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When to initiate cancer screening exam?

Dongfeng Wu

A probability method is developed to decide when to ini-
tiate cancer screening for asymptomatic individuals. The
probability of incidence is a function of screening sensitiv-
ity, time duration in the disease-free state and sojourn time
in the preclinical state; and it is monotonically increasing
as time increases, given a person’s current age. So a unique
solution of the first screening time can be found by limit-
ing this probability to a small value, such as 10% or 20%.
That is, with 90% or 80% probability, one will not be a
clinical incident case before the first exam. After this age
is found, we can further estimate the lead time distribution
and probability of over-diagnosis if one would be diagnosed
with cancer at the first exam. Simulations were carried out
under different scenarios; and the method was applied to
two heavy smoker cohorts in the National Lung Screening
Trial using low-dose computerized tomography. The method
is applicable to other kinds of cancer screening. The predic-
tive information can be used by physicians or individuals at
risk to make informed decisions on when to initiate screen-
ing.

Keywords and phrases: Scheduling, Sensitivity, Sojourn
time, Transition density, Lead time, Overdiagnosis.

1. INTRODUCTION

Early detection and effective treatments are critical to in-
crease the cure rate and prolong survival of cancer patients.
The primary technique for early detection is screening exam,
with the goal that the disease may be found before symp-
toms are present. Although screening programs for differ-
ent kinds of cancer have been carried out in the past six
decades in North America, and the U.S. Preventive Services
Task Force updates their recommendations regarding differ-
ent kinds of cancer screening periodically [1], there are still
many unanswered questions in the designing of screening.
One major concern is: at what age should screening pro-
grams be initiated [3]? Suppose a superficially healthy per-
son goes to a physician for regular health check up, should
the physician give any advice on when to initiate screening
for a certain kind of cancer based on the person’s current
age and other factors? We will develop a probability method
to address this problem for asymptomatic individuals based
on their current age.

There is almost no research in this area so far. There
were research regarding optimal screening; however, these

existing methods usually deal with how to schedule (n+ 1)
exams in a fixed age interval using a utility function [23, 24].
There are some other approaches to solve the scheduling
of exams [8, 9], but all of them involved a utility function
requiring specified costs or weights.

We will develop a new approach to handle the problem.
We will not use any utility function, costs, nor weights,
which is subjective. Instead, we will study the risk (prob-
ability) of incidence from one’s current age, assuming one
is asymptomatic and haven’t been screened so far, the first
screening time (or age) is chosen, such that the risk (or prob-
ability) of incidence is limited by some preselected small
value, such as 10% or less. Therefore, with 90% or more
chance, a person at risk would not become a clinically inci-
dence case before the first screening exam if s/he follows this
screening guideline. And for those who would be diagnosed
with cancer at the first exam, we derive the lead time distri-
bution and the probability of overdiagnosis. This provides
predictive information regarding the initial screening age on
a personal level. Policy makers or individuals can use this
information to make informed decisions. We will use lung
cancer as an example in this research, since it is the lead-
ing cause of cancer death in the United States, and counts
about 22.4% of all cancer deaths [2]. The developed method
can be applied to other kinds of screening as well.

The paper is organized as follows: in Section 2, we de-
rive the probability of incidence given one is asymptomatic
at current age a0, and show that there is a unique solution
of age t0, given a fixed probability of incidence p; then we
drive the distribution of the lead time and probability of
overdiagnosis if one were diagnosed with cancer at the first
screening at the future age t0. Simulation results are pre-
sented in Section 3. We applied the new method to the Na-
tional Lung Screening Trial (NLST) low-dose computed to-
mograph (CT) cohort data for male vs. female heavy smok-
ers in Section 4; and we ended with a discussion in Sec-
tion 5.

2. METHOD

We will use the well-known disease progressive model,
which assumes that tumor develops through three states:
S0 → Sp → Sc [22]. S0 is the disease-free state, in which
there is no disease or the disease is at a very early stage
and cannot be detected by any screening exam. Sp refers to
the preclinical state, in which a person has the disease that
can be detected by a screening exam even though there is

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


no symptom. Sc represents the clinical state, where clinical
symptoms have presented. We will use female lung cancer
in the description and solution of the problem, while the
procedure and derived formulas are equally valid for other
kinds of cancer screening.

2.1 Probability of incidence and optimal first
screening age

Suppose a woman at her current age a0 is asymptomatic
and has not taken any screening yet, should she start her
first exam immediately, or wait for some time? We will de-
velop a simple protocol to help with this decision making.
The goal is to make sure that the probability of clinical inci-
dence from now until her first screening is limited to a small
value, such as 0.1 or 0.2. Suppose that her first screening
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Figure 1. An individual’s current age and the first exam.

time will happen at her age t0 = a0 + tx, with tx > 0, see
Figure 1. We want to find the value tx such that the prob-
ability of incidence is limited to a pre-selected value p. We
start by defining a few events:

H0 = {One is asymptomatic in [0, a0], and without

any screening so far};
I0 = {One is asymptomatic in [0, a0], and will be

a clinical incident case in (a0, t0)};
D0 = {One is asymptomatic in [0, a0], and will be

diagnosed at age t0};
A0 = {One is asymptomatic in [0, t0), take the

first screening at t0, and with a negative result}.

The last three events are mutually exclusive, and they form a
partition of the historic sample space H0: I0∪D0∪A0 = H0.
Let β be the sensitivity of the exam at age t0, i.e., the proba-
bility that the screening is positive given that the individual
is in the preclinical state Sp. We let X be the time dura-
tion in the disease-free state S0, with a probability density
function (PDF) w(x), it is called transition probability or
transition density in other papers; we let Y be the sojourn
time, the length of time in the preclinical state Sp, with a
PDF q(y); and Q(y) =

∫∞
y

q(x)dx is the survival function
of the sojourn time Y . We assume that the sojourn time Y
and the time duration in the disease-free state X are inde-
pendent.

