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Multivariate skew Laplace normal distribution
for modeling skewness and heavy-tailedness
in multivariate data sets

Fatma Zehra Doğru
∗
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Modeling both skewness and heavy-tailedness in multi-
variate data sets is a challenging problem. The main goal
of this paper is to introduce a multivariate skew Laplace
normal (MSLN) distribution to deal with the issue by pro-
viding a flexible model for modeling skewness and heavy-
tailedness simultaneously. This distribution will be an alter-
native to some multivariate skew distributions including the
multivariate skew-t-normal (MSTN) distribution introduced
by [28]. This is due to the fact that the MSLN distribution
has fewer parameters than most of these distributions, which
causes computationally advantageous for the MSLN distri-
bution over these distributions. The definition, some dis-
tributional properties of this distribution are studied. The
maximum likelihood (ML) estimators for the parameters of
the MSLN distribution are obtained via the expectation-
maximization (EM) algorithm. A simulation study and a
real data example are also provided to illustrate the capa-
bility of the MSLN distribution for modeling data sets in
multivariate settings.
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1. INTRODUCTION

In general, the distribution of a model is assumed to
be normal thanks to its tractability and huge applicabil-
ity. In practice, however, the data sets may be asymmetric
and/or heavy-tailed. For example, there are some studies
based on multivariate modeling using asymmetric and/or
heavy-tailed distributions. The multivariate t distribution
was proposed by [11] and [17] as a heavy-tailed alternative
to the multivariate normal distribution and studied by [22],
[33], [34], [23], and so on. The multivariate skew normal
(MSN) distribution ([8], [7] and [6]) has recently been very
popular both in theoretical and applied studies for modelling
skew data sets.
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The MSN distribution can be defined as follows: Let Z be
a p-dimensional random vector. It is said to have an MSN
distribution (Z ∼ MSNp (ΣZ ,λ)) if it has the following pdf

(1) fZ (z; ΣZ ,λ) = 2φp (z; ΣZ) Φ
(
λTz

)
, z ∈ Rp,

where φp (z; ΣZ) is the p-dimensional normal pdf with zero
mean and ΣZ correlation matrix, and λ is the skewness pa-
rameter. Here, Φ (·) shows the cumulative density function
(cdf) of N (0, 1). We can also write the following transfor-
mation to comprise location and scale parameters

(2) X = μ+wZ,

where μ is the p× 1 location vector, w = diag (w1, . . . , wp),
wi =

√
wii, and Σ = (wij) is a full rank p × p covariance

matrix. If the p-dimensional random vector X ∈ Rp has the
following probability density function (pdf) it is said that it
has an MSN distribution (X ∼ MSNp (μ, Σ,λ)):
(3)

fMSN (x;μ, Σ,λ) = 2φp (x;μ, Σ)Φ
(
λTw−1 (x− μ)

)
,

where Σ=wΣZw. Alternatively, it can be written as follows:
(4)

fMSN (x;μ, Σ,λ) = 2φp (x;μ, Σ)Φ
(
λTΣ−1/2 (x− μ)

)
.

The random vector X has the following stochastic represen-
tation ([2])

(5) X = μ+Σ1/2δ |U1|+Σ1/2
(
Ip − δδT

)1/2
U2, U1⊥U2,

where δ = λ/
√
1 + λTλ, U1 ∼ N (0, 1) , U2 ∼ Np (0, Ip)

and the symbol ‘⊥’ denotes independence.

Proposition 1.1. Let X ∼ MSNp (μ, Σ,λ). Then the
characteristic function of X is

ΨX (t) = 2exp
(
itTμ− tTΣt/2

)
Φ
(
iηTwt

)
= exp

(
itTμ− tTΣt/2

) {
1 + iτ

(
ηTwt

)}
, t ∈ Rp(6)

where η = ΣZλ/
(
1+ λTΣZλ

)1/2
and

(7)

τ (x) =

∫ x

0

√
2

π
exp

(
u2

2

)
du, x > 0, τ (−x) = −τ (x) .
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See [24] for the detail of the characteristic function of the
MSN distribution.

Using the stochastic representation given in Eq. (5) the
mean vector and the covariance matrix of X are obtained
as:

E(X) = μ+
√
2/πΣ1/2δ,

cov (X) = Σ− 2

π
Σ1/2δδTΣ1/2 .(8)

Additionally, there are some multivariate distributions
based on modifications of MSN distribution. For instance,
[36] defines a new class of multivariate distributions includ-
ing MSN distribution with applications to Bayesian regres-
sion models, [2] introduced a new class of MSN distributions,
fundamental skew-normal distributions, and their canoni-
cal version, [5] examined many extensions of MSN distri-
bution and some forms of semi-parametric formulations, [3]
proposed the unification of skew-normal families, restricted
MSN distribution was adopted by [26], unrestricted SN
generalized-hyperbolic distribution was introduced by [29]
applied for robust finite mixture modeling; and also, this
distribution was used by [30] for Bayesian linear mixed mod-
els.

