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Multivariate Bernstein Fréchet copulas
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Finding joint copulas based on given bivariate margins is
an interesting problem. It involves in obtaining the copula
from the information of its bivariate marginal distributions.
In this paper, we present a multivariate copula family called
multivariate Bernstein Fréchet (BF) copulas. Each copula in
the family is uniquely determined by its bivariate margins,
the bivariate BF copulas. For this purpose, we first discuss
properties of the bivariate BF copulas, including supermi-
grativity and TP2 properties. The advantages of bivariate
BF copula are identified by comparing it with the bivariate
Gaussian copula and the bivariate Fréchet copula. We show
that a multivariate BF copula is uniquely determined by its
marginal bivariate BF copulas, and methods to construct
the multivariate BF copula are discussed. Numerical studies
are carried out for displaying the advantages of multivariate
BF copulas.

Keywords and phrases: Copula construction, Multivari-
ate Bernstein Fréchet copulas, Bivariate marginal copulas,
Parametric estimation.

1. INTRODUCTION

Copulas are multivariate distribution functions with uni-
form margins on [0, 1]. The fundamental theory in copulas is
Sklar’s Theorem (Nelsen, 2006), which states that for each
multivariate distribution function H whose marginal distri-
butions are F1, . . . , Fn, there exists an n-dimensional copula
function C such that

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)),

and C is unique if the marginal distribution functions
F1, . . . , Fn are all continuous.

Due to the need of modeling dependence structures, the
construction of new copulas is an active research area. For
instance, Bedford and Cooke (2002) defined the vine copula
which can effectively model tail risks in financial studies.
Sancetta and Satchell (2004) defined the Bernstein copula
which can approximate any copula in a polynomial form.
Molenberghs and Lesaffre (1994) proposed a construction
method based on an extension of bivariate Plackett copula,
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and Hürlimann (2004) constructed a parametric family of
multivariate distributions using bivariate linear Spearman
copulas. An interesting problem is to develop a method for
the construction of new copulas based on its higher dimen-
sional marginal copulas instead of univariate margins, as
introduced in Embrechts (2009).

In this paper, we focus on constructing copula families
which can be uniquely determined by their bivariate mar-
gins. The most well-known copula family for this purpose is
the Gaussian copula. Other copulas with this property in-
clude CA,B copulas proposed by Yang, Qi and Wang (2009)
and the multivariate copulas studied in Johnson and Kott
(1975). To model dependence by these parametric copula
families, one needs to estimate all

(
n
2

)
bivariate marginal

copulas with the multivariate copula uniquely determined
by its bivariate margins.

Our new family of copulas is constructed by combin-
ing CA,B copulas (Yang, Qi and Wang, 2009) and composite
Bernstein copulas (Yang et al., 2015; Guo, Wang and Yang,
2017; Yang, Wang and Xie, 2020). We call it the multi-
variate Bernstein Fréchet (BF) copula. First we investi-
gate the bivariate marginal copulas of the multivariate
BF copulas, i.e., the bivariate BF copulas. The bivari-
ate BF copulas contains many types of well known exam-
ples such as FGM copulas, bivariate copulas with cubic
sections (Nelsen, Quesada-Molina and Rodŕıguez-Lallena,
1997), and the copulas studied in Baker (2008). The prop-
erties for dependence in the bivariate BF copulas, such as
supermigrativity and TP2, are discussed. By comparing the
bivariate BF copula with the bivariate Gaussian copula and
the bivariate Fréchet copula, the advantages of bivariate BF
copula are identified. Then, we show that a multivariate BF
copula can be uniquely determined by its bivariate margins
under a loose condition. The probabilistic structure of the
multivariate BF copula is also provided. It can be used for
random simulation and portfolio risk modeling. Besides, the
methods for the determination of multivariate BF copulas
from their bivariate margins are identified. Finally, we de-
velop estimation method and perform numerical studies to
verify the advantages of the copula family.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the definition of the bivariate BF copulas
with properties of the copula functions. Section 3 investi-
gates multivariate BF copulas with the proof of the main
result of this paper. The methods to construct a multivari-
ate BF copula based on its bivariate margins are also dis-
cussed in this section. Section 4 gives the estimation method
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for bivariate BF copulas, and simulation studies are carried
out in this section. An empirical study with stock price data
is presented in Section 5. Section 6 presents conclusions of
the paper. Some proofs are put in Appendix A.

2. BIVARIATE BERNSTEIN FRÉCHET
COPULAS

In this section we introduce the definition and properties
of bivariate BF copulas, which is used to construct multivari-
ate copulas in Section 3. We first introduce the composite
Bernstein copula (Yang et al., 2015; Guo, Wang and Yang,
2017; Yang, Wang and Xie, 2020), and then the bivariate
BF copula is defined as one bivariate copula family of com-
posite Bernstein copulas. We show that some well-known
copulas are included in the bivariate BF copulas, and im-
portant dependence properties such as TP2 and supermigra-
tivity can be derived based on a particular type of bivariate
BF copulas. Finally, we analyze the advantages of bivariate
BF copula by comparing it with bivariate Gaussian copula
and bivariate Fréchet copula.

2.1 Brief introduction to Bernstein copulas
and composite Bernstein copulas

Copulas are multivariate distribution functions with the
common univariate U [0, 1] marginal distributions. Let

M(u1, . . . , un) = min{u1, . . . , un},

and

W (u1, . . . , un) = max{u1 + · · ·+ un − (n− 1), 0},

where (u1, . . . , un) ∈ [0, 1]n. Here M(u1, . . . , un) and W (u1,
. . . , un) are called Fréchet-Hoeffding upper bound and
Fréchet-Hoeffding lower bound respectively (Nelsen, 2006).
Note that the function M(u1, . . . , un) is indeed a copula
which models comonotonic dependence structure, and the
function W (u1, . . . , un) is a copula only when n = 2 (see
Joe, 2015, pp. 48). Every copula C(u1, . . . , un) satisfies the
Fréchet-Hoeffding inequality

W (u1, . . . , un) ≤ C(u1, . . . , un) ≤ M(u1, . . . , un).

In addition, Π(u1, . . . , un) =
∏n

i=1 ui, (u1, . . . , un) ∈ [0, 1]n

is a copula for modeling the independent structure between
random variables.

In the two-dimensional case, the bivariate Fréchet copula
is defined as

(1) F (u, v) = αM(u, v) + βΠ(u, v) + γW (u, v),

where α, β, γ ≥ 0 and α + β + γ = 1. This is a mix-
ture form of comonotonicity, countermonotonicity, and in-
dependency, the three basic dependence structures (see
Nelsen, 2006, pp. 32). Because of the simple form, one

can use this copula to approximate other copulas locally
(Zheng, Yang and Huang, 2011).

The construction of new copulas is an interest-
ing research area. The well-known Bernstein copula
(Sancetta and Satchell, 2004) is constructed from polyno-
mial functions. With a given copula C and positive integers
mi, i ≤ n, the Bernstein copula is defined as

Cm1,...,mn(u1, . . . , un|C)

=

m1∑
k1=0

· · ·
mn∑

kn=0

C(
k1
m1

, . . . ,
kn
mn

)pk1,m1(u1) · · · pkn,mn(un),

where pki,mi(ui) :=
(
mi

ki

)
uki
i (1 − ui)

mi−ki is the probability
mass function of the binomial distribution Bin(mi, ui). The
Bernstein copulas are constructed for approximating com-
plicated copulas in polynomial forms.

Given copulas C and D, Yang et al. (2015) presented a
composite Bernstein copula (CBC) as follows,

Cm1,...,mn(u1, . . . , un|C,D)

=E

[
C

(
F−1
Bin(m1,u1)

(UD
1 )

m1
, . . . ,

F−1
Bin(mn,un)

(UD
n )

mn

)]
,

where (UD
1 , . . . , UD

n ) is a random vector with the distribu-
tionD, the survival copula ofD, and F−1

Bin(mi,ui)
denotes the

left-continuous inverse function of the binomial distribution
function FBin(mi,ui). The copulas C and D are called the
target copula and the base copula of the CBC, respectively.
The integers m1, . . . ,mn are called the smooth coefficients
of the CBC. It is easy to verify that when D = Π, the CBC
is actually a Bernstein copula, which means that the CBC
can be regarded as a generalization of the Bernstein copula.

2.2 The definition of bivariate BF copulas

Consider a two-dimensional CBC. Let the target copula
C be the bivariate Fréchet copula (1) and the base copula D
be the independent copula Π. Then the bivariate BF copula
is defined as

(2) Cm,m(u, v;α, β, γ) := Cm,m(u, v|F,Π),

where F is the bivariate Fréchet copula given by (1) and
m ≥ 2 is a fixed integer. By Proposition 2.3 in Yang et al.
(2015), we have

Cm,m(u, v;α, β, γ)

=Cm,m(u, v|αM + βΠ+ γW,Π)

=αCm,m(u, v|M,Π) + βCm,m(u, v|Π,Π)
+ γCm,m(u, v|W,Π).

(3)

Using the expression of CBC (Guo, Wang and Yang, 2017,
Theorem 2.1), we can get the explicit forms

Cm,m(u, v|M,Π) =
1

m

m∑
k=1

Ok,m(u)Ok,m(v)
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and

Cm,m(u, v|W,Π) =
1

m

m∑
k=1

Ok,m(u)Om+1−k,m(v),

where Ok,m(x) =
∑m

j=k pj,m(x). Thus the explicit expres-
sion of (2) can be given as

Cm,m(u, v;α, β, γ) =
α

m

m∑
k=1

Ok,m(u)Ok,m(v)

+
γ

m

m∑
k=1

Ok,m(u)Om+1−k,m(v) + βuv.

The correlation coefficient of the bivariate BF copula
Cm,m(u, v;α, β, γ) can also be calculated. By detailed cal-
culation we know that

ρ+ :=12

∫ 1

0

∫ 1

0

uv dCm,m(u, v|M,Π)− 3

=
12

m

m∑
k=1

∫ 1

0

udOk,m(u)

∫ 1

0

vdOk,m(v)− 3

=12m
m∑

k=1

∫ 1

0

upk−1,m−1(u)du

∫ 1

0

vpk−1,m−1(v)dv − 3

=12m

m∑
k=1

k

m(m+ 1)
· k

m(m+ 1)
− 3 =

m− 1

m+ 1
,

and

ρ− := 12

∫ 1

0

∫ 1

0

uv dCm,m(u, v|W,Π)− 3 = −m− 1

m+ 1
.

Therefore the correlation coefficient of the bivariate BF cop-
ula (2) is

ρ = α · ρ+ + β · 0 + γ · ρ− = (α− γ)
m− 1

m+ 1
.

From the expression, we find that the range of this correla-
tion coefficient is [−m−1

m+1 ,
m−1
m+1 ].

Next we provide a proposition about the symmetry of
parameters in bivariate BF copulas.

Proposition 2.1. For u, v ∈ [0, 1], we have

(a) u− Cm,m(u, 1− v;α, β, γ) = Cm,m(u, v; γ, β, α);
(b) v − Cm,m(1− u, v;α, β, γ) = Cm,m(u, v; γ, β, α);
(c) u + v − 1 + Cm,m(1 − u, 1 − v;α, β, γ) = Cm,m(u, v;

α, β, γ).

Proof. It is easy to check that

u− Cm,m(u, 1− v|M,Π) = Cm,m(u, v|W,Π),

u− Cm,m(u, 1− v|W,Π) = Cm,m(u, v|M,Π),

u−Π(u, 1− v) = Π(u, v).

