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On dual-asymmetry linear double AR models

Songhua Tan and Qianqian Zhu
∗

This paper introduces a dual-asymmetry linear double
autoregressive (DA-LDAR) model that can allow for asym-
metric effects in both the conditional location and volatility
components of time series data. The strict stationarity is
discussed for the new model, for which a sufficient condition
is established. A self-weighted exponential quasi-maximum
likelihood estimator (EQMLE) is proposed for the DA-
LDAR model, and a mixed portmanteau test for goodness-
of-fit is constructed based on the self-weighted EQMLE. It
is noteworthy that all the asymptotic properties for estima-
tion and testing are established without any moment condi-
tion on the data process, which makes the new model and
its inference tools applicable for heavy-tailed data. Since all
inference tools need to estimate the unknown density func-
tion of innovations, we employ a random-weighting boot-
strap method to facilitate accurate inference and show its
asymptotic validity. Simulation studies provide support for
theoretical results, and an empirical application to NAS-
DAQ Composite Index illustrates the usefulness of the new
model.

Keywords and phrases: Asymmetry effects, Bootstrap
method, Double autoregressive models, Exponential QMLE,
Portmanteau test, Strict stationarity.

1. INTRODUCTION

In theory and practical applications, the conditional
mean and conditional variance (volatility) are two impor-
tant ingredients for time series data. Many classical time
series models, such as the ARMA (Box et al., 2008) and
GARCH (Bollerslev, 1986) models, are proposed and widely
used to model these two components separately. Many
empirical findings in literatures suggest that the autore-
gression and volatility dynamics usually exist together in
time series, for example, the return series of NASDAQ
Composite Index (Kuester et al., 2006) and S&P500 index
(Linton and Mammen, 2005). As a result, it is of great im-
portance to model the conditional mean and volatility simul-
taneously (Li et al., 2002). Many models are introduced for
this purpose, and the double autoregressive (DAR) model
proposed by Ling (2004, 2007) is one of the popular specifi-
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cations. The DAR model of order p has the form of

(1) yt =

p∑
i=1

αiyt−i + ηt

√√√√ω +

p∑
i=1

βiy2t−i,

where ω > 0, αi ∈ R, βi ≥ 0 for 1 ≤ i ≤ p, and {ηt}
are independent and identically distributed (i.i.d.) innova-
tions. Model (1) is a subclass of ARMA-ARCH models in
Weiss (1984), but it is different from the ARCH model in
Engle (1982) if αi �= 0. As the DAR model attracts grow-
ing attention, many of its variants have been widely pro-
posed and studied, such as the threshold DAR (Li et al.,
2016), the mixture DAR (Li et al., 2017), the linear DAR
(Zhu et al., 2018) and the augmented DAR (Jiang et al.,
2020) models. Among them, the linear DAR model extends
the DAR model along the lines of linear GARCH (Taylor,
2008; Xiao and Koenker, 2009) models which assume the
conditional standard deviation rather than the conditional
variance of yt in a linear structure. Particularly, the linear
DAR model is defined as

(2) yt =

p∑
i=1

αiyt−i + ηt

(
ω +

p∑
i=1

βi|yt−i|
)
.

Similar to the linear GARCH model which can have
more robust inference than the quadratic GARCH model
(Xiao and Koenker, 2009), hopefully model (2) can lead to
more robust inference than model (1) as well. For model
(2), Zhu et al. (2018) and Liu et al. (2020) proposed a dou-
bly weighted quantile regression estimator and two QMLEs,
and notably all these estimators are asymptotically normal
under a fractional moment on yt. Hence, the linear DAR
model is also applicable for heavy-tailed data.

It is well known that financial time series especially the
stock returns usually have asymmetric effects, that is, neg-
ative shocks have much larger effects on the stock price
than positive shocks of the same magnitude; see Black
(1976) and Francq and Zakoian (2013) for empirical evi-
dences. Many models are introduced in literatures to cap-
ture the asymmetric effect, generally speaking, these mod-
els can be divided into threshold-type and asymmetric-
type. Due to the uncertainty of the threshold and the
nonlinear structure of models, the threshold-type models
such as the threshold AR (Petruccelli and Woolford, 1984)
and threshold DAR (Li et al., 2016) models, usually have
complex theoretical properties and thus are difficult to
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use in practice. By contrast, asymmetric-type models such
as the exponential GARCH (Nelson, 1991), GJR–GARCH
(Glosten et al., 1993), threshold GARCH (Zakoian, 1994)
and power GARCH (Pan et al., 2008) models, avoid the
selection of threshold and make easy the statistical infer-
ence. Note that the aforementioned asymmetric-type mod-
els mainly focused on asymmetric effects in the conditional
volatility. However, when analyzing the NASDAQ Com-
posite Index and many other stock indices, we found that
the asymmetry appears in both the conditional mean and
volatility; see Section 6 for details. This motivates us to fill
this gap and propose an asymmetric-type model along the
lines of the linear DAR model (2). Moreover, to make the
model more practicable, we further relax the equal order
setting in model (2) and allow for different orders in the
conditional mean and volatility specifications. For the pro-
posed new model, we investigate its strict stationarity and
establish a sufficient condition in Section 2. Particularly, this
paper has three main contributions.

First, we propose a self-weighted exponential quasi-
maximum likelihood estimator (EQMLE) for model (3) in
Section 3. For the DAR model (1) and linear DAR model
(2) of equal order p, under E(yκt ) < ∞ for κ > 0 with
E(η4t ) < ∞, their Gaussian QMLEs are shown to be asymp-
totically normal (Ling, 2007; Liu et al., 2020). Zhu and Ling
(2013) and Liu et al. (2020) proposed the EQMLEs for these
two models respectively and established the asymptotic nor-
mality under E(yκt ) < ∞ for κ > 0 with E(η2t ) < ∞. It is
natural to consider the EQMLE for the new model to deal
with more heavy-tailed data. If the order p of the condi-
tional location is no larger than the order q of the conditional
volatility, then the asymptotic normality of EQMLE for the
new model requires the same moment conditions on data
process {yt} and innovations {ηt} as for models (1) and (2).
However, when p > q, then E(y3t ) < ∞ with E(η2t ) < ∞ is
necessary. To reduce the moment condition on yt especially
for the case of p > q, the self-weighting method proposed
by Ling (2007) is introduced to the EQMLE. As a result,
a self-weighted EQMLE is investigated in framework of the
new model for generality.