Now the probability of incidence among the people at risk
can be calculated by:

P (I0|I0 ∪D0)(1)

=
P (I0)

P (I0 ∪D0)
=

P (I0)

P (I0) + P (D0)

The numerator is the probability of incidence in (a0, t0),
which could happen in two cases: (i) she enters the preclini-
cal state at age x ∈ (0, a0) and her sojourn time is between
(a0 − x) and (t0 − x), or (ii) she enters the preclinical state
at age x ∈ (a0, t0) and her sojourn time is less than (t0−x).
Hence,

P (I0) =

∫ a0

0

w(x)[Q(a0 − x)−Q(t0 − x)]dx(2)

+

∫ t0

a0

w(x)[1−Q(t0 − x)]dx.

And P (D0) is the probability of detection at the first exam:

(3) P (D0) = β

∫ t0

0

w(x)Q(t0 − x)dx.

Since P (I0|I0 ∪ D0) is monotonically increasing with the
time interval tx, and remember t0 = a0 + tx, hence this
probability is increasing with t0. For any given p between 0
and 1, there is a unique solution t0, such that

P (I0|I0 ∪D0) = p.

We can use the binary search method to find the age t0 for
any given p ∈ (0, 1).

2.2 Lead time distribution at the first exam

After we find the numerical solution t0 = t0(p), we can
derive the formula for the lead time at age t0 if one were
diagnosed with cancer at the first exam. The lead time is de-
fined as the diagnosis time advanced by screening; in other
words, the lead time is the time interval between the diag-
nosed cancer and the presence of clinical symptoms. Suppose
one would be diagnosed with cancer at the initial exam at
her future age t0, let L represents the lead time, then the
PDF of the lead time would be:

(4) fL(z|D0) =
fL(z,D0)

P (D0)
, for z ∈ (0,∞).

Where the numerator

(5) fL(z,D0) = β

∫ t0

0

w(x)q(t0 + z − x)dx.

This is because she must have entered the preclinical state
at some age x ∈ (0, t0), and her lead time is z; which means,
if she were not screened, she would be a clinical incident
case at age (t0 + z), therefore her sojourn time should be
(t0 + z− x). The denominator P (D0) was given in equation
(3). It is easy to prove that:

(6)

∫ ∞

0

fL(z|D0)dz = 1.

Thus the derived formula is a valid PDF.
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2.3 Probability of overdiagnosis at the first
exam

We can find the probability of overdiagnosis (OverD) and
true-early-detection (TrueED) if one were diagnosed with
cancer at age t0 for the first time. Given a fixed lifetime
T = t(> t0), the probability of overdiagnosis and that of
true-early-detection would be:

P (OverD|D0, T = t) =
P (OverD, D0|T = t)

P (D0|T = t)
,(7)

P (TrueED|D0, T = t) =
P (TrueED, D0|T = t)

P (D0|T = t)
.(8)

Since P (D0|T = t) = P (D0), we only need to find out the
two numerators. To calculate P (OverD, D0|T = t), that is,
one would be diagnosed with cancer at the initial exam at
age t0, but the symptom would not present until after her
life time t; therefore, she must have entered the preclinical
state at age x ∈ (0, t0), and her sojourn time is longer than
(t− x). Therefore,

(9) P (OverD, D0|T = t) = β

∫ t0

0

w(x)Q(t− x)dx.

For the case of true-early-detection, her symptom would
have appeared before her life time t, therefore, her sojourn
time is between (t0 − x) and (t− x):
(10)

P (TrueED, D0|T = t) = β

∫ t0

0

w(x)[Q(t0−x)−Q(t−x)]dx.

And it is easy to verify that:

P (OverD, D0|T = t) + P (TrueED, D0|T = t) = P (D0).

Hence,

P (OverD|D0, T = t) + P (TrueED|D0, T = t) = 1.

Now if we allow human lifetime T to be a random variable,
then,

P (OverD|D0, T > t0)(11)

=

∫ ∞

t0

P (OverD|D0, T = t)fT (t|T > t0)dt,

P (TrueED|D0, T > t0)(12)

=

∫ ∞

t0

P (TrueED|D0, T = t)fT (t|T > t0)dt.

The conditional PDF of human lifetime fT (t|T > t0) =
fT (t)

1−FT (t0)
, if t ≥ t0. And it is obtained by transforming the

actuarial life table from the United States Social Security
Administration1; for details, see Wu et al. 2012 [12]. We can

1http://www.ssa.gov/OACT/STATS/table4c6.html, last access
11/19/2020.

prove that:

P (OverD|D0, T > t0) + P (TrueED|D0, T > t0) = 1.