Then from (3) we have

u−Cm,m(u, 1−v;α, β, γ)

= α(u−Cm,m(u, 1−v|M,Π))+γ(u−Cm,m(u, 1−v|W,Π))

+(1−α−γ)uv

= αCm,m(u, v|W,Π)+γCm,m(u, v|M,Π)+(1−α−γ)uv

= Cm,m(u, v; γ, β, α).

Thus (a) is proved.
Similarly, we can prove (b) and (c).

We end this part with a proposition about the uniqueness
of bivariate BF copulas.

Proposition 2.2. Let the copulas Cm,m(u, v;α, β, γ) and
Cm,m(u, v;α′, β′, γ′) be two bivariate BF copulas with
m ≥ 3. If (α, β, γ) �= (α′, β′, γ′), the two copulas
Cm,m(u, v;α, β, γ) and Cm,m(u, v;α′, β′, γ′) are different.

Proof. Let two Fréchet copulas be

F = αM + βΠ+ γW,F ′ = α′M + β′Π+ γ′W,

where α, β, γ, α′, β′, γ′ ≥ 0 and

α+ β + γ = 1, α′ + β′ + γ′ = 1.

The assumption (α, β, γ) �= (α′, β′, γ′) implies that F �= F ′.
We assume Cm,m(u, v;α, β, γ) = Cm,m(u, v;α′, β′, γ′),

i.e.,

Cm,m(u, v|αM + βΠ+ γW,Π)

=Cm,m(u, v|α′M + β′Π+ γ′W,Π).

Note that

Cm,m(u, v|αM + βΠ+ γW,Π)

= αCm,m(u, v|M,Π) + (1− α− γ)Cm,m(u, v|Π,Π)
+ γCm,m(u, v|W,Π)

= (1− α− γ)uv +
α

m

m∑
k=1

Ok,m(u)Ok,m(v)

+
γ

m

m∑
k=1

Ok,m(u)Om+1−k,m(v).

The correlation coefficient of this copula is (α − γ)m−1
m+1 as

we have calculated. Thus

(4)
m− 1

m+ 1
(α− γ) =

m− 1

m+ 1
(α′ − γ′)

follows. Moreover, the density of this copula is

∂2Cm,m(u, v|αM + (1− α− γ)Π + γW,Π)

∂u∂v

= (1− α− γ) + αm

m∑
k=1

pk−1,m−1(u)pk−1,m−1(v)
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+ γm

m∑
k=1

pk−1,m−1(u)pm−k,m−1(v).

Then we can get the coefficient of term uv in copula
Cm,m(u, v;α, β, γ). It is

∂2Cm,m(u, v|αM + (1− α− γ)Π + γW,Π)

∂u∂v

∣∣∣∣
(0+,0+)

= (1− α− γ) +mα = 1 + (m− 1)α− γ.

Therefore we have another equation

(5) 1 + (m− 1)α− γ = 1 + (m− 1)α′ − γ′.

Because m ≥ 3, from (4) and (5) we can get α = α′ and
γ = γ′, thus F = F ′ follows, contradicting to the fact that
F and F ′ are two different copulas.

From the above proposition, we can see that the three
copulas Cm,m(u, v|M,Π), Cm,m(u, v|Π,Π), and Cm,m(u, v|
W,Π) are different.

2.3 Some classes of bivariate BF copulas

The bivariate BF copulas contain important classes by
choosing suitable parameters α, β, γ, and m. In the follow-
ing, we list some classes of bivariate BF copulas.

First, the family of bivariate BF copulas can be seen as
an extension of FGM copulas. For the case m = 2,

C2,2(u, v;α, β, γ) = C2,2(u, v|αM + βΠ+ γW,Π)

= uv[1 + (α− γ)(1− u)(1− v)],

which becomes a FGM copula. Note that the FGM copula
fails to capture higher correlation between random variables
since its correlation coefficient is within the range of [−1

3 ,
1
3 ].

However, bivariate BF copulas with larger m extend this
range. For instance, when m = 4, the range is [−3

5 ,
3
5 ], which

is wide enough in many applications.
Second, some bivariate BF copulas belong to the cop-

ula family with cubic sections (Nelsen, Quesada-Molina and
Rodŕıguez-Lallena, 1997). In the case when m = 3, we have

C3,3(u, v; q, 1− q, 0) = uv+ u(1− u)[α1(v)(1− u) + β1(v)u],

and

C3,3(u, v; 0, 1− q, q) = uv+ u(1− u)[α2(v)(1− u) + β2(v)u],

where

α1(v) = q(v3 − 3v2 + 2v), β1(v) = q(−v3 + v),

α2(v) = q(v3 − v), β2(v) = q(−v3 + 3v2 − 2v).

The derivatives of above functions are as follows,

α′
1(v) = q(3v2 − 6v + 2) ∈ [−1, 2],

β′
1(v) = q(−3v2 + 1) ∈ [−2, 1],

α′
2(v) = q(3v2 − 1) ∈ [−1, 2],

β′
2(v) = q(−3v2 + 6v − 2) ∈ [−2, 1].

Thus, the two copulas belong to the copula family with cu-
bic sections (see Nelsen, Quesada-Molina and Rodŕıguez-
Lallena, 1997, Theorem 2.4).

Third, the copulas of Baker’s bivariate distributions in
Baker (2008) belong to the family of bivariate BF copulas.
Let

H
(m)
+ (x, y) =

1

m

m∑
k=1

Ok,m(F (x))Ok,m(G(y))

and

H
(m)
− (x, y) =

1

m

m∑
k=1

Ok,m(F (x))Om+1−k,m(G(y)),

where Ok,m(x) =
∑m

i=k

(
m
i

)
xi(1−x)m−i, x ∈ [0, 1], and F (x)

and G(y) are two marginal distribution functions. Baker’s
bivariate distributions are defined as

H
(m)
+,q (x, y) = (1− q)F (x)G(y) + qH

(m)
+ (x, y),

and

H
(m)
−,q (x, y) = (1− q)F (x)G(y) + qH

(m)
− (x, y),

where q ∈ [0, 1]. Guo, Wang and Yang (2017) pointed out
that the copulas of above two distributions can be expressed
as

C
(m)
+,q (u, v) = (1− q)uv +

q

m

m∑
k=1

Ok,m(u)Ok,m(v)

and

C
(m)
−,q (u, v) = (1− q)uv +

q

m

m∑
k=1

Ok,m(u)Om+1−k,m(v)

respectively. The two copulas C
(m)
+,q and C

(m)
−,q belong to the

family of bivariate BF copulas because

C
(m)
+,q (u, v) = (1− q)uv +

q

m

m∑
k=1

Ok,m(u)Ok,m(v)

= Cm,m(u, v; q, 1− q, 0)

(6)

and

C
(m)
−,q (u, v) = (1− q)uv +

q

m

m∑
k=1

Ok,m(u)Om+1−k,m(v)

= Cm,m(u, v; 0, 1− q, q).

(7)

The copulas given by (6) and (7) are bivariate BF cop-

ulas with γ or α being zero. Hereinafter, we use C
(m)
+,q and
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C
(m)
−,q to denote the two copulas Cm,m(u, v; q, 1 − q, 0) and

Cm,m(u, v; 0, 1 − q, q) for simplicity, and the two copulas

C
(m)
+,q and C

(m)
−,q are called positive BF copula and negative

BF copula, respectively.

Remark 2.1. Baker (2008) proposed a multi-dimensional
distribution version

H(x1, . . . , xn)=(1−q)

n∏
i=1

F (i)(xi)+
q

m

m∑
k=1

n∏
i=1

Ok,m(F (i)(xi)),

where F (i)(xi)’s are univariate marginal distributions. The
copula of this distribution is

(8) C(u1, . . . , un) = (1− q)

n∏
i=1

ui +
q

m

m∑
k=1

n∏
i=1

Ok,m(ui).

It is a higher-dimensional extension of (6). We will discuss
this type in Section 3.

2.4 Supermigrativity of positive BF copulas

A symmetric bivariate copula C is called supermigrative
if for any 0 ≤ v ≤ u ≤ 1 and 0 ≤ α ≤ 1, the inequality
C(αu, v) ≥ C(u, αv) holds, and C is called submigrative if
the reversing inequality can be obtained. Supermigrativity is
a positive dependence property implying the positive quad-
rant dependence (PQD) (Nelsen, 2006; Durante and Ricci,
2009). For more details about supermigrativity, please refer
to Durante and Ghiselli-Ricci (2012).

Guo, Wang and Yang (2017) showed that positive BF

copula C
(m)
+,q is positive quadrant dependent and C

(m)
−,q is

negative quadrant dependent, i.e., C
(m)
+,q (u, v) ≥ Π(u, v) and

C
(m)
−,q (u, v) ≤ Π(u, v). In this subsection we show the super-

migrativity of C
(m)
+,q . For this purpose, we need a lemma in

Durante and Ghiselli-Ricci (2012).

Lemma 2.1 (Durante and Ghiselli-Ricci, 2012). Let C be
a symmetric copula that has continuous first-order partial
derivatives on [0, 1]2. Then C is supermigrative if and only
if for all (u, v) ∈ [0, 1]2,

(ln(u)− ln(v)) (u∂uC(u, v)− v∂vC(u, v)) ≤ 0.

By applying Lemma 2.1, we can obtain the following the-
orem.

Theorem 2.1. The positive BF copula C
(m)
+,q is supermi-

grative.

Proof. Note that the copula (6) is a convex summation of
an independent copula Π and the copula Cm,m(u, v|M,Π).
Thus it is sufficient to prove that Cm,m(u, v|M,Π) is super-
migrative since Π is supermigrative obviously.

We prove the supermigrativity of Cm,m(u, v|M,Π) by ap-
plying Lemma 2.1. This needs to show that

u
∂Cm,m(u, v|M,Π)

∂u
> v

∂Cm,m(u, v|M,Π)

∂v

under the case 0 ≤ u < v ≤ 1. The case of 0 ≤ v < u ≤ 1
can be proven in the same way due to the symmetry of
Cm,m(u, v|M,Π).

Using O′
k,m(x) = mpk−1,m−1(x), we can get

u
∂Cm,m(u, v|M,Π)

∂u
= u

m∑
k=1

pk−1,m−1(u)Ok,m(v)

= u

m∑
k=1

(
m− 1

k − 1

)
uk−1(1− u)m−k

m∑
i=k

(
m

i

)
vi(1− v)m−i

and

v
∂Cm,m(u, v|M,Π)

∂v
= v

m∑
k=1

pk−1,m−1(v)Ok,m(u)

= v

m∑
k=1

(
m− 1

k − 1

)
vk−1(1− v)m−k

m∑
i=k

(
m

i

)
ui(1− u)m−i.

Note that(
m− 1

k − 1

)
uk(1− u)m−k

(
m

k

)
vk(1− v)m−k

−
(
m− 1

k − 1

)
vk(1− v)m−k

(
m

k

)
uk(1− u)m−k = 0.

Then we have

u
∂Cm,m(u, v|M,Π)

∂u
− v

∂Cm,m(u, v|M,Π)

∂v

=

m∑
k=1

m∑
i=k+1

(
m− 1

k − 1

)
uk(1− u)m−k

(
m

i

)
vi(1− v)m−i

−
m∑

k=1

m∑
i=k+1

(
m− 1

k − 1

)
vk(1− v)m−k

(
m

i

)
ui(1− u)m−i

=
m∑

k=1

m∑
i=k+1

(
m− 1

k − 1

)(
m

i

)
(uv)k((1− u)(1− v))m−k

× [vi−k(1− v)k−i − ui−k(1− u)k−i]

=

m∑
k=1

m∑
i=k+1

(
m− 1

k − 1

)(
m

i

)
(uv)k((1− u)(1− v))m−k

× [(
v

1− v
)i−k − (

u

1− u
)i−k] > 0,

since function f(x) = x
1−x is monotonically increasing on

(0, 1). Therefore

u
∂Cm,m(u, v|M,Π)

∂u
> v

∂Cm,m(u, v|M,Π)

∂v

holds for any 0 ≤ u < v ≤ 1. The case of 0 ≤ v < u ≤ 1 is

similar. Thus by Lemma 2.1 the copula C
(m)
+,q is supermigra-

tive.

