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Semiparametric transformation models
of survival-out-of-hospital
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Recurrent event data with a terminal event commonly
arise in biomedical studies, and the survival-out-of-hospital
process is a useful alternative framework for the analysis of
recurrent/terminal event data with non-negligible event du-
ration. In this article, we propose a class of semiparametric
transformation models for the survival-out-of-hospital pro-
cess, and the proposed models offer great flexibility in for-
mulating covariate effects on the probability of survival-out-
of-hospital. Estimating equation approaches are developed
for the model parameters, and the asymptotic properties of
the resulting estimators are established. The finite sample
performance of the proposed estimators is examined through
simulation studies. An application to a Centers for Medicare
and Medicaid Services study is provided.
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1. INTRODUCTION

Recurrent event data are frequently encountered in clin-
ical and observational studies, where each subject may po-
tentially experience a particular event repeatedly over time
[2, 16]. In many applications, there may exist a terminal
event such as death that stops the follow-up, and both the
recurrent and terminal events are of interest. A number of
methods have been developed in the literature for analyzing
recurrent/terminal event data, including marginal models
and joint models. Marginal models focus on the marginal
rates of the recurrent and terminal events, and the asso-
ciation between the recurrent and terminal events is left
unspecified [3, 9, 23, 26, 36]. Joint models use frailties or
random effects to account for the dependence between the
recurrent and terminal events [1, 12, 14, 18, 28, 31, 32].

A frequently arising example of the recurrent/terminal
event data involves hospitalization representing the recur-
rent event and death serving as a terminal event. Since a
patient being hospitalized at some time is not at risk for
a further hospitalization at the same time, one needs to
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adjust for hospital duration in the analysis of this type of
data. However, there is limited discussion about the analysis
of recurrent event data with non-negligible event duration.
[35] considered semiparametric and nonparametric analy-
sis of recurrent events with observation gaps. [11] suggested
a generalized Cox regression model to accommodates non-
negligible event duration using adjusted risk sets. However,
these two methods did not take a terminal event into con-
sideration.

For the analysis of recurrent/terminal event data with
non-negligible event duration, we are interested in the joint
event of being out-of-hospital and being alive, and consider
the survival-out-of-hospital process, defined as a temporal
process (indicator function) taking the value 1 when the
patient is currently alive and not hospitalized, and 0 oth-
erwise [33]. The survival-out-of-hospital process is a useful
alternative framework for the analysis of recurrent/terminal
event data with non-negligible event duration. In particular,
this process takes quality of life information into account,
and leave the dependence structure between the temporal
indicator process and terminal event completely unspeci-
fied. In addition, survival-out-of-hospital may be viewed as
a refinement of survival time in the study of chronic dis-
eases, such as in a study of end-stage liver disease, where
the refinement is the incorporation of the patient’s hospital
admission and length of stay information.

Since the survival-out-of-hospital process is framed as a
temporal process by a continuous follow-up time, it seems
natural to use the existing temporal process regression
methods for the analysis [5, 7, 29, 30]. For example, [7]
proposed functional generalized linear models, in which co-
variate effects are completely unspecified. [30] developed a
partly functional temporal process regression model, where
some covariate effects are constant while others are time-
varying. In addition, [20] suggested martingale-based esti-
mation equations to directly modeling the survival function
for right censored data. However, none of these approaches
can be applied directly to our setting of the survival-out-of-
hospital process, along with the assumed data structure and
model of interest.

Recently, [33] proposed a semiparametric multiplicative
model for the survival-out-of-hospital process, in which the
covariates have multiplicative effects on an unspecified base-
line probability of being alive-and-out-of-hospital. However,
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this multiplicative model cannot guarantee that the esti-
mated baseline probability is not bounded by 1. In this ar-
ticle, we propose a class of semiparametric transformation
models for the survival-out-of-hospital process, which avoids
the issue that the baseline probability is bounded by 1 by
choosing the appropriate transformation function. Specifi-
cally, we do not directly estimate the baseline probability,
but focus on the estimation of an unspecified baseline func-
tion (as shown in model (1) below) without requiring any
constraints. The proposed transformation models are flex-
ible and robust in that the baseline probability does not
need to be specified, and define a very rich family of models
through the transformation function, including the multi-
plicative model as a special case.

The remainder of the article is organized as follows. Sec-
tion 2 describes the proposed model, and presents estimation
procedures for the model parameters. The asymptotic prop-
erties of the resulting estimators are established in Section 3.
Section 4 reports some simulation results for evaluating the
proposed method. An application to a Centers for Medicare
and Medicaid Services study is provided in Section 5, and
some concluding remarks are given in Section 6. All proofs
are relegated to the Appendix.

2. MODEL AND ESTIMATION
PROCEDURES

Let D be the death (terminal event) time and C be the
censoring time. Write T = D ∧C and δ = I(D ≤ C), where
a∧ b = min(a, b) and I(·) is the indicator function. Let Z(t)
be the p×1 vector of external time-dependent covariates [13].
Let O(t) = 1 if a subject is in the hospital at time t, and 0 if
out of hospital. The probability of interest is the probability
that a subject is alive and out-of-hospital at time t, that is,

π(t) = P{O(t) = 0, D > t|Z(t)}.

Our proposed transformation models take the form

(1) g{π(t)} = π0(t) + β′
0Z(t),

where g(·) is pre-specified and assumed to be twice con-
tinuously differentiable and strictly monotonic, β0 is a p-
dimensional vector, and π0(t) is an unspecified baseline func-
tion. Clearly, model (1) defines a very rich family of mod-
els through the link function g. The obvious choices are
the log-log transformation g(x) = log(− log(x)) and the
logit transformation g(x) = log(x/(1 − x)). It also encom-
passes the Box–Cox transformations, in which g is given by
g(x) = [(x + 1)ρ − 1]/ρ (ρ ≥ 0), where ρ = 0 means that
g(x) = log(x + 1). When g(x) = log(x), model (1) reduces
to the multiplicative model studied by [33]. If g(x) = x,
then model (1) becomes a semiparametric additive model,
in which the covariates have additive effects on the baseline
probability of being alive-and-out-of-hospital.

Define A(t) = I(D > t) as the survival indicator, and
A0(t) = I(O(t) = 0, D > t) as the survival-out-of-hospital
indicator. Let τ be the follow-up time, where τ is a pre-
specified constant such that P (C ≥ τ) > 0. In practice, τ
could be chosen as the maximum of observation time T . For
a random sample of n subjects, the observed data consist
of {Oi(t), Ti, δi, Zi(s); 0 ≤ t ≤ Ti, 0 ≤ s ≤ τ, i = 1, ..., n},
where Ti = Di ∧ Ci and δi = I(Di ≤ Ci).

2.1 Known censoring

We first consider the case where the censoring time C is
always known for all subjects. This would be the case in a
clinical trial that censoring results only from administrative
loss-to-follow up, that is, patients have not failed by the
time the data are analyzed. In such cases, the censoring
time is always observed, even on subjects who die prior to
the time of analysis [6]. Although this is inconsistent with
most observational studies, it is a useful starting point for
our estimation procedures. In what follows, we assume that
given Z(t), the censoring time C is independent of A0(t).

Define

Mi(t)= I(Ci ≥ t)
[
A0

i (t)−g−1{π0(t)+β′
0Zi(t)}

]
, i=1, ..., n,

where A0
i (t) = I(Oi(t) = 0, Di > t), and g−1(·) is the in-

verse function of g(·). Under model (1), Mi(t) is zero-mean
stochastic process. Thus, for a given β, a reasonable estima-
tor for π0(t) is the solution to

n∑
i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π0(t) + β′Zi(t)}
]

(2)

= 0, 0 ≤ t ≤ τ,

where τ is a prespecified constant such that P (Ti ≥ τ) > 0.
Denote this estimator by π̂0(t;β). To estimate β0, using the
generalized estimating equation approach [15], we propose
the following class of estimating equations for β0:

n∑
i=1

∫ τ

0

I(Ci ≥ t)Zi(t)
[
A0

i (t)− g−1{π̂0(t;β)(3)

+β′Zi(t)}
]
dH(t) = 0,

where H(t) is an increasing and known weight function on

[0, τ ]. Let β̂ denote the solution to (3) and π̂0(t) ≡ π̂0(t; β̂)
the corresponding estimator of π0(t).

