
rected likelihood ratio test statistic from [27] is presented
as follows. Instead of the chi-square distribution, a standard
normal distribution for the likelihood ratio statistic is estab-
lished under the null hypothesis, with appropriate centering
and normalization. [27] derived central limit theorems for
linear spectral statistics from the model μ + Σ1/2u, where
μ is unknown and u consists of independent and identically
distributed random variables. For general u, the central limit
theorems involve unknown parameters such as the fourth
moment. For ease in our analysis and presentation without
compromising the spirit of our approach, we consider normal
distributions: N(μ,Σ).

Assumption 1. X ∼ N(μ1,Σ1), and Y ∼ N(μ2,Σ2).

Assumption 2. The ratio of dimension-to-sample size
ŷ1 = p/N1 → y1 > 0 as n1, p → ∞, and ŷ2 = p/N2 →
y2 ∈ (0, 1) as n2, p → ∞.
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Assumption 3. The sequences
{
Σ1 = Γ1Γ

T
1

}
p≥1

and{
Σ2 = Γ2Γ

T
2

}
p≥1

are bounded in spectral norm, and

empirical spectral distributions of both H1,p(t) =∑p
j=1 I (γj,1 ≤ t) /p and H2,p(t) =

∑p
j=1 I (γj,2 ≤ t) /p

converge weakly to limiting spectral distributions H1(t)
and H2(t) respectively, where {γj,1}pj=1 and {γj,2}pj=1

are eigenvalues of Σ1 and Σ2 respectively, and I(·) is an
indicator function.

Proposition 1. Assume that X and Y satisfy Assump-
tions 1–2–3. Then under the null hypothesis H0 : Σ1 = Σ2,

v−1/2

(
− 2 log λ∗

N1 +N2
− pF −m

)
D→ N(0, 1),

where

v =v(ŷ1, ŷ2, y1, y2)

=− 2ŷ22

(ŷ1 + ŷ2)
2 log (1− ŷ1)

− 2ŷ21

(ŷ1 + ŷ2)
2 log (1− ŷ2)

+ 2 log

(
y1 + y2 − y1y2

ŷ1 + ŷ2

)
,

m =m(ŷ1, ŷ2, y1, y2)

=
1

2
log

(
y1 + y2 − y1y2

ŷ1 + ŷ2

)

− 1

2

ŷ1
ŷ1 + ŷ2

log (1− ŷ2)

− 1

2

ŷ2
ŷ1 + ŷ2

log (1− ŷ1) ,

F =F (ŷ1, ŷ2, y1, y2)

=
y1 + y2 − y1y2

ŷ1ŷ2
log

(
ŷ1 + ŷ2

y1 + y2 − y1y2

)

+
ŷ1 (1− ŷ2)

ŷ2 (ŷ1 + ŷ2)
log (1− ŷ2)

+
ŷ2 (1− ŷ1)

ŷ1 (ŷ1 + ŷ2)
log (1− ŷ1) .

2.2 Covariance test with random projections

As seen from (2) and the assumptions in Proposition 1,
though the dimensionality of the random vector is allowed
to diverge, it is required to be smaller than the sample size.
Otherwise, the test statistic is not defined. Hence, the test
is not applicable when p exceeds N1 or N2.

To address the problem, we propose to project the p-
dimensional random vectors to a k-dimensional space. Let
R ∈ R

p×k (k ∈ {1, · · · ,min (n1, n2, p)}) be a linear transfor-
mation matrix with orthogonal columns such that RTR =
Ik, where Ik is the identity matrix of size k. The orthogonal-
ity is not a strong requirement, because the Gram–Schmidt

process can ensure it if otherwise. Clearly, Σ1 = Σ2 implies
RTΣ1R = RTΣ2R. Hence, we consider testing

H0,proj : R
TΣ1R = RTΣ2R(3)

H1,proj : R
TΣ1R �= RTΣ2R.

This test (3) serves for the same purpose as the original test
(1) by validating that it is a necessary condition.

We propose to apply random projection in generating R.
That is, to randomly generate the entries of R from some
distributions, e.g., the standard normal distribution, and
other sparse random matrices; see, for example [1]. For high-
dimensional problems, though randomly generated R may
not have exactly orthogonal columns, RTR is actually close
to Ik; see [6]. In our implementation, we generate entries
of R independently from standard normal distribution, and
then apply the Gram–Schmidt process.

We propose to apply the corrected likelihood ratio test
(CLRT) of [27] on the projected random vectors. In par-
ticular, we investigate the modified likelihood ratio statistic
with projected data using R:

λ(R) =

∣∣RTS1R
∣∣N1/2 ∣∣RTS2R

∣∣N2/2∣∣∣ N1

N1+N2
RTS1R+ N2

N1+N2
RTS2R

∣∣∣(N1+N2)/2
.(4)

Here we note that RTSiR, (i = 1, 2), are invertible with
probability 1, as implied from Lemma 1 in [23], provided
that RTR = Ik and Σi’s (i = 1, 2) are positive definite.
Based on (4) and following [27], we define a corrected like-
lihood ratio test statistic as

Z(R) = v∗−1/2

(
−2 log λ(R)

N1 +N2
− kF ∗ −m∗

)
,(5)

where ŷ∗i = k/Ni,

v∗ = v (ŷ∗1 , ŷ
∗
2 , y

∗
1 , y

∗
2) ,

m∗ = m (ŷ∗1 , ŷ
∗
2 , y

∗
1 , y

∗
2) ,

F ∗ = F (ŷ∗1 , ŷ
∗
2 , y

∗
1 , y

∗
2),

and y∗i are limits of ŷ∗i (i = 1, 2).
Now, the dimensionality of the test statistic becomes k

instead of p; k thus plays the same role as p in Proposition 1.
Therefore, our approach is broadly applicable to solve high-
dimensional testing problems for covariance matrices. As-
sumptions for Proposition 1 can be validated, so that Z(R)

converges in distribution to standard normal under the null
hypothesis; see Section 3.

Concretely, we summarize our procedure as follows.

1. Randomly generate matrix R ∈ R
p×k with entries from

the standard normal distribution; upon applying the
Gram–Schmidt process, RTR = Ik;

2. Compute modified likelihood ratio λ(R) by (4);
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3. Compute the corrected likelihood ratio statistic Z(R)

by (5) with y∗i replaced by ŷ∗i , i = 1, 2;
4. For Bartlett’s modified likelihood ratio test, reject H0

if λ(R) exceeds the (1 − α)-level quantile of χ2
k(k+1)/2

distribution; for corrected likelihood ratio test, reject
H0 if

∣∣Z(R)
∣∣ exceeds the (1− α/2)-level quantile of the

standard normal distribution.

3. THEORY

3.1 Consistency of the test

Assumption 4. The ratios of dimension-to-sample size
ŷ∗1 = k/N1 → y∗1 > 0 as n1, k → ∞, and ŷ∗2 = k/N2 →
y∗2 ∈ (0, 1) as n2, k → ∞.