Remark 2.2. Durante and Ghiselli-Ricci (2012) pointed
out that the bivariate Gaussian copula Cρ is supermigrative

Multivariate Bernstein Fréchet copulas 531



if and only if ρ ≥ 0. Besides, one can check that the bivariate
Fréchet copula F (u, v) = αM(u, v)+βΠ(u, v)+γW (u, v) is
supermigrative when γ = 0. From the above theorem, posi-
tive BF copulas are supermigrative.

2.5 TP2 property of positive BF copulas

The total positivity of order 2 (TP2), defined by Karlin
(1968), is a stronger positive dependence property than
PQD. A nonnegative function f(x, y) is called TP2 if
f(x, y)f(x′, y′) ≥ f(x′, y)f(x, y′) whenever x ≤ x′, y ≤ y′.

The TP2 property is a strong property that im-
plies all other quadrant dependence properties in Nelsen
(2006). For more information about the TP2 property
and its applications, readers may refer to the mono-
graph Gasca and Micchelli (1996). Note that the TP2

property of the copula Cm,m(u, v|M,Π) was proved in
Dou, Kuriki and Lin (2013). In this part we are interested
in investigating the TP2 property of the positive BF copula

C
(m)
+,q .
For a bivariate distribution H, it is known that if the den-

sity of H is TP2, so is H itself (see Balakrishnan and Lai,
2009 and Theorem 9 in Lin, Dou and Kuriki, 2019). By ap-
plying this character, Dou, Kuriki and Lin (2013) proved
the TP2 property of Cm,m(u, v|M,Π) by showing that its
density is TP2.

For the positive BF copula C
(m)
+,q , one can numerically test

that TP2 property does not hold for its density function.

Next theorem states the TP2 property of C
(m)
+,q . Its proof is

given in Appendix A.

Theorem 2.2. The bivariate positive BF copula C
(m)
+,q ad-

mits TP2 property, i.e., for any 0 ≤ x1 ≤ x2 ≤ 1 and
0 ≤ y1 ≤ y2 ≤ 1,

C
(m)
+,q (x2, y2)C

(m)
+,q (x1, y1) ≥ C

(m)
+,q (x1, y2)C

(m)
+,q (x2, y1).

Remark 2.3. Gupta, Kirmani and Srivastava (2010)
showed that Gaussian copulas are TP2 when the pa-
rameter ρ ≥ 0. As for the bivariate Fréchet copula
F = αM + βΠ + γW , one can check that F is TP2 when
γ = 0. The above theorem states that the TP2 property

holds for the bivariate positive BF copula C
(m)
+,q .

2.6 Comparisons with bivariate Gaussian
copulas and bivariate Fréchet copulas

In this subsection we carry out some comparisons among
bivariate BF copulas, bivariate Fréchet copulas, and bivari-
ate Gaussian copulas. We find that these copulas share some
similar properties as follows:

1. Supermigrativity: the Gaussian copula Cρ is super-
migrative when ρ ≥ 0, the bivariate Fréchet copula
F (u, v) = αM(u, v) + βΠ(u, v) + γW (u, v) is super-
migrative when γ = 0, and the positive BF copula is
supermigrative.

2. TP2: the Gaussian copula Cρ is TP2 when the param-
eter ρ ≥ 0, the bivariate Fréchet copula F (u, v) =
αM + βΠ+ γW is TP2 when γ = 0, and the bivariate
positive BF copulas are TP2.

Comparing with bivariate Gaussian copulas and bivariate
Fréchet copulas, the advantages of the bivariate BF copulas
can be stated as follows:

1. Compared with the bivariate Fréchet copula, the bi-
variate BF copula admits density function. It can be
treated as a continuous modification of the bivariate
Fréchet copula. This makes the maximum likelihood
estimation of the parameters in a bivariate BF copula
feasible.

2. There are three parameters in a bivariate BF copula,
while the bivariate Gaussian copula has only one pa-
rameter. When the correlation coefficient is fixed, there
are more freedoms to adjust the parameters in a bivari-
ate BF copula.

3. Compared with Gaussian copulas, bivariate BF copulas
have explicit expression in polynomial forms and the
copula functions are easily applied.

Figures 1-4 show the scatter plots of the three copula
functions. Figure 1 is the scatter plot of a bivariate Gaus-
sian copula with correlation parameter ρ = 0.65. Figure 2
displays the scatter plot of a positive BF copula (6) with
q = 0.65 and m = 20. Figure 3 shows the scatter plot of a
Fréchet copula (1) with α = 0.8, β = 0.05, and γ = 0.15.
In contrast, Figure 4 is the scatter plot of a bivariate BF
copula with m = 20 and other parameters equal to those of
the bivariate Fréchet copula in Figure 3.

The scatters drawn from bivariate BF copulas are more
concentrated along the diagonal than those from Gaussian
copulas. Actually, the level of concentration in the bivariate
BF copula can be adjusted by the smooth coefficient m. The
scatters get more concentrated while the value ofm becomes
larger.

Figure 5 and 6 show the scatter plots of bivariate distri-
butions constructed by the copulas in Figure 1 and 4 with
univariate standard normal marginal distributions. One can
see that the second one provides two types of dependence,
both the positive and the negative.

3. MULTIVARIATE BERNSTEIN FRÉCHET
COPULAS

In this section, we introduce a multivariate copula, called
the multivariate Bernstein Fréchet (BF) copula. The multi-
variate BF copula has bivariate BF copulas as its bivariate
margins. We show that the copula function is uniquely de-
termined by these bivariate margins.

To define the copula function, we need the copula CA,B in
Yang, Qi and Wang (2009). This copula is applied for defin-
ing multivariate BF copulas. Then the uniqueness and exis-
tence of multivariate BF copulas are studied. The methods
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Figure 1. Scatter plot of bivariate Gaussian copula with
ρ = 0.65.

Figure 2. Scatter plot of positive BF copula with coefficients
q = 0.65 and m = 20.

Figure 3. Scatter plot of bivariate Fréchet copula with
coefficients α = 0.8, γ = 0.15.

Figure 4. Scatter plot of a general bivariate BF copula with
coefficients α = 0.8, γ = 0.15 and m = 20.

Figure 5. Scatter plots of bivariate distributions constructed
by the copulas used in Figure 1, with standard normal

marginal distributions.

Figure 6. Scatter plots of bivariate distributions constructed
by the copulas used in Figure 4, with standard normal

marginal distributions.
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of determining a multivariate BF copula from its bivariate
margins are given. In addition, an application of multivari-
ate BF copulas for modeling portfolio risk is discussed.

3.1 Brief introduction to CA,B copulas

Yang, Qi and Wang (2009) introduced a family of mul-
tivariate copulas with all bivariate marginal copulas being
bivariate Fréchet copulas, and each copula in the family is
uniquely determined by its bivariate marginal copulas. In
this subsection, the copula is introduced for the purpose of
defining the multivariate BF copula.

Given n+ 1 random variables U,U1, U2, . . . , Un with the
uniform distribution U [0, 1], we assume that (U1, . . . , Un)
are conditionally independent on the common factor U and
the copulas for (U,Ui), i = 1, . . . , n are

(9) C(u, ui) = ai,1M(u, ui) + ai,2Π(u, ui) + ai,3W (u, ui),

where ai,1, ai,2, ai,3 ≥ 0 and ai,1 + ai,2 + ai,3 = 1.
Yang, Qi and Wang (2009) proved that under above as-
sumptions the copula of (U1, · · · , Un) has the form

CA,B(u1, . . . , un)

=

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)
C(j1,...,jn)(u1, . . . , un),

(10)

where

C(j1,j2,...,jn)(u1, u2, . . . , un)

= W

(
min

i≤n,ji=1
{ui}, min

i≤n,ji=3
{ui}

) ∏
i≤n,ji=2

ui,
(11)

with convention that the minimum and product of empty set
∅ are defined to be 1. The copula (10) is named CA,B copula.
One desirable property of the copula is that its bivariate
marginal copulas are bivariate Fréchet copulas

Ci,j(ui, uj)

=αi,jM(ui, uj) + βi,jΠ(ui, uj) + γi,jW (ui, uj),
(12)

where αi,j = ai,1aj,1 + ai,3aj,3, γi,j = ai,1aj,3 + ai,3aj,1 and
βi,j = 1− αi,j − γi,j .

Let the set of all copulas C(j1,j2,··· ,jn), ji = 1, 2, 3, i ≤ n
be Sn, then there are 1

2 (3
n − 2n+1) different copulas in Sn

(see Yang, Qi and Wang, 2009, Proposition 2.2). We present
a proposition which shows the relationship between these
copulas and their bivariate marginal copulas.

Proposition 3.1. The copula C(j1,j2,...,jn) is uniquely de-
termined by its bivariate marginal copulas.

Proof. Suppose that the random vector (U1, . . . , Un) has
copula C(j1,j2,...,jn). In the set I = {U1, . . . , Un}, we write
Ui ∼ Uj if Ui = Uj with probability 1 (which actually means
the bivariate copula of (Ui, Uj) is M). It is easy to ver-
ify that such defined ∼ is an equivalence relation on the

set I. There exist at most two equivalence classes (includ-

ing empty class) because the dependence structures between

those variables can be comonotonic or countermonotonic ex-

cluding independence. Denote the two classes by I1 and I3,

and let I2 = I − I1 ∪ I3. Then one can check

C(j1,j2,...,jn)(u1, u2, . . . , un)

= W (min{ui, i ∈ I1},min{ui, i ∈ I3})
∏
i∈I2

ui.

Thus the copula C(j1,j2,...,jn) is uniquely determined by its

bivariate marginal copulas.

Remark 3.1. The above proposition shows that if two cop-

ulas C(j1,j2,...,jn) and C(j′1,j
′
2,...,j

′
n) share the same bivariate

marginal copulas, they are the same.

3.2 The definition of multivariate BF
copulas

Starting from a CBC, by choosing CA,B as its target cop-

ula and the independent copula Π as its base copula, the

multivariate BF copula is defined as

Cm,m,...,m

(
u1, u2, . . . , un|CA,B,Π

)
, u1, u2, . . . , un ∈ [0, 1],

wherem ≥ 2 is a positive integer. Note that the multivariate

BF copula can be written as

Cm,m,...,m

(
u1, u2, . . . , un|CA,B,Π

)
=

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)

× Cm,m,...,m

(
u1, u2, . . . , un|C(j1,j2,...,jn),Π

)
.

(13)

This expression shows that the multivariate BF copula can

be expressed as a linear combination of some copulas in the

form of Cm,m,...,m

(
u1, u2, . . . , un|C(j1,j2,...,jn),Π

)
.

We now provide the explicit expression of the multivariate

BF copula, and prove that for different basis copula Ci ∈ Sn,

the copula Cm,··· ,m(u1, . . . , un|Ci,Π) is different.