Write ġ−1(x) = dg−1(x)/dx. To solve the estimating
equations (2) and (3) simultaneously, we use a Taylor ex-
pansion of g−1{π0(t) + β′Zi(t)} around the current value of

estimates π
(k)
0 (t) and β(k) to get approximated estimating

equations

n∑
i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π(k)
0 (t) + β(k)′Zi(t)}(4)

−ġ−1{π(k)
0 (t) + β(k)′Zi(t)}{π0(t)− π

(k)
0 (t)}

−ġ−1{π(k)
0 (t) + β(k)′Zi(t)}Zi(t)

′{β − β(k)}
]
= 0,
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and

n∑
i=1

∫ τ

0

I(Ci ≥ t)Zi(t)
[
A0

i (t)− g−1{π(k)
0 (t) + β(k)′(5)

×Zi(t)} − ġ−1{π(k)
0 (t) + β(k)′Zi(t)}{π0(t)− π

(k)
0 (t)}

−ġ−1{π(k)
0 (t) + β(k)′Zi(t)}Zi(t)

′{β − β(k)}
]
dH(t) = 0.

Solving (4) for π0(t) and inserting it into (5), we obtain the
(k + 1)th iterative estimator for β0:

β(k+1) = β(k) +
[ ∫ τ

0

{
S(2)(t;π

(k)
0 , β(k))(6)

− S(1)(t;π
(k)
0 , β(k))⊗2

S(0)(t;π
(k)
0 , β(k))

}
dH(t)

]−1

×
∫ τ

0

I(Ci ≥ t)
{
Zi(t)− Z̄(t;π

(k)
0 , β(k))

}

×
[
A0

i (t)− g−1{π(k)
0 (t) + β(k)′

× Zi(t)}
]
dH(t),

where Z̄(t;π0, β) = S(1)(t;π0, β)/S
(0)(t;π0, β), and

S(k)(t;π0, β) =

n∑
i=1

ġ−1{π0(t) + β′Zi(t)}I(Ci ≥ t)Zi(t)
⊗k,

k = 0, 1, 2.

Here a⊗0 = 1, a⊗1 = a and a⊗2 = aa′ for any vector a.
Applying the updated version β(k+1) and solving (5) for
π0(t), we can get

π
(k+1)
0 (t) = π

(k)
0 (t) + S(0)(t;π

(k)
0 , β(k))−1(7)

×
{ n∑

i=1

I(Ci ≥ t)
[
A0

i (t)

− g−1{π(k)
0 (t) + β(k)′Zi(t)}

]
− S(1)(t;π

(k)
0 , β(k))′{β(k+1) − β(k)}

}
.

This iteration is continued until convergence, and β̂ and
π̂0(t) are obtained at convergence. For the convergence, sev-
eral criteria can be applied and in the simulation studies be-
low, we used the absolute differences between the iterative
estimates of the parameters (≤ 10−4). Our proposed itera-
tive algorithms are similar to the Newton–Raphson method.
If the iterative algorithms (6) and (7) converge, then they

will converge to β̂ and π̂. In order to guarantee the con-
vergence of the iterative algorithms, we need the condition
that the matrix A is nonsingular, which is given in condi-
tion (C5) below. That is, under this condition, the solutions
from the iterative algorithms are asymptotically equivalent
to the solutions of (2) and (3).

The integral of the baseline survival-out-of-hospital prob-
ability is defined as

Π0(t) =

∫ t

0

π0(u)du,

which can be interpreted as the expected length of being
alive and out-of-hospital up to time t for a subject with the
baseline value of each covariate. We can estimate Π0(t) by

Π̂0(t) =
∫ t

0
π̂0(u)du. In addition, as shown in model (1), the

baseline probability can be expressed as g−1{π0(t)}, which
can be estimated by g−1{π̂0(t)}/max0≤t≤τ g

−1{π̂0(t)}. This
modification ensures that the estimated baseline probability
is bounded by 1.

2.2 Random censoring

We now consider a more realistic scenario where the cen-
soring time C is random, implying that C is unknown when
the terminal event time D occurs first. In this case, one can-
not use the estimating equations (2) and (3), due to Ci being
missing for dead subjects. A naive method is to set the cen-
soring time as Di or the maximum follow-up time, which
may lead to substantial bias in estimating β0 and π0(t).
In addition, one could use weighting techniques to recover
missing censoring times, such as the inverse probability of
censoring weighting and the inverse probability of survival
weighting [9, 19]. However, it may be tedious to carry out
weighted versions of (2) and (3), due to the time line being
continuous. For this, we use an imputation approach which
is easy to implement [23, 33].

We specify the proportional hazards model for the cen-
soring time as

(8) λC(t|Z) = λC
0 (t) exp{γ′

0Z(t)},

where γ0 is a vector of unknown regression parameters, and
λC
0 (t) is an unspecified baseline hazard function [4]. Let γ̂ be

the maximum partial likelihood estimator of γ0, and Λ̂C
0 (t)

be the Breslow estimator of the baseline cumulative hazard
function ΛC

0 (t) =
∫ t

0
λC
0 (u)du [8].

We will create M imputed datasets, and in the mth im-
puted data set, for a subject with Ci ≤ Di, we set the im-
puted censoring time as the known censoring time. For a

subject with Ci > Di, we impute C
〈m〉
i from the estimated

conditional survival function:

Ĝi(t; γ̂) = I(Di ≤ t) exp
{
Λ̂C
i (Di; γ̂)− Λ̂C

i (t; γ̂)
}
,

where dΛ̂C
i (t; γ̂) = exp{γ̂′Z(t)}dΛ̂C

0 (t). For the mth im-

puted data set, by replacing Ci with C
〈m〉
i in the estimat-

ing equations (2) and (3), we can obtain the estimators

of β0 and π0(t), denoted by β̂〈m〉 and π̂
〈m〉
0 (t), respectively

(m = 1, 2, ...,M). In what follows, we include γ̂ in the un-

censored indicator I(C
〈m〉
i ≥ t; γ̂) to emphasize that C

〈m〉
i
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depends on the estimator γ̂. Similarly to (6), we can get the
(k + 1)th iterative estimator for β0:

β(k+1)〈m〉 = β(k)〈m〉 +
[ ∫ τ

0

{
S(2)〈m〉(t;π

(k)〈m〉
0 , β(k)〈m〉, γ̂)

− S(1)〈m〉(t;π
(k)〈m〉
0 , β(k)〈m〉, γ̂)⊗2

S(0)〈m〉(t;π
(k)〈m〉
0 , β(k)〈m〉, γ̂)

}
dH(t)

]−1

×
∫ τ

0

I(C
〈m〉
i ≥ t; γ̂)

{
Zi(t)

− Z̄〈m〉(t;π
(k)〈m〉
0 , β(k)〈m〉, γ̂)

}
×

[
A0

i (t)− g−1{π(k)〈m〉
0 (t) + β(k)〈m〉′

× Zi(t)}
]
dH(t),

where

S(k)〈m〉(t;π0, β, γ) =

n∑
i=1

ġ−1{π0(t) + β′Zi(t)}

× I(C
〈m〉
i ≥ t; γ)Zi(t)

⊗k,

and

Z̄〈m〉(t;π0, β, γ) =
S(1)〈m〉(t;π0, β, γ)

S(0)〈m〉(t;π0, β, γ)
.

In a similar manner, we can also obtain

π
(k+1)〈m〉
0 (t) = π

(k)〈m〉
0 (t) + S(0)〈m〉(t;π

(k)〈m〉
0 , β(k)〈m〉, γ̂)−1

×
{ n∑

i=1

I(C
〈m〉
i ≥ t; γ̂)

[
A0

i (t)

− g−1{π(k)〈m〉
0 (t) + β(k)〈m〉′Zi(t)}

]
− S(1)〈m〉(t;π

(k)〈m〉
0 , β(k)〈m〉, γ̂)′

× {β(k+1)〈m〉 − β(k)〈m〉}
}
.