Assumption 5. The sequences of both {RTΣ1R =
Γ∗
1Γ

∗T
1 }k≥1 and

{
RTΣ2R = Γ∗

2Γ
∗T
2

}
k≥1

are bounded in

spectral norm, and empirical spectral distributions of
both H∗

1,k(t) =
∑k

j=1 I
(
γ∗
j,1 ≤ t

)
/k and H∗

2,k(t) =∑k
j=1 I

(
γ∗
j,2 ≤ t

)
/k converge weakly to limiting spectral dis-

tributions H∗
1 (t) and H∗

2 (t) respectively, where
{
γ∗
j,1

}k
j=1

and
{
γ∗
j,2

}k
j=1

are eigenvalues of RTΣ1R and RTΣ2R re-

spectively.

Theorem 1. Assume that X and Y satisfy Assumptions 1–
4–5. Conditioning on R and under the null hypothesis H0 :
Σ1 = Σ2,

P

(
Z(R) ≤ x | R

)
→ Φ(x),

where x ∈ R.

Theorem 1 shows that the random projection based test
is consistent for any random projection matrix. Clearly, the
random projection matrix R together with the specific form
of the alternative hypothesis are jointly determining the
power of the test; see our result in Section 3.2. We show that
the random projection based test is advantageous when test-
ing against alternatives with weak and dense signals, both
approximately using theory and empirically using simula-
tions; see our evaluations of the power functions in Section 4.

3.2 Power of the test

Clearly, the power of the test using Z(R) is determined
by its distribution when the null hypothesis is violated. We
have the following result for the distribution of Z(R) under
a more general data generating process.

Assumption 6. Define

T (R) =
(
RTΣ2R

)−1/2 (
RTΣ1R

) (
RTΣ2R

)−1/2
.

Sequence of
{
T (R) = ΛΛT

}
k≥1

is bounded in spectral

norm, and the empirical spectral distribution of Hk(t) =∑k
j=1 I (λj ≤ t) /k converges weakly to limiting spectral dis-

tribution H(t), where {λj}kj=1 are eigenvalues of T (R).

Theorem 2. Assume that X and Y satisfy Assumptions 1–
4–6. Conditioning on R and under the alternative hypothesis
H1 : Σ1 �= Σ2, v

∗1/2Z(R) + kF ∗ + m∗ converges in distri-
bution to a normal distribution with mean kF ∗

1 + m∗
1 and

variance v∗1 . That is,

P

(
v∗1/2Z(R) + kF ∗ +m∗ ≤ x | R

)
→ Φ

(
x− kF ∗

1 −m∗
1

v∗1

)
,

where x ∈ R.

Define

f(x) = log (ŷ∗1 + ŷ∗2x)−
ŷ∗2

ŷ∗1 + ŷ∗2
log x− log (ŷ∗1 + ŷ∗2) ,

then

m∗
1 = − 1

4πi

∮
C
f ′(z) log

{
y∗1 + y∗2 − y∗1y

∗
2

y∗2
(6)

− y∗1
y∗2

(
1− y∗2

∫ m0(z)
t+m0(z)

dH(t)
)2

1− y∗2
∫ m2

0(z)

(t+m0(z))
2 dH(t)

}
dz

− 1

4πi

∮
C
f ′(z) log

{
1− y∗2

∫
m2

0(z)

(t+m0(z))
2 dH(t)

}
dz,

where

m0(z) = z

⎧⎨
⎩ y∗1 + y∗2 − y∗1y

∗
2

y∗2

(
−1 + y∗2

∫ m0(z)
t+m0(z)

dH(t)
) +

y∗1
y∗2

⎫⎬
⎭

−1

,(7)

and H(t) is the limiting spectral distribution of T (R).

Besides, by Theorem B.10 of [3], define

m(z) =
1

m0(z)
− y∗2

∫
1

t+m0(z)
dH(t),(8)

u∗(x) =
1

πy∗1
lim

ε→0+
�{m(x+ εi)} ,(9)

m(x) = lim
ε→0+

m(x+ εi),(10)

then

F ∗
1 =

∫ c2

c1

f(x)u∗(x)dx,(11)

where (c1, c2) is the support of the limiting spectral density

u∗ of the general Fisher matrix
(
RTS1R

) (
RTS2R

)−1
con-

ditional on R, see the definition of general Fisher matrix in
[28]. C in the formula of m∗

1 is the contour enclosing the
support set (c1, c2). �(·) denotes the imaginary part of a
complex number.
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Finally,

v∗1 =
1

π2

∫ ∫
f ′(x)f ′(y) log

∣∣∣∣∣m(x)−m(y)

m(x)−m(y)

∣∣∣∣∣ dxdy,(12)

where z denotes conjugation of a complex number z.

From Theorem 2, we have the following result.

Corollary 1. Under the alternative hypothesis H1 : Σ1 �=
Σ2,

P

{
Φ−1

(α
2

)
< Z(R) < Φ−1

(
1− α

2

)
| R
}
=

Φ

[
v
∗−1/2
1

{
v∗1/2Φ−1

(
1− α

2

)
+ kF ∗ − kF ∗

1 +m∗ −m∗
1

}]

−Φ

[
v
∗−1/2
1

{
v∗1/2Φ−1

(α
2

)
+ kF ∗ − kF ∗

1 +m∗ −m∗
1

}]
.

The corollary follows by observing that

v∗1/2Φ−1
(α
2

)
+ kF ∗ +m∗

< v∗1/2Z(R) + kF ∗ +m∗

< v∗1/2Φ−1
(
1− α

2

)
+ kF ∗ +m∗,

which is equivalent to

v
∗−1/2
1

{
v∗1/2Φ−1

(α
2

)
+ kF ∗ − kF ∗

1 +m∗ −m∗
1

}

< v
∗−1/2
1

{
v∗1/2Z(R) + kF ∗ − kF ∗

1 +m∗ −m∗
1

}

< v
∗−1/2
1

{
v∗1/2Φ−1

(
1− α

2

)
+ kF ∗ − kF ∗

1 +m∗ −m∗
1

}
.

Then applying the asymptotic normality result from Theo-
rem 2, the corollary follows.

Here from Theorem 2, we note that the power
of the test is decided by the spectrum properties of

T (R) =
(
RTΣ2R

)−1/2 (
RTΣ1R

) (
RTΣ2R

)−1/2
. However, it

is known that it is generally difficult to evaluate the quanti-
ties in Theorem 2, so that evaluating the power function is
a challenging problem; see [3]. In Section 3.3, we develop a
framework to numerically approximate the power function.