Theorem 3.1. (i) We have

Cm,m,...,m

(
u1, u2, . . . , un|C(j1,j2,...,jn),Π

)
=

1

m

∏
i≤n,ji=2

ui

m∑
k=1

[ ∏
i≤n,ji=1

Ok,m(ui)

×
∏

i≤n,ji=3

Om+1−k,m(ui)

]
.

(14)
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(ii) The multivariate BF copula can be represented as

Cm,m,...,m

(
u1, u2, . . . , un|CA,B,Π

)
=

1

m

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)

×
∏

i≤n,ji=2

ui

m∑
k=1

∏
i≤n,ji=1

Ok,m(ui)
∏

i≤n,ji=3

Om+1−k,m(ui).

(iii) Let C and C ′ be two different copulas in Sn, then
Cm,...,m(u1, . . . , un|C,Π) and Cm,...,m(u1, . . . , un|C ′,Π) are
different.

Proof. (i) For simplicity, we consider the case j1 = j2 =
· · · = jl = 1, jl+1 = · · · = jt = 3, jt+1 = · · · = jn = 2 and
0 ≤ l ≤ t ≤ n. In this case,

C(j1,j2,··· ,jn)(u1, u2, . . . , un)

= W

(
min
i≤l

{ui}, min
l+1≤i≤t

{ui}
)
·
∏

t+1≤i≤n

ui.

Let (V1, . . . , Vn) be a random vector with the distribution
C(j1,j2,...,jn). Then the probability

rk1,k2,...,kn :=P

(
Vi ∈ [

ki − 1

m
,
ki
m
), i=1, . . . , n

)
=

(
1

m

)#{i:ji=2}

×
(

1

m
I{∃k, ∀i, ji=1, ki=k, ∀i, ji=3, ki=m+ k − 1}

)
=

(
1

m

)n−t

×
(

1

m
I{∃k, ∀i ≤ l, ki=k, ∀l + 1 ≤ i ≤ t, ki=m+ k − 1}

)
,

where I denotes the indicator function. By Theorem 2.1 in
Guo, Wang and Yang (2017), the copula Cm,m,...,m(u1, u2,
. . . , un|C(j1,j2,...,jn),Π) can be calculated as follows,

Cm,m,...,m

(
u1, u2, . . . , un

∣∣∣∣
W (min

i≤l
{ui}, min

l+1≤i≤t
{ui})

∏
t+1≤i≤n

ui,Π

)

=

m∑
k1=1

· · ·
m∑

kn=1

rk1,k2,...,kn ·Ok1,m(u1) · · ·Okn,m(un)

= (
1

m
)n−t · 1

m

m∑
k=1

m∑
kt+1=1

· · ·
m∑

kn=1

Ok,m(u1) · · ·Ok,m(ul)

·Om+1−k,m(ul+1) · · ·Om+1−k,m(ut)

·Okt+1,m(ut+1) · · ·Okn,m(un)

= (
1

m
)n−t · 1

m

m∑
k=1

Ok,m(u1) · · ·Ok,m(ul)

·Om+1−k,m(ul+1) · · ·Om+1−k,m(ut)

·
m∑

kt+1=1

Okt+1,m(ut+1) · · ·
m∑

kn=1

Okn,m(un)

= (
1

m
)n−t · 1

m

m∑
k=1

Ok,m(u1) · · ·Ok,m(ul)

·Om+1−k,m(ul+1) · · ·Om+1−k,m(ut) ·mut+1 · · ·mun

=
1

m

n∏
i=t+1

ui

m∑
k=1

∏
i≤l

Ok,m(ui)
∏

l+1≤i≤t

Om+1−k,m(ui).

The general unordered form (14) can be proved similarly.
(ii) This result can be directly deduced from (13) and (14).
(iii) Let C,C ′ ∈ Sn, and C �= C ′. We assume

Cm,...,m(u1, . . . , un|C,Π) = Cm,...,m(u1, . . . , un|C ′,Π).

Then all bivariate marginal copulas of above two copulas
must be the same, and these marginal copulas belong to
{Cm,m(u, v|M,Π), Cm,m(u, v|Π,Π), Cm,m(u, v|W,Π)}, due
to that the bivariate margins of C and C ′ belong to
{M,Π,W}.

Since Cm,m(u, v|M,Π), Cm,m(u, v|Π,Π), and Cm,m(u, v|
W,Π) are three different copulas (see Proposition 2.2), C
and C ′ must have the same bivariate marginal copulas
to make sure that Cm,...,m(u1, . . . , un|C,Π) = Cm,...,m(u1,
. . . , un|C ′,Π). Then, by Proposition 3.1, C = C ′, which is a
contradiction.

Since there are 1
2 (3

n − 2n + 1) different copulas in Sn,
by this theorem we know the total number of the cop-
ulas in form of Cm,...,m

(
u1, . . . , un|C(j1,j2,...,jn),Π

)
is also

1
2 (3

n − 2n + 1). The multivariate copula (8) presented in
Remark 2.1 is actually a convex summation of two special
copulas among the 1

2 (3
n − 2n + 1) copulas. It can be ex-

pressed in the following form

C(u1, . . . , un) = (1− q) · Cm,...,m(u1, . . . , un|Π,Π)
+ q · Cm,...,m(u1, . . . , un|M,Π).

In the end of this subsection, we present the probability
structure of multivariate BF copulas, which can be used to
generate random numbers in practice. For a multivariate
BF copula Cm,··· ,m(u1, . . . , un|CA,B,Π), the sample can be
obtained by the following steps:

Algorithm 3.1.

1. Generate a random vector (V1, . . . , Vn) from the CA,B

copula;
2. Let Ki = �mVi�;
3. Generate random numbers from Beta distribution Ui ∼

Beta(Ki + 1,m−Ki) for i = 1, . . . , n.

Then the copula of (U1, . . . , Un) is exactly the multivari-
ate BF copula (Yang, Wang and Xie, 2020).
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3.3 The uniqueness of multivariate BF
copula with given bivariate marginal
copulas

As we know, Gaussian copulas are uniquely determined
by all the bivariate margins because the variance-covariance
matrix of a Gaussian copula, is uniquely determined by the
relationship between paired components. In the following,
we discuss the uniqueness of multivariate BF copulas with
given bivariate marginal copulas.

First we recall the marginal property of the CBC
(see Yang et al., 2015, Proposition 2.1). Suppose Cm,...,m

(u1, . . . , un|C,D) is a CBC. Then the marginal copulas of
the CBC can be obtained by replacing the target copula
and the base copula by their corresponding marginal copu-
las. More precisely, the marginal copula of the i-th and j-th
variables is

Cm,...,m(1, . . . , ui, . . . , uj , . . . , 1|C,D)

= Cm,m(ui, uj |Ci,j , Di,j),

where Ci,j(ui, uj) = C(1, . . . , ui, . . . , uj , . . . , 1) and Di,j

is defined similarly. Thus, for the multivariate BF cop-
ula Cm,··· ,m(u1, . . . , un|CA,B,Π), if we denote the bivariate
marginal copulas of the target copula CA,B as

CA,B
i,j (ui, uj)

= d+i,jM(ui, uj) + (1− d+i,j − d−i,j)Π(ui, uj) + d−i,jW (ui, uj),

the bivariate marginal copulas of the multivariate BF copula
can be obtained as follows,

Cm,m(ui, uj |CA,B
i,j ,Π)

= Cm,m(ui, uj |d+i,jM + (1− d+i,j − d−i,j)Π + d−i,jW,Π)
(15)

where 1 ≤ i < j ≤ n.
For the multivariate BF copula C2,··· ,2(u1, . . . , un|

CA,B,Π), the bivariate marginal copulas are all FGM cop-
ulas as we have shown in Section 2.3. Consider the three-
dimensional BF copula C2,2,2(u1, u2, u3|CA,B,Π). Note that
the parameters of bivariate marginal copulas of this copula
is

αi,j − γi,j = ai,1aj,1 + ai,3aj,3 − ai,1aj,3 − ai,3aj,1

= (ai,1 − ai,3)(aj,1 − aj,3),

where the definitions of above variables are given in equa-
tions (9)-(12). Let the parameters for two CA,B copulas be(

a1,1 , a2,1 , a3,1
a1,3 , a2,3 , a3,3

)
=

(
0.7 , 0.5 , 0.1
0.3 , 0.2 , 0.6

)
,(

a′1,1 , a
′
2,1 , a

′
3,1

a′1,3 , a
′
2,3 , a

′
3,3

)
=

(
0.5 , 0.4 , 0.2
0.1 , 0.1 , 0.7

)
.

The two multivariate BF copulas are different since they
have different values at ( 13 ,

1
3 ,

1
3 ). One can check that

they share the same bivariate marginal copulas. The
above example shows that the multivariate BF copula
C2,...,2(u1, . . . , un|CA,B,Π) can not be uniquely determined
by its bivariate marginal copulas.

Next, we will show that for fixed parameter m ≥ 3,
the multivariate BF copula Cm,...,m(u1, . . . , un|CA,B,Π)
is uniquely determined by its bivariate margins. That
is, from the parameters of the bivariate margins of
Cm,...,m(u1, . . . , un|CA,B,Π), the multivariate BF copula
can be obtained uniquely. The uniqueness property of the
multivariate BF copula will allow us to deal with high-
dimensional case by focusing on their two-dimensional mar-
gins.

Theorem 3.2. For fixed m ≥ 3, the multivariate BF copula
Cm,...,m(u1, . . . , un|CA,B,Π) is uniquely determined by its
bivariate marginal copulas.

Proof. To prove this theorem, we need to show that the pa-
rameters of the multivariate BF copula Cm,...,m(u1, . . . , un|
CA,B,Π) can be uniquely determined if its bivariate
marginal copulas are given, i.e., parameters in these
marginal copulas are known.

Suppose the bivariate marginal copulas of
Cm,...,m(u1, . . . , un|CA,B,Π) are given in the form of (15).
The bivariate marginal copulas of the multivariate BF
copula are all polynomial functions. For these copulas, we
can calculate the correlation coefficient and the coefficient
of the term uiuj . Denote them by ρi,j and ci,j respectively.

Then, similar to the proof of Proposition 2.2, we can get
an equation system

m− 1

m+ 1
(d+i,j − d−i,j) = ρi,j ,

1 + (m− 1)d+i,j − d−i,j = ci,j .
(16)

Because m ≥ 3, this system is non-singular and we can
solve all these numbers {d+i,j , d−i,j |1 ≤ i < j ≤ n}.
These numbers are the marginal coefficients of the CA,B

copula in Cm,...,m(u1, . . . , un|CA,B,Π). Hence we can get
the copula CA,B by its uniqueness. Therefore, the copula
Cm,...,m(u1, . . . , un|CA,B,Π) is determined.

Remark 3.2. The non-singularity of system (16) is the key
point of the proof. It explains why the condition m ≥ 3 is
important for uniqueness. Note that (16) is singular when
m = 2. This explains why C2,...,2(u1, . . . , un|CA,B,Π) can
not be uniquely determined.

We have shown that the value of the smooth parameter
m can influence the uniqueness property of multivariate BF
copulas. When m = 2, the uniqueness theorem does not
hold, but the case is still worth exploring because of its
simple form and its connection with FGM copulas. We next
state a theorem for this copula that its bivariate margins
can be the same as FGM copulas under certain conditions.
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Theorem 3.3. Given n(n−1)
2 FGM copulas

(17) Ci,j(ui, uj) = uiuj [1 + di,j(1− ui)(1− uj)],

where di,j ∈ [−1, 1] and 1 ≤ i < j ≤ n. If the following
n(n−1)

2 equations can be solved for these 2n unknown vari-
ables ai,1 and ai,3 (i = 1, 2, . . . , n)

(ai,1 − ai,3)(aj,1 − aj,3) = di,j ,

under the constraints ai,1, ai,3 ∈ [0, 1] and 1 − ai,1 −
ai,3 ≥ 0, then there exists a multivariate BF copula
C2,...,2(u1, . . . , un|CA,B,Π) with the given marginal FGM
copulas, and the CA,B copula in C2,...,2(u1, . . . , un|CA,B,Π)
is specified by these parameters {ai,1, ai,3|i = 1, 2, . . . , n}.

