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A Gibbs sampler for estimating the graded item
response model with Likert-scale data
via the Pólya–Gamma distribution:
a calculationally efficient data-augmentation
scheme
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This paper reports the use of a highly effective Pólya–
Gamma Gibbs sampling algorithm [32] based on auxiliary
variables to estimate the parameters of the graded response
model (GRM; [34]) that has been used widely in educa-
tional and psychological assessments. As its name suggests,
the algorithm can be viewed as an extension of the tradi-
tional Gibbs sampling algorithm, overcoming the defect that
the latter is ineffective for Bayesian non-conjugate models.
By introducing auxiliary variables, non-conjugate models
are transformed into conjugate ones, and posterior sam-
pling is easier to implement with the help of the tradi-
tional Gibbs sampling algorithm. Also, the algorithm avoids
the Metropolis–Hastings sampling algorithm’s tedious ad-
justment of tuning parameters to achieve an appropriate
acceptance probability. Two simulation studies are con-
ducted, and data from the Sexual Compulsivity Scale are
subjected to detailed analysis to further illustrate the pro-
posed methodology.

Keywords and phrases: Auxiliary variables, Bayesian es-
timation methods, Graded response model, Item response
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1. INTRODUCTION

In educational and psychological assessments, many
researchers prefer to use surveys, questionnaires, and scales
with Likert-type items that often consist of multiple, ordered
response categories, such as “strongly disagree”, “disagree”,
“undecided”, “agree”, and “strongly agree” ([7], [10], [35],
[40]). To analyze these items with a polytomous format, var-
ious complex nonlinear item response theory (IRT) models
have also been developed, such as the graded response model
(GRM; [34]), nominal response model [8], rating scale model
[3], partial credit model [26], generalized partial credit model
[28], and sequential response model ([43], [44]). Of these
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models, we focus on the GRM as the most widely used IRT
model for ordinal polytomous response data in psychological
measurements. However, parameter estimation has been a
major concern in the application of the GRM. In fact, simul-
taneous estimations of items and examinee’s latent ability
result in statistical complexities in the estimation task.

Within the fully Bayesian framework, Markov-chain
Monte Carlo (MCMC) methods are extremely general and
flexible and have proved useful in parameter estimation and
model comparisons. Bayesian procedures have been devel-
oped for dichotomous IRT models ([1], [6], [23], [25], [30],
[31], [33], [37], [38], [39], [40], [47], [49], [50]), and the poly-
tomous GRM ([2], [15], [23], [28], [46], [51]). In fact, two
Bayesian methods are often used to estimate the parameters
of the GRM. One is the Gibbs sampling algorithm ([17], [19],
[42]) based on auxiliary variables to estimate the parame-
ters of the GRM with probit link function ([2], [15], [23]),
and the other is the Metropolis–Hastings (MH) sampling al-
gorithm ([12], [13], [21], [27]) to estimate the parameters of
the GRM with logit link function ([30], [31], [46]).

In the present study, an efficient Pólya–Gamma Gibbs
sampling algorithm [32] in a fully Bayesian framework is
proposed for estimating the parameters of the GRM. Com-
pared with the traditional MH and Gibbs sampling algo-
rithms, we analyze the advantages of the Pólya–Gamma
Gibbs sampling algorithm from multiple perspectives. First,
the Pólya–Gamma Gibbs sampling algorithm avoids the ret-
rospective tuning in the MH sampling algorithm if either we
do not know how to choose a proper tuning parameter or
no value for the tuning parameter is appropriate. Second,
the Pólya–Gamma Gibbs sampling algorithm can transform
a non-conjugate model into a conjugate one by using aug-
mented auxiliary variables, and posterior sampling is easier
to implement with the help of the traditional Gibbs sam-
pling algorithm. Third, the prior specifications and prior
sensitivity are important aspects of Bayesian inferences [20].
In fact, the Pólya–Gamma Gibbs sampling algorithm is in-
sensitive to the specification of prior distribution and can
still obtain satisfactory results even if the improper or mis-
specification priors are adopted. For a discussion about
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different types of prior distributions, please see the sup-
plementary material, http://intlpress.com/site/pub/files/
supp/sii/2022/0015/0004/SII-2022-0015-0004-s001.pdf.

The rest of this paper is organized as follows. In Sec-
tion 2, the GRM is presented to explain the polytomous
item response data. In Section 3, we discuss how the Pólya–
Gamma Gibbs sampling algorithm implement sampling on
the GRM. In Section 4, we present two simulation examples
that focus on the performance of the Pólya–Gamma Gibbs
sampling algorithm in parameter recovery based on differ-
ent sample sizes, and we present the accuracy of parameter
estimation for the Pólya–Gamma Gibbs sampling algorithm
and the MH sampling algorithm. In Section 5, the perfor-
mance of the Pólya–Gamma Gibbs sampling algorithm in
a practical situation is shown by means of an empirical ex-
ample. Finally, some concluding remarks are presented in
Section 6.

2. MODEL AND MODEL IDENTIFICATION

2.1 Graded response model

The GRM [34], is used to fit polytomous item response
data. The probability that examinee i scores in category k
on item j is modeled by the GRM as

Pjk (θi) = p (Yij = k |θi, aj , bj ) = Ψ∗
j,k (θi)−Ψ∗

j,k+1 (θi) .
(1)

In Eq. (1), Yij is the response of examinee i answering item
j, where i = 1, . . ., N , j = 1, . . ., J , and k = 0, 1, . . .,K.
θi is the latent ability for examinee i. aj is the dis-
crimination parameter for item j, and bj is a (K + 1)-
dimensional vector of threshold parameters for item j, i.e.,

bj = (bj,0, bj,1, bj,2, . . . , bj,K)
′
. Ψ∗

j,k (θi) is the boundary
probability for examinee i having a score larger or equal
to k on item j, and the boundary curve is given by

(2) Ψ∗
j,k (θi) =

exp (ajθi − bj,k)

1 + exp (ajθi − bj,k)
,

where k = 0, . . .,K, Ψ∗
j,0 (θi) = 1, and Ψ∗

j,K (θi) = 0. Fur-
thermore, the boundaries between the response categories
are represented by an ordered vector of thresholds

(3) bj,0 < bj,1 < bj,2 < · · · < bj,k < · · · < bj,K ,

where bj,0 = −∞, bj,K = +∞. Therefore, in total there are
K − 1 threshold parameters and one discrimination param-
eter for each item.