This paper focuses on both modeling skewness and heavy-
tailedness in multivariate data sets. In this paper, we con-
sider the multivariate skew Laplace normal (MSLN) dis-
tribution as a special case of the multivariate skew gener-
alized Laplace normal (MSGLN) distribution proposed by
[38]. The MSLN distribution is also more applicable than
the MSN distribution thanks to its wider range of skewness
and heavy-tailedness for modeling multivariate data sets. In
the literature, multivariate skew and heavy-tailed data sets
are usually modeled by using multivariate skew t (MST)
([35] and [27]) distribution or recently proposed multivari-
ate skew-t-normal (MSTN) distribution ([28]). Additionally,
MSGLN distribution was also proposed for modeling skew
and heavy-tailed multivariate data settings. Although all of
these distributions are very useful for modeling skew and
heavy-tailed multivariate data sets, the MSTN distribution
has an extra degrees of freedom parameter and the MSGLN
distribution includes an extra shape parameter, which repre-
sents a very broad form of these families with several param-
eters. These extra parameters make computational intensity.
On the other hand, for the MSLN case, we have only three
parameters to deal with and this makes easy computation.
Based on this important advantage, we propose the MSLN
distribution as an alternative to the MSTN and MSGLN
distributions to model both skewness and heavy-tailedness
in the multivariate data settings.

We explore the definition of this distribution in detail by
providing the stochastic representation which will be useful
in the maximum likelihood (ML) estimation. We study the
expectation-maximization (EM) algorithm to compute the
ML estimates and provide a simulation study as well as a

real data example to demonstrate the modeling performance
of the proposed distribution. Results of our numerical stud-
ies confirm that the proposed EM algorithm works efficiently
to find the ML estimates and the results also exhibit the su-
periority of MSLN distribution over the MSTN and MSGLN
distributions for modeling skewness and heavy-tailedness in
the real data example. Moreover, our results confirm that
MSLN distribution has less computational time in seconds
than the MSTN and MSGLN distributions are required to
carry on parameter estimation.

The paper is organized as follows. Section 2 sketches the
MSLN distribution with some properties. Section 3 proposes
the ML estimators for the parameters of the MSLN distribu-
tion via the EM algorithm. Section 4 provides a simulation
study and a real data example to illustrate the performance
of the MSLN distribution. Section 5 is devoted to the con-
clusions.

2. THE MULTIVARIATE SKEW LAPLACE
NORMAL DISTRIBUTION: DEFINITION

AND PROPERTIES

Definition 2.1. A random vector Y ∈ Rp, p ≥ 1, is
said to have a p-dimensional MSLN distribution (Y ∼
MSLNp (μ, Σ,λ)) with the p × 1 location vector μ, p × p
dispersion matrix Σ, and p × 1 skewness parameter vector
λ, if its pdf is given by

ψ (y;μ, Σ,λ) = 2fMLap (y;μ, Σ)Φ
(
λTΣ−1/2 (y − μ)

)
,

(9)

where fMLap (· ;μ, Σ) is the pdf of multivariate Laplace
(MLap) distribution

fMLap (y;μ, Σ) =
|Σ|−1/2

2pπ
p−1
2 Γ

(
p+1
2

)e−√(y−μ)TΣ−1(y−μ) ,

y ∈ Rp, p ≥ 1.

For the details about the MLap distribution see [19], [25],
[20], [18] and [32].

Proposition 2.1. Let U1 ∼ N (0, 1) , U2 ∼ Np (0, Ip), and
V has the inverse gamma distribution with the pdf

(10) g (v) =
1

Γ
(
p+1
2

)
2

p+1
2

v−(
p+1
2 +1)e−

1
2v , v > 0 ,

and suppose that U1, U2 and V are mutually independent.
Then, the random variable

Y = μ+Σ1/2

⎡⎣ λ |U1|√
V (V + λTλ)

+
(
V Ip + λλT

)−1/2

U2

⎤⎦
(11)

has an MSLN distribution with the pdf given in Eq. (9).
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Proof. Let γ =

√
V −1

(
V + λTλ

)
|U1|. Then, the hierar-

chical representation can be obtained as follows:

Y | (γ, v) ∼ Np

(
μ+

Σ1/2λγ

v + λTλ
,Σ1/2

(
vIp + λλT

)−1

Σ1/2

)
,

γ|v ∼ TN

(
0,

v + λTλ

v
; (0,∞)

)
,

v ∼ g (v) ,(12)

where TN (·) denotes the truncated normal distribution. Us-
ing the hierarchical representation given in (12), the joint
pdf of Y , γ, and V can be written as:

f (y, γ, v) =
1

2pπ
p+1
2 |Σ|1/2

v−3/2e−1/2v

Γ
(
p+1
2

)
×exp

{
−1

2

(
vuTu+

(
γ − λTu

)2)}
,(13)

where u = Σ−1/2 (y − μ). After taking the integral of (13)
over γ, we have

f (y, v) =
1

2p−
1
2π

p
2 |Σ|1/2

v−3/2e−1/2v

Γ
(
p+1
2

)
×exp

{
−vuTu

2

}
Φ
(
λTu

)
.(14)

Then, taking the integral of Eq. (14) over v, the pdf given
in Eq. (9) is obtained.