3. SIMULATION STUDY

Since the probability of incidence P (I0|I0∪D0) is a func-
tion of one’s current age a0, the three key parameters (sen-
sitivity β, sojourn time distribution q(x) or Q(x), transition
density w(t)), and the first screening age t0, we will find the
optimal initial screening age t0 based on the given factors.
We will use the female lifetime distribution in the simula-
tion; simulation results using the male lifetime distribution
are similar and omit here. Specifically, we selected the fol-
lowing scenarios for the simulation:

1. Four values of the probability of incidence:
p = 0.05, 0.10, 0.15, 0.20;

2. Three different screening sensitivities:
β = 0.80, 0.90, 0.95;

3. Four different mean sojourn time (MST):
MST = 1.5, 2.5, 5.0, 10.0 years;

4. Three different current age a0: 45, 50, 55 years.

Based on the previous research in cancer screening, we
use the parametric model of the transition density and the
sojourn time [17]:

w(t|μ, σ2) =
0.3√
2πσt

exp{−(log t− μ)2/(2σ2)},(13)

Q(x|λ, α) = exp(−λxα), λ > 0, α > 0,(14)

q(x|λ, α) = αλxα−1Q(x|λ, α).(15)

For w(t), the input parameters of μ and σ2 were chosen, so
that the mean/median/mode of the lung cancer transition
age into the preclinical state was around 70 years old [17],
that will give μ = 4.25. Based on our previous research, the
σ2 has a mean value of 0.021 for males, 0.026 for females,
and 0.022 for both genders [17], so we picked σ2 = 0.02 in
the simulation.

For q(x), the parameters (λ, α) were chosen for four differ-
ent mean sojourn times of 1.5, 2.5, 5.0, and 10.0 years (corre-
spondlingly represents fast, moderate, and slow growing tu-
mor) with: α = 3.0, λ = 0.21098, 0.04557, 0.00570, 0.00071.

Table 1 provides the optimal initial screening age t∗0 using
the method in section 2 and the binary search, for different
p, the pre-selected probability of incidence before the first
exam. It was carried out under different sensitivity β, mean
sojourn time (MST), and current age a0. This is how to read
the table: look at the block under “MST = 2.5 years,” the
numbers under a0 = 45 and β = 0.95 are 45.24, 45.53, 45.91
and 46.40. That is, if someone wants to have a 95% proba-
bility of no clinical incident before the first exam, then she
should take the screening at age 45.24 (or after 3 months
since her current age is 45); or if someone wants to have
a 80% chance of not being a clinical case before the first
exam, she can come back for screenging at age 46.40 (or
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Table 1. Optimal initial screening age t∗0 (in years) found by binary search

p
MST = 1.5 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 45.09 45.10 45.11 50.08 50.09 50.10 55.07 55.08 55.09
0.10 45.19 45.22 45.23 50.17 50.19 50.21 55.16 55.18 55.19
0.15 45.32 45.36 45.38 50.28 50.31 50.33 55.25 55.28 55.30
0.20 45.46 45.53 45.56 50.40 50.45 50.48 55.36 55.41 55.43

p
MST = 2.5 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 45.20 45.22 45.24 50.16 50.18 50.19 55.14 55.16 55.17
0.10 45.44 45.50 45.53 50.35 50.40 50.42 55.30 55.34 55.36
0.15 45.74 45.85 45.91 50.57 50.65 50.69 55.48 55.54 55.58
0.20 46.13 46.31 46.40 50.84 50.96 51.03 55.69 55.79 55.84

p
MST = 5.0 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 45.84 45.96 46.03 50.54 50.62 50.65 55.40 55.45 55.47
0.10 47.17 47.55 47.76 51.25 51.44 51.54 55.87 55.99 56.05
0.15 49.16 49.88 50.24 52.19 52.55 52.73 56.45 56.65 56.76
0.20 51.52 52.44 52.88 53.42 53.98 54.26 57.15 57.46 57.62

p
MST = 10.0 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 52.13 52.92 53.28 53.46 53.98 54.23 56.84 57.10 57.23
0.10 57.37 58.24 58.64 57.63 58.44 58.82 59.20 59.76 60.03
0.15 60.84 61.75 62.17 60.94 61.82 62.24 61.69 62.44 62.80
0.20 63.56 64.49 64.92 63.60 64.53 64.96 64.02 64.87 65.27

after a year and 5 months). It shows that as the screening
sensitivity increases from 0.8 to 0.95, the first scheduling age
is slightly increasing if other factors were the same. However,
the first screening age is dramatically increasing as the inci-
dence probability p increases, or as the MST increases. The
ideal first screening age t∗0 also changes with one’s current
age a0, the time interval (t∗0−a0) is decreasing as a0 increases
if other factors were the same. We want to point out that
once the t∗0 is found, the lead time distribution fL(z|D0) and
the probability of overdiagnosis P (OverD|D0, T > t∗0) don’t
directly depend on β, p and a0; but they both depend on
t∗0, w(t) and Q(x). This is clearly shown by the formulas in
subsections 2.2, 2.3, and is verified by the simulations.

Tables 2, 3 and 4 present the estimated mean, median,
mode (i.e., central locations) and standard deviation (the
spread) of the lead time at the optimal first screening
time/age t∗0, when the current age a0 is 45, 50, or 55 years
correspondingly. The results in the three tables show simi-
lar pattern: i) as the mean sojourn time increases, the mean,
median and mode of the lead time increases as well. ii) the
lead time distribution depends very little on the incidence
probability p and the sensitivity β using the optimal schedul-
ing time t∗0. As the current age a0 increases, the mean, me-
dian and mode of the lead time becomes smaller, although
the standard deviation is almost the same.

The lead time PDF curves under different factors: p, β, a0
and MST were plotted in Figure 2. The four panels showed
the estimated lead time density when the optimal first
screening age t∗0 was used, with three factors fixed and only
the fourth factor was allowed to change. It shows that given
t∗0, the lead time distribution barely changes with the inci-
dence probability p and sensitivity β. However, it changes
quite a bit with one’s current age a0 and the mean sojourn
time (MST): as the a0 increases, the mean, median, and
mode of the lead time slightly decrease; and as the MST
increases, the central location of the lead time increases.

