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The more data, the better? Demystifying
deletion-based methods in linear regression with
missing data∗

Tianchen Xu
†
, Kun Chen, and Gen Li

We compare two deletion-based methods for dealing with
the problem of missing observations in linear regression anal-
ysis. One is the complete-case analysis (CC, or listwise dele-
tion) that discards all incomplete observations and only uses
common samples for ordinary least-squares estimation. The
other is the available-case analysis (AC, or pairwise dele-
tion) that utilizes all available data to estimate the co-
variance matrices and applies these matrices to construct
the normal equation. We show that the estimates from
both methods are asymptotically unbiased under missing
completely at random (MCAR) and further compare their
asymptotic variances in some typical situations. Surpris-
ingly, using more data (i.e., AC) does not necessarily lead
to better asymptotic efficiency in many scenarios. Missing
patterns, covariance structure and true regression coefficient
values all play a role in determining which is better. We fur-
ther conduct simulation studies to corroborate the findings
and demystify what has been missed or misinterpreted in
the literature. Some detailed proofs and simulation results
are available in the online supplemental materials.
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1. INTRODUCTION

Missing data are very common in linear regression anal-
ysis. Dong and Peng (2013) described missing data as “a
rule rather than an exception in quantitative research.” For
instance, longitudinal data may be incomplete due to unex-
pected dropout, and survey data may be incomplete due to
refusal of respondents or wrong answers. Since inappropri-
ate treatments on missing data can severely undermine the
validity of inference and conclusion of a study, researchers
have developed many methods to conquer this challenge.
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Deletion-based methods usually involve complete-case
analysis (CC, or listwise deletion) and available-case analy-
sis (AC, or pairwise deletion). Peng et al. (2006) examined
569 papers with missing data published in 11 education jour-
nals from 1998 to 2004 and found that 552 (97%) employed
deletion-based methods; Lang and Little (2018) reviewed
169 papers with missing data in Prevention Science from
February 2013 to July 2015 and found that 62 (37%) stud-
ies used deletion-based methods. Especially recently, there is
an increasing trend in applying AC method or its variants to
high dimensional data such as block-missing multi-modality
datasets where each subject has missing blocks from certain
modality sources (Yu et al., 2020; Xue and Qu, 2020). CC
method utilizes the complete dataset in which any incom-
plete rows are discarded and is the default setting for many
multivariate procedures and regressions analysis in popular
statistical packages such as SAS, SPSS, SYSTAT and R. AC
method computes statistics using the rows for which every
constituent variables are observed and is the default setting
for descriptive, correlation, and regression analysis when us-
ing either correlation or covariance matrices in SAS, SPSS
and SYSTAT. The cov function and regtools package in
R also provide AC analysis for correlation estimation and
linear regression. The goal of this article is to compare the
performance of these two methods. Particularly, we mainly
focus on the classical low-dimensional settings with the as-
sumption that the proportion of complete observation is pos-
itive (to ensure CC method is feasible) and some typical
block-wise missing patterns.

Other mainstream treatments for missing data in regres-
sion analysis include: 1) imputation, 2) weighting, and 3)
maximum-likelihood based methods (Lang and Little, 2018;
Little and Rubin, 2019). Imputation methods try to impute
the missing part of the dataset. Single imputation often
imputes the missing values with some fixed values (e.g.,
mean values), randomly drawn values from the same vari-
able (simple hot-deck) or predictive values from other vari-
ables. Multiple imputation (MI) imputes the missing data
while acknowledging the uncertainty associated with the im-
puted values (Rubin, 1977, 1996). Weighting approaches dis-
card incomplete samples and assign weights to each sub-
ject according to some missing features to reduce the bias
and variance of final inference (Seaman and White, 2013).
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Maximum-likelihood methods such as information maxi-
mum likelihood (FIML, also known as direct maximum like-
lihood) consider only the observed samples when calculating
the sample log-likelihood function and maximize it using EM
algorithm to estimate parameters (Enders and Bandalos,
2001; Olinsky, Chen and Harlow, 2003). Generally speak-
ing, no technique is universally the best, but they are bet-
ter than the complete case analysis (CC) in most cases
(Tsikriktsis, 2005; Xu et al., 2015; Gao et al., 2018).

Under the missing completely at random (MCAR) as-
sumption, deletion-based methods are the fully automatic
methods, which makes them popular even there is no con-
sensus about whether AC is better than CC or not. There
have been intense debates in the literature about the merits
and flaws of different deletion-based methods. In particu-
lar, AC and CC are often in the center of the controversy.
Glasser (1964) is the first researcher (as far as we know)
who systematically introduced the AC estimator in the con-
text of linear regression. He argued that the AC estimator is
consistent and derived its asymptotic variance. In the sim-
ulation study with two predictors (p = 2), Glasser (1964)
concluded that the AC estimator is in general better than
the CC estimator if the correlation between two predictors is
less than 0.58. However, Haitovsky (1968) pointed out that
Glasser (1964)’s asymptotic result which does not involve
the true regression coefficients (β) was not accurate and pro-
vided the right asymptotic covariance. He reached an oppo-
site conclusion that “listwise deletion (the CC estimator) is
judged superior in almost all the cases” by considering nine
simulation scenarios. In contrast to Haitovsky (1968)’s find-
ings, Kim and Curry (1977) did another simulation study
and claimed their setting is more typical in sociological stud-
ies. The result indicated that the AC method performs bet-
ter than the CC estimator by using the correlation struc-
ture among predictors in Blau and Duncan (1967)’s book.
In the following decades, these contradictory papers were
frequently cited by researchers to show the comparison be-
tween two methods had not been fully settled (Little, 1992;
Allison, 2001; Pigott, 2001). Finally, we must point out that
all these comparisons mentioned above are under MCAR,
since deletion-based method are asymptotically unbiased
under this assumption. MCAR is generally a strong and
unrealistic assumption which is unlikely to hold in many
studies (Little et al., 2012). However, for the simplicity of
theoretical results, we still focus on the performance com-
parison under this assumption in this article.