3.3 Evaluating the power function

To evaluate the power function given in Corollary 1, we
need to approximate the limiting mean and covariance func-
tions in the central limit theorem for general Fisher matrix;
see those items in Theorem 2. General Fisher matrix is de-
fined as the product of one sample covariance matrix and in-
verse of another sample covariance matrix, where the popu-
lation covariance matrices Σ1 and Σ2 can be arbitrary. When

the population covariance matrices are equal, the general
Fisher matrix has a simplified name as the Fisher matrix.
Evaluating the limiting mean and covariance functions for
the Fisher matrix has been studied in [14] and [20], which is
a known challenging problem. [26] derived asymptotic power
for corrected likelihood ratio test based on random matrix
theory concerning one-sample covariance test, however, an
explicit power expression is much harder for two-sample co-
variance test.

Evaluating the limiting mean and covariance functions
for general Fisher matrix is nevertheless much harder, be-
cause those functions are complex contour integrals though
their values are real. Furthermore, since those functions have
a very complex structure depending on non-trivial contour
integrals, it is more challenging to accurately approximate
them, see [28].

To approximate the power function in Corollary 1, we de-
velop a numerical approximation procedure inspired by the
approach of [28]. The starting point is to estimate the lim-
iting spectral distribution H of T (R). We use the empirical
spectral distribution Hk(t) =

∑k
j=1 I (λj ≤ t) /k to approx-

imate the limiting spectral distribution H(t). The next and
an important step is to detect support (c1, c2) where H(t) is
defined. For such a purpose, we compute the Stieltjes trans-
form m(z) by combining fixed point algorithm on m0(z),
given by (7) and (8), on a grid of points z = x + iε, for a
range of x, and a small ε, e.g., 0.001. Then the support is
decided by examining the imaginary part of the m(z). That
is, when the imaginary part is small, e.g., less than ε, we
declare that the corresponding value of x is outside of the
support.

On the detected support set (c1, c2), we specify

{zq = xq + iε, xq = c1 + (c2 − c1) q/Q}Qq=0, where ε is a
small step size, e.g., 0.001, and Q is a large num-
ber, e.g., 1000. Then, we compute the Stieltjes trans-
form m (zq) by combining fixed point algorithm on
m0(zq) with (7) and (8). u∗ (xq) is approximated by
� (m (zq)) /(πy

∗
1) according to (9). F ∗

1 is approximated by

(c2 − c1)
∑Q

q=0 f (xq)u
∗ (xq) /(Q+1) according to equation

(11). To approximate m∗
1 and v∗1 , we denote two grid sets as

follows:

A1 =
{
zk = c1 − ε+

(
ζ − 2ζk

K1

)
i,

k = 0, · · · ,K1,

zK1+j = c1 − ε+
(c2 − c1 + 2ε) j

K2
− ζi,

j = 1, · · · ,K2 − 1,

zK1+K2+k = c2 + ε+

(
−ζ +

2ζk

K1

)
i,

k = 0, · · · ,K1,

z2K1+K2+j = c2 + ε− (c2 − c1 + 2ε) j

K2
+ ζi,

j = 1, · · · ,K2

}
,
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A2 =
{
zk = c1 −

ε

2
+

(
ζ

2
− ζk

K1

)
i,

k = 0, · · · ,K1,

zK1+j = c1 −
ε

2
+

(c2 − c1 + ε) j

K2
− ζ

2
i,

j = 1, · · · ,K2 − 1,

zK1+K2+k = c2 +
ε

2
+

(
−ζ

2
+

ζk

K1

)
i,

k = 0, · · · ,K1

z2K1+K2+j = c2 +
ε

2
− (c2 − c1 + ε) j

K2
+

ζ

2
i,

j = 1, · · · ,K2

}
,

where K1 and K2 are large integers, e.g., 1, 000, and ε and
ζ are small numbers, e.g., 0.001.

Then approximation to m∗
1 is as follows according to

equation (6):

m∗
1 ≈

− 1

4π

2K1+2K2−1∑
j=0

�
[
f ′ (zj) (zj+1 − zj)

× log

{
h∗2

y∗2
− y∗1

y∗2

(
1− y∗2

∫ m0(zj)
t+m0(zj)

dH(t)
)2

1− y∗2
∫ m2

0(zj)

(t+m0(zj))
2 dH(t)

}]

− 1

4π

2K1+2K2−1∑
j=0

�
[
f ′ (zj) (zj+1 − zj)

× log

{
1− y∗2

∫
m2

0 (zj)

(t+m0 (zj))
2 dH(t)

}]
,

where h∗2 = y∗1 + y∗2 − y∗1y
∗
2 . And approximation to m∗

1 can
be computed based on either A1 or A2.

Approximation to v∗1 is as follows by equation (10) and
(12):

v∗1 ≈ (c2 − c1)
2

π2K2
1

K2∑
j,k=0
j �=k



(
f ′ (zK1+j) f

′ (zK1+k)

× log

∣∣∣∣∣m (zj)−m (zk)

m (zj)−m (zk)

∣∣∣∣∣
)
,

where zK1+j , zj ∈ A1 and zK1+k, zk ∈ A2, and 
(·) is the
real part of a complex number.

With the above procedure, we numerically evaluate the
theoretical power function which is one minus the result in
Corollary 1 in Section 3.2.

4. NUMERICAL EXAMPLES

4.1 Consistency of the test

We conduct simulation studies to validate the perfor-
mance of our two-sample covariance matrix test. In our nu-

merical examples, we generate independent samples from
normal distributions with zero mean, and set n1 = n2 = n.
For all settings, the simulations are repeated for 1,000 times.

To validate the consistency of the test under the null
hypothesis, we generate data from with equal covariance
matrices Σ1 = Σ2 = Σ. Let D = diag(d11, . . . , dpp) be
a diagonal matrix with dii (i = 1, . . . , p) randomly gener-
ated from Unif(0.5, 2.5) distribution. Denote by λp(A) the
smallest eigenvalue of a symmetric matrix A. Inspired by
the study of [8], our simulations evaluate four settings with
Σ = Σ(i) (i = 1, . . . , 4):

1. Σ∗(1) = (σ
∗(1)
ij ), where σ

∗(1)
ii = 1, σ

∗(1)
ij = 0.5 for 5(k −

1)+1 ≤ i �= j ≤ 5k, where k = 1, · · · , p/5 and σ
∗(1)
ij = 0

otherwise. Σ(1) = D1/2Σ∗(1)D1/2.
2. Σ∗(2) = (σ

∗(2)
ij ), where σ

∗(2)
ij = 0.5|i−j| for 1 ≤ i, j ≤ p.

Σ(2) = D1/2Σ∗(2)D1/2.
3. Σ∗(3) = (σ

∗(3)
ij ), where σ

∗(3)
ii = 1, σ

∗(3)
ij = 0.5 ∗

Bernoulli(1, 0.05) for i < j and σ
∗(3)
ji = σ

∗(3)
ij . Σ(3) =

D1/2(Σ∗(3)+δI)/(1+δ)D1/2 with δ = |λp(Σ
∗(3))|+0.05.