Note that as in the Introduction we have already men-
tioned that this distribution becomes a special case of the
MSGLN distribution ([38]) when we take the parameter α
in MSGLN distribution as (p+ 1)/2 we get MSLN distri-
bution. However, the advantage of the MSLN distribution
is that it has a fewer number of parameters to deal with,
which provides computational tractability. Finally, we can
also note that the distribution of Y will be the MLap dis-
tribution with pdf fMLap (y;μ, Σ) when λ = 0.

When p = 1 the density function of the MSLN distri-
bution will be reduced to skew Laplace normal distribution
with the following pdf:

(15) fSLN (y) = 2fL (y;μ, σ) Φ

(
λ

(
λ (y − μ)

σ

))
,

where μ ∈ R is the location parameter, σ2 ∈ (0,∞) is
the scale parameter, λ ∈ R is the skewness parameter, and
fL (y;μ, σ) represents the pdf of Laplace distribution with

fL (y;μ, σ) =
1

2σ
e−

|y−μ|
σ .

For the applicability of the univariate skew Laplace normal
distribution ([21]), one can see papers by [14], [15], and [16].

To illustrate the shape of the MSLN distribution, we dis-
play examples of the MSLN densities and the contour plots
for λ = (1, 1)

T
and λ = (1,−0.5)

T
in Figure 1. These plots

show the peakedness, heavy-tailedness, and skewness of this
distribution.

Figure 1. Two examples of MSLN densities for
μ = (0, 0)T ,Σ = I,λ = (1, 1)T (left side) and
μ = (0, 0)T ,Σ = I,λ = (1,−0.5)T (right side).

Proposition 2.2. For t ∈ Rp, the characteristic function
of Y ∼ MSLNp (μ, Σ,λ) is

ΨY (t) = eit
TμEV

(
exp(−V −1t

T
Σt/2) (1 + iτ(κTwt))

)
,

(16)

where κ = V −3/2ΣZλ

(1+V −2λTΣZλ)
1/2 and the function τ (·) is defined

in Eq. (7). We note that the expectation given in Eq. (16)
can be calculated by numerical methods.

The following is another scale mixture representation of
the MSLN distribution

Y |v ∼ MSNp

(
μ, v−1Σ, v−1/2λ

)
,

v ∼ g (v) .(17)

By using this representation and the equation given in (8),
we get the expectation and covariance matrix of MSLN dis-
tribution as

E (Y ) = μ+

√
2

π
Σ1/2λ ζ,

Cov (Y ) = (p+ 1)Σ− 2

π
Σ1/2λλTΣ1/2ζ2,

where ζ = E

(
v−1/2√
v+λTλ

)
, which can be computed by using

numerical methods.
In the following propositions, the distribution of the lin-

ear transformation, marginal distributions and conditional
distributions of a random vector with MSLN distribution are
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given. Since these propositions and their proofs are very sim-
ilar to those given by [4] for the multivariate skew Laplace
distribution of different type, we will briefly outline the
proofs of these propositions for our proposed distribution.

Proposition 2.3. If Y ∼ MSLNp (μ, Σ,λ) and T =
AY + b for A ∈ Rq×p and b ∈ Rq×1 then T ∼
MSLNq

(
Aμ+ b, AΣAT , Aλ

)
.

Proof. For t ∈ Rq, the characteristic function of T is

ΨT (t) = E
(
eit

T (AY +b)
)
= eit

T bΨY

(
AT t

)
= eit

T (Aμ+b)EV (exp(−V −1t
T
AΣATt/2)(1 + iτ(ηTwAT t))).

Then, T ∼ MSLNq

(
Aμ+ b, AΣAT , Aλ

)
.

From Proposition 2.3, we can conclude that if
Y ∼ MSLNp (μ, Σ,λ), for any b ∈ Rp, bTY ∼
MSLN1

(
bTμ, bTΣb, bTλ

)
.

Proposition 2.4. Let Y ∼ MSLNp (μ, Σ,λ) and Y 1 and
Y 2 be the partition of Y whose dimensions are k and s,
k+ s = p. Assume that μ, Σ, and λ are suitably partitioned
as

Y =

[
Y 1

Y 2

]
, μ =

[
μ1

μ2

]
, λ =

[
λ1

λ2

]
and

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
where Y 1,μ1 and λ1 are k × 1 vectors and Σ11 is k × k
matrix. Then, we can have the following results:

i) Y 1 ∼ MSLNk (μ1,Σ11,λ1).
ii) The conditional distribution of Y 2 given Y 1 = y1 is

a normal variance-mean mixture distribution with the
parameters μ2.1 = μ2+Σ21Σ

−1
11 (y1 − μ1) , λ2.1 = λ2−

Σ21Σ
−1
11 λ1 and Σ22.1 = Σ22 − Σ21Σ

−1
11 Σ12.