The rest of the paper is organized as follows. In Section 2,
we review the existing results of both methods. In Section 3,
we compare the performance of any scalar regression coef-
ficient estimator in realistic situations. We show that the
estimators from both methods are asymptotically unbiased
and using more data (i.e., AC) does not necessarily lead
to better asymptotic performance. It is necessary to look
into the missing patterns, covariance structure and true re-
gression coefficients together to determine which method is

better. In Section 4, we conduct simulation studies based
on Kim and Curry (1977)’s settings to verify our theoreti-
cal propositions and validate our findings in Section 3. With
the guidance of the theoretical results, we are able to find
out what was missed or misinterpreted in the previous work
and provide our suggestions. In the last section, we discuss
further research directions.

2. BACKGROUND

2.1 Asymptotic results for complete case

Let X = (X1, X2, · · ·Xp)
T ∈ R

p be a random vector. Let
Y ∈ R be a random variable such that

Y = XTβ + ε,

where β = (β1, · · · , βp)
T ∈ R

p is a coefficient vector, ε ∈ R

is a random variable with mean 0 and variance σ2. Further-
more, we assume Xj is independent of ε.

Let Z = (Z1, · · · , Zp+1)
T �

(
XT , Y

)T

to be a (p + 1)-

dimensional random vector with mean μ and non-singular
covariance matrix Σ. Assume all fourth-order moments of
Z are finite. Partition Σ conformably as follows:

Σ =

(
Σx Σxy

ΣT
xy Σy

)
,

where Σx = Cov(X), Σxy = Cov(X, Y ) = Σxβ, Σy =

Var(Y ) = βTΣxβ+σ2. Let μj denote the jth element in μ.
Let σjk denote the (j, k)th element in Σ, and conventionally
we use σ2

j to denote the elements on the diagonal of Σ (i.e.,

σ2
j = σjj).
We collect a set of observation data

{Z1i, · · ·Zp+1,i}i=1,··· ,n from n independent samples
and assume there are not any missing data in this section.
Define the sample covariance matrix S = [sjk] with entries:

sjk =
1

n

n∑
i=1

(Zji − Z̄j)(Zki − Z̄k),

where Z̄j is the sample mean of Zj (j = 1, · · · , p+1). Similar
to Σ, we also partition S into four parts correspondingly:

S =

(
Sx Sxy

ST
xy Sy

)
,

where Sx, Sxy, Sy are the sample covariance/variance of X,
(X, Y ) and Y . Then the least-squares estimator of β is well
known:

β̂ = S−1
x Sxy.

The sample quantities S and β̂ are consistent estima-
tors of their theoretical counterparts Σ, β respectively and
are asymptotically normally distributed (Rao, 1973). The
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former is guaranteed by the Lindeberg-Levy Central Limit
Theorem and the latter can be derived from the Delta
method.

Proposition 2.1 (Rao, 1973). Let S be the sample covari-

ance matrix of r.v Z =
(
XT , Y

)T

, then

√
n(vec(S)− vec(Σ))

d−→N (0,Φ) ,

where the asymptotic covariance Φ consists of elements
φ(ij)(mn) � Cov(sjk, smn):

φ(jk)(mn) = E(Zj − μj)(Zk − μk)(Zm − μm)(Zn − μn)

− σjkσmn.

Proposition 2.2 (Rao, 1973). Let β̂ be the least-squares
estimator of β in the aforementioned regression, then

√
n(β̂ − β)

d−→Np(0,ΔΦΔT ),

whereΔ denotes the matrix of partial derivatives of function
β̂(S) evaluated in Σ.

The form of Δ and Φ depends on the way of vector-
izing S. In Appendix A (online supplemental material),
we provide an example of vectorizing S in columns (i.e.,
vec(Σ)). Similar results have been obtained in the litera-
ture; see White (1980); Van Praag (1981); Bentler (1985)
for example.

2.2 Asymptotic results for incomplete case

Suppose there are missing values in predictor matrix X.
Following Little (1982), the missing pattern is independent
of the values of predictors (i.e., missing completely at ran-
dom, MCAR). Let R = [Rji] (j = 1, · · · , p+1; i = 1, · · · , n)
be an indicator matrix that

Rji =

{
0 if Zji is not observed,

1 if Zji is observed.

2.2.1 Available-case analysis

“Available-case analysis (AC) tries to use the largest pos-
sible sets of available cases to estimate individual parame-
ters” (Little, 1992; Pigott, 2001). Define the sample covari-
ance matrix in AC method SAC = [sAC

jk ] with entries:

sAC
jk =

1

njk

∑
i∈τjk

(
Zji −

1

njk

∑
l∈τjk

Zjl

)(
Zki −

1

njk

∑
l∈τjk

Zkl

)
,

where τjk = {i : RjiRki = 1} is the index set of samples
that both Zj and Zk are observed; njk is the size of τjk (i.e.,
njk =

∑n
i=1 RjiRki). A defect of AC method is that the

estimated covariance matrix SAC might not be positive def-
inite. However, Van Praag, Dijkstra and Van Velzen (1985)

pointed out that the probability of SAC being positive def-
inite tends to 1 as the sample size increases. Similar to S,
we partition SAC into SAC

x , SAC
xy , SAC

y and define the AC

estimator β̂AC as follows:

β̂AC =
{
SAC

x

}−1

SAC
xy .