4. Σ(4) = OΔO, where O = diag(ω1, · · · , ωp) and
ω1, · · · , ωp ∼ Unif(1, 5) independently and Δ = (aij)

and aij = (−1)i+j0.4|i−j|1/10 .

The tests are then evaluated from different combinations
of n and p. Our method is implemented as described in
Section 2.2. We implement the random projections with dif-
ferent k’s: k = [qn1/3] with q = 5, 6, 7, where [·] denotes the
operation of taking integer.

In each simulation, we generate a matrix, of which en-
tries are independently from standard normal distribution,
upon applying Gram–Schmidt process on this matrix to get
the random projection matrix R. Then, we implement the
Bartlett’s modified likelihood ratio statistic (4) and com-
pare with the chi-square distribution, and denote it by “RP-
BLRT”. We implement the corrected likelihood ratio test
(5) with the random matrix theory, and denote it by “RP-
CLRT”.

For comparisons, our test is compared with two tests
based on max1≤k,l≤p |σ1,kl − σ2,kl|, one is of [8], denoted by
“CLX”, and one is the test of [10], a perturbed variation of
“CLX”, denoted by “CZZW” in this subsection.

The results are reported in Table 1, Table 2, and Table 3.
From these tables, we observe that the corrected test ad-
justed with the random matrix theory works satisfactorily
with the randomly projected vectors. From these tables, we
also see that the adjustment with the random matrix the-
ory is necessary, because we observe that the sizes with the
Bartlett’s correction are way off from the nominal level. This
is due to the fact that the chi-square distribution poorly ap-
proximates that of the likelihood ratio even when the data
dimensionality is moderate.

For all models, we also see that the empirical sizes of the
tests of [8], and [10] are satisfactory.
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Table 1. Empirical percentage of rejecting H0 when H0 is
true; α = 0.05; k = [7n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 97.3 97.4 97.7 97.6 97.4 96.9 97.3 97.6 97.2 97.6
RP-CLRT 5.8 6.0 5.5 6.0 5.8 6.5 6.2 5.6 6.7 5.1

CLX 3.8 4.6 5.1 4.6 3.5 3.9 5.9 5.4 3.2 5.6
CZZW 4.9 5.7 6.3 6.3 5.8 4.9 7.0 7.3 5.3 7.8

100 RP-BLRT 85.4 86.7 86.3 87.8 85.1 86.8 86.7 85.8 85.8 84.1
RP-CLRT 5.5 6.5 5.4 5.1 5.2 5.2 5.4 4.2 6.2 5.3

CLX 3.6 4.4 4.2 4.9 3.1 4.6 4.5 4.4 5.1 5.3
CZZW 4.2 6.2 5.1 5.5 4.4 5.0 5.2 5.1 5.2 5.4

300 RP-BLRT 52.6 55.2 53.1 51.2 54.2 52.7 54.2 50.4 53.0 51.9
RP-CLRT 5.3 4.8 5.9 3.9 3.8 6.1 4.9 4.5 4.8 5.3

CLX 3.5 4.5 4.2 3.4 4.6 4.0 4.2 5.2 2.4 7.6
CZZW 3.8 5.1 4.5 3.4 4.8 4.5 4.8 5.6 2.4 9.0

Model 3 Model 4

60 RP-BLRT 96.4 96.8 96.5 96.8 97.5 97.1 96.7 98.1 97.1 97.4
RP-CLRT 6.2 6.6 4.8 4.7 5.2 4.9 5.1 6.3 6.1 5.4

CLX 6.0 5.5 5.5 5.6 3.4 4.9 4.0 4.5 4.1 4.0
CZZW 6.3 6.3 6.6 7.6 4.8 6.6 6.5 6.9 9.1 9.1

100 RP-BLRT 85.2 86.3 85.7 86.8 86.1 84.4 85.9 84.9 85.7 85.5
RP-CLRT 5.5 6.0 5.8 4.5 4.5 4.9 5.1 4.3 5.5 5.5

CLX 4.1 3.8 4.7 6.3 4.9 3.9 2.6 5.1 4.7 4.2
CZZW 4.6 4.8 5.2 6.6 6.7 5.4 4.4 7.1 5.8 5.3

300 RP-BLRT 51.8 55.0 51.0 51.9 53.8 50.4 53.7 50.8 54.1 52.4
RP-CLRT 6.1 5.9 4.9 4.5 4.9 4.6 5.6 5.2 5.7 5.0

CLX 3.9 3.4 5.3 4.3 3.8 4.2 3.3 3.3 4.2 6.6
CZZW 4.2 4.0 5.7 4.6 3.7 5.6 5.2 4.5 5.0 7.6

4.2 Power comparisons with additive, dense
and weak signals

To evaluate the empirical powers of the tests, we gen-
erate data from scenarios with H0 violated. We consider
a setting where many components in Σ2 differ from those
in Σ1. In particular, we generate Σ1 respectively from the
four settings in Section 4.1, and let Σ2 = Σ1 + U . Here
U is a symmetric matrix with upper triangular as well
as diagonal nonzero entries independently generated from
0.1 × V × max1≤j≤p σjj , where {σjj}pj=1 are diagonal en-
tries of Σ1 and V follows the uniform distribution over the
interval (0, 4).

Results of the simulations are reported in Table 4, Ta-
ble 5, and Table 6. From these tables, we can see that
the corrected test adjusted with the random matrix the-
ory is either more powerful than or comparable to tests of
[8] and [10] under all different combinations of n and p,
and all four different settings, when the signals are additive,
dense and weak. In particular, when n = 300, p = 400, the
power superiority of the corrected test adjusted with the
random matrix theory over “CLX” and “CZZW” are over
50% for k = [7n1/3], over 45% for k = [6n1/3], over 35% for
k = [5n1/3], under all four different settings with tests de-
signed for detecting sparse and strong signals having power

Table 2. Empirical percentage of rejecting H0 when H0 is
true; α = 0.05; k = [6n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 79.8 78.5 80.1 80.1 80.2 79.4 78.3 82.8 78.8 75.8
RP-CLRT 6.9 7.2 5.2 5.4 4.3 5.9 4.3 5.9 5.6 6.3