Proof. We can express proofs of i) and ii) as follows:

i) Let define AY = Y 1. Here, A =
[
Ik 0k×(p−k)

]
is a

k × p matrix, Ik shows the identity matrix, and 0k×(p−k)

represents a null matrix. The distribution of AY = Y 1 will
be an MSLN distribution with the parameters Aμ = μ1,
AΣAT = Σ11, and Aλ = λ according to Proposition 2.3.

ii) Let T be a linear transformation of Y defined as follows:

T =

[
Ik 0k×(p−k)

−Σ21Σ
−1
11 Ip−k

] [
Y 1

Y 2

]
+

[
0k

μ2 +Σ21Σ
−1
11 μ1

]
=

[
Y 1

U

]
,

where U = Y 2 − μ2 − Σ21Σ
−1
11 (Y 1 − μ1). Then, using

Proposition 2.3, the distribution of T will be an MSLN dis-

tribution with the following parameters

μT =

[
μ1

0

]
, λT =

[
λ1

λ2 − Σ21Σ
−1
11 λ1

]
and

Σ =

[
Σ11 0k×(p−k)

0(p−k)×k Σ22 − Σ21Σ
−1
11 Σ12

]
.

Then, the ratio of the density function of T and Y 1 equals
to the conditional density function of U = Y 2 − μ2 −
Σ21Σ

−1
11 (Y 1 − μ1) given Y 1 = y1 with the parameters μ2.1,

λ2.1, and Σ22.1. We can reveal that the conditional distri-
bution of Y 2 given Y 1 is not an MSLN distribution, rather
it is in the class of normal variance–mean mixture distribu-
tions.

Further, we can also obtain the following conditional dis-
tribution. First, when y and v are given, the pdf of the
conditional distribution of γ is given as follows:

(18) f (γ|y, v) = 1
√
2πΦ

(
λTu

)exp{−1

2

(
γ − λTu

)2}
.

This can be easily found by dividing Eq. (13) by Eq. (14).
From the density function given in Eq. (18), it is obvious
that γ and V are conditionally independent; therefore, the
distribution of γ|y is:

(19) γ|y ∼ TN
(
λTu, 1; (0,∞)

)
.

Finally, after dividing (14) by (9) we have the following con-
ditional density function:
(20)

f (v | y) = 1√
2π

v−3/2exp

{
1

2
uTu− 1

2

(
vuTu+ v−1

)}
.

Proposition 2.5. Using the hierarchical representation
given in (12) and the conditional distribution (19) and (20),
we get the following conditional expectations:

E (V |y) =
(
(y − μ)

T
Σ−1 (y − μ)

)−1/2

,

E (γ|y) = λTu+
φ
(
λTu

)
Φ
(
λTu

) .(21)

We note that these conditional expectations will be used
in the EM algorithm given in the next section.

3. THE ML ESTIMATION

Let y1,y2, . . . ,yn be a p-dimensional random sample
from MSLN distribution with the unknown parameters Θ =
(μ, Σ,λ). The ML estimator forΘ can be obtained by max-
imizing the following log-likelihood function:

(22) � (Θ) =

n∑
i=1

log (ψ (yi;μ, Σ,λ)) .

478 F. Z. Doğru and O. Arslan



Since there is no explicit solution for the log-likelihood func-
tion, we need a numerical method. Mostly, the EM algorithm
([12]) is used to get the ML estimator of Θ.

Let V and γ be the latent variables and (y,γ,v) be the

complete data, where y =
(
yT
1 , . . . ,y

T
n

)T
, γ = (γ1, . . . , γn)

T

and v = (v1, . . . , vn). Using the hierarchical representation
given in (12) and ignoring the constants, the complete data
log-likelihood function can be written by:

�c (Θ;y,γ,v) = −n

2
log |Σ| − 1

2

n∑
i=1

3logvi + v−1
i(23)

−1

2

n∑
i=1

vi(yi − μ)
T
Σ−1 (yi − μ)− 1

2

n∑
i=1

γ2
i

−1

2

n∑
i=1

[
−2γiβ

T (yi − μ) + βT (yi − μ) (yi − μ)
T
β
]
,

where β = Σ−1/2λ is a reparameterized parameter vector.
To get rid of the latency problem in the complete data log-
likelihood function, we have to take the conditional expec-
tation of the complete data log-likelihood function given the
observed data yi

E (�c (Θ;y,γ,v) |yi) = −n

2
log |Σ| − 1

2

n∑
i=1

3E (logVi|yi)

(24)

− 1

2

n∑
i=1

E (Vi|yi)(yi − μ)
T
Σ−1 (yi − μ) + E

(
V −1
i

∣∣ yi

)
− 1

2

n∑
i=1

(E(γ
2
i |yi)− 2E (γi | yi)β

T (yi − μ))

− 1

2

n∑
i=1

βT (yi − μ) (yi − μ)
T
β.