Secondly, we construct a mixed portmanteau test in Sec-
tion 4 to check the model adequacy without any moment
conditions imposed on the data process {yt}. It is well known
that diagnostic checking is one of the key steps for time
series modeling (Box et al., 2008), and portmanteau tests
provide a standard tool to check the overall goodness-of-fit.
Specifically, the sample autocorrelation functions (ACFs) of
residuals are commonly used to construct portmanteau tests
for conditional mean models (Ljung and Box, 1978), while
the ACFs of squared or absolute residuals are utilized for
volatility models (Li, 2004; Li and Li, 2005). For the new
model with both conditional mean and volatility structures,
diagnostic checking should be conducted for both compo-
nents, and a mixed portmanteau test can be considered ac-
cordingly (Wong and Ling, 2005). Therefore, in line with the

self-weighted EQMLE, we employ the ACFs of self-weighted
residuals and self-weighted absolute residuals to check the
adequacy of new model, which ensures that no moment con-
ditions will be imposed on yt.

Finally, we employ a random-weighting bootstrap proce-
dure for the estimation and diagnostic checking, and show
that the bootstrap approach is asymptotically valid. It
is noteworthy that the asymptotic covariance of the self-
weighted EQMLE and the portmanteau test statistic both
depend on the unknown density function of innovations.
As a result, the inference for the new model necessitates
some non-parametric methods such as the kernel density
estimation, which makes the estimation of asymptotic dis-
tributions more involved. Moreover, the sample approxima-
tion of asymptotic distributions may not be satisfactory
when the sample size is small or even moderate. Owing
to the powerful computing, the bootstrap approach (Efron,
1992) has been widely used to approximate limiting dis-
tributions of statistics. Among various bootstrap methods,
the random-weighting bootstrap (Zheng, 1987) recently at-
tracted great attentions in literatures of time series settings;
see also Li et al. (2014) and Zhu et al. (2020). Motivated by
the above observations, this paper turns to the bootstrap ap-
proximation and considers an easy-to-use random-weighting
bootstrap procedure for the new model.

The remainder of this paper is organized as follows. Sec-
tion 2 proposes the new model and discusses its strict sta-
tionarity. Section 3 proposes the self-weighted EQMLE and
establishes its asymptotics, and Section 4 studies the diag-
nostic checking for the fitted model. Moreover, a random-
weighting bootstrap procedure is proposed for the estima-
tion and diagnosis. Section 5 conducts simulation experi-
ments to examine the finite-sample performance of the pro-
posed statistical inference and bootstrap procedure. Section
6 presents an empirical example to illustrate the usefulness
of the new model. Section 7 concludes with a short discus-
sion. All technical details are relegated to the supplementary
material. Throughout the paper, →p and →L denote the
convergences in probability and in distribution, respectively,
and op(1) denotes a sequence of random variables converging
to zero in probability. We denote by ‖·‖ the norm of a matrix

or column vector, defined as ‖A‖ =
√

tr(AA′) =
√∑

i,j a
2
ij .

2. THE MODEL

Consider the dual-asymmetry linear DAR (DA-LDAR)
model of order (p, q):

(3)

yt =

p∑
i=1

(
αi+y

+
t−i + αi−y

−
t−i

)
+ ηt

⎛⎝ω +

q∑
j=1

(
βj+y

+
t−j − βj−y

−
t−j

)⎞⎠ ,

where ω > 0, βj+, βj− ≥ 0 for 1 ≤ j ≤ q, {ηt} are i.i.d. inno-
vations, y+t = max {0, yt} and y−t = min {0, yt} are positive

4 S. Tan and Q. Zhu



and negative parts of {yt}, respectively, and p and q are non-
negative integers. Model (3) allows for asymmetric effects in
both the conditional location and scale components, and its
orders of the conditional location and volatility specifica-
tions can be different. Model (3) includes the linear DAR
model (2) of Zhu et al. (2018) as a special case, that is, it
will reduce to model (2) when p = q, αi+ = αi− for all i and
βj+ = βj− for all j.

Since model (3) is actually nonlinear, it is difficult to
derive a necessary and sufficient condition for its strict sta-
tionarity when the distribution of ηt is general. As a special
case, Zhu et al. (2018) provided a sufficient condition for the
linear DAR model (2). For model (3) of general settings,
Theorem 2.1 below gives a sufficient condition.

Theorem 2.1. Suppose that the density function of ηt is
positive everywhere on R, and E(|ηt|κ) < ∞ for some κ > 0.
Let m = max{p, q}, αi− = αi+ = 0 for i > p and βi− =
βi+ = 0 for i > q. If the condition in (i) or (ii) holds:
(i) for 0 < κ ≤ 1,

m∑
i=1

max {E (|αi− − βi−ηt|κ) , E (|αi+ + βi+ηt|κ)} < 1;

(ii) for κ ∈ {2, 3, 4 . . .},

E

[(
m∑
i=1

max {|αi− − βi−ηt|, |αi+ + βi+ηt|}
)κ]

< 1;

then there exists a strictly stationary solution {yt} to model
(3), and this solution is unique and geometrically ergodic
with E(|yt|κ) < ∞.

Remark 2.1. For the geometric ergodicity and existence of
κth moment of {yt}, we can alternatively use the piggyback
method in Cline and Pu (2004) to obtain a more sharp suf-
ficient condition than that in Theorem 2.1. However, an ex-
tra moment condition supx(1+ |x|)f(x) < ∞ on the density
of ηt is required. Moreover, the sufficient condition based on
the piggyback method is more complicated to verify than that
in Theorem 2.1. As a result, we prefer the simple sufficient
conditions in Theorem 2.1.

The stationarity region in Theorem 2.1 depends on the
distribution of ηt and implies a moment condition on yt. Be-
cause the stationarity region is at least four-dimensional, for
illustration, we consider model (3) of orders p = q = 1 with
α1− = 0.8α1+ and β1− = 0.8β1+. We have the following
findings from Figure 1: (1) a larger value of κ in Theorem
2.1 implies a higher order moment of yt, and hence results
in a narrower stationarity region; (2) the stationarity region
is different as the distribution of ηt changes; (3) model (3) of
orders p = q = 1 can be stationary even if |α1+| > 1, which
leads to a larger parameter space than AR-ARCH models.

Figure 1. Stationarity regions of model (3) of order (1,1)
with α1− = 0.8α1+ and β1− = 0.8β1+, where ηt follows the
normal (left panel) or student’s t3 distribution (right panel)
with E(|ηt|) = 1, and κ = 0.1 (red solid line), 0.6 (green

dashed line), 1 (black dotted line), 2 (blue dotdash line) or 3
(purple longdash line).

3. SELF-WEIGHTED EQMLE

Let θ = (α′,β′)′ ∈ R
d be the parameter vector of

model (3) and θ0 = (α′
0,β

′
0)

′ be its true value, where
d = 2p + 2q + 1, α = (α1+, . . . , αp+, α1−, . . . , αp−)

′ and
β = (ω, β1+, . . . , βq+, β1−, . . . , βq−)

′. Denote the parameter

space by Θ, where Θ ⊂ R
2p × R

2q+1
+ with R+ = (0,∞).