The iteration is continued until convergence, and β̂〈m〉 and

π̂
〈m〉
0 (t) are obtained at convergence for the mth imputed

data set (m = 1, 2, ...,M). Then β0 and π0(t) can be esti-
mated by the following pooled estimators:

(9) β̂M = M−1
M∑

m=1

β̂〈m〉,

and

(10) π̂M
0 (t) = M−1

M∑
m=1

π̂
〈m〉
0 (t).

An imputation version of Π̂0(t), denoted by Π̂M
0 (t), is ob-

tained by integrating (10). In practice, M = 5 or 10
would suffice, and increasingM will generally increase preci-
sion, albeit with diminishing returns [33, 34]. The proposed
method is also valid for M = 1, although this may be less
efficient.

3. ASYMPTOTIC PROPERTIES

In order to study the asymptotic properties of the pro-
posed estimators, we need the following regularity condi-
tions:

(C1) {Oi(·), Ti, δi, Zi(·)} (i = 1, ..., n) are independent
and identically distributed.

(C2) P{Ci ≥ τ} > 0.
(C3) Zi(t) is almost surely of bounded variation on [0, τ ].
(C4) H(t) converges almost surely to a nonrandom and

bounded function H̃(t) uniformly in t ∈ [0, τ ].
(C5) The matrix A is nonsingular, where

A =

∫ τ

0

[
s(2)(t)− s(1)(t)⊗2

s(0)(t)

]
dH̃(t),

and s(k)(t) are the limits of S(k)(t;π0, β) (k = 0, 1, 2).

The asymptotic properties of the proposed estimators are
summarized in the following theorems with the proof given
in the Appendix. We begin by describing the asymptotic
properties of β̂ and π̂0(t).

Theorem 1. Under the regularity conditions (C1)–(C5),

β̂ and π̂0(t) exist and are unique. Moreover, β̂ is strongly
consistent to β0, and π̂0(t) converges almost surely to π0(t)
uniformly in t ∈ [0, τ ].

Theorem 2. Under the regularity conditions (C1)–(C5),
we have

(i) n1/2(β̂ − β0) converges in distribution to a zero-mean
normal random vector with a covariance matrix that
can be consistently estimated by Â−1Σ̂Â−1, where Σ̂ =
n−1

∑n
i=1 ξ̂

⊗2
i ,

ξ̂i =

∫ τ

0

I(Ci ≥ t){Zi(t)− Z̄(t; π̂0, β̂)}
[
A0

i (t)

− g−1{π̂0(t) + β̂′Zi(t)}
]
dH(t),

and

Â =

∫ τ

0

[
S(2)(t; π̂0, β̂)−

S(1)(t; π̂0, β̂)
⊗2

S(0)(t; π̂0, β̂)

]
dH(t).

(ii) n1/2{π̂0(t) − π0(t)} converges weakly on [0, τ ] to a
zero-mean Gaussian process whose covariance func-
tion at (t, s) can be consistently estimated by Γ̂(t, s) =

n−1
∑n

i=1 φ̂i(t)φ̂i(s), where

φ̂i(t) = S(0)(t; π̂0, β̂)
−1I(Ci ≥ t)

[
A0

i (t)

− g−1{π̂0(t) + β̂′Zi(t)}
]
− Z̄(t; π̂0, β̂)

′Â−1ξ̂i.

The asymptotic properties of β̂M and π̂M
0 (t) are given in

the next two theorems.
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Theorem 3. Under the regularity conditions (C1)–(C5),

β̂M and π̂M
0 (t) exist and are unique. Moreover, β̂M is

strongly consistent to β0, and π̂M
0 (t) converges almost surely

to π0(t) uniformly in t ∈ [0, τ ].

Theorem 4. Under the regularity conditions (C1)–(C5),
we have

(i) n1/2(β̂M −β0) converges in distribution to a zero-mean
normal random vector with a variance matrix that can
be consistently estimated by (ÂM )−1Σ̂M (ÂM )−1, where

Σ̂M = n−1
∑n

i=1 ξ̂
M⊗2
i ,

ξ̂Mi = M−1
M∑

m=1

∫ τ

0

I(C
〈m〉
i ≥ t; γ̂)

{
Zi(t)

− Z̄〈m〉(t; π̂
〈m〉
0 , β̂〈m〉, γ̂)

}[
A0

i (t)

− g−1{π̂〈m〉
0 (t) + β̂〈m〉′Zi(t)}

]
dH(t),

and

ÂM = M−1
M∑

m=1

∫ τ

0

[
S(2)〈m〉(t; π̂

〈m〉
0 , β̂〈m〉, γ̂)

− S(1)〈m〉(t; π̂
〈m〉
0 , β̂〈m〉, γ̂)⊗2

S(0)〈m〉(t; π̂
〈m〉
0 , β̂〈m〉, γ̂)

]
dH(t).

(ii) n1/2{π̂M
0 (t) − π0(t)} converges weakly on [0, τ ] to a

zero-mean Gaussian process whose covariance function
at (t, s) can be consistently estimated by Γ̂M (t, s) =

n−1
∑n

i=1 φ̂
M
i (t)φ̂M

i (s), where

φ̂M
i (t) = M−1

M∑
m=1

S(0)〈m〉(t; π̂
〈m〉
0 , β̂〈m〉, γ̂)−1

× I(C
〈m〉
i ≥ t; γ̂)

[
A0

i (t)− g−1{π̂〈m〉
0 (t)

+ β̂〈m〉′Zi(t)}
]
−M−1

×
M∑

m=1

Z̄〈m〉(t; π̂
〈m〉
0 , β̂〈m〉, γ̂)′(ÂM )−1ξ̂Mi .

4. SIMULATION STUDIES

We conducted simulation studies to examine the finite
sample properties of the estimators. In the study, the co-
variate Z was generated from a Bernoulli distribution with
success probability 0.5. The model for the survival-out-of-
hospital process was taken as g{π(t)} = π0(t) + β′

0Z, where
π0(t) = 0.5 − log(t) or π0(t) = 0.5 − 0.01t, and β0 = 0
or 0.5. The death time D was generated by the hazard
function λD(t) = λD

0 (t) exp{θ0Z}, where λD
0 (t) = 0.3 and

θ0 = 0.3. The censoring time C was generated from the haz-
ard function λC(t) = λC

0 (t) exp{γ0Z}, where λC
0 (t) = 0.5

and γ0 = 0.3. We considered two choices for g: the log-log

transformation g1(x) = log(− log(x)) and the logit transfor-
mation g2(x) = log(x/(1 − x)). In all simulations, we con-
sidered two choices for the weight functions: H1(t) = t and
H2(t) = n−1

∑n
i=1 A

0
i (t). Under the preceding settings, the

censoring rate is about 60%. In addition to the known cen-
soring case, we evaluate the performance of the proposed
imputation method with M = 1 and 5. The results pre-
sented below are based on 1000 replications with sample
sizes n = 100 and 200, and final estimates were reached at
convergence.

Tables 1–3 present the simulation results on the estimate
of β0 under g1(x) and g2(x) with M = 1 and 5, respectively.
In these tables, Bias is the sample mean of the estimate
minus the true value, SE is the sampling standard error of
the estimate, SEE is the sample mean of the standard error
estimate, and CP is the 95% empirical coverage probabil-
ity based on the normal approximation. It can be seen from
Tables 1 and 2 that the proposed estimators were nearly un-
biased, indicating that our estimators were consistent even
based on M = 1. Also, there was a good agreement between
the estimated and the empirical standard errors, and the
95% empirical coverage probabilities were reasonable. The
results given in Table 3 show that the proposed method
worked efficiently based on M = 5, and multiple imputa-
tion was more efficient than single imputation. In general,
increasing M will decrease the estimated standard errors,
although with diminishing returns. This was also demon-
strated empirically in [33, 34]. In addition, for the above
situations, the results are similar for the two weight func-
tions H1(t) and H2(t), and the results become better when
the sample size increases from 100 to 200.

Tables 4–7 present the simulation results on estimation
of π0(t) at time points t = 1, 2, and 3 under g1(x) and g2(x)
with M = 1. These simulation results suggest that the pro-
posed method still performed well and essentially provided
unbiased estimates for π0(t). The asymptotic standard er-
rors present a reasonable description of the variability for
the proposed estimators, and the coverage probabilities of
the 95% confidence intervals were close to the nominal level.
We also considered other setups including M = 5, and the
results were similar to those given above.