The theorem can be proven by substituting the CA,B into
the multivariate BF copula and directly calculating the pa-
rameters of its bivariate marginal copulas. So we omit the
proof. The theorem discusses a special example of obtaining
a multivariate BF copula from some given marginal copulas.
The general methods for obtaining multivariate BF copulas
with m ≥ 3 are studied in Section 3.5.

Johnson and Kott (1975) proposed a multivariate copula

C(u1, . . . , un)

=

n∏
i=1

ui

⎛⎝1 +
∑

1≤k<j≤n

αk,j(1− uk)(1− uj)

⎞⎠ ,
(18)

whose bivariate marginal copulas are FGM copulas, similar
to our multivariate BF copulas with the smooth coefficient
m = 2. Note that there are some constraints on the coeffi-
cients αk,j of (18),

1 +
∑
k,j

εkεjαk,j ≥ 0, 1 ≤ k < j ≤ n,

where εi ∈ {1,−1}. In the following we give an example to
show that there exists a copula C2,...,2(u1, . . . , un|CA,B,Π)
which does not belong to the above family.

Example 3.1. Given a three-dimensional random vector
(U1, U2, U3), assume that its bivariate marginal distributions
are FGM copulas (17) with the parameters di,j , 1 ≤ i < j ≤
3. Then if d1,2 = d1,3 = d2,3 = 1

2 , the copula of (U1, U2, U3)
in the form of (18) does not exist because the equation

1− d1,2 − d1,3 − d2,3 ≥ 0

does not hold. But the multivariate BF copula

C2,2,2(u1, u2, u3|CA,B,Π) exists by letting all ai,1 =
√

1
2

and ai,3 = 0, i = 1, 2, 3.

3.4 On the existence of multivariate BF
copulas with given bivariate marginal
copulas

Given a family of
(
n
2

)
bivariate copulas, it is natural to

ask whether there exists a multivariate BF copula having the
given copulas as its bivariate margins. In this subsection, the
existence of multivariate BF copulas is discussed when the
family of bivariate marginal copulas is given.

Note that for a multivariate BF copula, its bivariate mar-
gins are from the family of bivariate BF copulas. In the next,
we provide one example to illustrate how to verify whether
a bivariate copula is a bivariate BF copula.

Example 3.2. Let m = 3. Consider the bivariate BF copula

C3,3(u, v;α, 1− α− γ, γ)

= αC3,3(u, v|M,Π) + (1− α− γ)C3,3(u, v|Π,Π)
+ γC3,3(u, v|W,Π),

where α, γ ≥ 0 and α + γ ≤ 1. Note that the three copulas
are explicitly expressed as followings:

C3,3(u, v|M,Π) =
(
u3 u2 u

)⎛⎝ 2 −3 1
−3 6 −3
1 −3 3

⎞⎠⎛⎝v3

v2

v

⎞⎠ ,

C3,3(u, v|Π,Π) =
(
u3 u2 u

)⎛⎝0 0 0
0 0 0
0 0 1

⎞⎠⎛⎝v3

v2

v

⎞⎠ ,

C3,3(u, v|W,Π) =
(
u3 u2 u

)⎛⎝ 2 −3 1
−3 3 0
1 0 0

⎞⎠⎛⎝v3

v2

v

⎞⎠ .

Then we can obtain that

C3,3(u, v;α, 1− α− γ, γ)

=
(
u3 u2 u

)⎛⎝ 2α+ 2γ −3α− 3γ α+ γ
−3α− 3γ 6α+ 3γ −3α
α+ γ −3α 1 + 2α− γ

⎞⎠⎛⎝v3

v2

v

⎞⎠.

Thus a bivariate copula C belongs to the family of bivariate
BF copulas with m = 3 if and only if there exists α∗, γ∗ ≥
0, α∗ + γ∗ ≤ 1 such that

C(u, v) = C3,3(u, v;α
∗, 1− α∗ − γ∗, γ∗).

Remark 3.3. Generally, for a copula C(u, v) from the fam-
ily of bivariate BF copulas, C(u, v) must be a polynomial
function and the integer m can be obtained from the highest
power of the function C(u, v). Once m is identified and the
correlation coefficient ρ of the copula C is given, from the
proofs of Proposition 2.2 and Theorem 3.2, we can get the
following two equations for solving α, γ satisfying α+ γ ≤ 1
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and α, γ ≥ 0,

m− 1

m+ 1
(α− γ) = ρ,

1 + (m− 1)α− γ =
∂2C(0+, 0+)

∂u∂v
.

Finally, we have

C(u, v) = αCm,m(u, v|M,Π)

+ (1− α− γ)Cm,m(u, v|Π,Π) + γCm,m(u, v|W,Π).

Next we focus on the family of bivariate BF copulas to
state the existence of a multivariate BF copula with the
bivariate marginal family.

Theorem 3.4. Give
(
n
2

)
bivariate BF copulas

Ci,j(u, v)=Cmi,j ,mi,j (u, v|d+i,jM+(1−d+i,j−d−i,j)Π+d−i,jW,Π),

1 ≤ i < j ≤ n, where d+i,j , d
−
i,j ≥ 0, and d+i,j + d−i,j ≤ 1.

There exists an n-dimensional BF copula C with the family
of bivariate margins {Ci,j , i ≤ n, j ≤ n} if and only if the
following conditions hold:

(1) all mi,j ’s are the same;
(2) there exists non-negative constants ai,k, i ≤ n, k =

1, 2, 3 satisfying
∑3

k=1 ai,k = 1, and the following equa-
tions hold for all 1 ≤ i < j ≤ n:

(19)

{
ai,1aj,1 + ai,3aj,3 = d+i,j ,

ai,1aj,3 + ai,3aj,1 = d−i,j .

This theorem can be obtained from the existence theorem
of CA,B copulas (see Yang, Qi and Wang, 2009, Theorem
4.2), thus its proof is omitted.

Finally we discuss one example about the existence of
multivariate BF copulas with given pair-wise correlation in-
dex, which will be applied in the simulation study of port-
folio credit risk in Section 4.

Example 3.3. For a copula with pair-wise correlation index
ρ > 0, it is known that such a dependence feature can be
easily obtained by a unique Gaussian copula. However, the
same correlation index can be be obtained by more than one
multivariate BF copula.

Suppose that the copula Cm,...,m(u1, . . . , un|CA,B,Π) has
pair-wise correlation index ρ > 0. Let the parameters
ai,1 =

√
q and ai,3 = 0 for i = 1, . . . , n. Then one

can check that the copula CA,B have the common bi-
variate marginal copula qM(u, v) + (1 − q)Π(u, v). There-
fore Cm,...,m(u1, . . . , un|CA,B,Π) has the common bivariate
marginal BF copula Cm,m(u, v; q, 1−q, 0), whose correlation
coefficient is m−1

m+1q. Thus we can choose (m, q) satisfying

m− 1

m+ 1
q = ρ.

This makes the application of multivariate BF copulas more
flexible than Gaussian copulas.

3.5 Methods for determining multivariate
BF copulas

After showing that the multivariate BF copula with m ≥
3 can be uniquely determined by its bivariate margins, this
subsection discusses the methods for obtaining a multivari-
ate BF copulas from given bivariate marginal copulas.

Firstly, suppose that the bivariate marginal copulas of
a multivariate BF copula Cm,...,m(u1, . . . , un|CA,B,Π) are
known, which have the form (15). In order to determine the
multivariate BF copula, one needs to obtain the parameters
of CA,B in the multivariate BF copulas. All the parameters
of a CA,B copula can be represented in a matrix

A =

(
a1,1, a2,1, . . . , an,1
a1,3, a2,3, . . . , an,3

)
,

where ai,1 and ai,3 are defined in (9).

Consider another parameters matrix by exchanging the
rows of A,

A′ =

(
0 1
1 0

)(
a1,1, a2,1, . . . , an,1
a1,3, a2,3, . . . , an,3

)
=

(
a1,3, a2,3, . . . , an,3
a1,1, a2,1, . . . , an,1

)
.

This matrix corresponds to another CA,B. We denote the
copula with parameters A by CA,B

(A) and the latter one with

parameters A′ by CA,B
(A′). A proposition on the two copulas

is given first.

Proposition 3.2. For any parameters matrix A, the two
copulas CA,B

(A) and CA,B
(A′) are identical.

We omit the proof because it can be directly proved by
using the property

C(j1,j2,...,jn)(u1, u2, . . . , un)

= C(4−j1,4−j2,...,4−jn)(u1, u2, . . . , un).

The determination method for CA,B copula (i.e., for the
matrix A) from marginal copulas (15) is given now. Note
that the coefficients of (15) can be linked to A under the
equation:

(20)

{
d+i,j = ai,1aj,1 + ai,3aj,3,

d−i,j = ai,1aj,3 + ai,3aj,1.

This system has n(n−1) equations (equal to the numbers of
d±i,j) and only 2n unknown variables (namely ai,1 and ai,3,
i = 1, . . . , n). The system is overdetermined since the num-
ber of equations is larger than that of unknown variables.

In the following, we focus on this overdetermined prob-
lem. Two methods are introduced to solve the matrix A.
These methods aim to give an optimal approximation un-
der the quadratic deviation.
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To get an approximation of A, one needs to minimize the
object function

f1(A) =
∑

1≤i<j≤n

[
(d+i,j − ai,1aj,1 − ai,3aj,3)

2

+ (d−i,j − ai,1aj,3 − ai,3aj,1)
2

](21)

under the constraints that ai,1, ai,3 ≥ 0 and ai,1 + ai,3 ≤ 1.
This is a non-convex optimization problem, and we call it
the non-convex method in this paper. This method can not
guarantee that the obtained minimum coincides with the
global minimum (Boyd and Vandenberghe, 2004).

For ensuring to obtain the global minimum, rather than a
local minimum, we introduce an alternative method, called
the convex method in contrast, which transforms (20) to a
linear system.

Note that by adding the two equations in (20) and then
subtracting them, we can get

(22)

{
d+i,j + d−i,j = (ai,1 + ai,3)(aj,1 + aj,3),

d+i,j − d−i,j = (ai,1 − ai,3)(aj,1 − aj,3).

Then we carry out a transformation of variables{
b+i,j = log(d+i,j + d−i,j),

b−i,j = log |d+i,j − d−i,j |

and {
x+
i = log(ai,1 + ai,3),

x−
i = log |ai,1 − ai,3|.

Through the above transformations, (22) becomes{
b+i,m = x+

i + x+
m,

b−i,m = x−
i + x−

m.

It’s also an overdetermined system and the least square
solution is still necessary. Let X = (x+

1 , . . . , x
+
n , x

−
1 , . . . , x

−
n ).

Then one needs to minimize the object function

f2(X) =
∑

1≤i<m≤n

[
(b+i,m − x+

i − x+
m)2 + (b−i,m − x−

i − x−
m)2
]

under the constraints

x+
i ≤ 0, x+

i − x−
i ≥ 0.

It can be verified directly that the object function f2(X) is
a convex function and the constraint region of X is a convex
set in R2n. Thus it is actually a convex optimization problem
whose local minimum coincides with the global minimum
(Boyd and Vandenberghe, 2004).