Let Y t = (Y ′
t+,Y

′
t−)

′ and Xt = (1,X ′
t+,−X ′

t−)
′, where

Y t+ = (y+t−1, . . . , y
+
t−p)

′, Y t− = (y−t−1, . . . , y
−
t−p)

′, Xt+ =

(y+t−1, . . . , y
+
t−q)

′ and Xt− = (y−t−1, . . . , y
−
t−q)

′. Then model
(3) can be rewritten as follows

yt = α′Y t + β′Xtηt.

Assume that the observations {y1, . . . , yn} are generated
by model (3) with the true parameter vector θ0. Given
{y1, . . . , yn}, when ηt follows the standard double exponen-
tial distribution, ignoring a constant the negative weighted
log-likelihood function has the form of

(4)

Ln(θ) =

n∑
t=p+q

ωt�t(θ) and

�t(θ) = ln(β′Xt) +
|yt −α′Y t|

β′Xt

,

where {ωt} are positive random weights that only depend on

{yt} itself (Ling, 2005). Let θ̂n = argminθ∈Θ Ln(θ). Since
we do not assume ηt follows the standard double exponen-
tial distribution, θ̂n is called the self-weighted exponential
quasi-maximum likelihood estimator (EQMLE) of θ0; see
also Zhu and Ling (2011).

Remark 3.1. When wt = 1 for all t, the self-weighted
estimator becomes the common EQMLE. Using the same
techniques as in Zhu and Ling (2013), we can establish the
asymptotic normality of the EQMLE for model (3) under
a finite fractional moment of yt when p ≤ q. However,
when p > q then E(y3t ) < ∞ will be required to establish
the asymptotic normality, which not only leads to a much
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narrower stationarity region, but also makes the asymptotic
normality inapplicable for the data without finite third or
higher order moments. Since the orders are usually unknown
in advance, for generality, we adopt the self-weighting ap-
proach in Ling (2005) to ensure the asymptotic normality
even for heavy-tailed data with only a finite fractional mo-
ment. Note that if p ≤ q is known beforehand, then we can
use the unweighted EQMLE with wt = 1 for all t.

Assumption 3.1. {yt} is strictly stationary and ergodic
with E(|yt|κ) < ∞ for some κ > 0.

Assumption 3.2. θ0 is an interior in Θ, and Θ is compact
with ω ≤ ω ≤ ω and β ≤ βj+, βj− ≤ β for j = 1, . . . , q,

where ω, ω, β and β are some positive constants.

Assumption 3.3. The self-weights {ωt} are strictly sta-
tionary and ergodic, and ωt is positive, bounded and measur-
able with respect to Ft−1 with E(ωt‖Y t‖2+ω2

t ‖Y t‖3) < ∞.

Assumption 3.4. (i) ηt has zero median with E(|ηt|) = 1;
(ii) The density function of ηt is continuous and positive
everywhere on R satisfying supx∈R

f(x) < ∞; (iii) E(η2t ) <
∞.

Assumption 3.1 is mild for time series models, and a suf-
ficient condition for Assumption 3.1 is provided in Theo-
rem 2.1. Assumption 3.2 is standard in literatures of quasi-
maximum likelihood estimations; see also Assumption 1 of
Zhu and Ling (2013) and Assumption 3 of Guo et al. (2019).
The random weight ωt that satisfies Assumption 3.3 is intro-
duced to reduce the moment condition on yt in establishing
the asymptotic normality for the case with p > q, while ωt

can be set to one for the case with p ≤ q and then Assump-
tion 3.3 is not needed accordingly. In practice, we can follow
Ling (2005) to choose

(5) wt = I(at = 0) + C2a−2
t I(at �= 0),

where at =
∑p

i=1 |yt−i|I(|yt−i| ≥ C) for some constant
C > 0, and C is usually chosen as the 90% or 95% empirical
percentile of {|yt|}nt=1. Assumption 3.4 is a general set-up to
ensure the consistency and asymptotic normality for EQM-
LEs; see also Assumption 2.6 of Zhu and Ling (2011) and
Assumption 3 of Zhu and Ling (2013).

Theorem 3.1. If Assumptions 3.1–3.4(i) hold, then θ̂n →
θ0 almost surely as n → ∞.

Let κ1 = E(ηt) and κ2 = E(η2t ) − 1. Define the d × d
matrices as follows

Σ = diag

{
f(0)E

[
ωtY tY

′
t

(β′
0Xt)2

]
,
1

2
E

[
ωtXtX

′
t

(β′
0Xt)2

]}
and

Ω =

⎛⎜⎜⎝ E

[
ω2
tY tY

′
t

(β′
0Xt)2

]
κ1E

[
ω2
tY tX

′
t

(β′
0Xt)2

]
κ1E

[
ω2
tXtY

′
t

(β′
0Xt)2

]
κ2E

[
ω2
tXtX

′
t

(β′
0Xt)2

]
⎞⎟⎟⎠ .

Theorem 3.2. If Assumptions 3.1–3.4 hold, then
√
n(θ̂n−

θ0) →L N(0,Ξ) as n → ∞, where Ξ = Σ−1ΩΣ−1/4.

Theorem 3.2 shows that the asymptotic normality of the
proposed self-weighted EQMLE is established for model (3)
under a fractional moment of yt with E(η2t ) < ∞. To es-

timate the asymptotic covariance of θ̂n, matrix Ω can be
approximated by sample averages with θ0 replaced by θ̂n,
while the density f(0) in Σ usually need to be estimated by
non-parametric methods such as the kernel density estima-
tion which is sensitive to the choice of bandwidths. We al-
ternatively employ the random-weighting bootstrap method
(Zheng, 1987), and define the bootstraping self-weighted
EQMLE below,

(6) θ̂
�

n = (α̂�′
n , β̂

�′
n )

′ = argmin
θ∈Θ

n∑
t=p+q

πtωt�t(θ),

where {πt} are i.i.d. non-negative random weights, and are
independent of {yt}; see also Jin et al. (2001), Zheng et al.
(2018) and Zhu et al. (2020). Denote Ft = σ(yt, yt−1, . . .)
as the σ-field generated by {ys, s ≤ t}. To show the validity
of the random-weighting bootstrap method, we make the
following assumption on the random weights.

Assumption 3.5. The random weights {πt} are i.i.d. non-
negative random variables with E(πt) = 1, var(πt) = τ2 and
E(|πt|2+κ) < ∞ for some κ > 0.

Theorem 3.3. Suppose that Assumptions 3.1–3.5 hold.

Then, conditional on Fn, (
√
n/τ)(θ̂

�

n − θ̂n) →L N(0,Ξ) in
probability as n → ∞, where Ξ is defined as in Theorem 3.2.