5. AN APPLICATION

In this section, we applied the proposed method to a
dataset from the Centers for Medicare and Medicaid Ser-
vices (CMS) [10, 24, 25]. CMS is the agency within United
States Department of Health and Human Services that man-
ages the major health care plans in the United States. CMS
supervises programs including Medicare, Medicaid, the Chil-
dren’s Health Insurance Program and the state and federal
health insurance marketplaces. CMS collects and analyzes
data, generates research reports, and works to eliminate in-
stances of fraud and abuse within the healthcare system.
The CMS dataset used in this study were collected between
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Table 1. Simulation results for the estimation of β0 under g1(x) with M = 1

Censoring n π0(t) β0 Bias SE SEE CP

H1(t)

C known 100 0.5− log(t) 0 -0.0015 0.0923 0.0886 0.944
0.5 0.0246 0.0887 0.0822 0.925

0.5− 0.01t 0 -0.0033 0.0620 0.0616 0.938
0.5 0.0363 0.0692 0.0684 0.928

200 0.5− log(t) 0 0.0002 0.0674 0.0587 0.948
0.5 0.0169 0.0636 0.0605 0.932

0.5− 0.01t 0 0.0012 0.0473 0.0459 0.950
0.5 0.0185 0.0496 0.0497 0.934

C random 100 0.5− log(t) 0 -0.0019 0.0791 0.0779 0.937
0.5 0.0237 0.0908 0.0838 0.930

0.5− 0.01t 0 0.0013 0.0638 0.0619 0.943
0.5 0.0350 0.0693 0.0684 0.926

200 0.5− log(t) 0 -0.0010 0.0648 0.0585 0.937
0.5 0.0091 0.0631 0.0611 0.938

0.5− 0.01t 0 -0.0002 0.0468 0.0459 0.938
0.5 0.0171 0.0501 0.0494 0.930

H2(t)

C known 100 0.5− log(t) 0 -0.0012 0.0934 0.0871 0.936
0.5 0.0334 0.0937 0.0910 0.927

0.5− 0.01t 0 0.0005 0.0674 0.0641 0.936
0.5 0.0386 0.0776 0.0717 0.933

200 0.5− log(t) 0 -0.0013 0.0701 0.0655 0.936
0.5 0.0106 0.0702 0.0678 0.941

0.5− 0.01t 0 0.0006 0.0481 0.0472 0.948
0.5 0.0239 0.0540 0.0525 0.930

C random 100 0.5− log(t) 0 0.0011 0.0935 0.0865 0.930
0.5 0.0219 0.0942 0.0903 0.931

0.5− 0.01t 0 0.0021 0.0692 0.0637 0.930
0.5 0.0385 0.0726 0.0717 0.928

200 0.5− log(t) 0 0.0027 0.0708 0.0641 0.931
0.5 0.0079 0.0709 0.0682 0.952

0.5− 0.01t 0 0.0013 0.0463 0.0476 0.950
0.5 0.0216 0.0554 0.0524 0.930

2008 and 2010, and our research interests include identifying
clinical variables associated with the survival-out-of-hospital
and describing their effects on the survival-out-of-hospital
process.

We restricted the sample for the CMS dataset to n =
298 patients with multiple hospitalization records, and the
average number of hospitalization per patient ranged from 2
to 3. The covariates included gender, as well as the following
list of chronic conditions: Alzheimer’s or related disorders or
senility, heart failure, cancer, chronic obstructive pulmonary
disease (COPD) and diabetes. Since the hospitalization and
death times were recorded in days, t represents days (that
is, days after entering the CMS) in our analysis. The average
hospitalization days of patients was 12.1 days, about 10% of
the subjects died during the observation (that is, for them
Ci > Di). We applied the proposed method to estimate the
regression parameters with the weight functionH(t) = t and
M = 1 and 5, and the analysis results are summarized in

Table 8, where the link functions g1(x) and g2(x) are given
in Section 4.

From Table 8, it can be seen that the covariate effects had
the opposite sign under g1(x) and g2(x). This was because
for x ∈ (0, 1), g1(x) is a decreasing function, while g2(x) an
increasing function. These results showed that Alzheimer’s,
heart failure and COPD had significant negative effects on
the survival-out-of-hospital process. That is, the patients
with Alzheimer’s, heart failure and COPD tended to have
smaller survival-out-of-hospital probability. It is only worth
noting that the parameters have different interpretations for
different g(x), and the covariate effects have different sizes
for various choices of g(x). In addition, as in the simulation
studies, under the same link function, the standard error es-
timates of the covariate effects based on M = 5 were smaller
than those based on M = 1, while the estimates of the co-
variate effects were comparable.

In order to examine which link function fit the data
better, we used the Akaike’s information criterion (AIC)
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Table 2. Simulation results for the estimation of β0 under g2(x) with M = 1

Censoring n π0(t) β0 Bias SE SEE CP

H1(t)

C known 100 0.5− log(t) 0 -0.0058 0.1120 0.1091 0.933
0.5 0.0203 0.1187 0.1123 0.930

0.5− 0.01t 0 0.0004 0.1063 0.1020 0.933
0.5 0.0123 0.1102 0.1069 0.943

200 0.5− log(t) 0 -0.0022 0.0819 0.0826 0.948
0.5 0.0108 0.0826 0.0844 0.956

0.5− 0.01t 0 -0.0031 0.0776 0.0751 0.944
0.5 0.0137 0.0820 0.0792 0.939

C random 100 0.5− log(t) 0 0.0027 0.1102 0.1101 0.953
0.5 0.0261 0.1182 0.1125 0.930

0.5− 0.01t 0 -0.0016 0.1054 0.1010 0.943
0.5 0.0167 0.1134 0.1056 0.933

200 0.5− log(t) 0 -0.0004 0.0863 0.0823 0.937
0.5 0.0083 0.0867 0.0842 0.934

0.5− 0.01t 0 0.0014 0.0786 0.0753 0.937
0.5 0.0057 0.0798 0.0791 0.947

H2(t)

C known 100 0.5− log(t) 0 0.0088 0.1158 0.1103 0.950
0.5 0.0272 0.1192 0.1166 0.930

0.5− 0.01t 0 0.0020 0.1091 0.1031 0.939
0.5 0.0129 0.1167 0.1098 0.937

200 0.5− log(t) 0 0.0002 0.0817 0.0839 0.950
0.5 0.0081 0.0902 0.0877 0.934

0.5− 0.01t 0 0.0033 0.0809 0.0783 0.954
0.5 0.0124 0.0825 0.0818 0.932

C random 100 0.5− log(t) 0 0.0055 0.1172 0.1118 0.933
0.5 0.0248 0.1161 0.1156 0.931

0.5− 0.01t 0 -0.0031 0.1102 0.1041 0.937
0.5 0.0119 0.1182 0.1096 0.931

200 0.5− log(t) 0 -0.0010 0.0883 0.0835 0.931
0.5 0.0070 0.0909 0.0856 0.940

0.5− 0.01t 0 -0.0011 0.0772 0.0778 0.952
0.5 0.0093 0.0897 0.0818 0.930

and the Bayesian information criterion (BIC) to com-
pare the performances of the models with the two link
functions, where AIC = 2m/n + log(RSS/n), BIC =
m log(n)/n + log(RSS/n), m is the number of parameters,
RSS =

∑n
i=1 r

2
i , and ri is the residual for each subject i with

ri = M−1
M∑

m=1

∫ τ

0

I(C
〈m〉
i ≥ t)

[
A0

i (t)

− g−1{π̂〈m〉
0 (t) + β̂〈m〉′Zi(t)}

]
dH(t).

The results are presented in Table 9. It can be seen that
under AIC and BIC, the model with the link function g1(x)
fits the data better for M = 1 or 5.

6. DISCUSSION

In this article, we proposed a class of semiparametric
transformation models for the survival-out-of-hospital pro-
cess, which includes the multiplicative model as a special

case. The proposed transformation models offer great flex-
ibility in formulating covariate effects on the probability of
survival-out-of-hospital, and can avoid the issue that the
baseline probability is bounded by 1. Estimating equation
approaches were developed to obtain consistent and asymp-
totically normal estimators, in which multiple imputation
was used to recover missing censoring times for dead sub-
jects. The simulation studies suggested that the proposed
method performs well. An application to the CMS dataset
was provided to illustrate our method.