Since some conditional expectations are not related to the
parameters, we only compute the conditional expectations
E (Vi|yi) and E (γi | yi) using Proposition 2.5. Now, we are
ready to implement the EM algorithm by using the following
steps:

EM algorithm:
1. Take initial parameter estimate Θ(0) and a stopping
rule Δ.
2. E-Step: Calculate the following conditional expectations
for k = 0, 1, 2, . . .

v̂
(k)
i = E (Vi|yi)

=

((
yi − μ̂(k)

)T
Σ̂(k)−1

(
yi−μ̂(k)

))−1/2

,(25)

γ̂
(k)
i = E (γi|yi) = λ̂

(k)

i
Tui+

φ

(
λ̂
(k)

i
Tui

)
Φ

(
λ̂
(k)

i
Tui

) .(26)

Using these conditional expectations, we obtain the follow-

ing objective function which will be maximized with respect

to the unknown parameters:

Q(Θ; Θ̂
(k)

) = −n

2
log |Σ| +

n∑
i=1

γ̂
(k)
i βT (yi − μ)

−1

2

n∑
i=1

v̂
(k)
i (yi − μ)

T
Σ−1(yi − μ)

−1

2

n∑
i=1

βT (yi − μ) (yi − μ)
T
β.(27)

3. M-Step: Maximizing Q(Θ; Θ̂
(k)

) with respect to Θ

yields the following updating equations to compute the

(k + 1) th parameter estimates:

μ̂(k+1) =

(
n∑

i=1

v̂
(k)
i Σ−1 + nβ̂

(k)
β̂
(k)T

)−1

(28)

×
(

n∑
i=1

v̂
(k)
i Σ−1yi−

n∑
i=1

γ̂
(k)
i β̂

(k)
+ β̂

(k)
β̂
(k)T

n∑
i=1

yi

)
,

Σ̂(k+1) =
1

n

n∑
i=1

v̂
(k)
i

(
yi − μ̂(k)

)(
yi − μ̂(k)

)T
,(29)

β̂
(k+1)

=

(
n∑

i=1

(
yi − μ̂(k)

)(
yi − μ̂(k)

)T)−1

(30)

×
(

n∑
i=1

γ̂
(k)
i

(
yi − μ̂(k)

))
,

λ̂
(k+1)

=
(
Σ̂(k+1)

)1/2
β̂
(k+1)

.(31)

4. Repeat E and M steps until the convergence rule∥∥∥∥Θ̂(k+1)
− Θ̂

(k)
∥∥∥∥ < Δ is satisfied.

3.1 Estimation of standard errors

We will calculate the standard errors of the ML estima-

tors by using the method proposed by [31]. This method is

based on an approximation to the observed information ma-

trix by the score vector which can be used to estimate the

standard errors of parameters. This observed information

matrix can be transformed as:

(32) Îe =

n∑
i=1

ŝiŝ
T
i ,

where ŝi = E
̂Θ

(
∂�ci(Θ;yi,γi,vi)

∂Θ

∣∣∣yi

)
, i = 1, . . . , n are the

individual scores and �ci (Θ;yi, γi, vi) is the complete data

log-likelihood function for the ith observation. Let S = Σ1/2
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and Θ = (μ, S,λ) be the parameter vector. Then, we get

�ci (Θ;yi, γi, vi) = −log |S| − 1

2

(
3logvi + v−1

i

)
− 1

2

(
viu

T
i ui +

(
γi − λTui

)2)
,(33)

where ui = S−1 ((yi − μ)). The score vector ŝi is
(ŝi,μ, ŝi,s, ŝj,λ), where s = vech (S). After taking the deriva-
tive of �ci with respect to the parameters, the elements of
ŝi are obtained as follows:

ŝi,μ = v̂iŜ
−1 ûi −

(
γ̂i − λ̂

T
ûi

)
Ŝ−1λ̂,

ŝi,s = vech
{
−
(
2Ŝ−1 −Diag

(
Ŝ−1

))
+v̂i

(
B̂i + B̂T

i −Diag
(
B̂i

))
−
(
γ̂i − λ̂

T
ûi

)(
Ĉi + ĈT

i −Diag
(
Ĉi

))}
,

ŝj,λ =
(
γ̂i − λ̂

T
ûi

)
ûi,

where Ŝ = Σ̂1/2, ûi = Ŝ−1 ((yi − μ̂)), B̂i = Ŝ−1ûiû
T
i ,

Ĉi = ûiλ̂
T
Ŝ−1, and v̂i and γ̂i can be computed by using

the equations given in (25) and (26) evaluated at Θ̂. Conse-
quently, the standard errors of the estimates can be obtained
by using the square roots of the diagonal elements of Î−1

e .

4. APPLICATIONS

This section will provide a simulation study and a real
data example in order to demonstrate the applicability of
the MSLN distribution. We summarize the following com-
putational details for the simulation study and the real data
example.
Details of the computation:
i) All simulation studies and the real data example are car-
ried out by using MATLAB R2017b software.
ii) We take the stopping rule Δ as 10−6 for all numerical
computations.
iii) We set the true parameter values as initial values for
the EM algorithm in the simulation study. In the real data
example, we use the mean vector, covariance matrix, and
the skewness vector of the data set as initial values for the
location vector, dispersion matrix, and the skewness vector
of the MSLN distribution.
iv) For the simulation study, the number of replications
is set as N = 500 and the sample sizes (n) are taken as
200, 400, and 600 respectively.
v) For the simulation study, the data set is generated by
using the following procedure:
– Sample U1 ∼ N (0, 1) , U2 ∼ Np (0, Ip), and V from
the inverse gamma distribution given in (10) independently.
We note that we can easily sample data from the in-
verse gamma distribution by applying the relation 1/V ∼
Gamma ((p+ 1)/2, 2).