Table 5 provides the estimated probability of overdiagno-
sis (in percentage) using the optimal initial scheduling age
t∗0. That is, if one took the first screening exam at the age t∗0
provided by Table 1 and were diagnosed with cancer, then
the probability of overdiganosis would be the result in Ta-
ble 5. The probability of overdiagnosis is increaseing as the
MST increases; the probability is increasing as p increases;
and it is increasing as one’s current age a0 increases; but it
barely changes with the sensitivity β. In general, when the
MST is less than or equal to five years, the probability of
overdiagnosis usually is less than 2%, which is negligible. In
summery, the probability of overdiagnosis is very small over-
all, and the largest value of the probability of overdiagnosis
is less than 10% when the MST is 10 years.
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Table 2. Estimated mean, median, mode and standard deviation of the lead time at the optimal time t∗0 when a0 = 45

MST = 1.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 0.94, 0.89, 0.73, 0.59 0.94, 0.89, 0.73, 0.59 0.94, 0.89, 0.73, 0.59
0.10 0.94, 0.89, 0.73, 0.59 0.94, 0.89, 0.73, 0.59 0.94, 0.89, 0.73, 0.59
0.15 0.94, 0.88, 0.72, 0.59 0.94, 0.88, 0.72, 0.59 0.94, 0.88, 0.72, 0.59
0.20 0.94, 0.88, 0.72, 0.59 0.94, 0.88, 0.72, 0.59 0.94, 0.88, 0.72, 0.59

MST = 2.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 1.66, 1.59, 1.45, 0.98 1.66, 1.59, 1.45, 0.98 1.66, 1.59, 1.45, 0.98
0.10 1.66, 1.59, 1.44, 0.98 1.66, 1.59, 1.44, 0.98 1.66, 1.59, 1.44, 0.98
0.15 1.65, 1.58, 1.43, 0.98 1.65, 1.58, 1.43, 0.98 1.65, 1.58, 1.43, 0.98
0.20 1.65, 1.57, 1.42, 0.98 1.65, 1.57, 1.41, 0.98 1.64, 1.57, 1.41, 0.98

MST = 5.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 3.71, 3.62, 3.52, 1.95 3.70, 3.62, 3.51, 1.95 3.70, 3.61, 3.51, 1.95
0.10 3.65, 3.56, 3.44, 1.96 3.63, 3.54, 3.42, 1.96 3.63, 3.53, 3.40, 1.96
0.15 3.57, 3.46, 3.32, 1.96 3.54, 3.43, 3.27, 1.96 3.52, 3.41, 3.25, 1.96
0.20 3.47, 3.35, 3.16, 1.96 3.43, 3.30, 3.10, 1.96 3.41, 3.28, 3.07, 1.96

MST = 10.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 7.91, 7.77, 7.61, 3.88 7.83, 7.69, 7.53, 3.88 7.80, 7.65, 7.48, 3.88
0.10 7.40, 7.21, 6.97, 3.91 7.31, 7.12, 6.85, 3.92 7.27, 7.07, 6.79, 3.92
0.15 7.05, 6.82, 6.45, 3.92 6.96, 6.71, 6.30, 3.92 6.92, 6.66, 6.23, 3.92
0.20 6.78, 6.49, 5.98, 3.92 6.68, 6.38, 5.80, 3.92 6.64, 6.33, 5.71, 3.92

Table 3. Estimated mean, median, mode and standard deviation of the lead time at the optimal time t∗0 when a0 = 50

MST = 1.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58
0.10 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58
0.15 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.63, 0.58
0.20 0.91, 0.85, 0.63, 0.58 0.91, 0.85, 0.62, 0.58 0.91, 0.85, 0.62, 0.58

MST = 2.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 1.59, 1.51, 1.28, 0.98 1.59, 1.51, 1.28, 0.98 1.59, 1.51, 1.28, 0.98
0.10 1.59, 1.50, 1.28, 0.98 1.59, 1.50, 1.28, 0.98 1.59, 1.50, 1.28, 0.98
0.15 1.59, 1.50, 1.27, 0.98 1.59, 1.50, 1.27, 0.98 1.59, 1.50, 1.27, 0.98
0.20 1.58, 1.49, 1.26, 0.98 1.58, 1.49, 1.26, 0.98 1.58, 1.49, 1.25, 0.98

MST = 5.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 3.51, 3.39, 3.23, 1.96 3.51, 3.39, 3.22, 1.96 3.50, 3.39, 3.22, 1.96
0.10 3.48, 3.36, 3.18, 1.96 3.47, 3.35, 3.17, 1.96 3.47, 3.35, 3.16, 1.96
0.15 3.44, 3.32, 3.11, 1.96 3.43, 3.30, 3.09, 1.96 3.42, 3.29, 3.08, 1.96
0.20 3.39, 3.26, 3.03, 1.96 3.37, 3.23, 2.99, 1.96 3.36, 3.22, 2.97, 1.96

MST = 10.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 7.74, 7.59, 7.42, 3.87 7.69, 7.54, 7.36, 3.87 7.66, 7.51, 7.33, 3.88
0.10 7.33, 7.14, 6.89, 3.90 7.25, 7.05, 6.78, 3.90 7.21, 7.01, 6.72, 3.90
0.15 7.00, 6.76, 6.39, 3.90 6.91, 6.66, 6.25, 3.90 6.87, 6.61, 6.18, 3.90
0.20 6.74, 6.45, 5.93, 3.90 6.64, 6.34, 5.75, 3.90 6.60, 6.29, 5.67, 3.90
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Table 4. Estimated mean, median, mode and standard deviation of the lead time at the optimal time t∗0 when a0 = 55