2.2 Model identification

In Eq. (2), the linear parts of the GRM can be written as

ajθi − bj,k, k = 1, 2, . . .,K,

where we fix the mean population level of ability to zero
to eliminate the trade-off between ability θ and threshold

parameter b in location, i.e., μθ = 0. Meanwhile, to eliminate
the trade-off between ability θ and discrimination parameter
a in scale, we restrict the variance population level of ability
to one, i.e., σ2

θ = 1. For a similar identification limitation
method, see [9], [15], [16] and [24].

3. BAYESIAN ESTIMATION METHODS

3.1 Pólya–Gamma Gibbs sampling algorithm

[32] proposed a new data-augmentation strategy for
fully Bayesian inference in logistic regression. The data-
augmentation approach appeals to a new class of Pólya–
Gamma distribution rather than the data-augmentation al-
gorithm by [2] based on a truncated normal distribution.
Next, we introduce the Pólya–Gamma distribution.

Definition. Let {Tk}+∞
k=1 be a sequence of i.i.d. random

variables from a Gamma distribution with parameters λ and
1, i.e., Tk ∼ Gamma (λ, 1). A random variable W follows
a Pólya–Gamma distribution with parameters λ > 0 and
τ ∈ R, denoted W ∼ PG(λ, τ), if

W
D
=

1

2π

+∞∑
k=1

Tk(
k − 1

2

)2
+ τ2

4π2

,

where
D
= denotes equality in distribution. In fact, the Pólya–

Gamma distribution is an infinite mixture of Gamma distri-
butions, thereby providing the plausibility for sampling from
such distributions. Within the Bayesian framework, in the
method of auxiliary variables, realizations from a compli-
cated distribution can be obtained by augmenting the aux-
iliary variables of interest by one or more additional vari-
ables such that the full conditional posterior distributions
are tractable and easy to simulate from. Next, we give the
full conditional posterior distribution based on the auxiliary
variable Zij :

p (Z |a, b,θ,W ,Y )

∝ p (Z |a,θ ) p (Y |b,Z,W )

∝
N∏
i=1

J∏
j=1

{
f (Zij)

K∑
k=1

I (Yij = k) I (bj,k−1 < Zij ≤ bj,k)

}

∝
N∏
i=1

J∏
j=1

{
exp (−Zij + ajθi)

[1 + exp (−Zij + ajθi)]
2

×
K∑

k=1

I (Yij = k) I (bj,k−1 < Zij ≤ bj,k)

}

∝
N∏
i=1

J∏
j=1

⎧⎨⎩
(
1

2

)2
+∞∫
0

exp

[
−Wij (−Zij + ajθi)

2

2

]
p (Wij) dWij

×
K∑

k=1

I (Yij = k) I (bj,k−1 < Zij ≤ bj,k)

}
,

464 Z. Zhang, J. Zhang, and J. Lu

http://intlpress.com/site/pub/files/_supp/sii/2022/0015/0004/SII-2022-0015-0004-s001.pdf
http://intlpress.com/site/pub/files/_supp/sii/2022/0015/0004/SII-2022-0015-0004-s001.pdf


where the indicator function I (A) equals 1 if A is true

or 0 if A is false. p (Wij) is p (Wij ;β = 2, d = 0), where

p (W ;β = 2, d = 0) denotes the density of the auxiliary ran-

dom variable W ∼ PG(β = 2, d = 0). The last inequality

can be obtained by the Pólya–Gamma method [36], which

is useful when working with logistic likelihoods, and has the

form

[exp (ψ)]
η

[1 + exp (ψ)]
β

=

(
1

2

)β

exp (κψ)

+∞∫
0

exp

(
−Wβ2

2

)
p (W ;β, 0) dW,

where κ = η − β
2 . The specific expression of p (W ;β, d) is

p (W ;β, d) =

{
coshβ

(
d

2

)}
2β−1

Γ (β)

×
+∞∑
m=1

{
(−1)

m
Γ (m+ β) (2m+ β)

Γ (m+ 1)
√
2πW 3

× exp

[
− (2m+ β)

2

8W
− Wd2

2

]}
,

where cosh denotes the hyperbolic cosine. Then the joint

posterior distribution of Zij and Wij is

p (Z,W |a, b,θ,Y )

∝
N∏
i=1

J∏
j=1

{(
1

2

)2

exp

[
−Wij (−Zij + ajθi)

2

2

]

×p (Wij ;β=2, d=0)
K∑

k=1

I (Yij = k) I (bj,k−1 < Zij ≤ bj,k)

}
.

Therefore, the full conditional posterior distribution of the

auxiliary variable Zij is a truncated normal distribution,

i.e.,

Zij |Wij , aj , θi, bj , Yij = k

∼ N

(
ajθi,

1

Wij

)
I (bj,k−1 < Zij ≤ bj,k) .

We use the inverse transform technique to sample the auxil-

iary variable Zij based on the truncated normal distribution.