– Then, Y = μ+Σ1/2

[
λ|U1|√

V (V+λTλ)
+
(
V Ip + λλT

)−1/2

U2

]
generates the sample from the MSLNp (μ, Σ,λ) distribu-
tion.

4.1 Simulation study

In the simulation study, the data set are generated from
the MSLN distribution by using the procedure given in item
(v) of details of the computation. The performance of the
proposed distribution is assessed by using the bias and the
mean Euclidean distance values of estimates. The formula
for the bias is given by:

b̂ias
(
θ̂
)
= θ − θ,

where θ is the true parameter value, θ̂i is the estimate of θ
for the ith simulated data, and θ = 1

N

∑N
i=1 θ̂i. For instance,

the formula of mean Euclidean distance of μ̂ is given below:

‖μ̂− μ‖ =
1

N

(
N∑
i=1

(μ̂i − μi)
2

) 1
2

.

This simulation study focuses on modeling skewness and
heavy-tailedness in different configurations. First, the data
set is generated from the following bivariate MSLN distri-
bution with given parameters:

ψ (yi;μ, Σ,λ) , μ = (μ1, μ2)
T
,

Σ =

[
σ11 σ12

σ21 σ22

]
, λ = (λ1, λ2)

T
, i = 1, . . . , n.(34)

Next, the data set are generated from the following three-
variate MSLN distribution with given parameters:

ψ (yi;μ, Σ,λ) , μ = (μ1, μ2, μ3)
T
,

Σ =

⎡⎣ σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

⎤⎦ ,

λ = (λ1, λ2, λ3)
T
, i = 1, . . . , n.(35)

True parameters are represented in Table 1 and also sim-
ulated data examples are displayed with Figures 2 and 3. We
can observe the peakedness, skewness and heavy-tailedness
of the simulated data sets from these figures.

Tables 2 and 3 summarize the simulation results of
Cases I–IV implemented for the sample sizes 200, 400,
and 600. These tables are simulation examples of bivari-
ate MSLN distribution, which consist of the true param-
eter values, bias and the mean Euclidian distance values
of estimates. It can be observed from the tables that the
proposed algorithm works accurately and estimate all pa-
rameters. Furthermore, the mean Euclidian distances for all
parameter estimates are getting smaller when the sample
size (n) increases and according to the bias values of esti-
mates, the parameter estimates are very close to the true
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Table 1. True parameter values for the MSLN distribution

Case μ1 μ2 μ3 σ11 σ12 σ13 σ22 σ23 σ33 λ1 λ2 λ3

I 4 4 – 1.5 0 – 1.5 – – 5 5 –
II 4 4 – 1.5 0 – 1.5 – – 5 −5 –
III 4 4 – 5 0 – 0.5 – – 1 1 –
IV 4 4 – 1 0 – 1 – – 5 −0.1 –
V 4 4 1 1.5 0 0 1.5 0 1.5 −2 −2 2
VI 4 4 1 2 0 0 2 0 2 5 5 5

Figure 2. Simulated data set of n = 600 from bivariate
MSLN distribution for Cases I–IV. For the sake of simplicity, it
is taken as μ = (4, 4)

T . a) λ = (5, 5)
T
, σ11 = 1.5, σ12 = 0

and σ22 = 1.5. b) λ = (5,−5)
T
, σ11 = 1.5, σ12 = 0 and

σ22 = 1.5. c) λ = (1, 1)
T
, σ11 = 5, σ12 = 0 and σ22 = 0.5.

d) λ = (5,−0.1)
T
, σ11 = 1, σ12 = 0 and σ22 = 1.

Figure 3. Simulated data set of n = 600 from three-variate
MSLN distribution for Cases V–VI. For simplicity, it is set as

μ = (4, 4, 1)
T . a) λ = (−2,−2, 2)

T
, σ11 = 1.5, σ12 =

0, σ13 = 0, σ22 = 1.5, σ23 = 0 and σ33 = 1.5. b)

λ = (5, 5, 5)
T
, σ11 = 2, σ12 = 0, σ13 = 0, σ22 = 2, σ23 = 0

and σ33 = 2.

parameter values. In addition to that, the center, scale, and
skewness of the simulated data generated from (34) can be

captured superbly.
Similarly, Table 4 gives the simulation results for Cases

V and VI. These tables are simulation examples of three-
variate MSLN distribution conducted for the sample sizes
200, 400, and 600. Also, this table includes the true param-
eter values, bias, and the mean Euclidian distance values of
estimates. The observed algorithm gives exact results for the
three-variate case. We observe the same results with the bi-
variate case as when the sample size (n) increases, the mean
Euclidian distances for all parameter estimates decrease for
all parameters. Moreover, the center, scale, and skewness
of the simulated data generated from (35) can be predicted
perfectly.

4.2 Real data example: Mastitis in dairy
cattle

We will analyze the Mastitis data set given by [13] in
order to illustrate the applicability of the proposed distri-
bution. The data set was obtained from the appearance of
the infectious disease called mastitis in dairy cows and was
used to compare the average of the milk yield in two years,
consists of the milk yields (in thousands of liters) of 107
dairy cows from a single herd in two consecutive years. For
this data set, although all animals were healthy in the first
year, in the second year 27 cows became missing data as
they were infected. For further information see [13]. This
data set was used by [10] for a multivariate generalization of
the Heckman model to see the dropouts in repeated contin-
uous responses. Also, [9] analyzed this data set for the ECM
estimation in multivariate skew-normal data with dropout.