Theorem 3.3 shows the theoretical validity of the random-
weighting bootstrap for the self-weighted EQMLE. It follows

that the resulting distribution of
√
n(θ̂

∗
n−θ̂n)/τ can provide

a reasonable approximation for that of
√
n(θ̂n − θ0). As a

result, a bootstrapping estimate of Ξ, denoted by Ξ̂, can be
obtained accordingly.

Remark 3.2. There are many sequences of random vari-
ables satisfying Assumption 3.5 and thus can be used to
generate the bootstrap weights {πt}. For example, the i.i.d.
sequence of standard exponential random variables, the
Rademacher distributed random variables which take the
value 0 or 2 with probability 0.5, and the uniform random
variables following U(0.5, 1.5); see also Zheng et al. (2018)
and Zhu et al. (2020). Simulation results in Section 5 indi-
cate that these choices of random weights actually have very
similar performance in finite samples. Therefore, the perfor-
mance of the bootstrap procedure is insensitive to the choice
of random weights {πt}.

Remark 3.3. In practice, the order (p, q) of DA-LDAR
model (3) is unknown, and information criterions can be
used to select it. We may consider the following Bayesian
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information criterion (BIC):

(7) BIC(p, q) = 2

n∑
t=mmax+1

�t(θ̃n) + d ln(n−mmax),

where d = 2p+2q+1, θ̃n is the unweighted EQMLE with the
orders set to (p, q), and mmax is a predetermined positive in-
teger. Let (p̂n, q̂n) = argmin1≤p,q≤mmax BIC(p, q). We may
begin with (p̂n, q̂n) as an initial choice of (p, q) for model
fitting, and further revise the order according to the port-
manteau test in Section 4 if necessary.

Remark 3.4. In real applications, we may be interested in
detecting the asymmetric effect of news on the conditional
location and volatility separately and jointly. Accordingly,
the Wald tests can be constructed for the following hypothe-
ses for model (3):

H01 : ∀i, αi0+ = αi0− vs H11 : ∃i, αi0+ �= αi0−;

H02 : ∀j, βj0+ = βj0− vs H12 : ∃j, βj0+ �= βj0−;

H03 : ∀i, j, αi0+ = αi0− and βj0+ = βj0− vs

H13 : ∃i, j, αi0+ �= αi0− or βj0+ �= βj0−,

where vs is the abbreviation of versus, i ∈ {1, . . . , p} and
j ∈ {1, . . . , q}. Denote R1 = [Ip,−Ip, 0p×(2q+1)], R2 =
[0q×(2p+1), Iq,−Iq] and R3 = (R′

1, R
′
2)

′, respectively, where
0m×n is the m×n zero matrix and Im is the m×m identity
matrix. Then the null hypotheses of aforementioned three
tests can be represented as H01 : R1θ0 = 0p, H02 : R2θ0 =
0q and H03 : R3θ0 = 0p+q, where 0m is the m-dimentional
zero vector. Hence, the Wald test statistics can be defined as

(8) Win = nθ̂
′
nR

′
i(RiΞ̂R

′
i)

−1Riθ̂n for i = 1, 2, 3,

where Ξ̂ is the bootstrapping estimate of Ξ. Then under
the conditions of Theorem 3.2, as n → ∞, we can show
that W1n →L χ2

p under H01, W2n →L χ2
q under H02 and

W3n →L χ2
p+q under H03, where χ2

m is the chi-squared dis-
tribution with m degrees of freedom. As a result, if Win ex-
ceeds the (1 − τ)th quantile of χ2

ri distribution with r1 =
p, r2 = q and r3 = p+ q, we can reject the null hypothesis.

4. DIAGNOSTIC CHECKING

To check whether model (3) is correctly specified, we con-
struct a mixed portmanteau test to detect misspecifications
in the conditional location and standard deviation jointly.

In accordance with the self-weighted estimation pro-
cedure in Section 3, define the self-weighted innovation
ζt = wt(ηt − κ1) and the self-weighted absolute innova-
tion ξt = wt(|ηt| − 1); see also Jiang et al. (2020). The
ACFs of {ζt} and {ξt} at lag k can be defined by ρk =
cov(ζt, ζt−k)/ var(ζt) and γk = cov(ξt, ξt−k)/ var(ξt), respec-
tively. If the data generating process is correctly specified
by model (3), then {ζt} and {ξt} are uncorrelated such

that ρk = 0 and γk = 0 hold for any k ≥ 1. Accord-
ingly, define the self-weighted residual ζ̂t = ωt(η̂t − κ̂1) and

the self-weighted absolute residual ξ̂t = ωt(|η̂t| − 1), where

η̂t = (yt− α̂′
nY t)/(β̂

′
nXt) is the residual of model (3) fitted

by the self-weighted EQMLE and κ̂1 is the sample version
of κ1, i.e. κ̂1 = (n−p−q+1)−1

∑n
t=p+q η̂t. Then the sample

ACF of {ζ̂t} and {ξ̂t} at lag k can be calculated as

ρ̂k =

∑n
t=p+q+k(ζ̂t − ζ̄)(ζ̂t−k − ζ̄)∑n

t=p+q(ζ̂t − ζ̄)2
and

γ̂k =

∑n
t=p+q+k(ξ̂t − ξ̄)(ξ̂t−k − ξ̄)∑n

t=p+q(ξ̂t − ξ̄)2

respectively, where ζ̄ = (n− p− q+1)−1
∑n

t=p+q ζ̂t and ξ̄ =

(n−p−q+1)−1
∑n

t=p+q ξ̂t. Note that ρ̂k (or γ̂k) is the sample
version of ρk (or γk). If the value of ρ̂k (or γ̂k) deviates from
zero significantly, it indicates possible misspecification in the
conditional location (or standard deviation) of model (3).

Let ρ̂ = (ρ̂1, . . . , ρ̂M )′, γ̂ = (γ̂1, . . . , γ̂M )′ and ψ̂ =
(ρ̂′, γ̂′)′, where M is a predetermined positive integer.
Denote σ2

1 = var(ζt) = E(ω2
t )

[
E(η2t )− κ2

1

]
and σ2

2 =

var(ξt) = E(ω2
t )

[
E(η2t )− 1

]
. Define the M × d matrices

Uρ = (U ′
ρ1
, . . . ,U ′

ρM
)′ and Uγ = (U ′

γ1
, . . . ,U ′

γM
)′, where

for 1 ≤ k ≤ M ,

Uρk
= −

(
E

(
ωtωt−k(ηt−k − κ1)Y

′
t

β′
0Xt

)
,

κ1E

(
ωtωt−k(ηt−k − κ1)X

′
t

β′
0Xt

))
and

Uγk
= −

(
0′
2p, E

(
ωtωt−k(|ηt−k| − 1)X ′

t

β′
0Xt

))
.