First, we sample the random variable Uij from a uniform

distribution, i.e., Uij ∼ Uniform (0, 1). When the response

Yij = k, the following equation can be established:

Uij =
Φ
[√

Wij (Zij − ajθi)
]
− Φ

[√
Wij (bj,k−1 − ajθi)

]
Φ
[√

Wij (bj,k − ajθi)
]
− Φ

[√
Wij (bj,k−1 − ajθi)

] ,

or equivalently

Zij

= Φ−1
{
Uij

{
Φ
[√

Wij (bj,k − ajθi)
]

− Φ
[√

Wij (bj,k−1 − ajθi)
]}

+ Φ
[√

Wij (bj,k−1 − ajθi)
]}

× 1√
Wij

+ ajθi,

where Φ (•) is a normal cumulative distribution with mean
0 and variance 1. The full conditional posterior distribution
of the auxiliary variable Wij is

p (Wij |Zij , aj , θi )

∝
(
1

2

)2

exp

[
−Wij (−Zij + ajθi)

2

2

]
p (Wij ;β = 2, d = 0) .

Based on [32], we obtain

Wij |Zij , aj , θi ∼ PG(2, − Zij + ajθi) .

Next, we update the discrimination parameter aj for
each item j in the GRM. The prior of aj is assumed
to follow a truncated normal distribution, i.e., aj ∼
N
(
μa, σ

2
a

)
I (aj > 0). The full conditional posterior distri-

bution of the discrimination parameter aj is

N∏
i=1

{
exp

[
−Wij (−Zij + ajθi)

2

2
− (aj − μa)

2

2σ2
a

]}
I (aj > 0) .

Therefore, the full conditional posterior distribution of aj
follows a truncated normal distribution with mean

Varaj ×

⎛⎜⎜⎜⎜⎝μaσ
−2
a +

(
N∑
i=1

θ2iWij

)⎡⎢⎢⎢⎢⎣
(

N∑
i=1

θiZijWij

)
(

N∑
i=1

θ2iWij

)
⎤⎥⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

and variance

Varaj =

(
σ−2
a +

(
N∑
i=1

θ2iWij

))−1

.

Similarly, we update the ability parameter θi for each ex-
aminee i. The prior distribution of θi is assumed to follow
a normal distribution with mean μθ and variance σ2

θ . The
full conditional posterior distribution of the discrimination
parameter θi is

J∏
j=1

{
exp

[
−Wij (−Zij + ajθi)

2

2
− (θi − μθ)

2

2σ2
θ

]}
.
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Therefore, the full conditional posterior distribution of θi
follows a normal distribution with mean

Varθi ×

⎛⎜⎜⎜⎜⎜⎜⎝μθσ
−2
θ +

⎛⎝ J∑
j=1

a2jWij

⎞⎠
⎡⎢⎢⎢⎢⎢⎢⎣

⎛⎝ J∑
j=1

ajZijWij

⎞⎠
⎛⎝ J∑

j=1

a2jWij

⎞⎠

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
and variance

Varθi =

⎛⎝σ−2
θ +

⎛⎝ J∑
j=1

a2jWij

⎞⎠⎞⎠−1

.

In fact, two methods are often used to update the thresh-
old parameters. One is the Gibbs sampling algorithm based
on auxiliary variables to draw the posterior samples from a
uniform distribution ([2], [15], [41]). The specific implemen-
tation process is to derive the full conditional distribution
using a conjugate prior that takes the order constraint in
Eq. (3) into account. Define a uniformly distributed vari-
able Vij over [0, 1] such that

Vij ≤ p (Zij ≤ bj,k |Y , bj , θi, aj ) I (i ∈ Δ1) ,

Vij > p (Zij > bj,k |Y , bj , θi, aj ) I (i ∈ Δ2) ,

where the set Δ1 = {i : Yij = k} and the set Δ2 =
{i : Yij = k + 1}. Accordingly, the full conditional distribu-
tion of bj,k is uniform using a diffuse prior with equal prob-
ability for each possible parameter value, i.e.,

bj,k
∣∣Z, bj,(−k),θi, aj ∼ Uniform (ΩL, ΩU ) ,

where ΩL = max

(
max

i:Yij=k
Zij , bj,k−1

)
, ΩU =

min

(
min

i:Yij=k+1
Zij , bj,k+1

)
, and bj,(−k) is the set of

threshold parameters for item j without bj,k. In fact, any
prior distribution for bj,k can be used as long as the values
sampled from it satisfy a reasonable range of parameter
support set, i.e.,

bj,k
∣∣Z, bj,(−k),θi, aj ∼ fprior (bj,k) I (ΩL, ΩU ) ,

where ΩL and ΩU are respectively the upper and lower
bounds of the truncated prior distribution fprior (bj,k).
The R code for implementing the Pólya–Gamma Gibbs
sampling algorithm is given in the supplementary ma-
terial, http://intlpress.com/site/pub/files/ supp/sii/2022/
0015/0004/SII-2022-0015-0004-s001.pdf.

4. SIMULATION STUDIES

4.1 Simulation 1

This simulation study was conducted to evaluate the re-
covery performance of the combined MCMC sampling algo-
rithm based on different simulation conditions.

Simulation designs
The following manipulated conditions were considered:

(a) three-point, four-point, and five-point Likert-type re-
sponse scales, i.e., K = 3, 4, 5; (b) test length J = 20, 30, 40;
(c) number of examinees N = 500, 1000, 2000. Fully cross-
ing the different levels of these three factors yields 27 condi-
tions (3 response scales × 3 test lengths × 3 sample sizes).
For the GRMs, true values of item discrimination parame-
ters aj were generated from a uniform distribution [29], i.e.,
aj ∼ Uniform (0.5, 1.5), j = 1, 2, . . ., J . It is known that the
values of threshold parameters usually lie between −3 and
3 ([4], [5], [29]), i.e., (i) when K = 3, bj1 ∼ Uniform (−3, 0)
and bj2 ∼ Uniform (0, 3), j = 1, 2, . . ., J ; (ii) when K =
4, bj1 ∼ Uniform (−3,−1), bj2 ∼ Uniform (−1, 1), and
bj3 ∼ Uniform (1, 3), j = 1, 2, . . ., J ; (iii) when K = 5,
bj1 ∼ Uniform (−3,−1.5), bj2 ∼ Uniform (−1.5, 0), bj3 ∼
Uniform (0, 1.5), and bj4 ∼ Uniform (1.5, 3), j = 1, 2, . . ., J .
The true values of ability parameter were generated from
a standard normal distribution. The polytomous item re-
sponse data were generated from the GRM.
Prior distributions