Let qj be the proportion of the cases with Zj ob-
served (i.e., qj = 1

n

∑n
i=1 Rji), and qjk be the proportion

of the cases with both Zj and Zk observed (i.e., qjk =
1
n

∑n
i=1 RjiRki). Similarly, we also define qjkm and qjkmn.

For the AC estimator, the following proposition holds:

Proposition 2.3 (Van Praag, Dijkstra and Van Velzen
1985). Under the MCAR assumption, assuming that the
observing proportions (i.e., qj , qjk, qjkm, qjkmn) are not zero
and remain the same as sample size n goes to infinity, the
asymptotic distribution of β̂AC is given by:

√
n(β̂AC − β)

d−→Np(0,Δ(Φ ◦Q)ΔT ),

where Q consists of elements q(jk)(mn) =
qjkmn

qjkqmn
correspond-

ing to φ(jk)(mn); ◦ represents the Hadamard product.
From the proposition, we conclude that βAC is asymp-

totically unbiased and its asymptotic variance is Δ(Φ ◦
Q)ΔT /n, obtained by multiplying a specific factor q(jk)(mn)

to φ(jk)(mn) in Φ that is from the variance of β̂ in the com-
plete case.

2.2.2 Complete-case analysis

Complete-case analysis (CC) only utilizes the complete

samples without any missing data. The CC estimator β̂CC is

exactly the same as β̂ in Section 2.1 except that the dataset
is constrained to complete samples. Therefore, CC method
is feasible only when there exist a sufficient number of com-
plete cases.

Proposition 2.4. Let q̃ denote the proportion of samples
that have complete observations, and assume q̃ > 0 is a
constant. Under the MCAR assumption, the CC estimator
β̂CC follows:

√
n(β̂CC − β)

d−→Np(0,ΔΦΔT /q̃),

Similar to the AC estimator, β̂CC is also asymptotically
unbiased and its asymptotic variance is ΔΦΔT /(nq̃).

3. COMPARISON BETWEEN AC AND CC

Somewhat surprisingly, although AC makes better use
of data by accounting for all available data points, many
simulation studies show that AC is markedly inferior to CC
on highly correlated data and can be superior to CC on
weakly correlated data (Haitovsky, 1968; Kim and Curry,

1977; Little and Rubin, 1989). Since both β̂AC and β̂CC

are consistent estimators of β, we compare their asymptotic
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variances in the article. Let VCC , VAC denote the asymptotic

variance of β̂CC , β̂AC respectively. Then the difference VD

is:

VD = VCC − VAC =
1

nq̃
Δ {Φ ◦ (1−Qq̃)}ΔT ,

where 1 is a p2+3p
2 by p2+3p

2 matrix with 1 being all of its

entries.

Neither method is uniformly better than the other with

any fixed missing pattern (see more detailed explanation in

Appendix B (online supplemental material)). It turns out

that we have to look into the covariance structure Σ, true

coefficient β together with missing pattern Q to determine

which method is better.

3.1 Asymptotic variance of estimating an
individual coefficient

Comparing asymptotic covariance matrices of all co-
efficients is rather complicated. We can gain insights
by focusing on comparing the variance of estimating an
individual coefficient using either AC or CC method. This
is a relevant task in many real applications. For example,
in genetics, we often want to test the association of a
disease and a genetic locus while adjusting for additional
clinical covariates. Here we assume Z follows an elliptical
distribution (Owen and Rabinovitch, 1983) and obtain the

asymptotic variance of β̂1 in both methods without loss
of generality. Under the MCAR and elliptical distribu-
tion assumption, the asymptotic variance of β̂1 is as follows:

n · VAC,β̂1
= (1 + κ)

⎧⎨
⎩

p∑
g=1

cgβ
2
g +

p∑
g=1

p∑
h=g+1

dghβgβh +

⎛
⎝ p∑

j=1

r21jσ
2
j

qj
+

p∑
j=1

p∑
k=j+1

2r1jr1kσjk
qjk
qjqk

⎞
⎠σ2

⎫⎬
⎭ ,(1)

n · VCC,β̂1
= (1 + κ)

⎛
⎝ p∑

j=1

r21jσ
2
j +

p∑
j=1

p∑
k=j+1

2r1jr1kσjk

⎞
⎠ σ2

q̃
= (1 + κ)

r11σ
2

q̃
,(2)

where cg, dgh are defined in Appendix C (online supplemen-
tal material); κ is a kurtosis parameter that will be intro-
duced in the following remark; rjk is the (j, k)th element in
Σ−1 (e.g., r1j is the jth element in the first row of Σ−1).
We also notice when all proportions (i.e., qj , qjk, etc) are
equal, namely there are no mismatched observations, then
cg = dgh = 0 and the variance of the AC estimator coincides
with that of the CC estimator as expected.

Remark: The reason for assuming an elliptical distribution
of Z is to simplify the fourth central moments involved in
VD. A special case is to assume Z follow a multivariate nor-
mal distribution for which the fourth central moments can
be expressed in terms of its covariance matrix by Isserlis’
theorem (Isserlis, 1918). In this article, we adopt a more
general assumption that Z follows an elliptically contoured
distribution (Owen and Rabinovitch, 1983) that includes
not only multivariate normal distribution, but also fatter-
tailed distributions such as multivariate t-distribution, mul-
tivariate logistic distribution, and thinner-tailed distribu-
tions such as sub-Gaussian α-stable distribution. Bentler
(1983) introduced a kurtosis parameter κ to link the fourth
moments with the covariance matrix:

E(Zj − μj)(Zk − μk)(Zm − μm)(Zn − μn)

= (1 + κ)(σjkσmn + σjmσkn + σjnσkm)

where κ =
E(Zj−μj)

2

3{E(Zj−μj)2}2 − 1 is one-third of the excess kur-

tosis for each marginal r.v Zj . In our regression setting, κ is
always larger than −1/2 (Bentler and Berkane, 1986). For
normal distribution, κ = 0. There are several ways to es-
timate the common kurtosis parameter from the data (See
Appendix D (online supplemental material)).