Denote the 2M × (2M + d) matrix

V =

(
IM 0M×M Uρ/σ

2
1

0M×M IM Uγ/σ
2
2

)
.

Let Gt = (Y ′
t[I(ηt < 0)− I(ηt > 0)],X ′

t(1− |ηt|))′/(β′
0Xt)

and G = E(νtν
′
t), where

νt = (ζtζt−1/σ
2
1 , . . . , ζtζt−M/σ2

1 , ξtξt−1/σ
2
2 , . . . , ξtξt−M/σ2

2 ,

−G′
tΣ

−1/2
)′
.

Theorem 4.1. Suppose the conditions of Theorem 3.2 hold.
If model (3) is correctly specified, then

√
nψ̂ →L N(0,Γ) as

n → ∞, where Γ = V GV ′.

Theorem 4.1 shows the limiting distribution of sample
ACFs. To check the significance of ρ̂k and γ̂k individually
or jointly, we need to estimate the asymptotic covariance Γ.
Note that Γ depends on the unknown quantity f(0), we also
use the random-weighting bootstrap method to estimate Γ

On dual-asymmetry linear double AR models 7



as in Section 3. Specifically, define ζ̂�t = ωt(η̂
�
t − κ̂�

1) and

ξ̂�t = ωt(|η̂�t | − 1), where η̂�t = (yt − α̂�′
nY t)/(β̂

�′
nXt) with

α̂�
n and β̂

�

n being the bootstrap estimator obtained by (6),
and κ�

1 = (n − p − q + 1)−1
∑n

t=p+q η
�
t . Then define the

bootstrapping sample ACFs of ζ̂t and ξ̂t at lag k below

(9)

ρ̂�k =

∑n
t=p+q+k πt(ζ̂

�
t − ζ̄�)(ζ̂�t−k − ζ̄�)∑n

t=p+q(ζ̂
�
t − ζ̄�)2

and

γ̂�
k =

∑n
t=p+q+k πt(ξ̂

�
t − ξ̄�)(ξ̂�t−k − ξ̄�)∑n

t=p+q(ξ̂
�
t − ξ̄�)2

,

where {πt} are defined as in (6), ζ̄� = (n − p − q +

1)−1
∑n

t=p+q ζ̂
�
t and ξ̄� = (n − p − q + 1)−1

∑n
t=p+q ξ̂

�
t . Let

ρ̂� = (ρ̂�1, . . . , ρ̂
�
M )′, γ̂� = (γ̂�

1 , . . . , γ̂
�
M )′ and ψ̂

�
= (ρ̂�′, γ̂�′)′.

Theorem 4.2. Suppose the conditions of Theorem 3.3 hold,
and the model (3) is correctly specified. Then, conditional on

Fn, (
√
n/τ)(ψ̂

�
− ψ̂) →L N(0,Γ) in probability as n → ∞,

where Γ is defined as in Theorem 4.1.

Theorem 4.2 ensures that the bootstrapped covariance

matrix Γ̂ of (
√
n/τ)(ψ̂

�
− ψ̂) can be used to approximate Γ.

Thus we can check the significance of ρ̂k and γ̂k individually
by constructing confidence intervals based on Γ̂. Moreover,
we can construct a portmanteau test statistic to check the
first M lags jointly:

(10) Q(M) = nψ̂
′
Γ̂−1ψ̂.

By Theorems 4.1–4.2 and the continuous mapping theorem,
we have Q(M) →L χ2

2M as n → ∞. Therefore, if Q(M)
exceeds the (1 − τ)th quantile of χ2

2M distribution, we can
reject the null hypothesis that ρk’s and γk’s (1 ≤ k ≤ M)
are jointly insignificant at level τ . In summary, the random-
weighting bootstrapping procedure for the estimation and
portmanteau test can be summarized below:

1. Generate random weights {πt} from a non-negative dis-
tribution satisfying Assumption 3.5. Then obtain the

bootstraping self-weighted EQMLE θ̂
�

n by (6);
2. Compute the bootstrapping sample ACFs ρ̂�k and γ̂�

k by

(9) and then ψ̂
�
;

3. Calculate E(1) = (
√
n/τ)(θ̂

�

n − θ̂n) and T (1) =

(
√
n/τ)(ψ̂

�
− ψ̂). Repeat Steps 1 and 2 for B− 1 times

and obtain {E(1), . . . , E(B)} and {T (1), . . . , T (B)},
where B is a sufficiently large number.

Then the empirical distributions of {E(b)}Bb=1 and {T (b)}Bb=1

can be used to approximate the asymptotic distributions of√
n(θ̂n−θ0) and

√
nψ̂ respectively. As a result, the asymp-

totic covariance Ξ and test statistic Q(M) at (10) can be
calculated accordingly.

5. SIMULATION

This section presents three simulation experiments to as-
sess the finite-sample performance of the proposed estima-
tion, portmanteau test and their bootstrapping procedure.

The first experiment aims to examine the finite-sample
performance of the self-weighted EQMLE θ̂n. We consider
the following data generating procedures (DGPs):

DGP1: yt =0.2y+t−1 + 0.05y−t−1 + ηtσt,

σt =0.5 + 0.2y+t−1 − 0.3y−t−1;

DGP2: yt =0.2y+t−1 + 0.1y−t−1 + 0.1y−t−2 + ηtσt,

σt =0.5 + 0.3y+t−1 − 0.4y−t−1;

DGP3: yt =0.2y+t−1 + 0.3y−t−1 + ηtσt,

σt =0.1 + 0.3y+t−1 − 0.4y−t−1 + 0.3y+t−2 − 0.4y−t−2,

where {ηt} are i.i.d. random variables following the stan-
dard Laplace(0,1), standardized Student’s t3 or standard-
ized skewed t3 with skew parameter −1, denoted by st3,−1

(Fernández and Steel, 1996), and they are standarded with
zero median and E(|ηt|) = 1. The sample size is n = 500
or 1000, with 1000 replications for each sample size. We
consider two cases for the self-weights in estimation: (I)
ωt = 1 for all t and (II) ωt at (5) with C chosen as the
95% empirical percentile of {|yt|}nt=1. Note that both self-
weights (I) and (II) are applicable for DGP1 and DGP3
since they correspond to the order p ≤ q, while self-weights
(II) are suggested for DGP2 due to p > q; see Remark 3.1
for details. The bootstrapping procedure is conducted with
three types of random weights {πt}: (i) i.i.d. Exponential(1)
weights (Π1); (ii) i.i.d. Rademacher weights (Π2); (iii) i.i.d.
U(0.5,1.5) weights (Π3). Note that the variance τ2 = 1 for
weights Π1 and Π2 while τ2 = 1/12 for Π3. In addition,
B = 500 bootstrapped samples are used to calculate the
asymptotic covariance matrix of θ̂n. For comparison, the
Gaussian kernel function with its rule-of-thumb bandwidth
bn = 0.9n−1/5 min{s, R̂/1.34} is employed to estimate f(0)

in the asymptotic covariance matrix, where s and R̂ are the
sample standard deviation and interquartile of the residuals
{η̂t}, respectively.