The prior distributions of the GRM parameters for dif-
ferent response categories were set as follows. We used non-
informative prior distributions for the item parameters, i.e.,
aj ∼ N

(
0, 105

)
I (0,+∞); (i) bj1 ∼ N

(
0, 105

)
I (−3, 3) and

bj2 ∼ N
(
0, 105

)
I (bj1, 3); (ii) bj1 ∼ N

(
0, 105

)
I (−3, 3),

bj2 ∼ N
(
0, 105

)
I (bj1, 3), and bj3 ∼ N

(
0, 105

)
I (bj2, 3);

(iii) bj1 ∼ N
(
0, 105

)
I (−3, 3), bj2 ∼ N

(
0, 105

)
I (bj1, 3),

bj3 ∼ N
(
0, 105

)
I (bj2, 3), and bj4 ∼ N

(
0, 105

)
I (bj3, 3). The

prior of ability parameters was assumed to follow a stan-
dardized normal distribution. We considered 25 replications
in each simulation condition. This choice was based on pre-
vious research in educational psychological assessments; for
example, [45] used 10 replications for each simulation condi-
tion, and [48] used 30. In fact, in the present study, the ac-
curacy of parameter estimation was guaranteed in 25 repli-
cations. If we were to consider too many replications, then it
would be difficult to check the R̂ values (potential scale re-
duction factor (PSRF, [11]) calculated from each simulated
dataset (replication) to ensure the parameter convergence.
The work becomes huge when the simulated conditions in-
crease.
Convergence diagnostics

To evaluate the convergence of parameter estimations, as
an illustration, we consider only the case in which the re-
sponse scale involves three-point Likert-type response data,
the test length is fixed at 30, and there are 1000 examinees.
We used two methods to check the convergence of our al-
gorithm. One was the “eyeball” method of monitoring the
convergence by visually inspecting the history plots of the
generated sequences, and the other was the Gelman–Rubin
method ([11], [18]) for checking the convergence of the pa-
rameters.

The convergence of the Bayesian algorithm was checked
by monitoring the trace plots of the parameters for consecu-
tive sequences of 20000 iterations. The first 10000 iterations
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Table 1. Accuracy of parameters based on four different simulated conditions in simulation study 1

3-Point Likert-Type Response Scale
Test Length 20 Test Length 30 Test Length 40

Sample Size 500 1000 2000 500 1000 2000 500 1000 2000

Bias
a −0.018 −0.026 −0.021 0.014 −0.012 −0.026 −0.004 −0.012 −0.014
b•1 −0.005 −0.022 0.009 −0.011 0.006 −0.003 −0.012 0.005 −0.006
b•2 −0.000 −0.025 0.002 −0.002 0.000 −0.002 0.003 0.013 −0.013

RMSE
a 0.144 0.100 0.077 0.137 0.094 0.077 0.144 0.104 0.070
b•1 0.118 0.089 0.063 0.118 0.083 0.054 0.130 0.089 0.070
b•2 0.122 0.094 0.063 0.130 0.089 0.063 0.141 0.089 0.077
SD
a 0.136 0.096 0.067 0.132 0.092 0.064 0.131 0.092 0.064
b•1 0.102 0.072 0.049 0.101 0.071 0.049 0.108 0.075 0.052
b•2 0.106 0.073 0.051 0.110 0.077 0.052 0.114 0.079 0.054
SE
a 0.140 0.094 0.069 0.132 0.093 0.068 0.140 0.101 0.066
b•1 0.110 0.084 0.064 0.113 0.081 0.058 0.119 0.086 0.067
b•2 0.114 0.086 0.064 0.124 0.085 0.064 0.135 0.088 0.073
CP
a 0.940 0.942 0.902 0.941 0.937 0.989 0.915 0.912 0.913
b•1 0.988 0.987 0.981 0.989 0.989 0.984 0.989 0.988 0.981
b•2 0.989 0.983 0.984 0.989 0.989 0.984 0.988 0.989 0.980

Note that the Bias, RMSE, SD, SE and CP denote the average Bias, RMSE, SD, SE and CP for the item parameters. a represents
all discrimination parameters, b•1 represents all bj1 (j = 1, . . ., J.), and b•2 represents all bj2 (j = 1, . . ., J.).

were set as the burn-in period. As an illustration, four
chains started at overdispersed starting values were run for
each replication. The trace plots and posterior histograms
for randomly selected item parameters are shown in the
supplementary material, http://intlpress.com/site/pub/
files/ supp/sii/2022/0015/0004/SII-2022-0015-0004-s001.
pdf, where the posterior histograms are based on 10000
simulated values after a 10000 burn-in period. In addition,
the PSRF values of all item parameters were less than 1.2.
Accuracy evaluation criteria

The accuracy of the parameter estimates was measured
using four evaluation criteria, i.e., bias, root mean squared
error (RMSE), standard deviation (SD), standard error
(SE), and coverage probability of the 95% highest poste-
rior density (HPD) intervals (CP). Let η be the parameter
of interest. Assume that M = 25 data sets were generated.
Also, let η̂(m) and SD(m) (η) denoted the posterior mean
and the posterior standard deviation of η obtained from
the mth simulated data set for m = 1, . . .,M . The bias for

the parameter is defined as Bias (η) = 1
M

M∑
m=1

(
η̂(m) − η

)
.