3.2 Comparison of Var(β̂1) under special
missing patterns

As we can see from expressions (1), (2), a very general
missing pattern results in a complex formula. In this sec-
tion, we assume X2 to Xp follow the same missing pattern

and explore the asymptotic variance of β̂1 in both methods.
As shown in Figure 1, we focus on two missing patterns.
The pattern (a) is a unit monotone missing pattern and the
pattern (b) is a univariate missing pattern when predictors
X2 to Xp are complete (Little, 1992).

3.2.1 Missing pattern (a)

Consider the unit monotone missing pattern (a) shown in
Figure 1(a). Let q1 denote the observed proportion of X1;
q−1 be the observed proportion of Xj (j ≥ 2). In addition,
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Figure 1. Illustration of two missing patterns.

we assume available samples in X2 to Xp are a subset of
X1 (q1 > q−1) to have the monotone missing.

According to expressions (1) and (2), we obtain the

asymptotic variance of β̂1 in both methods and calculate
the difference VD,β̂1

. Let f(β) � n · VD,β̂1
denote the differ-

ence of asymptotic variance as a function of β:

f(β)=−r211

(
1

q−1
− 1

q1

) p∑
g=2

(σ2
1g+2κσ2

1g+σ2
1σ

2
g+κσ2

1σ
2
g)β

2
g

− 2r211

(
1

q−1
− 1

q1

) p∑
g=2

p∑
h=g+1

(
σ1gσ1h + 2κσ1gσ1h + σ2

1σgh

+ κσ2
1σgh

)
βgβh + (1 + κ)

(
1

q−1
− 1

q1

)(
2r11 − r211σ

2
1

)
σ2.

The true coefficient β1 is not involved in this expression. If
f(β) > 0, then AC estimator is better.

We find that
(

1
q−1

− 1
q1

)
is a key quantity in f(β). No

matter which method is better, when we fix all other pa-
rameters, the larger the difference between 1/q−1 and 1/q1,
the larger the difference between the two methods.

A special case is that all predictors are independent:

f(β) =
1

σ2
1

(1 + κ)

(
1

q−1
− 1

q1

)(
σ2 −

p∑
g=2

σ2
gβ

2
g

)
.

AC estimator is better when f(β) > 0, so we have the fol-
lowing proposition:

Proposition 3.1. In missing pattern (a), assuming all pre-
dictors are independent, the AC estimator is asymptotically
better if and only if:

p∑
g=2

σ2
gβ

2
g < σ2.

We can rewrite the inequality as
∑p

g=2

(
σgβg

σ

)2

< 1,

which means when the sum of squares of the standardized

Figure 2. (a) f(β2) in scenario 1 (p = 2); (b) the projection
of f(β) = 0 in scenario 2 (p ≥ 3).

coefficients (except for X1) are less than 1, the AC estimator

of β1 is better.

For the general case that predictors are not independent,

we further discuss the behavior of f(β) under two scenarios

where p = 2 or p ≥ 3.

Scenario 1, p = 2:
In this scenario, we only have predictors X1, X2 in our

model. Then f(β) is simplified as:

f(β2)=−r211(σ
2
12+2κσ2

12+σ2
1σ

2
2+κσ2

1σ
2
2)

(
1

q−1
− 1

q1

)
β2
2

+ (1 + κ)

(
1

q−1
− 1

q1

)(
2r11 − r211σ

2
1

)
σ2.

It is obvious that when the constant term (that does not

involve β2) is negative, f(β2) is always less than 0 (i.e., CC
is better). Therefore, we have the following proposition:

Proposition 3.2 (See Appendix E (online supplemental

material) for proof). In missing pattern (a) with two pre-

dictors, a sufficient condition that the CC estimator of β1 is
asymptotically better than AC is:

σ2
1σ

2
2

σ2
12

< 2.

This proposition shows that if the correlation between

two predictors is strong (i.e., |ρ12| >
√
2
2 ), the AC estimator

is always worse.

When
σ2
1σ

2
2

σ2
12

≥ 2 (i.e., |ρ12| ≤
√
2
2 ), the AC estimator has

the possibility to be better than CC only if β2 is not too far

from 0. In Figure 2(a), we plot function f(β2) and find that

f > 0 iff β2 lies in the interval between two intersections
(the pink interval). This interval is symmetric around 0 and
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Table 1. How C changes with parameters

Parameter Segment 1 C Segment 2 C

κ (−1/2,+∞) ↘
σ12 (−

√
σ2
1σ

2
2/2, 0) ↗ (0,

√
σ2
1σ

2
2/2) ↘

(ρ12) (−
√
2/2, 0) ↗ (0,

√
2/2) ↘

σ2
2 (2σ2

12/σ
2
1 ,M0

a) ↗ (M0,+∞) ↘
σ2
1 (2σ2

12/σ
2
2 ,+∞) ↗

σ2 (0,+∞) ↗
aM0 =

(
2 +

√
8− 2/(1 + κ)

)
σ2
12/σ

2
1 .

we denote its length as C:

C =

√√√√ 4 (σ2
1σ

2
2 − 2σ2

12)σ
2(

1+2κ
1+κ σ2

12 + σ2
1σ

2
2

)
σ2
2

.