Table 4 lists the biases, empirical standard deviations
(ESDs) and asymptotic standard deviations (ASDs) of θ̂n

for different self-weights {ωt} and random weights {πt}
when ηt follows the standard Laplace(0, 1) distribution and
the data generating process is DGP1. We have the follow-
ing findings: (1) as the sample size increases, the biases,
ESDs and ASDs decrease, and ESDs and ASDs get closer
to each other; (2) ESDs and ASDs corresponding to ωt = 1
are slightly smaller than that of ωt at (5), which suggests
that introducing self-weights in estimation could result in
efficiency loss and thus unweighted EQMLE is preferred if
p ≤ q is known; (3) the ASDs calculated by three sets of
random weights are quite similar when the sample size is as
small as 500, which indicates that the bootstrap method is
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insensitive to the choice of random weights; (4) the ASDs
calculated by the bootstrap method are closer to ESDs than
that of the kernel-based method for the conditional location,
and the distinction weakens for the conditional standard
deviation. This implies that the bootstrap method provides
more accurate approximation than the kernel-based method
in finite samples. These findings still hold for other distribu-
tions of ηt. Moreover, the biases, ESDs and ASDs of DGP2
with ηt following Laplace(0,1) are also reported in Table 5
for comparison. Note that self-weights (I) are applicable for
DGP2 with ηt following Laplace(0,1), since E(y3t ) < ∞ can
be verified for this case by Theorem 1. The simulation find-
ings are unchanged for Table 5 in comparison with that of
Table 4.

Based on aforementioned findings (3) and (4), we prefer
to use the bootstrap method to calculate ASDs and only re-
port the ASDs using exponential random weights for DGP2
and DGP3. Table 6 reports the biases, ESDs and ASDs of θ̂n

for DGP2 and DGP3 with different innovation distributions,
where the self-weights (II) are used for estimation. It can be
seen that the biases, ESDs and ASDs become smaller and
the bootstrapping approximation gets better for all DGPs
as the sample size increases. In view of the ESDs and ASDs
for different innovation distributions, the heavy-tailedness of
innovations can worsen the estimation efficiency, but skew-
ness cannot.

In the second experiment, we evaluate the performance
of the bootstrap approximation for the residual ACF ρ̂k and
the absolute residual ACF γ̂k in Section 4. The DGPs and
other settings are preserved as in the first experiment. The
biases, ESDs and ASDs of ρ̂k and γ̂k at lags 2, 4 and 6 are
reported in Table 7 for different self-weights and random
weights, while that of different innovation distributions and
DGPs are presented in Table 8. We have the following find-
ings: (a) the biases are close to zero, and the sample size
increases, ESDs and ASDs become smaller and the boot-
strapping approximation gets better; (b) different random
weights lead to similar results in approximating the asymp-
totic covariance matrix of ψ̂; (c) ESDs and ASDs of differ-
ent innovation distributions are very similar, which demon-
strates the robustness of the proposed method.

The third experiment is to evaluate the mixed portman-
teau test Q(M) at (10) with the bootstrapping procedure.
The data are generated from the following two DGPs:

DGP4: yt =0.2y+t−1 + 0.1y−t−1 + 0.1y−t−2 + d1yt−3 + ηtσt,

σt =0.5 + 0.3y+t−1 − 0.4y−t−1 + d2|yt−2|;
DGP5: yt =0.2y+t−1 + 0.3y−t−1 + d1yt−2 + ηtσt,

σt =0.1 + 0.3y+t−1 − 0.4y−t−1 + 0.3y+t−2 − 0.4y−t−2

+ d2|yt−3|,

where the innovations {ηt} are defined as in the first ex-
periment and the departure d1, d2 ∈ {0, 0.2, 0.4}. We fit
a DA-LDAR model with (p, q) = (2, 1) for DGP4 and

(p, q) = (1, 2) for DGP5, so the case of d1 = d2 = 0 cor-
responds to the size of the test, the case of d1 �= 0 corre-
sponds to misspecifications in the conditional location, and
the case of d2 �= 0 corresponds to misspecifications in the
conditional standard deviation. Table 9 reports the rejection
rates of Q(6) at 5% significance level based on 1000 replica-
tions, for sample size n = 500 or 1000. The bootstrapping
portmanteau test performs well in terms of size and power:
the size are closer to the nominal level 5%, and the power
gets larger as either the sample size n or the departure d1
or d2 increases.

6. EMPIRICAL ANALYSIS

This section analyzes the weekly closing prices of NAS-
DAQ Composite Index, denoted as pt, from February 1971
to June 2020. The dataset is downloaded from the website of
Yahoo Finance (https://hk.finance.yahoo.com), with 2579
observations in total. Let rt = 100 (ln pt − ln pt−1) be the
log return in percentage, and denote yt as the centered se-
ries. The time plot of {yt} is shown in Figure 2, and some
summary statistics are listed in Table 1. Figure 2 illustrates
volatility clustering of {yt}, and the sample skewness −1.08
and kurtosis 12.95 indicate that the series {yt} are skewed
and heavy-tailed. Moreover, as shown by Figure 3, the ACFs
and PACFs of {yt} are significant at the first few lags, this
together with the slowly decaying ACF of {|yt|} suggests
that both the autocorrelation and conditional heteroscedas-
ticity appear in {yt}. The above findings motivate us to
investigate {yt} by our proposed model and inference tools.

In view of the ACF and PACF plots of {yt} and {|yt|} in
Figure 3, we use the BIC at (7) to select an initial order for
(p, q) searched over 1 ≤ p, q ≤ mmax = 15. The resulting ini-
tial order is (p̂n, q̂n) = (3, 6). Since p̂n < q̂n, we consider to
fit a DA-LDAR(3, 6) model for {yt} using the unweighted

Figure 2. Time plot for weekly log returns in percentage
(black line) of NASDAQ Composite Index from February 1971
to June 2020, with one-week negative VaR forecasts at the
level of 5% (red line) from August 2005 to June 2020.