MST = 1.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 0.89, 0.83, 0.53, 0.58 0.89, 0.83, 0.53, 0.58 0.89, 0.83, 0.53, 0.58
0.10 0.89, 0.82, 0.53, 0.58 0.89, 0.82, 0.53, 0.58 0.89, 0.82, 0.53, 0.58
0.15 0.89, 0.82, 0.53, 0.58 0.89, 0.82, 0.53, 0.58 0.89, 0.82, 0.53, 0.58
0.20 0.89, 0.82, 0.53, 0.58 0.89, 0.82, 0.52, 0.58 0.89, 0.82, 0.52, 0.58

MST = 2.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 1.53, 1.43, 1.10, 0.98 1.53, 1.43, 1.10, 0.98 1.53, 1.43, 1.10, 0.98
0.10 1.53, 1.43, 1.10, 0.98 1.53, 1.43, 1.10, 0.98 1.53, 1.43, 1.10, 0.98
0.15 1.53, 1.43, 1.09, 0.98 1.53, 1.43, 1.09, 0.98 1.53, 1.43, 1.09, 0.98
0.20 1.53, 1.43, 1.08, 0.97 1.53, 1.43, 1.08, 0.97 1.53, 1.42, 1.08, 0.97

MST = 5.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 3.32, 3.17, 2.88, 1.96 3.32, 3.17, 2.88, 1.96 3.31, 3.17, 2.87, 1.96
0.10 3.30, 3.15, 2.84, 1.96 3.30, 3.14, 2.83, 1.96 3.29, 3.14, 2.83, 1.96
0.15 3.28, 3.12, 2.80, 1.96 3.27, 3.11, 2.78, 1.96 3.27, 3.11, 2.77, 1.96
0.20 3.25, 3.09, 2.74, 1.96 3.24, 3.08, 2.72, 1.96 3.24, 3.07, 2.70, 1.96

MST = 10.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 7.41, 7.23, 7.00, 3.89 7.39, 7.20, 6.96, 3.89 7.37, 7.19, 6.95, 3.89
0.10 7.18, 6.96, 6.67, 3.90 7.12, 6.90, 6.58, 3.90 7.09, 6.87, 6.54, 3.90
0.15 6.93, 6.68, 6.27, 3.90 6.85, 6.59, 6.14, 3.90 6.82, 6.55, 6.08, 3.90
0.20 6.69, 6.40, 5.85, 3.90 6.61, 6.30, 5.68, 3.90 6.57, 6.25, 5.60, 3.90

Table 5. Estimated probability of overdiagnosis (in percentage) at the initial screening age t∗0

p
MST = 1.5 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 0.19 0.19 0.19 0.30 0.30 0.30 0.43 0.43 0.43
0.10 0.19 0.20 0.20 0.30 0.30 0.30 0.43 0.43 0.43
0.15 0.20 0.20 0.20 0.30 0.30 0.30 0.43 0.43 0.43
0.20 0.20 0.20 0.20 0.30 0.30 0.30 0.43 0.43 0.43

p
MST = 2.5 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 0.36 0.36 0.36 0.54 0.54 0.54 0.76 0.76 0.76
0.10 0.37 0.37 0.37 0.55 0.55 0.55 0.76 0.76 0.76
0.15 0.38 0.38 0.38 0.56 0.56 0.56 0.77 0.77 0.77
0.20 0.39 0.39 0.40 0.57 0.57 0.58 0.78 0.78 0.79

p
MST = 5.0 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 0.96 0.97 0.98 1.35 1.35 1.36 1.79 1.80 1.80
0.10 1.07 1.09 1.11 1.41 1.43 1.43 1.84 1.85 1.86
0.15 1.23 1.29 1.32 1.49 1.52 1.54 1.90 1.92 1.93
0.20 1.43 1.51 1.55 1.60 1.65 1.68 1.98 2.00 2.02

p
MST = 10.0 years

a0 = 45 a0 = 50 a0 = 55
β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95

0.05 4.15 4.33 4.43 4.44 4.57 4.64 5.39 5.50 5.54
0.10 5.62 5.94 6.08 5.66 5.96 6.09 6.26 6.47 6.62
0.15 7.01 7.46 7.71 7.00 7.43 7.68 7.37 7.78 7.96
0.20 8.47 9.04 9.29 8.42 8.99 9.24 8.72 9.19 9.50
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Figure 2. The PDF curves of the lead time under the four factors: fixed three factors and allow one to change.

For comparison purpose, we did some more simulations
for the case of a0 = 0. That is, assume that one was just
born (i.e. current age is 0), all the other parameters are the
same, and we tried two different values of σ2: 0.02 or 0.03.
Using methods in section 2 and the binary search, the found
optimal first screening age are summarized in Table 9 in the
Appendix. The estimated probability of overdiagnosis and
estimated lead time statistics are summarized in Tables 10
and 11 in the Appendix. We omitted the table of the lead
time when σ2 = 0.03 since the result shows similar pattern
as that in Table 11.

4. APPLICATION

The recently finished NLST study was designed to com-
pare two different screening modalities for early detection
of lung cancer among heavy smokers: low-dose computed
tomography (CT) versus standard chest X-rays [18]. The
NLST study enrolled approximately 54,000 male and female
heavy smokers (current or former smokers with a smoking
history of 30 or more pack-years, and at most 15 years since
quitting if former smokers), aged 55 to 74 between August
2002 and April 2004. Participants were randomized into two

intervention arms in equal proportions: low-dose CT or X-
ray. Participants were offered three annual screening exams,
with the first exam performed soon after study entry. Over
52,000 participants joined the NLST and were screened for
lung cancer for the first time. In total, 15,537 men and
10,769 women were assigned to the CT arm, and 15,396 men
and 10,634 women were assigned to the X-ray arm. If any of
the screening results was abnormal, then the screen was con-
sidered positive and more diagnostic tests were conducted
(i.e., biopsy) as a follow-up. Participants were followed with
a median time of 6.5 years.