When a least square solution of {x±
i |1 ≤ i ≤ n} is ob-

tained, we can solve the matrix A through{
ai,1 ∨ ai,3 = (ex

+
i + ex

−
i )/2,

ai,1 ∧ ai,3 = (ex
+
i − ex

−
i )/2

if we ignore the order of ai,1 and ai,3 for the moment. Then
one can exchange the values of ai,1 and ai,3 for some i’s and
preserve the values of others. There are totally 2n−1 combi-
nations due to Proposition 3.2. Finally, based on these com-
binations, the one minimizing (21) among all 2n−1 matrices

is the estimated matrix Â.
The efficiency of the two methods will be discussed in

Section 4.

3.6 Application for modeling portfolio credit
risk

In this subsection we introduce an application of multi-
variate BF copulas in modeling the portfolio credit risk.

Let Y1, Y2, . . . , Yn be n random variables with marginal
distributions Fi and Yi = F−1

i (Ui), where the copula of
U1, U2, . . . , Un is supposed to be a multivariate BF copula
and F−1

i denotes the left-continuous inverse function of Fi.
Thus the copula of (Y1, Y2, . . . , Yn) is the multivariate BF
copula, denoted by Cm,...,m(u1, . . . , un|CA,B,Π). Then one
can calculate the expectation of a function f(Y1, Y2, . . . , Yn).
For instance,

f(Y1, . . . , Yn)=e−rT max{Y1+· · ·+Yn−M, 0}, T >0, M >0.

This expression often appears in the pricing of financial
derivatives with multi-underlying assets, such as multi-stock
options and collateralized debt obligations (CDOs).

In the following, we provide a proposition to simplify the
calculation for a general non-linear function f .

Proposition 3.3. Let f be an n-variable function. Then

Ef(Y1, . . . , Yn)

=

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)
Ef(Y

(j1,...,jn)
1 , . . . , Y (j1,...,jn)

n ).

Here for each (j1, j2, . . . , jn), the random vector (Y
(j1,...,jn)
1 ,

. . . , Y
(j1,...,jn)
n ) has marginal distributions Fi, i ≤ n and the

copula Cm,...,m(u1, . . . , un|C(j1,...,jn),Π), and ai,ji ’s are the
parameters of the CA,B in the multivariate BF copula.

Proof. Using the linear addictive property of CBC, we have

Ef(Y1, . . . , Yn)

=

∫ 1

0

· · ·
∫ 1

0

f(F−1
1 (u1), . . . , F

−1
n (un))

Cm,...,m(du1, . . . , dun|CA,B,Π)
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=

∫ 1

0

· · ·
∫ 1

0

f(F−1
1 (u1), . . . , F

−1
n (un))

×
3∑

j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)
Cm,...,m(du1, . . . , dun|C(j1,...,jn),Π)

=

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)

×
∫ 1

0

· · ·
∫ 1

0

f(F−1
1 (u1), . . . , F

−1
n (un))

Cm,...,m(du1, . . . , dun|C(j1,...,jn),Π)

=

3∑
j1=1

· · ·
3∑

jn=1

(
n∏

i=1

ai,ji

)
Ef(Y

(j1,...,jn)
1 , . . . , Y (j1,...,jn)

n ).

This proposition is proved.

From the proposition, we see that the calculation
of the expectation Ef(Y1, . . . , Yn) can be divided into
two steps. The first step is to calculate some basic ex-

pectations Ef(Y
(j1,...,jn)
1 , . . . , Y

(j1,...,jn)
n ). The second step

is to sum those expectations linearly with multipliers∏n
i=1 ai,ji . Note that the multipliers are determined by

the joint distribution of (Y1, . . . , Yn), while the expecta-

tions Ef(Y
(j1,...,jn)
1 , . . . , Y

(j1,...,jn)
n ) are only related to the

marginal distributions of (Y1, . . . , Yn). This means when
modeling a portfolio consisting of large numbers of secu-
rities, using the multivariate BF copula as the dependence
structure can make the pricing of this portfolio simple and
flexible, because the above two steps of the calculation of
Ef(Y1, . . . , Yn) can be carried out independently, which are
determined by the marginal distributions and the copula
respectively.

4. ESTIMATION METHOD AND
SIMULATION STUDY

We provide an estimation method for multivariate BF
copulas. Because the multivariate BF copula is uniquely de-
termined by its bivariate marginal copulas, we shall first
consider the estimation of bivariate marginal copulas and
then use these bivariate copulas to obtain the correspond-
ing multivariate BF copula. Finally, we perform simulations
to validate the proposed estimation method.

4.1 Estimation method for positive BF
copulas

On estimating coefficients of multivariate BF copulas,
most real data shows positive correlated or negative corre-
lated. Thus for simplicity, we focus our discussion on positive
BF copulas. Note that the data with negative dependence
can be transformed to positive dependence through trans-
formation (see Proposition 2.1).

Coefficients q and m in (6) need to be estimated. We first
calculate the density function of (6),

c
(m)
+,q (u, v) = qm

m∑
k=1

pk−1,m−1(u)pk−1,m−1(v) + (1− q).

Denote the sample (U1, V1), (U2, V2), . . . , (UN , VN ) with size
N by X, here we suppose that the sample is positively de-
pendent. Then the likelihood function of X is

f(q,m|X)

= c
(m)
+,q (U1, V1)c

(m)
+,q (U2, V2) · · · c(m)

+,q (UN , VN )

=

N∏
i=1

[1− q + qa(Ui, Vi)] ,

(23)

where a(Ui, Vi) = m
∑m

k=1 pk−1,m−1(Ui)pk−1,m−1(Vi) does
not contain the variable q.

Here we use EM algorithm to carry out our estimation.
The algorithm estimates q with a pre-given value of m, and
the initial value of q is substituted by the sample correlation
coefficient ρ̂ of X.

Algorithm 4.1.

• Step 0: set q = ρ̂.
• Step 1: E-step

τ̂i :=
1− q

1− q + aiq
, i = 1, 2, . . . , N,

where

ai = a(Ui, Vi) = m

m∑
k=1

pk−1,m−1(Ui)pk−1,m−1(Vi).

• Step 2: M-step

q := 1− 1

N

N∑
i=1

τ̂i.

Repeat Steps 1 and 2 until q converges.

In practice, the condition to quit the repeating loop of
the two steps is chosen to be |qold − qnew| < 10−5 or the
number of iteration goes larger than 200.

One can estimate q with a pre-given value of m by using
Algorithm 4.1. Then, let the pre-given value vary in a range
and estimate q for every value in this range (in practice
we can choose the range to be all integers from 2 to 30).
Finally by maximizing the likelihood function (23) among
all (m, q)’s, the estimated coefficient is obtained.

As for the estimation of a multivariate BF copula, one
can firstly estimate all its bivariate marginal copulas, and
then use the methods introduced in Section 3.5 to determine
the multivariate copula. In addition, the smooth parameter
can be the average of smooth parameters of all the bivariate
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Table 1. The estimated (m̂, q̂). Each array displays the estimated values of (m, q) with the parameters of the sample are the
corresponding heads of the row and column

m�q 0.2 0.4 0.6 0.8 1.0

2 (2, 0.1495) (2, 0.3972) (2, 0.6086) (2, 0.8004) (2, 0.9704)

3 (3, 0.1976) (3, 0.3759) (3, 0.6013) (3, 0.8035) (3, 0.9920)

4 (5, 0.1939) (4, 0.4071) (4, 0.6054) (4, 0.7949) (4, 0.9981)

7 (7, 0.2066) (7, 0.3992) (7, 0.5972) (7, 0.8000) (7, 0.9993)

10 (10, 0.2074) (10, 0.4062) (10, 0.6017) (10, 0.8035) (10, 0.9998)

15 (15, 0.2026) (16, 0.3909) (15, 0.6020) (16, 0.8021) (15, 0.9999)

20 (19, 0.2036) (20, 0.4031) (20, 0.6020) (20, 0.7936) (20, 0.9999)

25 (26, 0.2021) (25, 0.4033) (25, 0.6022) (25, 0.8032) (25, 0.9999)

margins. In the next subsection, we will use above methods
to estimate both positive BF copulas and multivariate BF
copulas. Those methods are shown to be efficient through
the simulations.

4.2 Simulation study

4.2.1 Estimation performance with simulation

In this subsection, we validate the estimation and deter-
mination methods discussed before. For bivariate case, we
generate samples from positive BF copulas with given pa-
rameters, and then use Algorithm 4.1 to estimate the param-
eters. For multivariate case, we also generate samples from
multivariate BF copulas with given parameters, estimate the
parameters of their bivariate margins, and then determine
the multivariate copulas from these bivariate margins.

We first exam the two-dimensional case. Samples are gen-
erated from copulas (6) with the parameter

(m, q) ∈ {2, 3, 4, 7, 10, 15, 20, 25} × {0.2, 0.4, 0.6, 0.8, 1.0}.

Then Algorithm 4.1 is applied for estimating these samples.

For every combination of parameters, 10 independent
samples are generated and repeated estimations are carried
out. Table 1 displays the average estimated values of (m, q)
while the parameters of the population are the correspond-
ing heads of the row and the column.

From Table 1, one can see the estimation is more accurate
when q is closer to 1 and m gets larger. When one of them
becomes smaller, the correlation of the sample gets smaller,
and the error grows bigger.

Next, we sample from a five-dimensional BF copula with
the coefficients of CA,B

A =

(
0.8, 0, 0, 0.6, 0
0, 0.9, 0.5, 0, 0

)
, and m = 15.

We estimate the bivariate marginal copulas and use them to
obtain the coefficients matrix A and the smooth parameter
m. Table 2 reports the average L1-error, standard devia-
tions and estimated m̂ of the two methods introduced in
Section 3.5.

Table 2. Average L1-errors and estimated m

Method Non-convex Convex

Average L1-error 0.0490 0.0325
Standard deviations 0.0143 0.0123
estimated m 9 13

Table 3. Average L1-errors and estimated m

Method Non-convex Convex

Average L1-error 0.1388 0.0473
Standard deviations 0.0319 0.0183
estimated m 7 10

The corresponding estimated ANon-convex and Aconvex are
listed in the following as an example

ANon-convex=

(
0.8165 0.0000 0.0000 0.6287 0.0000
0.0000 0.8824 0.5255 0.0000 0.0348

)
,

Aconvex=

(
0.8116 0.0000 0.0000 0.6059 0.0000
0.0000 0.8937 0.4960 0.0000 0.0257

)
.

The estimated m̂ are 9 and 13 respectively. From Table 2
one can conclude that the error of the convex method is
more acceptable.

Another population with parameters

A =

(
0.4, 0.3, 0.6, 0, 0.8

0, 0, 0, 0.7, 0

)
, and m = 10

is also carried out for simulation. The same error indexes
follow in Table 3.

The two estimated parameters follow as an example,

ANon-convex=

(
0.4456 0.3611 0.6242 0.0000 0.8083
0.0000 0.0000 0.0000 0.7286 0.0000

)
,

Aconvex=

(
0.3916 0.3038 0.5958 0.0000 0.8063
0.0000 0.0000 0.0000 0.7365 0.0000

)
.

One can see errors of the second method are smaller than
those of the first. Therefore, the convex method is recom-
mended in practice.
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Table 4. Historical default probabilities (%) of rating AAA, AA, A, BBB, BB, and B with terms 5 year and 10 year. The
source of these data is from Appendix 1 in Fitch (2020)

Term
Rating

AAA AA A BBB BB B

5 0.082 0.169 0.586 1.913 10.026 21.572
10 0.193 0.638 1.580 4.536 17.434 32.182

In this subsection both the estimation of bivariate BF
copulas and the determination of multivariate BF copulas
are discussed. From results of the simulations, we conclude
that positive BF copulas are suitable for modeling highly
positive correlation, and for the aim of determining multi-
variate BF copulas from margins, the convex method can
obtain more accurate result than the non-convex method.