Table 1. Summary statistics for NASDAQ returns

Mean Median Std.Dev. Skewness Kurtosis Min Max

0.00 0.16 2.75 -1.08 12.53 -29.35 17.19

On dual-asymmetry linear double AR models 9
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Table 2. The fitted coefficients of the DA-LDAR(3, 6) model (upper panel) and DA-LDAR(3, 8) model (lower panel), where
the subscripts are the standard errors of the corresponding estimates

lag 1 2 3 4 5 6 7 8

DA-LDAR(3, 6) ω : 0.780.05
αi+ 0.150.04 −0.010.04 0.150.03
αi− 0.040.04 0.120.05 −0.020.03
βj+ 0.040.02 0.030.02 0.050.02 0.090.02 0.040.02 0.110.02
βj− 0.190.03 0.170.02 0.140.03 0.140.02 0.070.02 0.050.02
DA-LDAR(3, 8) ω : 0.710.05

αi+ 0.150.04 −0.010.04 0.150.03
αi− 0.040.03 0.120.05 −0.010.03
βj+ 0.020.02 0.010.01 0.040.02 0.070.02 0.020.02 0.090.02 0.020.02 0.090.02
βj− 0.180.03 0.160.02 0.130.02 0.130.02 0.060.02 0.030.02 0.060.02 0.060.02

Table 3. Empirical coverage rate (%) and p-values of two VaR backtests of three models at the 5%, 10%, 90% and 95%
conditional quantiles. M1, M2 and M3 represent the DA-LDAR, LDAR and TDAR models, respectively

τ = 5% τ = 10% τ = 90% τ = 95%
ECR CC DQ ECR CC DQ ECR CC DQ ECR CC DQ

M1 4.87 0.98 0.27 10.52 0.86 0.15 88.60 0.06 0.25 95.63 0.64 0.95
M2 6.54 0.02 0.02 11.68 0.27 0.39 86.64 0.01 0.01 93.32 0.01 0.01
M3 2.95 0.01 0.01 5.51 0.01 0.01 94.35 0.01 0.01 96.91 0.03 0.01

Table 4. Biases (×10), ESDs, ASDk and ASDi (i = 1, 2, 3) of θ̂n for DGP1 when the innovations follow the Laplace(0, 1)
with different self-weights ωt and random weights πt, where ASDk and ASDi’s are the ASDs calculated by the kernel method

and bootstrap method with random weights {Πi}
n Bias ESD ASDk ASD1 ASD2 ASD3

ωt = 1

α+ 500 -0.014 0.056 0.072 0.060 0.060 0.063
1000 -0.003 0.038 0.048 0.040 0.039 0.041

α− 500 -0.016 0.063 0.090 0.069 0.068 0.074
1000 -0.001 0.044 0.062 0.048 0.048 0.053

β0 500 0.160 0.034 0.038 0.036 0.037 0.040
1000 0.021 0.023 0.026 0.025 0.025 0.027

β+ 500 0.044 0.061 0.064 0.060 0.062 0.065
1000 -0.003 0.042 0.045 0.042 0.043 0.046

β− 500 -0.111 0.068 0.077 0.070 0.073 0.079
1000 -0.025 0.047 0.055 0.050 0.051 0.056

ωt at (5)

α+ 500 -0.025 0.058 0.074 0.061 0.061 0.064
1000 -0.001 0.039 0.050 0.041 0.041 0.043

α− 500 -0.015 0.063 0.093 0.071 0.070 0.077
1000 -0.010 0.045 0.064 0.049 0.049 0.054

β0 500 0.139 0.033 0.039 0.036 0.037 0.039
1000 -0.011 0.023 0.027 0.025 0.025 0.027

β+ 500 0.059 0.062 0.067 0.062 0.063 0.068
1000 0.007 0.044 0.047 0.044 0.045 0.048

β− 500 -0.080 0.069 0.080 0.072 0.074 0.081
1000 0.012 0.048 0.057 0.051 0.052 0.058

EQMLE in Section 3 with the self-weights ωt = 1 for all

t. The fitted coefficients are reported in Table 2. To check

the goodness-of-fit of the fitted DA-LDAR(3, 6) model, the

mixed portmanteau tests Q(M) in Section 4 are employed

for M = 6, 12 and 18, and their p-values are 0.34, 0.10 and

0.01, respectively. This together with the residual ACF plots

of ρ̂k and γ̂k in Figure 4, indicates that the lack of fit is due

to the conditional volatility component. Therefore, we fur-
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Table 5. Biases (×10), ESDs, ASDk and ASDi (i = 1, 2, 3) of θ̂n for DGP2 when the innovations follow the Laplace(0, 1)
with different self-weights ωt and random weights πt, where ASDk and ASDi’s are the ASDs calculated by the kernel method

and bootstrap method with random weights {Πi}
n Bias ESD ASDk ASD1 ASD2 ASD3

ωt = 1

α1+ 500 -0.016 0.058 0.090 0.065 0.063 0.078
1000 0.009 0.044 0.062 0.045 0.044 0.052

α2+ 500 -0.009 0.049 0.063 0.052 0.052 0.058
1000 -0.020 0.032 0.043 0.035 0.035 0.039

α1− 500 -0.019 0.059 0.102 0.068 0.066 0.083
1000 0.000 0.044 0.070 0.047 0.046 0.057

α2− 500 -0.022 0.049 0.066 0.054 0.054 0.061
1000 -0.002 0.033 0.045 0.036 0.036 0.040

β0 500 0.014 0.034 0.040 0.037 0.037 0.043
1000 -0.001 0.024 0.029 0.026 0.026 0.029

β+ 500 -0.058 0.060 0.070 0.062 0.063 0.075
1000 -0.026 0.043 0.050 0.044 0.044 0.051

β− 500 -0.065 0.064 0.079 0.067 0.068 0.086
1000 -0.014 0.044 0.057 0.047 0.047 0.057

ωt at (5)

α1+ 500 -0.010 0.066 0.098 0.071 0.070 0.083
1000 0.012 0.047 0.067 0.049 0.048 0.055

α2+ 500 -0.042 0.053 0.071 0.057 0.057 0.065
1000 -0.023 0.036 0.048 0.039 0.039 0.042

α1− 500 -0.007 0.069 0.108 0.074 0.073 0.090
1000 -0.003 0.049 0.074 0.052 0.051 0.060

α2− 500 -0.005 0.053 0.074 0.059 0.058 0.066
1000 -0.007 0.037 0.051 0.040 0.040 0.044

β0 500 -0.002 0.036 0.041 0.038 0.038 0.044
1000 -0.006 0.025 0.030 0.027 0.027 0.030

β+ 500 -0.026 0.068 0.077 0.068 0.069 0.081
1000 -0.013 0.048 0.055 0.048 0.048 0.055

β− 500 -0.047 0.070 0.085 0.073 0.074 0.091
1000 -0.001 0.049 0.061 0.051 0.052 0.060

Figure 3. The ACF and PACF plots of {yt} (upper panel)
and {|yt|} (lower panel), where the blue dashed lines are the

corresponding 95% confidence bounds.