We now apply the method of scheduling to the NLST low-
dose CT data for male and female heavy smokers; and after
we found the scheduling time t∗0, we will use it to estimate
the lead time distribution and the probability of overdiag-
nosis and true-early detection.

From the two cohorts (male and female separately) in
the NLST CT data, Liu et al. 2015 estimated the three
key parameters: sensitivity β(t), PDF of sojourn time q(x),
and transition density w(t) [17]; where the sensitivity was
modeled as a function of age β(t|b0, b1) = {1 + exp(−b0 −
b1(t − m))}−1, and w(t), q(x) and Q(x) were the same
as in equations (13)-(15). The unknown parameters were

Initial screening time 509



Table 6. Estimated initial screening age t∗0 and its 95% HPD interval using the NLST low-dose CT data

MALE

a0 = 45 a0 = 50 a0 = 55
p mean s.e. 95% C.I. mean s.e. 95% C.I. mean s.e. 95% C.I.

0.05 45.10 0.013 (45.08, 45.12) 50.09 0.011 (50.07, 50.11) 55.09 0.014 (55.07, 55.12)
0.10 45.21 0.029 (45.16, 45.27) 50.19 0.025 (50.15, 50.24) 55.18 0.022 (55.14, 55.22)
0.15 45.35 0.050 (45.26, 45.44) 50.31 0.041 (50.24, 50.39) 55.28 0.036 (55.22, 55.35)
0.20 45.51 0.076 (45.38, 45.65) 50.45 0.061 (50.34, 50.57) 55.40 0.053 (55.31, 55.51)

FEMALE

a0 = 45 a0 = 50 a0 = 55
p mean s.e. 95% C.I. mean s.e. 95% C.I. mean s.e. 95% C.I.

0.05 45.11 0.018 (45.08, 45.14) 50.10 0.015 (50.07, 50.13) 55.09 0.014 (55.07, 55.12)
0.10 45.24 0.039 (45.17, 45.31) 50.22 0.033 (50.16, 50.28) 55.20 0.029 (55.15, 55.26)
0.15 45.39 0.066 (45.27, 45.51) 50.35 0.054 (50.24, 50.45) 55.32 0.048 (55.24, 55.42)
0.20 45.57 0.102 (45.39, 45.76) 50.50 0.081 (50.35, 50.65) 55.46 0.069 (55.34, 55.60)

Table 7. Estimated mean, median, mode and standard deviation of lead time using NLST-CT data

MALE
p a0 = 45 a0 = 50 a0 = 55

0.05 0.93, 0.83, 0.59, 0.65 0.91, 0.80, 0.50, 0.65 0.89, 0.78, 0.41, 0.64
0.10 0.93, 0.83, 0.59, 0.65 0.91, 0.80, 0.50, 0.65 0.89, 0.78, 0.41, 0.64
0.15 0.93, 0.83, 0.59, 0.65 0.91, 0.80, 0.50, 0.65 0.89, 0.78, 0.41, 0.64
0.20 0.93, 0.83, 0.59, 0.65 0.91, 0.80, 0.50, 0.65 0.89, 0.78, 0.40, 0.64

FEMALE
p a0 = 45 a0 = 50 a0 = 55

0.05 1.02, 0.92, 0.70, 0.69 0.99, 0.89, 0.61, 0.69 0.97, 0.87, 0.51, 0.68
0.10 1.02, 0.92, 0.70, 0.69 0.99, 0.89, 0.60, 0.69 0.97, 0.86, 0.51, 0.68
0.15 1.01, 0.92, 0.69, 0.69 0.99, 0.89, 0.60, 0.69 0.97, 0.86, 0.50, 0.68
0.20 1.01, 0.92, 0.69, 0.69 0.99, 0.89, 0.60, 0.69 0.97, 0.86, 0.50, 0.68

θ = (b0, b1, μ, σ
2, λ, α). Using Markov Chain Monte Carlo

(MCMC) with Gibbs sampler and a likelihood function,
130,000 samples were generated; after 30,000 burn-in steps
and thinning every 200 iterations, a posterior sample of 500
from each chain was obtained. Running two initially over-
dispersed chains provided 1000 Bayesian posterior samples
(θ∗j ) for each gender. For more details, see Liu et al. 2015.
We will use these 1000 posterior samples from each group
in our simulation.

In this application, we designed hypothetical cohorts
in the simulation: For each gender, there were three hy-
pothetic cohorts according to the current age a0: a0 =
45, 50, 55. Then we used the 1000 posterior samples θ∗j , j =
1, 2, . . . , 1000 from the MCMC of each gender to make
Bayesian inference on optimal scheduling time/age.

Given the probability of incidence p, for each θ∗j , using
P (I0|I0∪D0, θ

∗
j ) = p, a scheduling age t∗j (j = 1, 2, . . . , 1000)

can be found. We calculated the mean, the standard error
(s.e.) and the 95% highest posterior density (HPD) interval
(also called credible interval or C.I.) of the future screening
age t∗j (in years) and summarized the results for male and
female heavy smokers using the NLST CT data in Table 6.
The results show that the optimal first screening times are
very close for the two genders under similar situations, that

is, under same current age a0 and same incidence probability
p.

After the optimal first screening time was determined,
we can further evaluate the lead time distribution and
the probability of overdiagnosis. One lead time distribu-
tion can be obtained by using each pair of (θ∗j , t

∗
j ), with

j = 1, 2, . . . , 1000. The posterior distribution of the lead
time is the average:

fL(z|NLST ) ≈ 1

1000

1000∑
j=1

fL(z|θ∗j ).