For the case of random censoring, the proposed ap-
proach requires modeling the censoring distribution, and
we have used the proportional hazards model for the cen-
soring time. Other competing models, such as the additive
hazards model, the accelerated failure time model, and the
linear transformation model may be used as well. It would
be worthwhile to investigate the potential bias due to mis-
specification for each of these models both analytically and
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Table 3. Simulation results for the estimation of β0 with M = 5

g n π0(t) β0 Bias SE SEE CP

H1(t)

g1(x) 100 0.5− log(t) 0 -0.0037 0.0736 0.0697 0.932
0.5 0.0223 0.0786 0.0720 0.930

0.5− 0.01t 0 0.0028 0.0606 0.0575 0.948
0.5 0.0337 0.0639 0.0634 0.933

200 0.5− log(t) 0 0.0042 0.0560 0.0526 0.930
0.5 0.0113 0.0596 0.0534 0.935

0.5− 0.01t 0 0.0012 0.0435 0.0425 0.941
0.5 0.0160 0.0445 0.0458 0.940

g2(x) 100 0.5− log(t) 0 -0.0023 0.1046 0.1022 0.950
0.5 0.0210 0.1102 0.1058 0.932

0.5− 0.01t 0 0.0011 0.0965 0.0939 0.936
0.5 0.0204 0.1068 0.1003 0.935

200 0.5− log(t) 0 0.0011 0.0797 0.0758 0.933
0.5 0.0127 0.0808 0.0781 0.935

0.5− 0.01t 0 -0.0005 0.0737 0.0698 0.943
0.5 0.0084 0.0776 0.0742 0.934

H2(t)

g1(x) 100 0.5− log(t) 0 -0.0080 0.0813 0.0762 0.938
0.5 0.0264 0.0831 0.0798 0.930

0.5− 0.01t 0 -0.0026 0.0614 0.0596 0.931
0.5 0.0436 0.0704 0.0674 0.929

200 0.5− log(t) 0 0.0001 0.0583 0.0571 0.954
0.5 0.0090 0.0624 0.0579 0.930

0.5− 0.01t 0 -0.0002 0.0452 0.0443 0.952
0.5 0.0223 0.0475 0.0458 0.930

g2(x) 100 0.5− log(t) 0 -0.0047 0.1107 0.1037 0.934
0.5 0.0270 0.1066 0.1053 0.935

0.5− 0.01t 0 -0.0026 0.1010 0.0967 0.931
0.5 0.0063 0.1018 0.1015 0.962

200 0.5− log(t) 0 0.0011 0.0809 0.0771 0.934
0.5 0.0105 0.0774 0.0763 0.965

0.5− 0.01t 0 -0.0064 0.0768 0.0727 0.936
0.5 0.0117 0.0815 0.0766 0.940

numerically. In addition, the proposed method assumed in-
dependent censoring, and a temporal process may be sub-
ject to dependent censoring [34]. It would be desirable to
extend the proposed method to allow for both independent
and dependent censoring.

In practice, the choice of an appropriate link function g
may be based on prior data or the desiring interpretation
of the regression parameters [17]. Note that the magnitudes
of the parameter estimates are quite different for various
choices of g. This is because the parameters have different
interpretations for different g. In order to examine which g
fits the data best in application, we may use the Akaike’s
information criterion and the Bayesian information criterion
to compare the performances of the models with different
link functions. However, it is difficult to find a data-driven
method to estimate the link function. This is a challenging
problem and requires further research efforts.

In the estimating equation approach, an interesting issue
is the effect of the weight H(t). Ideally, we would choose

H(t) to minimize the variances of the proposed estimators.

However, it does not appear possible to derive an optimal

weight without specification of the dependence structure on

the increments of the survival-out-of-hospital process. The

choice of an optimal weight function is usually a complicated

problem [17], and developing a simple but more efficient

estimation procedure requires further research efforts.

APPENDIX: PROOFS OF ASYMPTOTIC
PROPERTIES

Proof of Theorem 1. Without loss of generality, assume

that g(·) is strictly increasing. Because I(Ci ≥ t)[A0
i (t) −

g−1{π0(t) + s + β′Zi(t)}] (i = 1, ..., n) can be written as

sums or products of monotone functions in t, s, and all com-

ponents of β, it can be shown that the processes are man-

ageable [21]. It then follows from the uniform strong law of
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Table 4. Simulation results for the estimation of π0(t) under g1(x) and with n = 100 and M = 1

Censoring π0(t) β0 t Bias SE SEE CP Bias SE SEE CP

H1(t) H2(t)
C known 0.5− log(t) 0 1 0.0256 0.1839 0.1731 0.945 0.0031 0.1831 0.1738 0.938

2 -0.0153 0.2727 0.2541 0.940 -0.0092 0.2657 0.2537 0.950
3 0.0572 0.4163 0.3905 0.953 -0.0042 0.4082 0.3904 0.952

0.5 1 -0.0221 0.1936 0.1837 0.960 0.0271 0.1901 0.1840 0.952
2 0.0068 0.2522 0.2457 0.949 0.0163 0.2449 0.2448 0.951
3 0.0500 0.3814 0.3663 0.943 -0.0572 0.3938 0.3678 0.954

0.5− 0.01t 0 1 0.0173 0.1711 0.1705 0.960 0.0077 0.1761 0.1713 0.945
2 0.0142 0.2449 0.2277 0.945 0.0219 0.2377 0.2289 0.957
3 0.0271 0.3317 0.3030 0.946 0.0376 0.3391 0.3025 0.956

0.5 1 -0.0013 0.1883 0.1831 0.959 0.0211 0.1965 0.1838 0.951
2 0.0202 0.2743 0.2416 0.956 0.0263 0.2819 0.2433 0.953
3 0.0633 0.3221 0.3072 0.938 0.0840 0.3489 0.3069 0.928

C random 0.5− log(t) 0 1 0.0418 0.1754 0.1724 0.953 0.0587 0.1816 0.1743 0.950
2 -0.0009 0.2584 0.2529 0.942 -0.0076 0.2640 0.2538 0.939
3 -0.0266 0.4036 0.3881 0.954 -0.0324 0.4046 0.3931 0.947

0.5 1 -0.0235 0.2022 0.1841 0.949 0.0309 0.1976 0.1844 0.945
2 0.0159 0.2495 0.2456 0.943 0.0188 0.2521 0.2455 0.954
3 -0.0543 0.3838 0.3698 0.955 -0.0078 0.3864 0.3665 0.956

0.5− 0.01t 0 1 0.0040 0.1767 0.1706 0.944 0.0047 0.1787 0.1714 0.946
2 -0.0091 0.2351 0.2286 0.950 0.0235 0.2412 0.2290 0.944
3 0.0315 0.3277 0.3041 0.947 0.0506 0.3493 0.3051 0.944

0.5 1 0.0014 0.1849 0.1827 0.960 -0.0004 0.1916 0.1843 0.938
2 0.0242 0.2727 0.2424 0.950 0.0166 0.2673 0.2449 0.956
3 0.0515 0.3104 0.3087 0.932 0.0643 0.3419 0.3056 0.930

Table 5. Simulation results for the estimation of π0(t) under g1(x) and with n = 200 and M = 1

Censoring π0(t) β0 t Bias SE SEE CP Bias SE SEE CP

H1(t) H2(t)
C known 0.5− log(t) 0 1 0.0416 0.1311 0.1214 0.940 0.0993 0.1271 0.1223 0.956

2 -0.0012 0.1843 0.1767 0.943 -0.0014 0.1908 0.1772 0.930
3 -0.0265 0.2868 0.2708 0.947 0.0116 0.2884 0.2691 0.940

0.5 1 0.0487 0.1366 0.1290 0.948 -0.0198 0.1217 0.1285 0.957
2 -0.0052 0.1728 0.1716 0.958 0.0216 0.1712 0.1710 0.954
3 -0.0431 0.2580 0.2536 0.960 -0.0150 0.2661 0.2599 0.940