The RMSE for the parameter is defined as RMSE (η) =√
1
M

M∑
m=1

(
η̂(m) − η

)2
. The simulation SE is the square root

of the sample variance of the posterior estimates over differ-
ent simulated data sets and is defined as

Simulation SE(η) =

√√√√ 1

M

M∑
m=1

(
η̂(m) − 1

M

M∑
�=1

η̂(�)

)2

,

the average of the posterior standard deviation is defined as

SD (η) =
1

M

M∑
m=1

SD(m) (η) ,

and the coverage probability is defined as

CP (η)

=
# of 95% HPD intervals containing η in M simulated data sets

M
.

Recovery of item parameters

The average bias, RMSE, SD, SE, and CP for item pa-
rameters based on 27 different simulation conditions are
given in Tables 1, 2, and 3. The following conclusions can
be drawn. 1) Given the total test length and response scale,
when the number of individuals increases from 500 to 2000,
the average RMSE, SD, and SE for discrimination and
threshold parameters decrease. For example, for a total test
length of 20 items and a fixed three-point Likert response
scale, when the number of examinees increases from 500 to
2000, the average RMSE of all discrimination parameters
decreases from 0.144 to 0.077, the average SD of all discrim-
ination parameters decreases from 0.136 to 0.067, and the
average SE of all discrimination parameters decreases from
0.140 to 0.069. For the threshold parameters, the average
RMSE of all bj1 (j = 1, . . ., 20) parameters decreases from
0.118 to 0.063, the average SD of all bj1 (j = 1, . . ., 20) pa-
rameters decreases from 0.102 to 0.049, and the average SE
of all bj1 (j = 1, . . ., 20) parameters decreases from 0.110 to
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Table 2. Accuracy of parameters based on the different simulated conditions in simulation study 1

4-Point Likert-Type Response Scale
Test Length 20 Test Length 30 Test Length 40

Sample Size 500 1000 2000 500 1000 2000 500 1000 2000

Bias
a −0.006 −0.018 −0.030 0.003 −0.019 −0.026 0.008 −0.016 −0.013
b•1 −0.040 0.009 0.019 0.018 −0.010 0.006 −0.020 −0.012 −0.004
b•2 −0.021 0.011 0.017 0.027 −0.004 0.005 0.003 −0.003 −0.003
b•3 0.005 0.012 0.008 0.049 0.000 −0.002 0.027 0.004 −0.001

RMSE
a 0.126 0.100 0.070 0.130 0.100 0.070 0.130 0.089 0.063
b•1 0.158 0.114 0.083 0.126 0.100 0.070 0.126 0.094 0.063
b•2 0.122 0.089 0.063 0.104 0.083 0.054 0.104 0.077 0.054
b•3 0.118 0.094 0.077 0.141 0.100 0.070 0.126 0.094 0.063
SD
a 0.119 0.084 0.059 0.117 0.082 0.057 0.117 0.082 0.058
b•1 0.131 0.090 0.061 0.114 0.082 0.056 0.110 0.078 0.053
b•2 0.098 0.069 0.047 0.093 0.066 0.045 0.093 0.066 0.045
b•3 0.106 0.078 0.054 0.120 0.083 0.058 0.111 0.078 0.053
SE
a 0.122 0.095 0.066 0.125 0.093 0.063 0.128 0.083 0.064
b•1 0.145 0.107 0.076 0.114 0.096 0.069 0.113 0.089 0.060
b•2 0.114 0.084 0.063 0.095 0.078 0.057 0.098 0.074 0.056
b•3 0.114 0.092 0.073 0.126 0.092 0.069 0.113 0.088 0.061
CP
a 0.926 0.987 0.985 0.982 0.989 0.989 0.922 0.925 0.989
b•1 0.987 0.986 0.981 0.984 0.986 0.982 0.926 0.988 0.987
b•2 0.985 0.986 0.978 0.985 0.986 0.982 0.936 0.988 0.984
b•3 0.989 0.986 0.980 0.983 0.988 0.985 0.928 0.988 0.986

Note that the Bias, RMSE, SD, SE and CP denote the average Bias, RMSE, SD, SE and CP for the item parameters. a represents
all discrimination parameters, b•1 represents all bj1 (j = 1, . . ., J.), b•2 represents all bj2 (j = 1, . . ., J.) and b•3 represents all

bj3 (j = 1, . . ., J.).

0.064. The average RMSE of all bj2 (j = 1, . . ., 20) param-
eters decreases from 0.122 to 0.063, the average SD of all
bj2 (j = 1, . . ., 20) parameters decreases from 0.106 to 0.051,
and the average SE of all bj2 (j = 1, . . ., 20) parameters de-
creases from 0.114 to 0.064. 2) Under the 27 simulated con-
ditions, the average CPs of the discrimination and threshold
parameters are about 0.970. 3) When the number of exami-
nees is fixed at 500 (1000 or 2000), the Likert response scale
is fixed at three points (four or five points), and the number
of items is fixed at 20, the average RMSE, SD, and SE show
that the recovery results of the discrimination and threshold
parameters are close to those in the case that the total test
length is 30 (40), which indicates that the Bayesian algo-
rithm is stable and does not reduce the accuracy because
of the increase in the number of items. In summary, the
Pólya–Gamma Gibbs sampling algorithm provides accurate
estimates of the item parameters in terms of various num-
bers of examinees and items.
Recovery of ability parameters

Next, we evaluate the recovery of the latent ability pa-
rameter using five accuracy evaluation criteria in Table 3.
The following conclusions can be drawn from Table 4. 1) For
500 (1000 or 2000) examinees and the Likert response scale

fixed at three points (four or five points), when the num-
ber of items increases from 20 to 40, the average RMSE,
SD, and SE for ability parameters decrease. 2) Under the
27 simulated conditions, the average CPs of the ability pa-
rameters are about 0.950. In summary, it is shown again
that the Pólya–Gamma Gibbs sampling algorithm is effec-
tive and the estimates of the parameters are accurate under
various simulation conditions.