We then calculate the mean, median, mode and standard
deviation of the lead time using fL(z|NLST ), the result
is presented in Table 7. In general, females heavy smok-
ers seem to have a slightly longer mean lead time than
their male counterpart in similar conditions. The estimated
lead time density curves under different current age a0
and different incidence probability p were plotted using
the NLST low-dose CT data in Figure 3. It showed that
the lead time PDF curve didn’t change much with the
incidence probability p if the optimal scheduling time t∗0
were used. The density curves did change with the cur-
rent age a0: larger a0 correspondes to a higher spike in the
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Figure 3. Lead time density curve.

Table 8. Estimated mean, standard error and 95% C.I. for probability of overdiagnosis at the first exam for the NLST-CT data
(in percentage)

p
MALE

a0 = 45 a0 = 50 a0 = 55
mean s.e. 95% C.I. mean s.e. 95% C.I. mean s.e. 95% C.I.

0.05 0.304 0.059 (0.214, 0.423) 0.472 0.091 (0.336, 0.657) 0.712 0.135 (0.490, 0.967)
0.10 0.306 0.059 (0.214, 0.426) 0.475 0.092 (0.324, 0.650) 0.715 0.136 (0.492, 0.973)
0.15 0.308 0.061 (0.215, 0.432) 0.479 0.094 (0.326, 0.658) 0.720 0.138 (0.493, 0.980)
0.20 0.313 0.063 (0.217, 0.440) 0.484 0.096 (0.328, 0.668) 0.725 0.140 (0.496, 0.991)

FEMALE
a0 = 45 a0 = 50 a0 = 55

mean s.e. 95% C.I. mean s.e. 95% C.I. mean s.e. 95% C.I.
0.05 0.212 0.042 (0.139, 0.291) 0.326 0.064 (0.216, 0.448) 0.467 0.089 (0.322, 0.649)
0.10 0.214 0.043 (0.141, 0.296) 0.329 0.065 (0.217, 0.452) 0.470 0.091 (0.323, 0.653)
0.15 0.216 0.044 (0.142, 0.300) 0.331 0.066 (0.218, 0.458) 0.473 0.092 (0.324, 0.659)
0.20 0.219 0.046 (0.147, 0.311) 0.335 0.068 (0.221, 0.467) 0.477 0.094 (0.325, 0.667)

density curve, which translates to a slighly smaller mode

value.

Finally, we use each pair (θ∗j , t
∗
j ), j = 1, 2, . . . , 1000, to

estimate the probability of overdiagnosis. And we can cal-

culate the posterior mean, standard error and 95% HPD

interval of the probability (or percentage) of overdiagno-

sis. Correspondingly, the probability of true-early-detection

is just 1 minus the probability of overdiagnosis. The pos-

terior mean, the standard error (s.e.), and the 95% HPD

interval (credible interval or C.I.) are listed in Table 8.

The probability of overdiagnosis is very low at the first

screening for heavy smokers using the parameters derived
from the NLST-CT data (< 1%). This risk of overdiagno-
sis slightly increases with one’s current age for both gen-
ders. And it is slightly higher for male heavy smokers than
their female counterpart. The probability of overdiagno-
sis slightly increases when p increases. Since the maximum
probability of overdiagnosis was less than 1% for both gen-
ders in our simulation, overdiagnosis is not an issue at the
first screening exam using low-dose CT for heavy smok-
ers.
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5. DISCUSSION

We developed a new method to determine when an
asymptomatic person should take the first screening exam,
given one’s current age. The incidence probability was used
to control the risk of clinical incidence before one’s first
exam, and the optimal screening time was found by lim-
iting this probability to a pre-selected small value. Ex-
tensive simulations were done to examine the relationship
of the optimal first screening time/age with other fac-
tors, such as current age, screening sensitivity, and sojourn
time.

In the simulation study, we found that the time inter-
val between one’s current age and the first screening time
slightly increases with the screening sensitivity if other fac-
tors were the same; it also increases as the incidence proba-
bility increases. If one were diagnosed with cancer at the
first screening exam, the lead time barely changes with
the incidence probability and the sensitivity; however, the
mean, median and mode of lead time slightly decreases as
one’s current age increases; and the lead time is positively
correlated to the mean sojourn time: longer mean sojourn
time means longer mean lead time. Using the calculated
first screening age, the probability of overdiagnosis is posi-
tively correlated with the mean sojourn time, the incidence
probability, and one’s current age; and it barely changes
with the sensitivity, especially when the MST is less than 2
years.

We estimated the optimal first screening time for
male and female heavy smokers using the NLST low
dose CT arm data. The result is compatible with the
simulation. The probability of overdiagnosis is negligi-
ble at the first screening. Based on our research, over-
diagnosis is more related to a person’s life time. Since
the first screening time happens at a comparatively
younger age, the possibility of overdiagnosis is very
small.

We want to point out that the estimated optimal first
screening time is a function of the three key parameters:
screening sensitivity, sojourn time in the preclinical state
and transition density into the preclinical state, as many
other terms are. Therefore, accuracy of the proposed method
depends on accurate estimation of the three key parame-
ters. And these three key parameters uniquely determine
the process of periodic screening. In summary, this project
is the first study to work on the optimal screening time
for an asymptomatic person for a certain kind of cancer.
More improvement can be done to refine this method. We
are working on optimal scheduling problem based on one’s
screening history and other parameters, and we hope to pro-
vide some guidelines regarding the timing of future screening
exam.

APPENDIX

Simulation results when current age a0 = 0 are in Tables 9
to 11 in the Appendix.