CLX 3.8 4.6 5.1 4.6 3.5 3.9 5.9 5.4 3.2 5.6
CZZW 4.9 5.7 6.3 6.3 5.8 4.9 7.0 7.3 5.3 7.8

100 RP-BLRT 64.4 64.6 63.2 65.0 66.5 64.7 64.2 64.9 63.4 63.7
RP-CLRT 5.2 4.5 6.5 6.4 5.6 5.6 5.6 5.8 4.8 5.1

CLX 3.6 4.4 4.2 4.9 3.1 4.6 4.5 4.4 5.1 5.3
CZZW 4.2 6.2 5.1 5.5 4.4 5.0 5.2 5.1 5.2 5.4

300 RP-BLRT 33.7 32.0 29.7 30.9 28.5 31.9 34.6 33.5 30.5 30.0
RP-CLRT 6.1 5.0 6.0 5.4 5.5 6.4 5.1 5.1 4.8 6.0

CLX 3.5 4.5 4.2 3.4 4.6 4.0 4.2 5.2 2.4 7.6
CZZW 3.8 5.1 4.5 3.4 4.8 4.5 4.8 5.6 2.4 9.0

Model 3 Model 4

60 RP-BLRT 80.0 79.9 78.9 78.5 81.2 77.2 79.0 80.0 80.9 79.6
RP-CLRT 4.9 6.7 5.1 5.0 5.5 4.7 6.5 6.3 5.7 3.4

CLX 6.0 5.5 5.5 5.6 3.4 4.9 4.0 4.5 4.1 4.0
CZZW 6.3 6.3 6.6 7.6 4.8 6.6 6.5 6.9 9.1 9.1

100 RP-BLRT 62.7 65.5 63.3 64.5 65.1 65.3 65.0 61.2 64.5 64.1
RP-CLRT 5.0 4.9 5.0 5.9 5.9 6.6 5.0 5.9 5.5 4.7

CLX 4.1 3.8 4.7 6.3 4.9 3.9 2.6 5.1 4.7 4.2
CZZW 4.6 4.8 5.2 6.6 6.7 5.4 4.4 7.1 5.8 5.3

300 RP-BLRT 34.2 30.3 29.5 28.5 31.1 34.2 30.8 32.5 29.8 32.0
RP-CLRT 6.1 6.4 4.5 6.7 5.3 6.5 3.7 6.2 4.3 6.8

CLX 3.9 3.4 5.3 4.3 3.8 4.2 3.3 3.3 4.2 6.6
CZZW 4.2 4.0 5.7 4.6 3.7 5.6 5.2 4.5 5.0 7.6

around 35%. This reflects the merit of the likelihood ratio
approach in aggregating the evidence from violating the null
hypothesis.

4.3 Power comparisons with rotational
transformations

In this case, we generate Σ2 by sequentially rotating Σ1

in multiple subspaces with a small angle θ accompanied with
a small extension factor e = (1 + d)1/2. Then we evaluate
the powers of the tests in this case. We employ the Givens
rotation matrix for such a purpose. Let

G(i, j, θ, d)

=

j i⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

1 . . . 0 . . . 0 . . . 0
...

. . .
...

...
...

0 . . . e cos(θ) . . . −e sin(θ) . . . 0 j
...

...
. . .

...
...

0 . . . e sin(θ) . . . e cos(θ) . . . 0 i
...

...
...

. . .
...

0 . . . 0 . . . 0 . . . 1

,
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Table 3. Empirical percentage of rejecting H0 when H0 is
true; α = 0.05; k = [5n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 55.3 55.1 56.0 54.0 53.2 53.5 57.4 51.7 56.2 55.9
RP-CLRT 4.4 5.6 5.2 6.0 6.1 4.7 5.2 7.1 6.6 3.8

CLX 3.8 4.6 5.1 4.6 3.5 3.9 5.9 5.4 3.2 5.6
CZZW 4.9 5.7 6.3 6.3 5.8 4.9 7.0 7.3 5.3 7.8

100 RP-BLRT 34.0 33.3 35.8 34.1 33.2 34.5 34.8 33.2 35.1 34.1
RP-CLRT 5.9 5.1 6.5 4.9 5.1 4.6 4.6 5.1 4.9 5.3

CLX 3.6 4.4 4.2 4.9 3.1 4.6 4.5 4.4 5.1 5.3
CZZW 4.2 6.2 5.1 5.5 4.4 5.0 5.2 5.1 5.2 5.4

300 RP-BLRT 15.5 15.4 14.8 17.6 18.0 16.0 17.2 17.4 15.8 15.1
RP-CLRT 4.8 4.9 4.3 5.7 5.8 6.2 4.2 5.1 5.5 4.9

CLX 3.5 4.5 4.2 3.4 4.6 4.0 4.2 5.2 2.4 7.6
CZZW 3.8 5.1 4.5 3.4 4.8 4.5 4.8 5.6 2.4 9.0

Model 3 Model 4

60 RP-BLRT 54.5 55.3 56.1 58.6 55.9 54.3 56.1 57.1 53.5 51.7
RP-CLRT 6.2 4.9 5.9 6.0 7.2 6.1 5.9 5.0 5.5 5.9

CLX 6.0 5.5 5.5 5.6 3.4 4.9 4.0 4.5 4.1 4.0
CZZW 6.3 6.3 6.6 7.6 4.8 6.6 6.5 6.9 9.1 9.1

100 RP-BLRT 37.2 34.5 35.3 33.4 31.9 35.4 35.4 36.1 35.1 34.7
RP-CLRT 5.7 6.2 4.6 5.8 6.3 7.0 5.3 5.4 6.7 6.1

CLX 4.1 3.8 4.7 6.3 4.9 3.9 2.6 5.1 4.7 4.2
CZZW 4.6 4.8 5.2 6.6 6.7 5.4 4.4 7.1 5.8 5.3

300 RP-BLRT 15.9 16.8 18.2 16.8 16.3 16.7 17.0 15.8 17.0 17.7
RP-CLRT 5.4 5.3 6.0 6.0 6.2 4.9 5.6 5.4 4.3 4.2

CLX 3.9 3.4 5.3 4.3 3.8 4.2 3.3 3.3 4.2 6.6
CZZW 4.2 4.0 5.7 4.6 3.7 5.6 5.2 4.5 5.0 7.6

then we set Σ2 =
{∏p/2

g=1 G (ig, jg, θ, d)
}

× Σ1 ×{∏p/2
g=1 G (ig, jg, θ, d)

}T

. We consider two cases for Σ1 re-

spectively being the identity matrix of appropriate size, and
Σ1 = 0.8I + 0.2× 11T .

We set n = 200, p = 400, k = [7n1/3], and compare
the powers with different settings of θ. The results are re-
ported in Figure 1 and Figure 2. Since it is evidential that
the BLRT test using (4) and chi-square distribution as the
reference distribution does not work well, we do not include
corresponding results in our figures.