Since this data set includes extreme points, we consider
that it may be an adequate example of modeling skewness
and heavy-tailedness. Missing observations are ignored in
the case of this example and analyses were made for the
rest of the data set. Thus, we will use this data set to com-
pare the performance of the MSLN distribution with the
performance of MSTN and MSGLN distributions. We will
use the following criteria for the comparison of distributions:

−2�
(
Θ̂
)
+mcn

where � (·) represents the maximized log-likelihood, m is the
number of free parameters to be estimated in the model and
cn is the penalty term. Here, we take cn = 2 for the Akaike
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Table 2. Bias and mean Euclidean distance values of estimates for the sample size 200, 400 and 600 for Cases I and II

Case I Case II

n Parameter True Bias Distance Parameter True Bias Distance

μ1 4 0.0075 0.1645 μ1 4 0.0107 0.1614
μ2 4 0.0063 μ2 4 -0.0048
σ11 1.5 0.0076 0.2000 σ11 1.5 0.0080

200 σ12 0 -0.0119 σ12 0 0.0192 0.2037
σ22 1.5 0.0112 σ22 1.5 0.0119
λ1 5 0.0491 0.6228 λ1 5 0.0347 0.6356
λ2 5 0.0647 λ2 -5 -0.0374

μ1 4 0.0005 0.1167 μ1 4 0.0067 0.1135
μ2 4 0.0052 μ2 4 0.0014
σ11 1.5 0.0081 0.1443 σ11 1.5 -0.0026 0.1394

400 σ12 0 -0.0079 σ12 0 0.0088
σ22 1.5 0.0022 σ22 1.5 0.0122
λ1 5 0.0217 0.4659 λ1 5 0.0043 0.4389
λ2 5 0.0099 λ2 -5 -0.0251

μ1 4 0.0027 0.0947 μ1 4 0.0019 0.0924
μ2 4 -0.0016 μ2 4 -0.0020

600 σ11 1.5 0.0050 0.1168 σ11 1.5 0.0057 0.1164
σ12 0 0.0038 σ12 0 -0.0025
σ22 1.5 0.0021 σ22 1.5 0.0010
λ1 5 0.0429 0.3686 λ1 5 0.0245 0.3652
λ2 5 0.0259 λ2 -5 -0.0213

Table 3. Bias and mean Euclidean distance values of estimates for the sample size 200, 400 and 600 for Cases III and IV

Case III Case IV

n Parameter True Bias Distance Parameter True Bias Distance

μ1 4 -0.0165 0.3334 μ1 4 0.0039 0.1451
μ2 4 0.0064 μ2 4 -0.0198
σ11 5 0.0704 0.5848 σ11 1 -0.0033 0.1455

200 σ12 0 -0.0111 σ12 0 0.0154
σ22 0.5 0.0030 σ22 1 0.0186
λ1 1 0.0982 0.3897 λ1 5 0.0941 0.6195
λ2 1 0.0743 λ2 -0.1 0.0424

μ1 4 -0.0097 0.2132 μ1 4 0.0025 0.0954
μ2 4 0.0010 μ2 4 0.0014
σ11 5 0.0207 0.3744 σ11 1 0.0011 0.0943

400 σ12 0 0.0023 σ12 0 -0.0037
σ22 0.5 0.0022 σ22 1 0.0053
λ1 1 0.0473 0.2555 λ1 5 0.0495 0.4345
λ2 1 0.0411 λ2 -0.1 -0.0092

μ1 4 0.0007 0.1716 μ1 4 0.0012 0.0795
μ2 4 -0.0014 μ2 4 -0.0004

600 σ11 5 0.0001 0.3041 σ11 1 -0.0010 0.0768
σ12 0 0.0060 σ12 0 0.0008
σ22 0.5 0.0027 σ22 1 0.0055
λ1 1 0.0229 0.1949 λ1 5 0.0405 0.3583
λ2 1 0.0237 λ2 -0.1 -0.0039

information criteria (AIC) ([1]) and cn = log (n) for the

Bayesian information criteria (BIC) ([37]).

We summarize the estimation results in Table 5. It in-

cludes ML estimates, standard errors (SE) of the estimates,

information criterion values of estimates and CPU times

(CT) in seconds, for MSLN, MSTN and MSGLN distribu-

tions. Here, the SEs of estimators for the parameters of the

MSLN distribution are computed by using the method given

by [31]. Details about the computation of the SEs can be

found in sub-section 3.1. Based on the values of informa-
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Table 4. Bias and mean Euclidean distance values of estimates for the sample size 200, 400 and 600 for Cases V and VI

Case V Case VI

n Parameter True Bias Distance Parameter True Bias Distance

μ1 4 -0.0042 0.3522 μ1 4 0.0122 0.3461
μ2 4 -0.0078 μ2 4 -0.0005
μ3 1 0.0058 μ3 1 0.0098
σ11 1.5 0.0121 0.3586 σ11 2 0.0293 0.4612
σ12 0 -0.0074 σ12 0 -0.0025