0.5− 0.01t 0 1 -0.0001 0.1219 0.1201 0.948 -0.0034 0.1260 0.1206 0.937
2 0.0168 0.1688 0.1596 0.932 0.0056 0.1692 0.1603 0.948
3 0.0150 0.2169 0.2129 0.947 0.0030 0.2342 0.2141 0.941

0.5 1 0.0031 0.1291 0.1280 0.955 -0.0041 0.1278 0.1213 0.961
2 0.0068 0.1754 0.1698 0.956 0.0025 0.1779 0.1691 0.940
3 0.0246 0.2507 0.2349 0.950 0.0344 0.2491 0.2261 0.945

C random 0.5− log(t) 0 1 -0.0069 0.1279 0.1211 0.938 -0.0230 0.1296 0.1218 0.933
2 -0.0247 0.1824 0.1769 0.942 0.0114 0.1852 0.1775 0.950
3 0.0109 0.2773 0.2659 0.934 -0.0273 0.2701 0.2691 0.956

0.5 1 -0.0286 0.1384 0.1285 0.942 0.0508 0.1380 0.1292 0.950
2 0.0074 0.1823 0.1718 0.931 -0.0045 0.1725 0.1720 0.948
3 -0.0271 0.2658 0.2545 0.948 0.0068 0.2496 0.2530 0.953

0.5− 0.01t 0 1 0.0006 0.1209 0.1202 0.952 0.0059 0.1210 0.1201 0.950
2 0.0102 0.1707 0.1608 0.932 0.0118 0.1572 0.1591 0.963
3 0.0179 0.2242 0.2130 0.940 0.0135 0.2186 0.2133 0.955

0.5 1 0.0007 0.1284 0.1274 0.957 -0.0032 0.1278 0.1280 0.951
2 0.0136 0.1731 0.1695 0.954 0.0020 0.1711 0.1692 0.948
3 0.0280 0.2335 0.2250 0.953 0.0307 0.2528 0.2274 0.944
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Table 6. Simulation results for the estimation of π0(t) under g2(x) and n = 100 and M = 1

Censoring π0(t) β0 t Bias SE SEE CP Bias SE SEE CP

H1(t) H2(t)
C known 0.5− log(t) 0 1 0.0388 0.2960 0.2844 0.950 0.0535 0.2952 0.2861 0.952

2 -0.0220 0.3914 0.3713 0.943 -0.0404 0.3847 0.3732 0.959
3 -0.0530 0.5499 0.5288 0.960 -0.0364 0.5532 0.5271 0.961

0.5 1 -0.0371 0.2984 0.2959 0.955 0.0431 0.3205 0.3016 0.942
2 0.0009 0.3776 0.3716 0.948 -0.0007 0.3977 0.3713 0.954
3 -0.0744 0.5657 0.5217 0.959 -0.0475 0.5557 0.5216 0.959

0.5− 0.01t 0 1 0.0023 0.2932 0.2836 0.956 0.0188 0.2794 0.2840 0.955
2 0.0391 0.3801 0.3809 0.953 0.0006 0.4004 0.3810 0.941
3 0.0288 0.5201 0.5135 0.960 0.0462 0.5737 0.5385 0.956

0.5 1 0.0151 0.3028 0.2948 0.945 0.0035 0.2975 0.2942 0.957
2 0.0142 0.4108 0.3954 0.947 0.0376 0.4197 0.3959 0.954
3 0.0334 0.5868 0.5481 0.958 0.0829 0.5843 0.5481 0.958

C random 0.5− log(t) 0 1 0.0299 0.2966 0.2849 0.946 0.0447 0.2809 0.2854 0.958
2 0.0154 0.3763 0.3688 0.950 -0.0127 0.3766 0.3729 0.948
3 -0.0427 0.5497 0.5235 0.960 -0.0683 0.5719 0.5422 0.960

0.5 1 0.0102 0.2958 0.2954 0.949 0.0320 0.3018 0.2967 0.938
2 -0.0029 0.3747 0.3728 0.951 -0.0056 0.3831 0.3731 0.956
3 -0.0096 0.5151 0.5162 0.959 -0.0536 0.5579 0.5224 0.956

0.5− 0.01t 0 1 0.0102 0.2831 0.2836 0.954 0.0220 0.2817 0.2839 0.956
2 0.0054 0.3876 0.3810 0.953 0.0106 0.3964 0.3809 0.952
3 0.0373 0.5391 0.5161 0.960 0.0684 0.5796 0.5296 0.954

0.5 1 0.0208 0.2861 0.2948 0.957 0.0371 0.3023 0.2958 0.953
2 0.0049 0.4018 0.3942 0.958 0.0040 0.4099 0.3941 0.955
3 0.0271 0.5583 0.5347 0.955 0.0143 0.5674 0.5322 0.945

Table 7. Simulation results for the estimation of π0(t) under g2(x) and n = 200 and M = 1

Censoring π0(t) β0 t Bias SE SEE CP Bias SE SEE CP

H1(t) H2(t)
C known 0.5− log(t) 0 1 -0.0286 0.2123 0.2006 0.941 0.0010 0.2106 0.2009 0.934

2 -0.0414 0.2660 0.2592 0.951 -0.0202 0.2551 0.2589 0.952
3 -0.0147 0.3805 0.3625 0.942 -0.0010 0.3486 0.3497 0.960

0.5 1 0.0455 0.2164 0.2072 0.950 0.0445 0.2094 0.2078 0.950
2 -0.0111 0.2612 0.2601 0.954 0.0062 0.2693 0.2610 0.940
3 0.0028 0.3645 0.3556 0.948 -0.0048 0.3650 0.3574 0.931

0.5− 0.01t 0 1 0.0130 0.2006 0.2000 0.946 -0.0175 0.1881 0.1890 0.959
2 0.0214 0.2699 0.2659 0.956 0.0115 0.2629 0.2647 0.952
3 0.0161 0.3644 0.3568 0.953 -0.0002 0.3439 0.3448 0.963

0.5 1 0.0007 0.2121 0.2072 0.952 0.0177 0.2157 0.2080 0.950
2 0.0127 0.2780 0.2747 0.953 0.0162 0.2814 0.2749 0.940
3 0.0170 0.3653 0.3659 0.960 0.0326 0.3850 0.3672 0.944

C random 0.5− log(t) 0 1 0.0453 0.1991 0.2005 0.951 0.0390 0.2185 0.2001 0.942
2 -0.0206 0.2617 0.2601 0.958 -0.0117 0.2686 0.2585 0.950
3 -0.0018 0.3746 0.3615 0.956 -0.0183 0.3721 0.3615 0.963

0.5 1 0.0150 0.2166 0.2074 0.946 0.0367 0.2242 0.2076 0.942
2 0.0027 0.2683 0.2600 0.951 -0.0281 0.2603 0.2593 0.956
3 -0.0456 0.3624 0.3563 0.953 -0.0085 0.3696 0.3547 0.960

0.5− 0.01t 0 1 0.0027 0.2018 0.1993 0.951 0.0244 0.2011 0.2003 0.956
2 0.0045 0.2663 0.2651 0.948 0.0273 0.2691 0.2656 0.954
3 0.0071 0.3507 0.3543 0.959 0.0465 0.3776 0.3558 0.942

0.5 1 0.0128 0.2071 0.2069 0.954 0.0184 0.2083 0.2073 0.960
2 0.0146 0.2731 0.2743 0.958 0.0187 0.2984 0.2757 0.936
3 0.0070 0.3722 0.3654 0.952 0.0197 0.3881 0.3695 0.942
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Table 8. Analysis results for the CMS data: covariate effects on survival-out-of-hospital

M Covariate Est SE p-value Est SE p-value

g1(x) g2(x)
M = 1 Gender -0.5780 0.4048 0.1533 0.1921 0.2090 0.3580

Alzheimer’s 1.1442 0.4150 0.0058 -0.4175 0.2759 0.1302
Heart failure 1.8619 0.6545 0.0044 -0.7518 0.2325 0.0012
Cancer 0.2835 0.4878 0.5611 -0.1096 0.2591 0.6723
COPD 2.1958 0.4784 < 0.0001 -0.8267 0.2130 < 0.0001
Diabetes -0.5879 0.5491 0.2843 0.1743 0.3155 0.5806