4.2 Simulation 2

In this simulation study, we compared the MH sampling
algorithm and the Pólya–Gamma Gibbs sampling algorithm
from two perspectives: accuracy and convergence.
Simulation designs

In this simulation, the number of examinees was N =
1000, a five-point Likert-type response scale was used,
and the test length was J = 40. The true values of the
item and person parameters in the GRM were the same
as those in simulation study 1. We specified the follow-
ing non-informative priors to the MH and Pólya–Gamma
Gibbs sampling algorithms, i.e., aj ∼ N

(
0, 105

)
I (0,+∞),

bj1 ∼ N
(
0, 105

)
I (−3, 3), bj2 ∼ N

(
0, 105

)
I (bj1, 3), bj3 ∼

N
(
0, 105

)
I (bj2, 3), and bj4 ∼ N

(
0, 105

)
I (bj3, 3), j =
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Table 3. Accuracy of parameters based on the different simulated conditions in simulation study 1

5-Point Likert-Type Response Scale
Test Length 20 Test Length 30 Test Length 40

Sample Size 500 1000 2000 500 1000 2000 500 1000 2000

Bias
a −0.004 −0.009 −0.021 0.021 −0.018 −0.027 −0.000 −0.009 −0.010
b•1 −0.013 −0.009 0.005 −0.038 −0.022 −0.011 −0.039 −0.013 −0.009
b•2 0.001 −0.001 −0.002 −0.021 −0.020 −0.013 −0.019 −0.012 −0.011
b•3 0.019 0.006 −0.006 0.002 −0.012 −0.016 0.006 0.000 −0.012
b•4 0.047 0.011 −0.010 0.021 −0.008 −0.017 0.038 0.011 −0.010

RMSE
a 0.118 0.083 0.063 0.122 0.083 0.063 0.122 0.077 0.054
b•1 0.141 0.100 0.077 0.144 0.104 0.070 0.137 0.094 0.070
b•2 0.109 0.077 0.063 0.109 0.083 0.054 0.104 0.077 0.054
b•3 0.114 0.077 0.063 0.109 0.089 0.063 0.114 0.083 0.054
b•4 0.144 0.100 0.077 0.137 0.104 0.077 0.141 0.104 0.070
SD
a 0.112 0.079 0.055 0.109 0.077 0.053 0.109 0.077 0.054
b•1 0.125 0.090 0.062 0.123 0.088 0.061 0.116 0.083 0.058
b•2 0.092 0.065 0.045 0.092 0.066 0.045 0.091 0.065 0.044
b•3 0.093 0.066 0.045 0.096 0.067 0.045 0.098 0.069 0.047
b•4 0.124 0.086 0.058 0.123 0.086 0.060 0.125 0.088 0.060
SE
a 0.114 0.083 0.059 0.116 0.083 0.055 0.118 0.076 0.055
b•1 0.131 0.096 0.074 0.129 0.097 0.071 0.119 0.087 0.065
b•2 0.102 0.071 0.058 0.102 0.078 0.057 0.094 0.074 0.055
b•3 0.103 0.073 0.059 0.102 0.082 0.057 0.105 0.080 0.056
b•4 0.125 0.094 0.071 0.125 0.098 0.071 0.126 0.097 0.066
CP
a 0.928 0.917 0.988 0.924 0.901 0.987 0.921 0.943 0.918
b•1 0.924 0.989 0.984 0.926 0.989 0.985 0.907 0.919 0.986
b•2 0.988 0.989 0.979 0.989 0.984 0.982 0.915 0.988 0.983
b•3 0.988 0.989 0.978 0.985 0.984 0.983 0.908 0.988 0.984
b•4 0.918 0.989 0.981 0.925 0.988 0.984 0.937 0.989 0.987

Note that the Bias, RMSE, SD, SE and CP denote the average Bias, RMSE, SD, SE and CP for the item parameters. a represents
all discrimination parameters, b•1 represents all bj1 (j = 1, . . ., J.), b•2 represents all bj2 (j = 1, . . ., J.), b•3 represents all

bj3 (j = 1, . . ., J.) and b•4 represents all bj4 (j = 1, . . ., J.).

1, 2, . . ., 40, and the prior of ability parameters was as-
sumed to follow a standardized normal distribution because
of the model identification limitation, i.e., θi ∼ N (0, 1),
i = 1, . . ., 1000. In fact, we know that an improper proposal
distribution for the MH sampling algorithm can seriously
reduce the acceptance probability of sampling, with most
of the posterior samples being rejected. Therefore, low sam-
pling efficiency is usually unavoidable, and the reduction in
the number of valid samples may lead to incorrect inference
results. In contrast, the Pólya–Gamma Gibbs sampling algo-
rithm takes the acceptance probability as 1 to draw the sam-
ples from full conditional posterior distributions. The follow-
ing proposal distributions for the discrimination, threshold,
and ability parameters were considered in the process of im-
plementing the MH sampling algorithm:

• Case 1: a∗j ∼ N(a
(r−1)
j , 0.1), b∗j,k ∼ N

(
b
(r−1)
j,k , 0.1

)
×

I
(
b∗j,k−1 < b∗j,k < b

(r−1)
j,k+1

)
, j = 1, . . ., J . k = 1, . . .,K − 1,

and θ∗i ∼ N(θ
(r−1)
i , 0.1), i = 1, . . ., N ;

• Case 2: a∗j ∼ N(a
(r−1)
j , 1), b∗j,k ∼ N

(
b
(r−1)
j,k , 1

)
I
(
b∗j,k−1 <

b∗j,k < b
(r−1)
j,k+1

)
, j = 1, . . ., J . k = 1, . . .,K − 1, and θ∗i ∼

N(θ
(r−1)
i , 1), i = 1, . . ., N .