Both Figures 1 and 2 show promising performance of our
test. From Figure 1, we can see that the corrected likeli-
hood ratio test adjusted with the random matrix theory is
more powerful than the tests designed for detecting sparse
and strong signals of [8] and [10] under all combinations
of angle θ and extension e = (1 + d)1/2, under the setting
Σ1 = I. Under the setting Σ1 = I, sequentially rotating
Σ1 in multiple subspaces with a small angle θ accompanied
by small extension e will result in the signals differing Σ1

and Σ2 are dense and weak. From Figure 2, we see same
phenomenon when θ = 0.01π, 0.03π, accompanied with all
pre-specified values of small extension e under the setting
Σ1 = 0.8I + 0.2 × 11T . Since sequential rotation by not so
small angle θ accompanied with quite small extension e on

Table 4. Empirical percentage of rejecting H0 when H0 is not
true. α = 0.05; k = [7n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 100 99.6 99.4 98.9 98.4 100 99.9 99.7 99.2 99.2
RP-CLRT 65.3 23.6 13.9 8.2 6.3 71.6 29.7 10.5 6.8 6.1

CLX 29.6 19.6 13.5 7.6 6.9 27.9 20.9 11.8 9.3 11.1
CZZW 33.7 22.0 16.5 9.8 9.2 31.6 23.2 13.4 11.5 14.3

100 RP-BLRT 100 100 99.6 96.6 92.8 100 100 99.3 97.8 95.7
RP-CLRT 99.7 68.0 39.6 15.4 9.0 99.3 77.0 32.2 18.8 8.6

CLX 59.9 35.5 19.1 10.4 5.4 63.3 36.5 19.1 16.9 3.9
CZZW 62.4 39.4 21.1 11.6 6.9 66.0 39.6 21.5 18.6 5.4

300 RP-BLRT 100 100 100 99.8 97.4 100 100 100 99.9 98.1
RP-CLRT 100 100 100 95.1 61.4 100 100 100 84.3 50.7

CLX 100 98.4 74.1 33.3 23.9 100 99.0 78.9 34.7 22.1
CZZW 100 98.5 76.5 34.1 24.6 100 98.9 80.7 36.1 23.1

Model 3 Model 4

60 RP-BLRT 100 100 99.4 99.0 99.5 100 99.8 99.8 98.6 98.2
RP-CLRT 69.8 30.3 14.9 8.3 5.8 77.2 26.2 11.1 7.6 7.3

CLX 35.4 20.8 12.2 7.7 4.6 35.3 19.2 12.4 7.7 7.8
CZZW 38.2 24.0 14.4 9.6 6.2 37.6 23.2 15.4 11.1 9.5

100 RP-BLRT 100 100 99.2 96.7 93.2 100 100 99.3 97.5 94.9
RP-CLRT 99.6 76.5 34.5 18.8 9.3 100 76.9 43.8 15.4 9.6

CLX 69.0 41.3 19.8 11.4 4.6 68.1 35.5 17.9 10.1 4.4
CZZW 70.9 43.8 21.9 12.9 5.0 70.2 38.7 19.6 10.7 5.7

300 RP-BLRT 100 100 100 100 97.9 100 100 100 100 97.5
RP-CLRT 100 100 100 95.5 45.0 100 100 100 93.8 42.8

CLX 100 98.7 78.2 44.0 14.5 100 99.4 78.1 37.3 21.3
CZZW 100 98.9 80.2 44.8 17.0 100 99.7 80.2 37.6 22.9

matrix with all non-zero off-diagonal entries tend to gener-
ate sparse signals, for the case θ = 0.05π, 0.07π, the tests
of [8] and [10] display its sensitivity to sparse signals, but
still show unsatisfactory power. On the other hand, when
θ = 0.05π, 0.07π, accompanied with not so small extension
e, the corrected test adjusted with the random matrix the-
ory has better capability to capture those dense and weak
signals generated by getting Σ2 from sequential rotation by
not so small angle θ accompanied with not so small exten-
sion e on Σ1 = 0.8I + 0.2× 11T .

This setting is also informative in demonstrating the
merits of our approach compared with others, includ-
ing those targeting at aggregating the component-wise
discrepancies, for example, [24] and [19]. We compare
with [24], whose test is based on tr

(
Σ2

1

)
/tr2 (Σ1) −

tr
(
Σ2

2

)
/tr2 (Σ2), and we denote it by “SY”. We con-

sider the case for Σ1 = 0.8I + 0.2 × 11T , and then

Σ2 =
{∏p/2

g=1 G (ig, jg, θ, d)
}
×Σ1 ×

{∏p/2
g=1 G (ig, jg, θ, d)

}T

as well as Σ2 =
{∏p

g=1 G (ig, jg, θ, d)
}

× Σ1 ×{∏p
g=1 G (ig, jg, θ, d)

}T

, of which two settings of θ =

0.01π, 0.07π are considered.
We set (n, p) as (100, 200) and k = n/2. We com-

pare the powers in two settings: 1) with d ranging in
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Table 5. Empirical percentage of rejecting H0 when H0 is not
true. α = 0.05; k = [6n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 99.7 97.0 92.4 88.9 85.1 99.7 97.4 92.3 89.6 84.7
RP-CLRT 61.6 25.5 8.4 7.8 6.6 59.7 18.6 12.1 8.2 6.4