4.2.2 Simulation study of portfolio credit risk

For evaluating CDOs, the dependence of the default times
plays a key role for modeling the credit risks. Copulas can
be applied to model the dependence structure of the default
times. Fitch (2020) provides historical data for analyzing
CDOs and the Gaussian copula is applied to model the de-
fault correlation of the credit risks. Based on the historical
data provided in Fitch (2020), we work on simulation to
study the loss distribution of CDOs by comparing multi-
variate BF copulas with Gaussian copulas.

Consider a CDO of term T consisting of n defaultable un-
derlying assets, where the credit exposures are all assumed
to be 1 and the recovery rates are all assumed to be 0. The
default times are denoted by τ1, . . . , τn respectively, and let
Yi := I{τi≤T}, i ≤ n. Then the loss ratio L of the credit
portfolio can be expressed as

L =
1

n
(Y1 + Y2 + · · ·+ Yn).

Note that the default probability of a single asset in the
portfolio is simply a function of its rating and term.

For an AAA-rated CDO tranche with given term, its rat-
ing default rate (RDR) is defined as the loss percentage of
the portfolio that is assumed to default in the respective rat-
ing scenario. Applying the percentile corresponding to the
rating scenario and term (Fitch, 2020), RDR can be derived
from the distribution of the portfolio loss ratio. Mathemati-
cally, the RDR of an AAA-rated CDO tranche with term T
can be solved from the equation

P(L > RDR) = pCDO(AAA, T ),

where pCDO(AAA, T ) is the CDO target default probability
of an AAA-rated tranche with term T . Similarly, the RDRs
of other tranches can be calculated in the same way.

In the following, we consider a CDO consisting of 300
homogeneous defaultable assets. The RDRs of the CDO
tranches are calculated through simulation. As in Fitch

Table 5. Gaussian model’s RDR levels (%) with 6.5% equal
pair-wise correlation index

Tranche
B BB BBB A

5 10 5 10 5 10 5 10

AAAsf 52.7 63.0 32.7 43.7 10.7 17.3 4.7 8.3
AAsf 50.0 58.7 30.7 39.3 9.7 14.7 4.3 6.7
Asf 45.7 55.0 26.7 35.7 8.0 12.7 3.3 5.7
BBBsf 40.7 49.7 23.0 31.0 6.3 10.3 2.3 4.3
BBsf 32.3 41.3 16.7 24.0 4.0 7.0 1.3 2.7
Bsf 27.7 36.3 13.7 20.0 2.7 5.3 1.0 2.0

(2020), we use the historical corporate default rate as the
default probability of each underlying asset, and we also as-
sume that each tranche’s target default probability equals
its corresponding historical corporate default rate. Some his-
torical corporate default rates are listed in Table 4, and the
complete version of the table can be found in Fitch (2020).

In the credit portfolio, the copula of (τ1, · · · , τ300) is cho-
sen as a Gaussian copula and a multivariate BF copula in
Example 3.3 respectively, with 6.5% equal pair-wise correla-
tion index. The parameter ρ of the Gaussian copula needs to
be set as 6.81% by solving 6

π arcsin(ρ2 ) = 6.5%, and the pa-
rameter (m, q) of the multivariate BF copula in Example 3.3
should satisfy m−1

m+1q = 6.5%. Table 5 reports the RDRs of
different rated tranches under the Gaussian copula model
simulated for 1,000,000 times, and Table 6 and 7 shows the
simulation results of the multivariate BF copulas with the
parameter m = 20 and 10 respectively.

In these tables, each column head identifies the rating of
the underlying assets in a credit portfolio. For example, the
column with the head (BB, 5) means that the portfolio con-
sists of 300 BB-rated assets with 5-year term, whose default
probability of the underlying assets is assumed to be the his-
torical default rate 10.026% in Table 4. Each row in this col-
umn displays the RDRs of the CDO tranches, from AAAsf
to Bsf. To discriminate the ratings for the CDO tranches
and the underlying assets in the portfolio, we add suffix -
sf in the Tranche column to indicate that it is a rating for
CDO structured products.

From these tables, we find that except for the underlying
assets with the lowest rating B, the multivariate BF model’s
RDRs vary in a larger range than those of the Gaussian
model. For example, for the CDO consisting of A-rated and
10-year-termed underlying assets, the RDR levels given by
the multivariate BF copula with m = 20 range from 1.7 to
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Table 6. Multivariate BF model’s RDR levels (%) with
m = 20 and 6.5% equal pair-wise correlation index

Tranche
B BB BBB A

5 10 5 10 5 10 5 10

AAAsf 48.7 56.7 36.7 44.0 13.7 23.7 6.0 11.3
AAsf 48.0 55.3 35.7 42.3 13.3 22.0 5.3 10.3
Asf 46.3 54.0 34.0 40.7 12.0 20.7 4.7 9.3
BBBsf 44.3 52.0 31.7 38.0 10.3 16.3 3.7 6.3
BBsf 39.3 47.3 19.7 25.3 2.7 5.0 1.0 2.0
Bsf 28.7 36.7 10.3 16.0 2.0 4.0 0.7 1.7

Table 7. Multivariate BF model’s RDR levels (%) with
m = 10 and 6.5% equal pair-wise correlation index

Tranche
B BB BBB A

5 10 5 10 5 10 5 10

AAAsf 48.0 56.7 31.7 42.3 10.0 18.0 4.3 8.0
AAsf 47.3 55.3 31.0 40.7 9.3 16.7 4.0 7.3
Asf 45.7 54.0 29.7 39.3 8.7 15.7 3.3 6.7
BBBsf 43.7 51.7 27.7 37.0 7.7 14.0 2.7 5.3
BBsf 37.7 46.3 19.3 26.0 3.7 5.3 1.3 2.0
Bsf 28.3 36.7 11.0 16.7 2.3 4.3 1.0 1.7

Table 8. The historical maximum and average loss (%), from
Figure 23 in Fitch (2020)

Historical
Loss

B BB BBB A
5 10 5 10 5 10 5 10

Peak 38.7 49.5 19.7 29.7 4.5 9.3 1.61 4.02
Expected 21.6 32.2 10.1 17.5 1.9 4.5 0.6 1.6

11.3, while the range given by the Gaussian copula is from
2.0 to 8.3. For the lowest rating B, the results are reversed
for the two models.

Comparing the results on m = 20 in Table 6 and the
results on m = 10 in Table 7, we can see that the influence
of the parameter m is mainly on high-rated tranches in the
CDOs whose underlying assets are less likely to default. For
example, in the credit portfolios whose underlying assets are
rated higher than BB, the RDRs of tranches AAAsf, AAsf,
Asf, and BBBsf get lower when m gets smaller.

Generally, rating agencies assume that model’s RDRs for
high-rated tranches, such as Asf and above, should cover the
historical peak default rates. Table 8 provides the historical
peak default rate and average default rate in Fitch (2020).
By comparing Table 7 with the values in Table 8, one can
find that even the RDR levels become lower, the results
on m = 10 can still cover the peak losses for tranches from
AAAsf to BBBsf. In conclusion, the application of multivari-
ate BF copulas in evaluating CDOs is feasible and flexible.

5. EMPIRICAL STUDY

This section works on the empirical study of multivari-
ate BF copulas on China’s stock market. Through empirical

Figure 7. Log price of the four stocks. Significant positive
correlation can be observed from the plot.

analysis, we show the advantages of multivariate BF copulas
by comparing them with Gaussian copulas.

The data of four stocks, TCMedical (TCM, 600763.SH),
WanHuaChem (WHC, 600309.SH), JCET CO. (JCET,
600584.SH), and TongWei CO. (TW, 600438.SH) are ap-
plied in our analysis. The data are from March 2, 2004 to
June 8, 2021 with 4195 observations. The summary statistics
of the log returns and the figure of the log prices are shown
in Table 9 and Figure 7, respectively. The comparison of
fitting the data with Gaussian copulas and multivariate BF
copulas is carried out.

Table 9. Summary statistics of the four selected stocks’ log
returns

Summary TCM WHC JCET TW

Min. -0.1065 -0.1056 -0.1059 -0.1061
1st Qu. -0.0136 -0.0131 -0.0162 -0.0148
Median 0.0000 0.0000 0.0000 0.0000
Mean 0.0010 0.0010 0.0005 0.0008
3rd Qu. 0.0170 0.0157 0.0171 0.0163
Max. 0.0965 0.0957 0.0970 0.0960

For the log returns of each stock, we first fit its marginal
distributions by ARMA-GARCH models. When a time se-
ries model is fitted, the standardized residuals of the model
can be obtained. Then copula functions are applied to model
the dependency of the residuals of the four stocks.

More concretely, we take the ARMA(1, 1)-GARCH(1, 1)
model as an example to explain our method. Consider the
log-return series {rt} of a stock. Assume that

(24)

⎧⎪⎨⎪⎩
rt = μ+ φ1rt−1 + ψ1εt−1 + εt,

εt = σt · Zt , Zt ∼ D(0, 1) i.i.d. ,

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1,

where D is a certain error distribution, such as a normal
distribution or a student-t distribution. After estimating the
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model, the standardized residuals ε̃t = εt/σt, t ≥ 0 are ap-
plied for fitting a copula function. Comparisons of the fitting
accuracy between these copulas are presented in terms of the
AIC, the Kendall’s tau and the Spearman’s rho.

Using R package rugarch, the fitted models for the four
stock are MA(2), ARMA(2,2), MA(2), AR(2) respectively
(all combined with GARCH(1,1)), here we use the student-t
distribution as the error distribution. Then the four stan-
dard residual series are applied to fit Gaussian copulas and
multivariate BF copulas respectively. For multivariate BF
copulas, the bivariate marginal distributions are estimated
by applying the method in Section 4.1, and the method in
Section 3.5 is applied to get the parameters. The estimated
parameters for the two copulas are as followings:

Σ̂ =

⎛⎜⎜⎝
1 0.27 0.34 0.32

0.27 1 0.35 0.34
0.34 0.35 1 0.41
0.32 0.34 0.41 1

⎞⎟⎟⎠ ,

Â =

(
0.59 0.63 0.76 0.74
0.00 0.00 0.00 0.00

)
, m̂ = 6,

where Σ̂ is the estimated correlation matrix of the Gaus-
sian copula, and Â and m̂ are estimated parameters of the
multivariate BF copula.

The AICs of the fitted models are listed in Table 10.
From the numerical results, we can see that the multivariate
BF copula fits the data more accurately than the Gaussian
copula in terms of AIC.

Table 10. AIC’s of the two fitted copulas

Gaussian Copula BF Copula

-2292.3 -2445.7

The comparisons of Kendall’s tau and Spearman’s rho
are displayed in Table 11 and Table 12 respectively, where
the values in brackets are deviations from the correspond-
ing sample indexes (the first column in the table). In most
cases, the correlation indexes obtained from multivariate BF
copulas are closer to the sample rank correlation than those
obtained from Gaussian copulas.