We list how C changes with different parameters in
Table 1. When the kurtosis parameter κ increases, the
interval length C decreases, which means a heavy-tailed
dataset favors CC method. For the covariance structure, we
find that a larger σ2

1 , σ
2 and a smaller |σ12| favors the AC

estimator, but the effect of σ2
2 is not monotone when fixing

other parameters. In other words, decreasing the variance of
X1 or the residual, and increasing the correlation between
X1, X2 make the AC estimator of β1 a worse estimator.

Scenario 2, p ≥ 3:
In this scenario, we assume that Xj (j ≥ 2) are ho-

moscedastic and have an exchangeable covariance structure.
Their correlation with X1 is exchangeable as well. Specifi-
cally, we assume that the variance of X1 is σ2

1 ; the vari-
ance of Xj (j ≥ 2) is σ2

2′ ; the covariance between X1 and
Xj (j ≥ 2) is σ12′ ; and the covariance between Xj (j ≥ 2)
and Xk (k ≥ 2, k 	= j) is σ2′3′ . Then f(β) is simplified as:

f(β) = −r211(σ
2
12′ + 2κσ2

12′ + σ2
1σ

2
2′ + κσ2

1σ
2
2′)(

1

q−1
− 1

q1

) p∑
g=2

β2
g − 2r211(σ

2
12′ + 2κσ2

12′ + σ2
1σ2′3′

+ κσ2
1σ2′3′)

(
1

q−1
− 1

q1

) p∑
g=2

p∑
h=g+1

βgβh

+ (1 + κ)

(
1

q−1
− 1

q1

)(
2r11 − r211σ

2
1

)
σ2.

We find that f(β) is an elliptic paraboloid R
p. When the

constant term (that does not involve β) in f(β) is negative,
f(β) is always negative (See Appendix F (online supplemen-
tal material) for proof). So we have the following proposi-
tion:

Proposition 3.3 (See Appendix E (online supplemental
material) for proof). In missing pattern (a) with all assump-
tions above, a sufficient condition that CC estimator of β1

is asymptotically better than AC is:

{(p− 2)σ2′3′ + σ2
2′}σ2

1 < 2(p− 1)σ2
12′ .

As p → ∞, this condition becomes:

σ2′3′σ
2
1

σ2
12′

< 2.

The condition σ2′3′σ
2
1 < 2σ2

12′ is equivalent to ρ2′3′ <
2ρ212′ , where ρ12′ , ρ2′3′ is the correlation between X1,
Xj (j ≥ 2), and Xj (j ≥ 2), Xk (k > 1, k 	= j) respectively.
This proposition shows that in a high dimensional dataset
(p is large) with missing pattern (a), if the correlation be-

tween X1 and Xj (j ≥ 2) is too strong (|ρ12′ | >
√

|ρ2′3′ |
2 ),

the AC estimator is always worse.

In Figure 2(b), we plot this ellipse whose center is at the
origin and the major axis is rotated 45◦ around the origin.
When point (βj , βk) lies in the ellipse (the pink region), then
the AC estimator is better than CC. Let A and B denote
the length of the semi-major and semi-minor axes:

A =

√√√√ (−2(p− 1)σ2
12′ + (p− 2)σ2

1σ2′3′ + σ2
1σ

2
2′)σ

2

((p− 2)σ2′3′ + σ2
2′)

(
2+4κ
1+κ σ2

12′ + σ2
1σ

2
2′ + σ2

1σ2′3′

) ,

B =

√
(−2(p− 1)σ2

12′ + (p− 2)σ2
1σ2′3′ + σ2

1σ
2
2′)σ

2

((p− 2)σ2′3′ + σ2
2′) (σ

2
1σ

2
2′ − σ2

1σ2′3′)
.

Similar to scenario 1, when ((p − 2)σ2′3′ + σ2
2′)σ

2
1 ≥

2(p − 1)σ2
12′ , AC method has a potential to be better than

CC. To be more specific, if setting f(β) = 0, we get an
ellipsoid in R

p−1 space. This ellipsoid is symmetric around
the origin and its projection onto any (βj , βk)-plane has the
same shape and size. The projection curve on the (βj , βk)-
plane is an ellipse and described by the following expression:

(
1 + 2κ

1 + κ
σ2
12′ + σ2

1σ
2
2′

)
(β2

j + β2
k)

+ 2

(
1 + 2κ

1 + κ
σ2
12′ + σ2

1σ2′3′

)
βjβk =

(
2

r11
− σ2

1

)
σ2.

We list how A, B change with different parameters in
Table 2 and 3. In particular, when the number of predictors
p increases, both axes get shorter, resulting in a smaller
ellipse that favors CC method. Larger kurtosis parameter κ
also shrinks the ellipse, which means a heavy-tailed dataset
impairs the performance of AC. In addition, we find that a
larger σ2

1 , σ
2 and a smaller |σ12′ | favor AC estimator. The

effect of σ2
2′ , σ2′3′ is not monotone. Overall, we conclude

that a higher correlation between X1 and other predictors,
a lower variance ofX1 or the residual make the AC estimator
of β1 a worse estimator.
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Table 2. How A changes with parameters

Parameter Condition Segment 1 A Segment 2 A

p (IL, IR)
a ↘

κ (IL,+∞) ↘
σ12′ (IL, 0) ↗ (0, IR) ↘

σ2′3′

IL < M1
b < IR (IL, 0) ↗ (0, IR) ↘

IR < M1 (IL, IR) ↗
IL > M1 (IL, IR) ↘

con 1c > 0 and IL < M2
b (IL,M2) ↗ (M2,+∞) ↘

σ2
2′ con 1 < 0 or IL > M2 (IL,+∞) ↘
σ2
1 (IL,+∞) ↗

σ2 (0,+∞) ↗
aIL, IR are the minimum/maximum value for this parameter to take (See Appendix G (online supplemental material)).
bThe expressions of M1,M2 are in Appendix G (online supplemental material).
ccon 1 = (2 + 2p− 2/(1 + κ))σ2

12′ + (3− p)σ2
1σ2′3′ .