CLX 29.6 19.6 13.5 7.6 6.9 27.9 20.9 11.8 9.3 11.1
CZZW 33.7 22.0 16.5 9.8 9.2 31.6 23.2 13.4 11.5 14.3

100 RP-BLRT 100 99.9 94.4 86.5 79.2 100 99.1 94.1 85.5 79.0
RP-CLRT 98.8 63.4 22.3 17.2 8.7 98.0 66.7 41.8 12.8 12.1

CLX 59.9 35.5 19.1 10.4 5.4 63.3 36.5 19.1 16.9 3.9
CZZW 62.4 39.4 21.1 11.6 6.9 66.0 39.6 21.5 18.6 5.4

300 RP-BLRT 100 100 100 99.4 88.7 100 100 100 99.5 88.9
RP-CLRT 100 100 99.7 85.4 36.6 100 100 99.8 96.3 37.6

CLX 100 98.4 74.1 33.3 23.9 100 99.0 78.9 34.7 22.1
CZZW 100 98.5 76.5 34.1 24.6 100 98.9 80.7 36.1 23.1

Model 3 Model 4

60 RP-BLRT 99.7 98.2 92.8 87.1 85.8 99.8 98.0 92.2 89.2 85.3
RP-CLRT 75.7 31.7 17.2 6.3 6.5 67.8 28.0 17.9 6.7 6.7

CLX 35.4 20.8 12.2 7.7 4.6 35.3 19.2 12.4 7.7 7.8
CZZW 38.2 24.0 14.4 9.6 6.2 37.6 23.2 15.4 11.1 9.5

100 RP-BLRT 100 99.7 95.5 89.1 78.8 100 99.8 94.5 86.7 77.2
RP-CLRT 99.7 72.4 26.2 12.5 7.8 99.6 67.8 53.5 11.6 6.1

CLX 69.0 41.3 19.8 11.4 4.6 68.1 35.5 17.9 10.1 4.4
CZZW 70.9 43.8 21.9 12.9 5.0 70.2 38.7 19.6 10.7 5.7

300 RP-BLRT 100 100 100 98.9 88.9 100 100 100 99.6 90.3
RP-CLRT 100 100 99.9 91.2 48.1 100 100 99.9 93.7 65.7

CLX 100 98.7 78.2 44.0 14.5 100 99.4 78.1 37.3 21.3
CZZW 100 98.9 80.2 44.8 17.0 100 99.7 80.2 37.6 22.9

0.03, 0.06, · · · , 0.57, 0.6 and Σ2 =
{∏p/2

g=1 G (ig, jg, θ, d)
}
×

Σ1 ×
{∏p/2

g=1 G (ig, jg, θ, d)
}T

; 2) with d ranging in

0.07, 0.14, · · · , 1.26, 1.40 and Σ2 =
{∏p

g=1 G (ig, jg, θ, d)
}
×

Σ1 ×
{∏p

g=1 G (ig, jg, θ, d)
}T

. Here a larger d means rela-

tively more discrepancy between the two covariance matri-
ces; and Σ2 in the 2nd setting differs more substantially from
Σ1 than that in the 1st setting. The results are reported in
Figure 3 and Figure 4, respectively. From Figure 3, we can
see that our test is becoming more and more powerful when
d is increasing, whereas “SY” remains not powerful in this
setting. In Figure 4, though “SY” can pick up its power
with relatively larger d in this setting with stronger signal,
our test reaches 100% very quickly. This demonstrates the
advantage of our approach for detecting weak and dense sig-
nal, thanks to the powerful nature of the corrected likelihood
ratio statistics.

4.4 Impact from different k’s

We examine the impact from different number of k’s on
the power of the tests. For each k, we repeat the simula-
tion 1,000 times, and report the averaged powers and their
standard deviations.

Table 6. Empirical percentage of rejecting H0 when H0 is not
true. α = 0.05; k = [5n1/3]

n p 50 100 200 400 800 50 100 200 400 800

Model 1 Model 2

60 RP-BLRT 96.7 89.5 78.1 70.4 63.2 98.0 88.7 75.5 71.0 64.2
RP-CLRT 48.5 18.9 14.3 9.6 5.4 49.3 28.0 11.0 5.9 8.7

CLX 29.6 19.6 13.5 7.6 6.9 27.9 20.9 11.8 9.3 11.1
CZZW 33.7 22.0 16.5 9.8 9.2 31.6 23.2 13.4 11.5 14.3

100 RP-BLRT 99.7 94.4 77.8 61.2 50.2 100 93.4 78.2 62.7 51.3
RP-CLRT 97.1 65.6 17.7 16.2 9.0 95.9 49.3 20.4 10.6 5.1

CLX 59.9 35.5 19.1 10.4 5.4 63.3 36.5 19.1 16.9 3.9
CZZW 62.4 39.4 21.1 11.6 6.9 66.0 39.6 21.5 18.6 5.4

300 RP-BLRT 100 100 100 94.5 72.6 100 100 100 94.1 72.5
RP-CLRT 100 100 99.8 90.5 32.2 100 100 99.5 65.6 63.5

CLX 100 98.4 74.1 33.3 23.9 100 99.0 78.9 34.7 22.1
CZZW 100 98.5 76.5 34.1 24.6 100 98.9 80.7 36.1 23.1

Model 3 Model 4

60 RP-BLRT 97.9 88.1 78.1 69.7 63.8 98.8 87.4 77.9 67.6 65.2
RP-CLRT 53.8 29.9 15.6 7.7 8.0 72.4 31.0 10.3 8.5 7.1

CLX 35.4 20.8 12.2 7.7 4.6 35.3 19.2 12.4 7.7 7.8
CZZW 38.2 24.0 14.4 9.6 6.2 37.6 23.2 15.4 11.1 9.5

100 RP-BLRT 100 95.0 78.4 61.4 51.1 100 96.2 78.6 61.7 47.6
RP-CLRT 98.8 62.4 39.7 9.7 6.5 97.6 68.2 43.1 11.5 7.1

CLX 69.0 41.3 19.8 11.4 4.6 68.1 35.5 17.9 10.1 4.4
CZZW 70.9 43.8 21.9 12.9 5.0 70.2 38.7 19.6 10.7 5.7

300 RP-BLRT 100 100 99.9 93.9 75.9 100 100 100 96.8 75.9
RP-CLRT 100 100 99.9 92.8 44.3 100 100 99.6 88.1 46.6

CLX 100 98.7 78.2 44.0 14.5 100 99.4 78.1 37.3 21.3
CZZW 100 98.9 80.2 44.8 17.0 100 99.7 80.2 37.6 22.9

We conduct simulations with different k’s being 0.05n,

0.1n, · · · , 0.45n and 0.5n for different combinations of (n, p)

being (100, 200), (200, 400), and (300, 600). We use the ro-

tational alternative setting of Σ1 = 0.8I + 0.2 × 11T and

Σ2 =
{∏p/2

g=1 G (ig, jg, θ, d)
}
×Σ1 ×

{∏p/2
g=1 G (ig, jg, θ, d)

}T

with θ = 0.07π as well as d = 0.25, and 0.3.

The results are reported in Table 7. Since all standard

deviations in Table 7 are quite small, it can be concluded

that the powers are stable for a given k.

We also examine the powers with different k’s with Ta-

ble 7. Collectively, we observe that the powers of our ap-

proach is stable for k in a reasonable range. Nonetheless,

a remark is that when the sample size is not large enough,

and k becomes excessively large, there is some power loss,

compared with using smaller k. As demonstrated in our pre-

vious examples, our test takes advantage of the likelihood

ratio approach in detecting signals violating the null hypoth-

esis. When k becomes large with given n, it may exceed the

asymptotic powerful zone of the likelihood ratio test statis-

tic, especially when n is not large enough. It is our experi-

ence that as long as k not exceeding n/2, the tests work rea-

sonably well; and we recommend checking multiple choices

in the range between n/4 and n/2 for its stability.
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Figure 1. Graphs of divergence among RP-CLRT, CLX, and
CZZW when Σ1 = I.

Figure 2. Graphs of divergence among RP-CLRT, CLX, and
CZZW when Σ1 = 0.8I + 0.2× 11T .

Figure 3. Graphs of divergence between RP-CLRT, and SY
when

Σ2 =
{∏p/2

g=1 G (ig, jg, θ, d)
}
×Σ1×

{∏p/2
g=1 G (ig, jg, θ, d)

}T

.

Figure 4. Graphs of divergence between RP-CLRT, and SY
when

Σ2 =
{∏p

g=1 G (ig, jg, θ, d)
}
×Σ1×

{∏p
g=1 G (ig, jg, θ, d)

}T

.