To compare the convergence of all parameters for the MH
sampling algorithm with different proposal distributions and
the Pólya–Gamma Gibbs sampling algorithm, the conver-
gence of item and person parameters was evaluated by judg-
ing whether the PSRF values were less than 1.2. Figure 1
shows that the discrimination and threshold parameters had
already converged by 2000 iterations for the Pólya–Gamma
Gibbs sampling algorithm. For the MH sampling algorithm,
some parameters had not converged after 5000 iterations
with the proposal distributions with a variance of 0.1. The
convergence with the proposal distributions with a variance
of 1 was worse than that with those with a variance of 0.1,
with some parameters not even having converged after 8000
iterations. Moreover, the bias and RMSE are used to eval-
uate the performances of the two algorithms in Table 5. It
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Table 4. Accuracy of person parameters based on four different simulated conditions in simulation study 1

Category No. of examinees No. of items Bias RMSE SD SE CP

500 20 0.004 0.313 0.295 0.279 0.943
30 0.003 0.264 0.245 0.217 0.953
40 0.000 0.225 0.210 0.192 0.963

1000 20 −0.012 0.311 0.295 0.262 0.943
3 30 0.008 0.262 0.248 0.214 0.964

40 0.011 0.221 0.210 0.199 0.963
2000 20 0.009 0.309 0.294 0.276 0.940

30 0.000 0.258 0.248 0.238 0.954
40 −0.004 0.221 0.210 0.197 0.940

500 20 −0.019 0.284 0.264 0.261 0.931
30 0.015 0.236 0.223 0.242 0.963
40 0.003 0.207 0.191 0.189 0.943

1000 20 0.004 0.279 0.265 0.280 0.938
4 30 −0.009 0.236 0.225 0.243 0.953

40 −0.001 0.202 0.193 0.218 0.973
2000 20 0.010 0.277 0.266 0.277 0.944

30 −0.000 0.232 0.225 0.232 0.984
40 −0.000 0.202 0.192 0.185 0.963

500 20 0.009 0.266 0.252 0.266 0.973
30 −0.000 0.225 0.210 0.230 0.952
40 0.008 0.197 0.181 0.195 0.953

1000 20 0.002 0.266 0.253 0.241 0.943
5 30 −0.010 0.223 0.214 0.201 0.973

40 0.004 0.192 0.182 0.178 0.963
2000 20 −0.003 0.262 0.254 0.259 0.944

30 −0.007 0.223 0.215 0.198 0.954
40 −0.001 0.189 0.182 0.175 0.953

Note that the Bias, RMSE, SD, SE and CP denote the average Bias, RMSE, SD, SE and CP for the ability parameters.

Table 5. Accuracy of parameter estimation using the two algorithms in the simulation study 2

Pólya–Gamma Gibbs algorithm MH algorithm under Case 1 MH algorithm under Case 2
Bias RMSE Bias RMSE Bias RMSE

a −0.009 0.077 0.103 0.170 0.185 0.219
b•1 −0.013 0.094 0.089 0.167 0.129 0.178
b•2 −0.012 0.077 0.027 0.094 0.027 0.070
b•3 0.000 0.083 −0.047 0.089 −0.061 0.094
b•4 0.011 0.104 −0.123 0.176 −0.173 0.214
θ 0.004 0.192 −0.016 0.254 −0.016 0.225

Note that the Bias and RMSE denote the average Bias and RMSE for the item parameters. a represents all discrimination
parameters, b•1 represents all bj1 (j = 1, . . ., 40), b•2 represents all bj2 (j = 1, . . ., 40), b•3 represents all bj3 (j = 1, . . ., 40), b•4

represents all bj4 (j = 1, . . ., 40), and θ represents all ability parameters.

has been shown that the selection of the proposal distribu-

tion has an important influence on the accuracy of parame-

ter estimation, and the process of finding the proper tuning

parameter is time consuming. In addition, we investigate

the efficiency of the two algorithms from the perspective

of the time consumed in implementing them. On a desk-

top computer (Intel(R) Xeon(R) E5-2695 V2 CPU) with a

2.4-GHz dual-core processor and 192 GB of RAM memory,

the Pólya–Gamma Gibbs sampling algorithm and MH algo-

rithm respectively consumed 3.8573 hours and 4.7456 hours

when MCMC was run for 20 000 iterations for a replication

experiment, where the MH algorithm was used to imple-
ment Case 1. In summary, the Pólya–Gamma Gibbs sam-
pling algorithm is more effective than the MH algorithm in
estimating model parameters.

5. EMPIRICAL EXAMPLE

To illustrate the applicability of the GRM in psycholog-
ical assessment, we analyzed data from the Sexual Com-
pulsivity Scale (SCS). Item response data were obtained
from the Open Source Psychometrics Project (https://
openpsychometrics.org), with the respondents constituting
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Figure 1. The trace plots of PSRF values for the simulation study 2.

Table 6. The sexual compulsivity scale items

Item Question

1 My sexual appetite has gotten in the way of my relationships
2 My sexual thoughts and behaviors are causing problems in my life
3 My desires to have sex have disrupted my daily life
4 I sometimes fail to meet my commitments and responsibilities because of my sexual behaviors
5 I sometimes get so horny I could lose control
6 I find myself thinking about sex while at work
7 I feel that sexual thoughts and feelings are stronger than I am
8 I have to struggle to control my sexual thoughts and behavior
9 I think about sex more than I would like to
10 It has been difficult for me to find sex partners who desire having sex as much as I want to

a self-selected sample who had agreed to their responses be-
ing stored and made publicly available. All test items can
be viewed on the aforementioned website, and the questions
for all the test items are given in Table 6. The Sexual Com-
pulsivity Scale [22] includes 10 items and was administered
to N = 3243 respondents (with median age 33 and 55%
male). All items were presented based on a four-point Likert-
type response scale, with options 1 (‘Not at all like me’), 2
(‘Slightly like me’), 3 (‘Mainly like me’), and 4 (‘Very much
like me’).

In the Bayesian computation, we used 20000 MCMC sam-
ples after a burn-in of 10000 iterations to compute all pos-
terior estimates. The convergence of the chains was checked
by PSRF, and we found that the PSRF values of all item
parameters were less than 1.2.