M = 5 Gender -0.5055 0.3878 0.1924 0.1915 0.1950 0.3261
Alzheimer’s 1.0019 0.3959 0.0114 -0.4144 0.2539 0.1027
Heart failure 1.6782 0.6227 0.0070 -0.7496 0.2166 0.0005
Cancer 0.2403 0.4680 0.6076 -0.1084 0.2423 0.6546
COPD 1.9569 0.4535 < 0.0001 -0.8210 0.1984 < 0.0001
Diabetes -0.5135 0.5276 0.3304 0.1734 0.2939 0.5552

Note: Est is the estimate of the parameter, and SE is the standard error estimate

Table 9. Model checking for the CMS data under different link functions

g M AIC BIC

g1(x) M = 1 3.1500 3.1819
M = 5 3.2071 3.2391

g2(x) M = 1 3.2245 3.2563
M = 5 3.2816 3.3135

large numbers [21] that for any ε > 0 and κ > 0,

n−1
n∑

i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π0(t) + η + β′Zi(t)}] →

E[I(Ci ≥ t)(g−1{π0(t) + β′
0Zi(t)}−

g−1{π0(t) + η + β′Zi(t)})
]

almost surely and uniformly in t ∈ [0, τ ], η ∈ [0, κ] and β ∈
B = {β : ‖β − β0‖ ≤ ε}. Thus, except for a null set, for all
large n, t ∈ [0, τ ], β ∈ B, and sufficiently large η,

n−1
n∑

i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π0(t) + η + β′Zi(t)}
]
< 0.

(11)

Likewise,

n−1
n∑

i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π0(t)− η + β′Zi(t)}
]
> 0.

(12)

By (11) and (12), and the monotonicity and continuity of g,
for any t ∈ [0, τ ], β ∈ B, there exists a unique π̂0(t;β) that
satisfies

(13)

n∑
i=1

I(Ci ≥ t)
[
A0

i (t)− g−1{π̂0(t;β) + β′Zi(t)}
]
= 0.

Hence, to prove the existence and uniqueness of β̂ and π̂0(t),
it suffices to show that there exists a unique solution to

U(β) = 0, where

U(β) =

n∑
i=1

∫ τ

0

I(Ci ≥ t)Zi(t)
[
A0

i (t)− g−1{π̂0(t;β)

+ β′Zi(t)}
]
dH(t) = 0.

Differentiation of (13) with respect to β gives

(14)
∂π̂0(t;β)

∂β
= −Z̄(t;β),

where

Z̄(t;β) =

∑n
i=1 ġ

−1{π̂0(t;β) + β′Zi(t)}I(Ci ≥ t)Zi(t)∑n
i=1 ġ

−1{π̂0(t;β) + β′Zi(t)}I(Ci ≥ t)
.

Let Â(β) = −n−1∂U(β)/∂β′. It follows from (14) and some
simple algebra that

Â(β) = n−1
n∑

i=1

∫ τ

0

ġ−1{π̂0(t;β) + β′Zi(t)}I(Ci ≥ t)

× {Zi(t)− Z̄(t, β)}⊗2dH(t),

which is always nonnegative definite.

By the uniform strong law of large numbers, we have that
π̂0(t;β) and Z̄(t;β) converge almost surely to nonrandom
functions π0(t;β) and z̄(t;β) uniformly in t and β. Thus,
Â(β) converges almost surely to a nonrandom function A(β)
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uniformly in β, and A(β0) = A, where

A(β) = E
[ ∫ τ

0

ġ−1{π0(t;β) + β′Z(t)}I(C ≥ t){Z(t)

− z̄(t;β)}⊗2dH̃(t)
]
.

It can be checked that n−1U(β0) → 0 almost surely, and A
is nonsingular by condition (C5). Then the uniform conver-
gence of Â(β) and the continuity of A(β) imply that there
exists a small neighborhood of β0 in which Â(β) is nonsingu-
lar when n is large enough. Thus, it follows from the inverse
function theorem [22] that within a small neighborhood

of β0, there exists a unique solution β̂ to U(β) = 0 for all suf-
ficiently large n. The nonnegative definiteness of Â(β) in the

entire domain of β also implies the global uniqueness of β̂.
Hence there exist unique estimators β̂ and π̂0(t) (0 ≤ t ≤ τ).

The above proof also implies that β̂ is strongly consistent.
Then by the uniform convergence of π̂0(t;β), we have that

π̂0(t; β̂) converges almost surely to π0(t;β0) ≡ π0(t) uni-
formly in t ∈ [0, τ ].

Proof of Theorem 2. (i) Taking the linear expansion of
g−1(·) in U(β0), we have

U(β0) =
n∑

i=1

∫ τ

0

I(Ci ≥ t)Zi(t)
[
A0

i (t)(15)

− g−1{π0(t) + β′
0Zi(t)}

− ġ−1{π∗(t) + β′
0Zi(t)}{π̂0(t;β0)

− π0(t)}
]
dH(t),

where π∗(t) lies between π̂0(t;β0) and π0(t). Similarly, the
linear expansion of (13) with β = β0 yields

π̂0(t;β0)− π0(t) =

∑n
i=1 Mi(t)∑n

i=1 ġ
−1{π∗∗(t) + β′

0Zi(t)}I(Ci ≥ t)
,

(16)

where π∗∗(t) also lies between π̂0(t;β0) and π0(t). Note that
π̂0(t;β0)− π0(t) = op(1) and

∑n
i=1 Mi(t) = Op(n

1/2). Then
it follows from (15) and (16) that

U(β0) =

n∑
i=1

∫ τ

0

Mi(t)
[
Zi(t)(17)

−
∑n

j=1 ġ
−1{π∗(t) + β′

0Zj(t)}I(Cj ≥ t)Zj(t)∑n
j=1 ġ

−1{π∗∗(t) + β′
0Zj(t)}I(Cj ≥ t)

]

× dH(t)

=

n∑
i=1

∫ τ

0

Mi(t){Zi(t)− z̄(t)}dH̃(t) + op(n
1/2).

Utilizing the multivariate central limit theorem, n−1/2U(β0)
converges in distribution to a zero-mean normal vector with
covariance matrix

Σ = E
[ ∫ τ

0

Mi(t){Zi(t)− z̄(t)}dH̃(t)
]⊗2

.

By the Taylor expansion of U(β̂) at β0,

(18) n1/2(β̂ − β0) = A−1n−1/2U(β0) + op(1).

This implies that n1/2(β̂−β0) converges in distribution to a
zero-mean normal vector with covariance matrix A−1ΣA−1.
By replacing all the unknown quantities in A and Σ with
their empirical counterparts, the covariance matrix can
be consistently estimated by Â−1Σ̂Â−1 defined in Theo-
rem 2(i).

(ii) To show the weak convergence of n1/2{π̂0(·)−π0(·)},
first note that uniformly in t ∈ [0, τ ],

n1/2{π̂0(t)− π0(t)}(19)

= n1/2{π̂0(t; β̂)− π̂0(t;β0)}+ n1/2{π̂0(t;β0)− π0(t)}
= −z̄(t)′n1/2(β̂ − β0) + n1/2{π̂0(t;β0)− π0(t)}+ op(1),

where the second equality follows from the Taylor expansion
of π0, together with (14) and the convergence of Z̄. Thus, it
follows from (16)–(19) that uniformly in t ∈ [0, τ ],

(20) n1/2{π̂0(t)− π0(t)} = n−1/2
n∑

i=1

φi(t) + op(1),

where

φi(t)=s(0)(t)−1Mi(t)−z̄(t)′A−1

∫ τ

0

Mi(t)[Zi(t)−z̄(t)]dH̃(t).

Because φi(t) (i = 1, ..., n) are independent zero-mean ran-
dom variables for each t, the multivariate central limit the-
orem implies that n1/2{π̂0(t) − π0(t)} converges in finite-
dimensional distributions to a zero-mean Gaussian pro-
cess. Since φi(t) can be written as sums or products of
monotone functions of t and are thus tight [27]. Thus,
n1/2{π̂0(t) − π0(t)} is tight and converges weakly to a
zero-mean Gaussian process with the covariance function
Γ(t, s) ≡ E{φ1(t)φ1(s)} at (t, s), which can be consistently
estimated by Γ̂(t, s) defined in Theorem 2(ii).