4.5 Numerical approximation of the power
function

In Theorem 2, we have shown that the power of the new
test depends on the matrix T (R). Given the order of k, we
could utilize the numerical evaluation, which is introduced
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Table 7. Averages (avg.) and standard deviations (std.dev.)
of empirical percentage of rejecting H0 under rotational

alternative of Σ1 = 0.8I + 0.2× 11T , θ = 0.07π; α = 0.05;
k = yn

(n, p) (100, 200)

d y 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.25 avg. 34.5 32.1 31.6 28.8 27.5 27.1 25.3 22.8 20.4 18.9
std. dev. 2.3 2.4 2.2 2.0 2.1 2.2 2.3 2.0 2.2 2.1

0.3 avg. 45.1 44.4 43.9 42.5 39.4 38.0 35.7 33.1 31.8 29.4
std. dev. 2.1 2.4 2.3 2.3 2.2 2.4 2.0 2.3 2.4 2.2

(n, p) (200, 400)

d y 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.25 avg. 75.3 81.2 79.5 79.0 78.3 74.6 72.8 69.2 64.1 59.6
std. dev. 2.1 2.0 1.9 2.3 2.1 2.0 2.3 2.1 2.0 1.9

0.3 avg. 91.0 92.9 95.1 93.7 92.1 89.3 88.6 83.5 80.0 76.4
std. dev. 1.2 1.2 1.1 1.3 1.2 1.2 1.4 1.4 1.9 2.0

(n, p) (300, 600)

d y 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.25 avg. 97.9 98.3 98.1 98.4 98.3 97.0 95.6 92.8 91.1 90.0
std. dev. 0.2 0.3 0.1 0.2 0.3 0.2 0.4 0.4 0.3 0.2

0.3 avg. 99.5 99.9 99.9 99.9 99.7 99.8 99.5 99.3 98.3 98.1
std. dev. 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

in Section 3.3, of the power of the new test with any ran-
dom projection matrix R ∈ R

p×k. Fixing the order of k
being [7n1/3], we now demonstrate that the proposed test is
able to asymptotically distinguish H1 from H0 with random
projection matrix R of column size k = [7n1/3].

Denote U = UT = Σ2 − Σ1 = (ukl)1≤k,l≤p, and {σjj}pj=1
being diagonal entries of Σ1, we consider testing the follow-
ing class

W(s, λ)

=

{
ukl ∼ s×W × max

1≤j≤p
σjj , λ =

p

n
,W ∼ Unif(0, 1)

}
,

where s denotes the order of the signal and λ denotes the
dimension-to-sample size ratio when both n and p tend to
be large.

In particular, we numerically approximate the power
functions of five random projection matrices of column
size k being determined as [7n1/3] for the testing class
W(0.04, 2), where the order of the signal for establish-
ing the consistency of the new test is set as 0.04, and
p = 2n, a high-dimensional testing scenario, where a set
of (n, p) combination is (100, 200), (150, 300), (200, 400),
(300, 600), (400, 800), (600, 1200), (800, 1600), (1200, 2400)
and (1600, 3200).

The results for Setting 1 are reported in Figure 5. Since
the results for all four settings are quite similar, we do not
include corresponding results in our figures. From Figure 5,
it can be seen that as long as the column size of the ran-
dom projection matrix R is set as k = [7n1/3], the approx-
imated power functions for given combination of (n, p) and

Figure 5. Numerical evaluation of the theoretical power
functions when k = [7n1/3] under Setting 1 in W(0.04, 2).

given random projection matrix Ri of column size [7n1/3],
i = 1, 2, 3, 4, 5, of the testing class W(0.04, 2) are quite close
to each other. The similarity among approximated theoret-
ical power functions along with Table 7 together deliver the
message that for reasonable number of k’s, the powers are
stable among different random projects.

We observe that as both n and p increase in the test-
ing class W(0.04, 2), the new test has its power approach-
ing 1. We also report the maximum element-wise differ-
ence in Figure 5, which is seen relatively stable even as
both n and p getting larger. This means that our test can
still achieve promising power with high-dimensional data
in a setting with weak maximum discrepancy between Σ1

and Σ2, thanks to the aggregation of evidence from high-
dimensional data.

4.6 Real data analysis

We apply our test on the “chr1qseg” data in the R pack-
age “highD2pop”. The data list contain n1 = 92 by p = 400
matrix of copy number measurements for 92 long term sur-
vivors, and n2 = 138 by p = 400 matrix of copy number mea-
surements for 138 short term survivors. Around 3% of the
values are missing. We replace missing copy number mea-
surements at a certain location with average copy number
measurements at a certain location for long term and short
term survivors respectively. We apply the corrected test ad-
justed with the random matrix theory with k = [7n1/3]
where n = min (n1, n2) to test the null hypothesis. The value
of test statistic is 8.1194 with p-value being 4.4409e-16, then
the hypothesis is rejected. The value of test statistic in [8] is
15.124 with p-value being 0.9989, then it does not reject the
hypothesis. The value of test statistic in [10] is 3.889 with
p-value being 0.1773, then it also does not reject the hy-
pothesis. It is reasonable to reject the hypothesis since the
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two covariance matrices are constructed from copy num-
ber measurements for short-term and long-term survivors
respectively. The hypothesis testing oriented to sparse and
relatively strong signals, e.g., “CLX” and “CZZW”, cannot
detect the difference between two covariance matrices in this
specific example. But our proposed corrected test adjusted
with the random matrix theory confirms the difference be-
tween short-term and long-term survivors, which shows the
potential merits of corrected test adjusted with the random
matrix theory in aggregating many not so strong signals in
contrast to test oriented to sparse signals.

5. DISCUSSION

We propose to apply random projections on high-
dimensional random vectors and then testing the equality
of their covariance matrices with the random matrix the-
ory based testing procedure. We establish the consistency
of our test, and demonstrate that it is more powerful when
the alternatives contain weak and dense signals.

As a first step of this methodology, our test is based on
a single random projection, which is computationally very
efficient. Our aim is attempting to ensure the applicabil-
ity of the random matrix assisted corrected likelihood ratio
tests. Our theoretical and numerical evaluations justify our
method. A further possibility is to explore a test procedure
with multiple random projections so as to more efficiently
utilize the data information; we plan to pursue such a study
in a future project.

APPENDIX A. PROOFS

A.1 Proof of Theorem 1

Proof. Assuming that Assumptions 1–4–5 hold, we express

Xi as μ1 + Σ
1/2
1 ui, and Yi as μ2 + Σ

1/2
2 vi. Conditioning on

R, RTui, i = 1, · · · , n1, and RT vi, i = 1, · · · , n2, both
independently follows N(0, I) subject to RTR = Ik, which
validates assumption (a)–(a′) in [27] with the case βx =
βy = 0; Assumptions (b)–(c) and assumptions (b′)–(c′) have
also been assumed explicitly here. Then Theorem 4.2 in [27]
guarantees Theorem 1.

A.2 Proof of Theorem 2

Proof. Assuming that Assumptions 1–4–6 hold, we express

Xi as μ1+Σ
1/2
1 ui, and Yi as μ2+Σ

1/2
2 vi. Conditioning on R,

RTui, i = 1, · · · , n1 and RT vi, i = 1, · · · , n2 both indepen-
dently follow N(0, I) subject to RTR = Ik, which validates
assumption (a)–(b1)–(b2) in [28] with the case βx = βy = 0;
Assumption (c) in [28] has also been assumed explicitly here;
Conditioning on R, assumption (d) in [28] has also been as-
sumed explicitly here. Then Theorem 3.1 in [28] guarantees
Theorem 2.
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