200 σ13 0 0.0159 σ13 0 -0.0190
σ22 1.5 0.0187 σ22 2 0.0176
σ23 0 0.0169 σ23 0 -0.0169
σ33 1.5 0.0144 σ33 2 0.0053
λ1 -2 -0.0830 0.6557 λ1 5 0.0390 0.9263
λ2 -2 -0.0795 λ2 5 0.0130
λ3 2 0.0640 λ3 5 -0.0168

μ1 4 -0.0105 0.2404 μ1 4 0.0073 0.2451
μ2 4 0.0064 μ2 4 0.0018
μ3 1 0.0094 μ3 1 0.0095
σ11 1.5 -0.0010 0.2534 σ11 2 0.0144 0.3264
σ12 0 -0.0065 σ12 0 -0.0010

400 σ13 0 0.0062 σ13 0 -0.0156
σ22 1.5 0.0253 σ22 2 0.0120
σ23 0 0.0033 σ23 0 -0.0035
σ33 1.5 -0.0016 σ33 2 -0.0001
λ1 -2 -0.0414 0.4623 λ1 5 0.0181 0.6267
λ2 -2 -0.0616 λ2 5 0.0230
λ3 2 0.0433 λ3 5 -0.0279

μ1 4 -0.0076 0.1924 μ1 4 0.0062 0.2085
μ2 4 0.0028 μ2 4 0.0055
μ3 1 0.0006 μ3 1 -0.0017
σ11 1.5 -0.0034 0.2080 σ11 2 0.0060 0.2637
σ12 0 -0.0052 σ12 0 -0.0085

600 σ13 0 0.0018 σ13 0 0.0005
σ22 1.5 0.0108 σ22 2 0.0053
σ23 0 -0.0026 σ23 0 -0.0001
σ33 1.5 0.0077 σ33 2 0.0064
λ1 -2 -0.0216 0.3705 λ1 5 0.0023 0.5360
λ2 -2 -0.0354 λ2 5 0.0022
λ3 2 0.0422 λ3 5 0.0149

tion criteria given in Table 5, the best fit for this data set is

obtained from MSLN distribution. It can also be observed

that the computation time of the MSLN distribution is su-

perior to the computation time of the MSTN and MSGLN

distributions. The reason is that the MSLN distribution has

a fewer number of parameters than the MSTN and MS-

GLN distributions. We note that the MSTN distribution

includes a degrees of freedom parameter (ν) and the MS-

GLN distribution has a shape parameter (α). Further, we

display the scatter plot of the data set with contour plots of

the fitted densities obtained from MSLN, MSTN and MS-

GLN distributions in Figure 4 (a), (b) and (c). This figure

indicates that the MSLN distribution can provide a more

accurate fit to the data than the MSTN and MSGLN dis-

tributions.

5. CONCLUSIONS

In this paper, we have proposed the usage of MSLN distri-
bution, which has fewer parameters than the MSTN distri-
bution, as an alternative to the MSTN distribution to model
skew and heavy-tailed multivariate data sets. We have given
the EM algorithm to obtain the ML estimates for the pa-
rameters of the MSLN distribution. A simulation study has
been provided to demonstrate the performance of the pro-
posed distribution and it has confirmed that the proposed
EM algorithm works accurately to estimate the parameters.
Furthermore, we have given a real data example to show the
applicability of the MSLN distribution over the MSTN and
MSGLN distributions to model both skewness and heavy-
tailedness in the data. We have observed that the MSLN dis-
tribution is superior to the MSTN and MSGLN distributions
and can be used as an alternative distribution for modeling
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Table 5. Estimation results obtained from MSLN, MSTN and MSGLN distributions

MSTN MSGLN MSLN

Estimate SE Estimate SE Estimate SE

μ11 5.0988 0.4692 5.2315 0.1783 4.7624 0.2829
μ21 5.4257 0.4694 5.6146 0.2321 5.1229 0.3270
σ11 1.1023 0.4868 0.9080 0.4127 1.3974 0.4917
σ12 1.1883 0.2692 0.9209 0.1813 1.5512 0.2644

Model σ22 1.9929 0.3571 1.5607 0.3328 2.2844 0.3388
λ11 0.6546 1.0051 0.4310 0.3801 1.2546 0.9977
λ21 1.2801 1.1900 0.9298 0.5014 1.7456 1.2947
ν 6.4084 4.2291 – – – –
α – – 0.9963 0.3918 – –

�( ̂Θ) -460.7897 -265.7059 -255.5245
Information Criteria BIC 956.6356 566.4681 541.7232

AIC 937.5794 547.4119 525.0490

CPU times in seconds CT 15.1563 21.3906 7.8594

Figure 4. Scatter plot of the mastitis (milk yield in the first
year, milk yield in the first year) data set along with the
contour plots of the fitted MSTN (a), MSGLN (b), and

MSLN (c) distributions.

this type of data set. Furthermore, for future study, similar
definitions can be introduced using other forms of Azzalini
type skew normal distribution mentioned in the Introduc-
tion.
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