Table 3. How B changes with parameters

Parameter Condition Segment 1 B Segment 2 B

p (IL, IR)
a ↘

κ (IL,+∞) →
σ12′ (IL, 0) ↗ (0, IR) ↘

σ2′3′
2σ2

12′ > σ2
1σ

2
2′ and IR > M3

b (IL,M3) ↗ (M3, IR) ↘
2σ2

12′ < σ2
1σ

2
2′ or IR < M3 (IL, IR) ↗

2σ2
12′ > σ2

1σ2′3′ and IL < M4
b (IL,M4) ↗ (M4,+∞) ↘

σ2
2′ 2σ2

12′ < σ2
1σ2′3′ or IL > M4 (IL,+∞) ↘

σ2
1 (IL,+∞) ↗

σ2 (0,+∞) ↗
aIL, IR are the minimum/maximum value for this parameter to take (See Appendix G (online supplemental material)).
bThe expressions of M3,M4 are in Appendix G (online supplemental material).

3.2.2 Missing pattern (b)

This missing pattern is shown in Figure 1(b). Let q1 de-
note the observed proportion of X1; q−1 be the observed
proportion of Xj(j ≥ 2). In addition, we assume available
samples in X1 are a subset of X2 to Xp (q1 < q−1). A special
case is that only variable X1 has missing values (q−1 = 1)
which is called univariate missing. With expressions (1), (2),

we obtain the asymptotic variance of β̂1 of two methods and
the difference VD,β̂1

is as follows:

n · VD,β̂1
=

(
1

q1
− 1

q−1

){
n(r11 − r211σ

2
1)σ

2 − c1β
2
1

}
,

where

c1 =

p∑
j=2

r21j
(
σ2
1j + σ2

1σ
2
j

)
+ κr21jσ

2
1σ

2
j + 2κr21jσ

2
1j

+

p∑
j=2

p∑
k=j+1

{
2r1jr1k

(
σ1jσ1k + σ2

1σjk

)

+ 2κr1jr1kσ
2
1σjk + 4κr1jr1kσ1jσ1k

}
.

The asymptotic variance of β̂1 in CC method is always equal
to or smaller than AC method (See Appendix H (online sup-

plemental material) for proof). The quantity
(

1
q1

− 1
q−1

)
de-

termines the difference of performance between two meth-
ods.

Proposition 3.4. In missing pattern (b), CC estimator of
β1 is asymptotically equal to or better than the AC estima-
tor.

This proposition implies that using extra data from X2

to Xp does not improve the estimation of β1 asymptotically.
The special case is that when X1 is independent of other
predictors, then both (r11 − r211σ

2
1) = 0 and c1 = 0 and thus

we have the following proportion:

Proposition 3.5 (See Appendix H (online supplemental
material) for proof). In missing pattern (b), AC and CC
have the same asymptotic performance if and only if X1 is
independent of other predictors.

3.3 Summary

The main results of Subsection 3.2 are listed in Table 4.
In missing pattern (a) that available samples in other predic-
tors are a subset of X1, the CC estimator of β1 outperforms
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Table 4. Summary table of the comparison in different scenarios.

Missing Pattern p Condition AC CC

pattern (a)

all predictors are independent,
∑p

g=2 σ
2
gβ

2
g < σ2 �

2 |ρ12| >
√
2/2 �

2 large κ, |ρ12| �
2 large σ2

1 , σ
2; small |β2| �

≥ 3 special covariancea; ρ212′ > ρ2′3′/2
b(large p) �

≥ 3 special covariance; large p, κ, |σ12′ | �
≥ 3 special covariance; large σ2

1 , σ
2; small |βg| (g ≥ 2) �

pattern (b)
X1 is independent of other predictors same

X1 is not independent of other predictors �
aXj(j ≥ 2) are homoscedastic and have an exchangeable covariance structure. Their correlation with X1 is exchangeable as well.
bThis condition becomes {(p− 2)σ2′3′ + σ2

2′}σ
2
1 < 2(p− 1)σ2

12′ when p is not large enough.
� represents the better estimator in this condition; � represents this condition flavors the method, but it is not guaranteed to be better.

the AC estimator when the correlation between X1 and oth-
ers are large (i.e., |ρ12| >

√
2/2 for two-dimensional predic-

tors; ρ212′ > ρ2′3′/2 for very high dimensional predictors with
special covariance structure). A larger variance of X1 and
residual, and true coefficients βg (g ≥ 2) that is closer to
0 increase the relative performance of AC; while higher di-
mension of predictors, heavier distribution tails, and larger
correlation between X1 and other predictors flavor the per-
formance CC. In missing pattern (b) that available samples
in X1 are a subset of other predictors, the CC estimator of
β1 is better, except for the scenario that when X1 is inde-
pendent of other predictors, both methods have the same
asymptotic performance.

4. SIMULATION STUDY

In the introduction part, we mentioned several simulation
studies that tried to evaluate AC method. In this section,
we take Kim and Curry (1977)’s paper as an example to
illustrate the performance of AC method comparing with
CC in more details with the help of our theoretical results
from the last section.