Table 9. Simulated optimal initial screening age t∗0 (in years) with σ2 = 0.02 and 0.03

σ2 = 0.02 σ2 = 0.03

p
MST = 1.5 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 21.82 22.41 22.69 17.46 17.97 18.21
0.10 25.90 26.63 26.97 21.02 21.67 21.97
0.15 28.92 29.76 30.15 23.72 24.48 24.84
0.20 31.50 32.43 32.87 26.06 26.92 27.33

p
MST = 2.5 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 28.67 29.36 29.68 23.51 24.13 24.43
0.10 33.37 34.19 34.58 27.82 28.59 28.95
0.15 36.74 37.66 38.09 30.99 31.87 32.28
0.20 39.54 40.55 41.02 33.68 34.66 35.12

p
MST = 5.0 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 39.62 40.41 40.77 33.78 34.54 34.90
0.10 44.85 45.73 46.15 38.94 39.83 40.25
0.15 48.42 49.37 49.81 42.57 43.56 44.02
0.20 51.28 52.28 52.74 45.55 46.61 47.11

p
MST = 10.0 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 52.01 52.83 53.21 46.29 47.15 47.55
0.10 57.35 58.23 58.63 51.98 52.93 53.38
0.15 60.84 61.75 62.17 55.81 56.82 57.30
0.20 63.55 64.49 64.92 58.85 59.92 60.41
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Table 10. Probability of overdiagnosis (in percentage) at the initial screening age t∗0 with σ2 = 0.02 and 0.03

σ2 = 0.02 σ2 = 0.03

p
MST = 1.5 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 0.054 0.055 0.056 0.034 0.037 0.037
0.10 0.062 0.063 0.064 0.048 0.050 0.051
0.15 0.069 0.072 0.073 0.054 0.055 0.056
0.20 0.078 0.082 0.084 0.058 0.060 0.060

p
MST = 2.5 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 0.129 0.133 0.135 0.100 0.102 0.102
0.10 0.161 0.168 0.172 0.116 0.119 0.122
0.15 0.195 0.205 0.211 0.134 0.139 0.142
0.20 0.231 0.248 0.258 0.152 0.161 0.166

p
MST = 5.0 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 0.592 0.628 0.645 0.381 0.398 0.407
0.10 0.890 0.952 0.986 0.524 0.558 0.575
0.15 1.166 1.247 1.284 0.688 0.745 0.775
0.20 1.413 1.500 1.539 0.872 0.948 0.988

p
MST = 10.0 years

β = 0.8 β = 0.9 β = 0.95 β = 0.8 β = 0.9 β = 0.95
0.05 4.128 4.310 4.414 2.689 2.848 2.919
0.10 5.619 5.936 6.072 3.804 4.015 4.125
0.15 7.008 7.459 7.711 4.743 5.038 5.201
0.20 8.462 9.043 9.291 5.721 6.142 6.368

Table 11. Estimated mean, median, mode and standard deviation of lead time at t∗0 when a0 = 0 and σ2 = 0.02

MST = 1.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 1.20, 1.19, 1.17, 0.58 1.19, 1.18, 1.16, 0.58 1.19, 1.17, 1.15, 0.58
0.10 1.14, 1.12, 1.09, 0.59 1.13, 1.10, 1.08, 0.59 1.12, 1.10, 1.07, 0.59
0.15 1.10, 1.07, 1.03, 0.59 1.08, 1.06, 1.02, 0.59 1.08, 1.05, 1.01, 0.59
0.20 1.06, 1.03, 0.98, 0.59 1.05, 1.02, 0.97, 0.59 1.05, 1.01, 0.96, 0.59

MST = 2.5 years
p β = 0.8 β = 0.9 β = 0.95

0.05 2.00, 1.97, 1.94, 0.97 1.98, 1.96, 1.92, 0.97 1.98, 1.95, 1.91, 0.97
0.10 1.89, 1.85, 1.81, 0.98 1.87, 1.83, 1.79, 0.98 1.86, 1.82, 1.78, 0.98
0.15 1.82, 1.77, 1.71, 0.98 1.80, 1.75, 1.69, 0.98 1.79, 1.74, 1.67, 0.98
0.20 1.76, 1.71, 1.63, 0.98 1.74, 1.69, 1.60, 0.98 1.73, 1.68, 1.58, 0.98

MST = 5.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 3.98, 3.92, 3.86, 1.93 3.95, 3.89, 3.82, 1.93 3.93, 3.87, 3.80, 1.93
0.10 3.75, 3.67, 3.58, 1.95 3.71, 3.63, 3.52, 1.95 3.70, 3.61, 3.50, 1.95
0.15 3.60, 3.50, 3.36, 1.96 3.56, 3.45, 3.30, 1.96 3.54, 3.43, 3.27, 1.96
0.20 3.48, 3.36, 3.18, 1.96 3.44, 3.31, 3.11, 1.96 3.42, 3.29, 3.07, 1.96

MST = 10.0 years
p β = 0.8 β = 0.9 β = 0.95

0.05 7.92, 7.78, 7.63, 3.88 7.84, 7.70, 7.54, 3.88 7.81, 7.66, 7.49, 3.89
0.10 7.40, 7.22, 6.97, 3.91 7.31, 7.12, 6.85, 3.92 7.27, 7.07, 6.79, 3.92
0.15 7.05, 6.82, 6.45, 3.92 6.96, 6.71, 6.30, 3.92 6.92, 6.66, 6.23, 3.92
0.20 6.78, 6.50, 5.98, 3.92 6.68, 6.38, 5.80, 3.92 6.64, 6.33, 5.71, 3.92
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