Table 11. Kendall’s tau comparison table

Kendall’s τ Sample Gaussian copula BF copula

TCM & WHC 0.1891 0.1741(-0.0150) 0.1812(-0.0079)
TCM & CDT 0.2355 0.2210(-0.0145) 0.2212(-0.0143)
TCM & TWC 0.2154 0.2089(-0.0065) 0.2138(-0.0016)
WHC & CDT 0.2388 0.2243(-0.0145) 0.2366(-0.0022)
WHC & TWC 0.2399 0.2201(-0.0198) 0.2287(-0.0112)
CDT & TWC 0.2868 0.2664(-0.0204) 0.2795(-0.0073)

Table 12. Spearman’s rho comparison table

Spearman’s ρ Sample Gaussian copula BF copula

TCM & WHC 0.2777 0.2586(-0.0191) 0.2643(-0.0134)
TCM & CDT 0.3441 0.3265(-0.0176) 0.3207(-0.0234)
TCM & TWC 0.3151 0.3091(-0.0060) 0.3104(-0.0047)
WHC & CDT 0.3479 0.3311(-0.0168) 0.3423(-0.0056)
WHC & TWC 0.3489 0.3252(-0.0237) 0.3312(-0.0177)
CDT & TWC 0.4122 0.3907(-0.0215) 0.4019(-0.0103)

6. CONCLUSION

Based on CA,B copulas presented by Yang, Qi and Wang
(2009) and composite Bernstein copulas studied in
Yang et al. (2015), this paper introduced a copula fam-
ily called the multivariate BF copula. The multivari-
ate BF copula is uniquely determined by its bivariate
marginal copulas, which are called bivariate BF copu-
las. The bivariate BF copula class contains many copu-
las such as FGM copulas, bivariate copulas with cubic
sections (Nelsen, Quesada-Molina and Rodŕıguez-Lallena,
1997), and Baker’s copulas studied in Baker (2008). Com-
paring bivariate BF copulas with Gaussian copulas and
Fréchet copulas, bivariate BF copulas reveal advantages
such as admitting density functions and showing more flexi-
bility in modeling. For practical application, we investigated
the estimation of positive BF copulas. Based on the estima-
tion of the bivariate copulas, the method for obtaining the
multivariate BF copulas was also discussed and validated.
Moreover, simulation and empirical study were carried out
for showing the feasibility and flexibility of multivariate BF
copulas.

APPENDIX A. PROOF OF THEOREM 2.2

For ease of description, we denote Cm,m(u, v|M,Π) by

C(u, v) through this proof. To prove that C
(m)
+,q admits TP2

property by definition, one needs to prove that for 0 ≤ x1 ≤
x2 ≤ 1, 0 ≤ y1 ≤ y2 ≤ 1,

C
(m)
+,q (x2, y2)C

(m)
+,q (x1, y1)− C

(m)
+,q (x1, y2)C

(m)
+,q (x2, y1) ≥ 0.

We know that

C
(m)
+,q (x2, y2)C

(m)
+,q (x1, y1)− C

(m)
+,q (x1, y2)C

(m)
+,q (x2, y1)

= [(1− q)x2y2 + qC(x2, y2)] · [(1− q)x1y1 + qC(x1, y1)]

− [(1− q)x1y2 + qC(x1, y2)] · [(1− q)x2y1 + qC(x2, y1)]

= (1− q)qx2y2C(x1, y1) + (1− q)qx1y1C(x2, y2)

− (1− q)qx1y2C(x2, y1)− (1− q)qx2y1C(x1, y2)

+ q2C(x2, y2)C(x1, y1)− q2C(x1, y2)C(x2, y1)

= (1− q)q[x2y2C(x1, y1) + x1y1C(x2, y2)

− x1y2C(x2, y1)− x2y1C(x1, y2)]

+ q2[C(x2, y2)C(x1, y1)− C(x1, y2)C(x2, y1)].
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Dou, Kuriki and Lin (2013) proved that copula C has TP2

property, thus the second term q2[C(x2, y2)C(x1, y1) −
C(x1, y2)C(x2, y1)] in the last equation is non-negative.
Therefore it is sufficient to show that the first term is non-
negative. Since (1 − q)q is non-negative, we only need to
prove that

A(x1, x2; y1, y2) := x2y2C(x1, y1) + x1y1C(x2, y2)

− x1y2C(x2, y1)− x2y1C(x1, y2)
(25)

is non-negative for any 0 ≤ x1 ≤ x2 ≤ 1 and 0 ≤ y1 ≤ y2 ≤
1.

Let x1 = x, x2 = x + Δx and y1 = y, y2 = y + Δy.
We first prove that A(x1, x2; y1, y2) ≥ 0 locally, that is,
A(x1, x2; y1, y2) ≥ 0 when Δx and Δy are sufficiently small.

Calculate the Taylor expansion up to order 2 of C(x +
Δx, y +Δy),

C(x+Δx, y +Δy)

= C(x, y) +
∂C

∂x
(x, y)Δx+

∂C

∂y
(x, y)Δy +

1

2

∂2C

∂x2
(x, y)Δx2

+
∂2C

∂x∂y
(x, y)ΔxΔy +

1

2

∂2C

∂y2
(x, y)Δy2 + o(ΔxΔy).

Substituting the expansion into (25), one can finally get

A = ΔxΔy

[
C(x, y)− x

∂C

∂x
(x, y)− y

∂C

∂y
(x, y)

+ xy
∂2C

∂x∂y
(x, y) + o(ΔxΔy)

]
.

Thus we need to prove that

C(x, y)− x
∂C

∂x
(x, y)− y

∂C

∂y
(x, y) + xy

∂2C

∂x∂y
(x, y) > 0

for any 0 ≤ x ≤ 1, 0 ≤ y ≤ 1. Because the inequalities at
x = 0, 1 or y = 0, 1 can be verified directly, we will prove
the inequality for 0 < x < 1, 0 < y < 1 below.

Actually, note that O′
k,m(x) = mpk−1,m−1(x) and

xpk−1,m−1(x) = Ck−1
m−1x

k(1− x)m−k = k
mpk,m(x), we have

C(x, y)−x
∂C

∂x
(x, y)−y

∂C

∂y
(x, y)+xy

∂2C

∂x∂y
(x, y)

=
1

m

m∑
k=1

Ok,m(x)Ok,m(y)

−x

m∑
k=1

pk−1,m−1(x)Ok,m(y)−y

m∑
k=1

pk−1,m−1(y)Ok,m(x)

+xym
m∑

k=1

pk−1,m−1(x)pk−1,m−1(y)

=
1

m

m∑
k=1

Ok,m(x)Ok,m(y)− 1

m

m∑
k=1

kpk,m(x)Ok,m(y)

− 1

m

m∑
k=1

kpk,m(y)Ok,m(x)+
1

m

m∑
k=1

k2pk,m(x)pk,m(y)

=
1

m

m∑
k=1

(
m∑
i=k

pi,m(x)

)⎛⎝ m∑
j=k

pj,m(y)

⎞⎠
− 1

m

m∑
k=1

kpk,m(x)

⎛⎝ m∑
j=k

pj,m(y)

⎞⎠
− 1

m

m∑
k=1

kpk,m(y)

(
m∑
i=k

pi,m(x)

)
+

1

m

m∑
k=1

k2pk,m(x)pk,m(y)

=
1

m

( m∑
i=1

m∑
j=1

i ∧ j · pi,m(x)pj,m(y)

−
m∑
i=1

m∑
j=1

i ∧ j · I{i≤j}pi,m(x)pj,m(y)

−
m∑
i=1

m∑
j=1

i ∧ j · I{i≥j}pi,m(x)pj,m(y)

+

m∑
i=1

m∑
j=1

i2I{i=j}pi,m(x)pj,m(y)

)

=
1

m

m∑
i=1

m∑
j=1

(i2−i)I{i=j}pi,m(x)pj,m(y)

=
1

m

m∑
k=1

(k2−k)pk,m(x)pk,m(y) > 0.

Therefore if Δx and Δy are sufficiently small such that
the remainder term o(ΔxΔy) can be ignored, the inequality
A(x, x+Δx; y, y +Δy) ≥ 0 holds.

Up to now, the local non-negativeness of (25) is
proved, i.e., for sufficiently close x1 ≤ x2 and y1 ≤ y2,
A(x1, x2; y1, y2) ≥ 0 holds. To finish the proof, we need
to extend the conclusion from local to global, that is, to
prove the inequality holds for any 0 ≤ x1 ≤ x2 ≤ 1 and
0 ≤ y1 ≤ y2 ≤ 1.

For this purpose, assume that for 0 ≤ x1 ≤ x∗ ≤ x2 ≤ 1
and 0 ≤ y1 ≤ y∗ ≤ y2 ≤ 1, A is non-negative in the
four smaller squares [x1, x

∗] × [y1, y
∗], [x∗, x2] × [y∗, y2],

[x1, x
∗] × [y∗, y2], and [x∗, x2] × [y1, y

∗], i.e., the following
four inequalities holds,

A(x1, x
∗; y1, y

∗) =x1y1C(x∗, y∗) + x∗y∗C(x1, y1)

− x1y
∗C(x∗, y1)− x∗y1C(x1, y

∗) ≥ 0,

A(x∗, x2; y
∗, y2) =x∗y∗C(x2, y2) + x2y2C(x∗, y∗)

− x∗y2C(x2, y
∗)− x2y

∗C(x∗, y2) ≥ 0,

A(x1, x
∗; y∗, y2) =x1y

∗C(x∗, y2) + x∗y2C(x1, y
∗)

− x∗y∗C(x1, y2)− x1y2C(x∗, y∗) ≥ 0,

A(x∗, x2; y1, y
∗) =x∗y1C(x2, y

∗) + x2y
∗C(x∗, y1)

− x∗y∗C(x2, y1)− x2y1C(x∗, y∗) ≥ 0.
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We show that A is non-negative in the bigger square
[x1, x2]×[y1, y2] under above assumptions. Multiply the four
inequalities by x2y2, x1y1, x2y1, and x1y2 respectively and
then add them up together. We get

x2y2A(x1, x
∗; y1, y

∗) + x1y1A(x
∗, x2; y

∗, y2)

+ x2y1A(x1, x
∗; y∗, y2) + x1y2A(x

∗, x2; y1, y
∗)

=x2y2x1y1C(x∗, y∗) + x2y2x
∗y∗C(x1, y1)

− x2y2x1y
∗C(x∗, y1)− x2y2x

∗y1C(x1, y
∗)

+ x1y1x
∗y∗C(x2, y2) + x1y1x2y2C(x∗, y∗)

− x1y1x
∗y2C(x2, y

∗)− x1y1x2y
∗C(x∗, y2)

+ x2y1x1y
∗C(x∗, y2) + x2y1x

∗y2C(x1, y
∗)

− x2y1x
∗y∗C(x1, y2)− x2y1x1y2C(x∗, y∗)

+ x1y2x
∗y1C(x2, y

∗) + x1y2x2y
∗C(x∗, y1)

− x1y2x
∗y∗C(x2, y1)− x1y2x2y1C(x∗, y∗)

=x∗y∗
[
x1y1C(x2, y2) + x2y2C(x1, y1)

− x2y1C(x1, y2)− x1y2C(x2, y1)

]
≥ 0.

Eliminate the non-negative term x∗y∗ in the inequality. Fi-
nally one can get that

A(x1, x2; y1, y2) =x1y1C(x2, y2) + x2y2C(x1, y1)

− x2y1C(x1, y2)− x1y2C(x2, y1) ≥ 0.

The discussion above shows that when (x2 − x1) and
(y2−y1) are not sufficiently small, one can insert new points
between them, and this insertion can be carried out repeat-
edly until every interval gets small enough to make sure
A ≥ 0 for every small square. This finishes the proof of TP2

property of the positive BF copula C
(m)
+,q .
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