The simulation studies are based on the correlation ma-
trix on page 196 in Blau and Duncan (1967)’s book. All re-
sults from Kim and Curry (1977) showed that AC method
is superior to CC. For example, there is a regression anal-
ysis of education status. Response variable U is education
status and predictors are V (father’s education) and X (fa-
ther’s occupational status):

U = 0.310V + 0.279X + ε.

The variance of two predictors and the residual is 1
(σ2

V = σ2
X = σ2

ε = 1). The covariance between V , X is
0.516 (σV X = 0.516). So we obtain the covariance matrix of
random vector (V,X)T and (V,X,U)T as follows:

ΣV X =

(
1 0.516

0.516 1

)
,ΣV XU =

⎛
⎝ 1 0.516 0.454
0.516 1 0.439
0.454 0.439 1.263

⎞
⎠ .

4.1 Finite-sample performance

In the first part of the simulation study, we set up five set-
tings to examine the asymptotic property of our theoretical
results.

• Setting (1). (V,X,U)T ∼ N(0,ΣV XU ). This setting as-
sumes predictors and errors are normally distributed.

• Setting (2). (V,X,U)T ∼ t5(0,
3
5ΣV XU ). In this setting,

the covariance matrix of (V,X,U) is ΣV XU . The response
and predictors follow a multivariate t distribution with a
degree of freedom of 5, which meets the elliptic distribu-
tion assumption.

• Setting (3). (V,X)T ∼ Multivariate Bernoulli with co-
variance matrix ΣV X/6. The response U = 0.310V +
0.279X + ε where ε ∼ N(0, 1). This is a typical case
where predictors are categorical variables but the error
term is normally distribution. This setting violates the
elliptic distribution assumption.

• Setting (4). (V,X)T ∼ Multivariate Poisson with covari-
ance matrix ΣV X . The response U = 0.310V +0.279X+ε
where ε ∼ N(0, 1). Another setting that violates the el-
liptical distribution assumption. The setting is similar to
Setting (3), but the predictors follow a multivariate Pois-
son distribution that has a larger kurtosis than Bernoulli.

• Setting (5). (V,X,U)T ∼ Multivariate Poisson with co-
variance matrix ΣV XU . Comparing with Setting (4), the
error does not follow a normal distribution. This also vi-
olates the elliptical distribution assumption.

In each setting, each predictor has 10% of random missing
cases. Without loss of generality, we focus on the variance
of the coefficient estimator for predictor V (i.e., β̂V ). We

calculate the variance of β̂V with 10,000 estimated β̂V in AC
method and repeat the simulations 100 times to obtain the
standard deviation. The sample size varies from 50 to 250.
The theoretical kurtosis parameter κ is estimated from the
samples using the second approach in Appendix D (online
supplemental material).

In Figure 3, we plot the theoretical results in solid lines
and simulated results in dashed lines. In the first two settings
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Figure 3. Asymptotic performance of the theoretical results.
“S/T” stand for simulated/theoretical result respectively.

where the elliptical distribution assumption holds, the theo-
retical variance converges to the simulated variance quickly
and can be used to represent the true variance accurately
when sample size is larger than 150. For the rest of settings,
the theoretical result slightly overestimates the variance in
Setting (4) and performs well in Setting (3) and (5). The
main reason is that the kurtosis of response U is quite differ-
ent from that of V , X in setting (4). The kurtosis parameter
κ is estimated as one third of the mean excess kurtosis of
each variable and thus its value is not accurate in setting (4),
which results in a worse convergence property. Overall, we
conclude that it is safe to utilize the theoretical asymptotic
variance to analyze the true estimator variance when the el-
liptical distribution assumption holds and sample size is not
too small. When the assumption severely violates, the de-
rived asymptotic variance may be inaccurate in some cases,
especially when the kurtosis of each variable varies much.

4.2 Comparison of AC and CC

In the second part of the simulation study, we still fo-
cus on the variance of β̂V . Here, we try to explore how the
performance of AC changes with different model parame-
ters when comparing with the CC estimator. In addition,
we also include FIML and MI into the comparison. The MI
uses the default ‘predictive mean matching’ (pmm) imputa-
tion method in the MICE package in R.

The response and predictors are simulated from a
multivariate-normal distribution as in Setting (1) with 1000
(n = 1000) samples.

In Table 5 row 1, we reproduce the result of the
Kim and Curry (1977)’s setting where they deleted 10% of
the cases from both predictors randomly and obtain their
finding that AC method has the smaller variance. Then we
explore the simpler settings that only one predictor has miss-
ing values. In row 2–3, only V has missings and as we dis-

Table 5. The MSE of β̂V in different missing patterns

qV qX qV X CC(s)a CC(t)a AC(s)a AC(t)a FIMLa MIa

0.9 0.9 0.81 1.682 1.683 1.631 1.652 1.544 1.585
0.9 1 0.9 1.495 1.514 1.554 1.576 1.474 1.500
0.8 1 0.8 1.704 1.704 1.841 1.842 1.671 1.716
1 0.9 0.9 1.495 1.514 1.431 1.438 1.415 1.423
1 0.8 0.8 1.704 1.704 1.529 1.532 1.481 1.499

a(s) means simulation results; (t) means theoretical results using ex-
pressions (1), (2) in Section 3.1. All the variances are in the order of
magnitude of −3.
Note: the smaller MSE in AC or CC is in boldface; the smallest MSE
in all methods is in red.

cussed in Subsection 3.2.2, AC method will not improve the
efficiency of β̂V by using extra data from X. Therefore, CC
method is always better in this missing pattern. The last two
rows are the settings whereX has missings. AC method even
has larger advantages than Kim and Curry (1977)’s setting.
In addition, we observe that no matter which method is bet-
ter, the performance difference gets larger when the missing
proportion increases, which is consistent with the finding
that the inverse of the observation proportion serves as a
scalar in VD in Subsection 3.2.1, Subsection 3.2.2.