Analysis of item parameters

The estimates of the item parameters are given in Table 7,
from which we find that the expected a posteriori (EAP)
estimations of the six item discrimination parameters are
less than 2. This indicates that these items perform poorly
at distinguishing among abilities compared with the other
four items. The five items with the highest discrimination
are items 8, 3, 7, 2, and 5 in turn. The EAP estimations
of discrimination parameters for the five items are 2.714,

2.509, 2.379, 1.682, and 1.779, respectively. In addition, the

EAP estimations of the threshold parameters (bj1, bj2, bj3)

are greatest for items 4, 7, and 2 in turn, which indicates

that these items pose more difficulty than do the other seven

items. This means that most respondents chose the first op-

tion (‘Not at all like me’) for these three items. By contrast,

based on the EAP estimations of the threshold parameters,

we find that most respondents chose the fourth option (‘Very

much like me’) for items 6, 10, and 9. The SD range is 0.005–

0.009 for the discrimination parameters and 0.000–0.005 for

the threshold parameters.

Analysis of person parameters

The frequency histograms of the response scores and the

posterior estimates of ability parameters for the 3243 re-

spondents are shown in Figure 2. Most of the estimates of

the ability parameters are near zero, and there are slightly

fewer examinees with high ability (estimates between 0 and

2) than those with low ability (estimates between −2 and

0). The histogram of the EAPs of ability parameters is con-

sistent with the frequency histogram of response scores, i.e.,

there are slightly more examinees with low response scores

than those with high ones. Once again, it is verified that the

estimation results are accurate.
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Figure 2. The frequency histograms of the response scores and the posterior estimates of ability parameters for 3243
respondents.

Table 7. The results of item parameter estimation in empirical example analysis

Parameter EAP SD HPDI Parameter EAP SD HPDI

a1 1.682 0.005 [1.539, 1.824] b1,1 −1.303 0.001 [−1.379,−1.204]
a2 2.231 0.007 [2.060, 2.410] b2,1 −1.162 0.002 [−1.225,−1.073]
a3 2.509 0.009 [2.320, 2.700] b3,1 −1.386 0.002 [−1.470,−1.298]
a4 1.779 0.006 [1.620, 1.936] b4,1 −0.370 0.000 [−0.420,−0.306]
a5 1.903 0.007 [1.745, 2.070] b5,1 −1.309 0.001 [−1.391,−1.223]
a6 1.308 0.005 [1.177, 1.448] b6,1 −2.983 0.000 [−2.999,−2.953]
a7 2.379 0.007 [2.219, 2.549] b7,1 −1.092 0.001 [−1.169,−1.022]
a8 2.714 0.008 [2.535, 2.888] b8,1 −1.368 0.002 [−1.464,−1.267]
a9 1.546 0.006 [1.398, 1.696] b9,1 −1.520 0.002 [−1.610,−1.425]
a10 1.147 0.005 [1.011, 1.280] b10,1 −1.744 0.001 [−1.858,−1.638]

Parameter EAP SD HPDI Parameter EAP SD HPDI

b1,2 0.531 0.002 [0.445, 0.606] b1,3 2.021 0.002 [1.943, 2.162]
b2,2 0.896 0.001 [0.865, 1.009] b2,3 2.851 0.004 [2.718, 2.953]
b3,2 0.851 0.001 [0.784, 1.000] b3,3 2.769 0.005 [2.656, 2.932]
b4,2 1.456 0.002 [1.392, 1.570] b4,3 2.919 0.003 [2.845, 2.999]
b5,2 0.773 0.001 [0.699, 0.841] b5,3 2.209 0.004 [2.101, 2.359]
b6,2 −1.175 0.001 [−1.252,−1.094] b6,3 0.301 0.001 [0.224, 0.376]
b7,2 0.938 0.003 [0.802, 0.924] b7,3 2.888 0.002 [2.790, 2.999]
b8,2 0.694 0.003 [0.612, 0.819] b8,3 2.664 0.003 [2.554, 2.821]
b9,2 0.045 0.001 [−0.021, 0.130] b9,3 1.451 0.002 [1.365, 1.534]
b10,2 −0.051 0.000 [−0.107,−0.005] b10,3 1.050 0.001 [0.985, 1.134]

Note: EAP is the expected a posteriori estimation, SD denotes the standard deviation, and HPDI denotes the 95% highest
probability density interval.

6. CONCLUDING REMARKS

In this study, a novel and effective Pólya–Gamma Gibbs

sampling algorithm based on auxiliary variables was used

to estimate the parameters of the GRM. The Bayesian al-

gorithm avoids the tedious multidimensional integral oper-

ation of marginal maximum likelihood estimation. Within

a fully Bayesian framework, compared with the traditional
Gibbs sampling algorithm and the MH sampling algorithm,
the Pólya–Gamma Gibbs sampling algorithm (i) avoids
the problem that the MH sampling algorithm relies heav-
ily on the tuning parameters of the proposal distribution
for different data sets and (ii) overcomes the disadvan-
tage of the MH algorithm being sensitive to step size. It
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is known that the Gibbs sampling algorithm becomes inef-
fective for Bayesian non-conjugate models. By comparison,
the Pólya–Gamma Gibbs sampling algorithm transforms a
non-conjugate model into a conjugate one by using aug-
mented auxiliary variables. With the help of the traditional
Gibbs sampling algorithm, posterior sampling is easier to
implement. Moreover, the Pólya–Gamma Gibbs sampling
algorithm allows the use of informative and non-informative
prior distributions, with satisfactory results being obtained
even if an inappropriate prior distribution is used.

However, the computational burden of the Pólya–Gamma
Gibbs sampling algorithm can be great, especially if many
examinees, items, or missing data are considered or a large
MCMC sample size is used. Therefore, would be desirable
to develop a stand alone R package associated with C++ or
Fortran software for a more-extensive large-scale assessment
program.
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