Proof of Theorem 3. First note that when C
〈m〉
i is imputed

from the true underlying G(t; γ0), I(C
〈m〉
i ≥ t; γ0) and

A0
i (t) are independent conditional on Zi(t). Next, consider

I(C
〈m〉
i ≥ t; γ̂), where C

〈m〉
i are imputed from Ĝi(t; γ̂) if

ND
i (Ti) = 1, where ND

i (t) = I(Di ≤ t ∧ Ci). The con-
ditional survival function of imputed censoring time given
Zi(t) and ND

i (Ti) = 1 is given by

E[I(C
〈m〉
i ≥ t; γ̂)|Zi(t), N

D
i (Ti) = 1] = I(Di ≤ t)

× exp{Λ̂C
i (Di; γ̂)− Λ̂C

i (t; γ̂)},

where dΛ̂C
i (t; γ) = exp{γ′Z(t)}dΛ̂C

0 (t; γ), and

dΛ̂C
0 (t; γ) =

∑n
i=1 dN

C
i (t)∑n

i=1 I(Ti ≥ t) exp{γ′Zi(t)}
,

with NC
i (t) = I(Ci ≤ t ∧Di).
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Using the strong consistency of γ̂ and the uniform strong
law of large numbers, we obtain that Λ̂C

0 (t; γ̂)− ΛC
0 (t) con-

verges almost surely (a.s.) to zero uniformly in t ∈ [0, τ ]. By
the continuous mapping theorem, we have that uniformly in
t ∈ [0, τ ],

E[I(C
〈m〉
i ≥ t; γ̂)|Zi(t), N

D
i (Ti) = 1](21)

a.s.−→ E[I(C
〈m〉
i ≥ t; γ0)|Zi(t), N

D
i (Ti) = 1],

which implies that asymptotically, C
〈m〉
i are drawn from the

true G(t; γ0) for subjects with ND
i (Ti) = 1. Note that for

subjects with ND
i (Ti) = 0, I(C

〈m〉
i ≥ t; γ0) = I(C

〈m〉
i ≥

t; γ̂) = I(Ci ≥ t). It then follows from (21) that uniformly
in t ∈ [0, τ ],

E[I(C
〈m〉
i ≥ t; γ̂)|Zi(t)] = E[I(C

〈m〉
i ≥ t; γ0)|Zi(t)] + o(1).

(22)

Thus, I(C
〈m〉
i ≥ t; γ̂) and A0

i (t) are asymptotically indepen-
dent conditional on Zi(t). By the strong law of large num-

bers, we get that n−1U 〈m〉(β; γ̂)
a.s.−→ U(β) uniformly in β,

where

U 〈m〉(β; γ) =

n∑
i=1

∫ τ

0

I(C
〈m〉
i ≥ t; γ)Zi(t)

[
A0

i (t)

− g−1{π̂0(t;β) + β′Zi(t)}
]
dH(t).

Following the arguments in the proof of Theorem 1, we

have that β̂〈m〉 and π̂
〈m〉
0 (t) (0 ≤ t ≤ τ) exist and are

unique. Moreover, we also have that ‖β̂〈m〉 − β0‖ a.s.−→ 0 and

π̂
〈m〉
0 (t; β̂)

a.s.−→ π0(t) uniformly in t ∈ [0, τ ]. Note that by the

triangle inequality, ‖β̂M − β0‖ ≤ M−1
∑M

m=1 ‖β̂〈m〉 − β0‖
and ‖π̂M (t)− π0(t)‖ ≤ M−1

∑M
m=1 ‖π̂

〈m〉
0 (t)− π0(t)‖. Then

we obtain that β̂M is strongly consistent to β0, and π̂M
0 (t)

converges almost surely to π0(t) uniformly in t ∈ [0, τ ].

Proof of Theorem 4. (i) In view of the assumption of inde-
pendent censoring and (22), following similar arguments as
in the proof Theorem 2(i), we get

n1/2(β̂〈m〉 − β0)

= [Â〈m〉(π0, β0, γ̂)]
−1n−1/2

n∑
i=1

∫ τ

0

M
〈m〉
i (t;π0, β0, γ̂)

×{Zi(t)− Z̄〈m〉(t;π0, β0, γ̂)}dH(t) + op(1)

= A−1n−1/2
n∑

i=1

∫ τ

0

M
〈m〉
i (t;π0, β0, γ0)

{
Zi(t)

−z̄〈m〉(t;π0, β0, γ0)
}
dH̃(t) + op(1),

where

Â〈m〉(π0, β, γ) =

∫ τ

0

[
S(2)〈m〉(t;π0, β, γ)

− S(1)〈m〉(t;π0, β, γ)
⊗2

S(0)〈m〉(t, π0, β, γ)

]
dH(t),

M
〈m〉
i (t;π0, β, γ) = I(C

〈m〉
i ≥ t; γ)

[
A0

i (t)

− g−1{π0(t) + β′Zi(t)}
]
,

z̄〈m〉(t;π0, β, γ)

=
E[ġ−1{π0(t) + β′Zi(t)}I(C〈m〉

i ≥ t; γ)Zi(t)]

E[ġ−1{π0(t) + β′Zi(t)}I(C〈m〉
i ≥ t; γ)]

.

Note that β̂M = M−1
∑M

m=1 β̂
〈m〉. Then

n1/2(β̂M − β0)

= A−1n−1/2
n∑

i=1

[
M−1

M∑
m=1

∫ τ

0

M
〈m〉
i (t;π0, β0, γ0)

×
{
Zi(t)− z̄〈m〉(t;π0, β0, γ0)

}
dH̃(t)

]
+ op(1).

The multivariate central limit theorem implies that
n1/2(β̂M −β0) converges in distribution to a zero-mean nor-
mal vector with covariance matrix A−1ΣMA−1, where

ΣM = E
[
M−1

M∑
m=1

∫ τ

0

M 〈m〉(t;π0, β0, γ0)
{
Z(t)

− z̄〈m〉(t;π0, β0, γ0)
}
dH̃(t)

]⊗2

.

The covariance matrix A−1ΣMA−1 can be consistently es-
timated by (ÂM )−1Σ̂M (ÂM )−1 defined in Theorem 4(i).

(ii) It can be shown that uniformly in t ∈ [0, τ ],

n1/2{π̂M
0 (t)− π0(t)}

=n1/2{π̂M
0 (t; β̂M )− π̂M

0 (t;β0)}+ n1/2{π̂M
0 (t;β0)− π0(t)}

=n1/2M−1
M∑

m=1

{π̂〈m〉
0 (t; β̂M )− π̂

〈m〉
0 (t;β0)}

+ n1/2M−1
M∑

m=1

{π̂〈m〉
0 (t;β0)− π0(t)}

=n1/2M−1
M∑

m=1

{π̂〈m〉
0 (t;β0)− π0(t)}

−M−1
M∑

m=1

z̄〈m〉(t;π0, β0, γ0)
′n1/2(β̂M − β0) + op(1).

As in the proof of Theorem 2(ii), we have that uniformly in
t ∈ [0, τ ],

n1/2{π̂M
0 (t)− π0(t)} = n−1/2

n∑
i=1

φ̂M
i (t) + op(1),

where

φM
i (t) = M−1

M∑
m=1

M
〈m〉
i (t;π0, β0, γ0)

E[ġ−1{π0(t) + β′
0Z(t)}I(C〈m〉 ≥ t; γ0)]

− z̄〈1〉(t;π0, β0, γ0)
′A−1M−1
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×
M∑

m=1

∫ τ

0

M
〈m〉

i (t;π0, β0, γ0)

×
{
Zi(t)− z̄

〈m〉
(t;π0, β0, γ0)

}
dH̃(t).

Thus, n1/2{π̂M
0 (t)−π0(t)} converges weakly to a zero-mean

Gaussian process with the covariance function ΓM (t, s) ≡
E{φM

1 (t)φM
1 (s)} at (t, s), which can be consistently esti-

mated by Γ̂M (t, s) defined in Theorem 4(ii).
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