We further investigate the influence of different parame-
ters on the performance of different methods. We focus on
the setting with complete V and incomplete X with 10%
missing (i.e., row 4 in Table 5). The results are presented in
Appendix Table 1 to 4 (online supplemental material) and

the relative efficiency of β̂V between CC, AC is shown in Fig-
ure 4. In Appendix Table 1 (online supplemental material),
we change the correlation between V , X in different ways.
We fix the variance of V and X in the first part of the table,
and it turns out that CC method will outperform AC when
the covariance increases (yellow line in Figure 4(a)). Some
articles misinterpret this result and claim that it is always
better to use AC method when the correlation between pre-
dictors is small (Glasser, 1964; Kim and Curry, 1977). The
counterexample is in the second part of the table, where
we increase the correlation by decreasing the variance of X.
As we point out in Subsection 3.2.1, the effect of σ2

X is not
monotone, so that we see CC method beats AC in both
low and high correlation situations (red line in Figure 4(a)).
Lastly, we increase the correlation by decreasing the vari-
ance of V in the third part. As expected, the effect of σ2

V is
monotone. A smaller variance of V flavors CC method (blue
line in Figure 4(a)).

The effect of σ2
ε is simple. As shown in Appendix Table 2

(online supplemental material) and Figure 4(b), a smaller
variance of the residual makes CC method more advanta-
geous.

The most severe problem of AC method is showed in Ap-
pendix Table 3 (online supplemental material). We use dif-
ferent true coefficients to compare two methods. From the
theoretical results (expressions (1), (2)), we know that the
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Figure 4. The relative efficiency of β̂V between CC, AC. Single parameter changes each time. (a) Different correlations of V ,
X. (b) Different residual variances. (c) Different coefficients.

asymptotic variance of the coefficients is not related to the
true coefficients in CC method, but that will change in AC
method. In this setting, the variance of estimated β̂V in AC
method increases with true βX increases and thus relative
efficiency decreases (red line in Figure 4(c)). Therefore, AC
method will be inferior when the effect size of other predic-
tors is large. Especially when there are several predictors,
AC method is worse as long as any of the other coefficients
is large.

In Appendix Table 4, we increase the dimension of the
simulated data by adding more covariates Zi that has the
same variance, missing pattern and association with re-
sponse U as covariate X. The covariance between Zi and
V , X is 0.516 in covariance structure 1 and covariance be-
tween Zi and V , X is 0 in covariance structure 2. We can
see in both settings, the AC estimator loses its power. Espe-
cially in covariance structure 1, the AC estimator becomes
very unstable when the dataset dimension reaches to 50.

Finally, comparing with CC or AC, modern techniques
such as FIML and MI have a similar or better performance
in almost all cases. This finding is in our expectation since
these modern techniques already showed their superiority to
CC in literatures (Rubin, 1987; Schenker et al., 1988; Rubin,
1996; Anderson, 1957; Rigdon, 1998) and AC can only be
worse or slightly better than CC.

5. DISCUSSION

Since both the AC estimator and the CC estimator are
asymptotically unbiased under the MCAR assumption, the
comparison of their asymptotic variance helps us determine
which one is better. The missing pattern, data covariance

structure, true coefficients, etc together influence the per-
formance comparison and their effects on the estimator effi-
ciency under two special missing patterns are summarized in
Subsection 3.3. Generally speaking, the AC estimator may
have advantages when the predictors are not strongly corre-
lated while variances of other predictors are small. A heav-
ier tailed distribution, higher predictor dimension and larger
true predictor coefficients flavor the CC estimator.

We find that the comparison outcome is quite compli-
cated and hope to have some more intuitive explanations.
Tarpey et al. (2014) pointed out that the least-squares esti-

mator β̂ = S−1
x Sxy enjoys special superiority because it is

a ratio estimator that exploits the dependence between Sx

and Sxy, so that even the estimator β̃ = Σ−1
x Sxy that uses

the true Σx to replace Sx is inferior to the least-squares es-
timate β̂. Therefore, though the AC estimator utilizes more
data than CC method, it is not always better because it may
impair the benefits from utilizing dependence between Sx

and Sxy. This argument provides a potential perspective on
the intuitive explanation and needs to be formalized in the
further work.

Based on these results, we believe that AC is not a
promising method and the effort in missing field should
be devoted to making modern methods such as FIML,
MI more accessible and user-friendly. For example, re-
searches on GWAS (genome-wide association studies) show
that a proper imputation method could greatly increase
the study power even for extremely low-coverage sequenc-
ing, which obviously far outperforms AC or CC method
(Pasaniuc et al., 2012; Höglund et al., 2019).

One future possible research direction is to extend the
work to more scenarios. We focus on the comparison un-
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der MCAR assumption, but this assumption is often re-
garded to be very strong and unrealistic (Little et al., 2012).
The performance of deletion-based methods will be differ-
ent under other more general missing patterns. We can also
further relax the elliptical assumption or compare several
coefficients at the same time. These works will help us to
gain insight into the whole picture and lead to more elegant
solutions. Besides, the AC estimator has many improved
versions (Yu et al., 2020; Lorenzo-Seva and Ferrando, 2020)
that possibly have better performance than the original one.
Future researches can evaluate these variants and further
optimize the method.
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