ther revise the order by increasing the value of q. Finally,
we fit a DA-LDAR(3, 8) model for {yt} owing to its satisfac-
tory goodness-of-fit with p-values of Q(M) being 0.77, 0.62
and 0.41 for M = 6, 12 and 18, respectively. Moreover, the
parameter estimates are summarized in Table 2, and the
residual ACF plots of ρ̂k and γ̂k are displayed in Figure 4.
It can be seen that αi+ and αi− are clearly different for

Figure 4. Residual ACF plots of ρ̂k and γ̂k for the fitted
DA-LDAR(3, 6) model (upper panel) and DA-LDAR(3, 8)
model (lower panel), where the blue dashed lines are the

corresponding 95% confidence bounds.

all i, while βj+ and βj− are distinct for the first four lags,

which suggests the asymmetric effects in the conditional lo-

cation and volatility of yt. The Wald tests in Remark 3.4

are conducted for the fitted model and all their p-values are

less than 0.001, which corroborates the asymmetric effects
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Table 6. Biases (×10), ESDs, ASDs of θ̂n for DGP2 and DGP3 when the innovations follow the Laplace(0, 1), standardized t3
or standardized st3,−1, where ASDs are calculated by bootstrap method with i.i.d. exponential random weights {Π1}

Laplace(0, 1) t3 st3,−1

n Bias ESD ASD Bias ESD ASD Bias ESD ASD

DGP2

α1+ 500 0.004 0.065 0.069 -0.071 0.074 0.079 0.022 0.071 0.078
1000 0.001 0.043 0.047 -0.017 0.055 0.056 0.006 0.052 0.056

α2+ 500 -0.023 0.051 0.055 -0.015 0.058 0.062 -0.038 0.060 0.062
1000 -0.007 0.034 0.037 -0.019 0.041 0.043 -0.029 0.040 0.043

α1− 500 0.028 0.062 0.072 0.037 0.084 0.084 0.007 0.081 0.084
1000 0.003 0.045 0.050 0.001 0.055 0.059 0.001 0.056 0.059

α2− 500 -0.047 0.051 0.056 -0.056 0.060 0.065 -0.036 0.062 0.065
1000 0.029 0.035 0.038 -0.005 0.042 0.045 -0.012 0.042 0.045

β0 500 0.004 0.035 0.037 -0.018 0.042 0.042 0.010 0.044 0.043
1000 0.001 0.025 0.026 -0.010 0.032 0.031 -0.001 0.031 0.031

β+ 500 -0.034 0.063 0.066 -0.007 0.079 0.077 -0.048 0.079 0.078
1000 -0.031 0.045 0.046 0.001 0.062 0.057 -0.040 0.055 0.056

β− 500 -0.062 0.068 0.070 -0.057 0.083 0.083 -0.063 0.088 0.084
1000 -0.033 0.046 0.050 -0.046 0.062 0.060 -0.040 0.062 0.060

DGP3

α+ 500 0.022 0.040 0.054 -0.013 0.037 0.055 0.001 0.034 0.055
1000 -0.005 0.019 0.027 0.002 0.020 0.029 0.001 0.019 0.029

α− 500 0.002 0.036 0.050 0.035 0.034 0.053 0.033 0.037 0.055
1000 0.001 0.017 0.025 0.008 0.020 0.027 -0.003 0.017 0.027

β0 500 0.007 0.008 0.011 0.003 0.010 0.012 0.006 0.010 0.013
1000 0.004 0.006 0.006 0.002 0.007 0.008 0.004 0.007 0.008

β1+ 500 0.033 0.035 0.048 0.053 0.037 0.053 0.044 0.035 0.055
1000 0.021 0.020 0.024 0.039 0.025 0.031 0.019 0.019 0.028

β2+ 500 0.032 0.034 0.049 0.047 0.041 0.054 0.049 0.039 0.056
1000 0.025 0.019 0.026 0.039 0.027 0.031 0.025 0.021 0.031

β1− 500 0.017 0.027 0.046 0.010 0.035 0.052 0.015 0.033 0.057
1000 0.002 0.013 0.022 0.001 0.020 0.028 0.013 0.019 0.027

β2− 500 0.027 0.028 0.046 0.023 0.033 0.052 0.034 0.041 0.053
1000 0.005 0.017 0.023 0.004 0.021 0.030 0.009 0.021 0.029

in both parts. In addition, the residual ACFs ρ̂k and γ̂k al-
most fall within their corresponding 95% confidence bounds
up to lag 18, which further indicates that the fitted DA-
LDAR(3, 8) model is adequate.

We next evaluate the performance of the fitted model in
forecasting the Value-at-Risk (VaR) using a rolling forecast-
ing procedure with a fixed moving window. VaR is a com-
monly used risk measure for financial assets, and its nega-
tive value is actually the conditional quantile of return series
{yt}. Hence, we use the fitted model to forecast the condi-
tional quantile of yt for evaluation. Specifically, we fit a DA-
LDAR(3, 8) model using the EQMLE for each moving win-
dow of size 1800, and compute the one-step-ahead forecast
of the τth conditional quantile of yt+1, given by Qyt+1(τ |
Ft) = μ̂t+1+ σ̂t+1b̂τ , where μ̂t+1 and σ̂t+1 are the predicted
conditional location and standard deviation, respectively,
and b̂τ is the τth sample quantile of the residuals. Then
we move the window forward by one and repeat the above
procedure until all data are used. Finally, we obtain 779 one-
week-ahead negative VaRs for each τ . For illustration, the

rolling forecasts at τ = 5% are displayed in Figure 2.

In addition, we compare the forecasting performance of
the proposed DA-LDAR model with two comparable mod-
els in the literature: the linear double AR (LDAR) model
of order (p, q) fitted by EQMLE (Liu et al., 2020) and the
one-regime threshold double AR (TDAR) model of order
(p1, p2; q1, q2) fitted by the Gaussian QMLE (Li et al., 2016).
Note that the LDAR model ignores the asymmetric effects
while the TDAR model accounts for threshold effects. For
comparison, the order of LDAR is the same as DA-LDAR
i.e. (p, q) = (3, 8), while the order of TDAR is choose by
BIC, and (p1, p2; q1, q2) = (1, 4; 1, 4) is selected based on
pmax = qmax = 10. For the TDAR model, the delay pa-
rameter d is searched among {1, 2, 3}, and the threshold
parameter r is searched among a compact grid with the em-
pirical percentiles of yt from the 10th quantile to the 90th
quantile. Their VaR forecasts are computed in the same
way as for the DA-LDAR model. To evaluate the forecast-
ing performance of three models, we calculate the empirical
coverage rate (ECR), and conduct VaR backtests for the
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Table 7. Biases (×10), ESDs and ASDi (i = 1, 2, 3) of ρ̂k and γ̂k for DGP1 at k = 2, 4 and 6, when the innovations follow
the Laplace(0, 1) with different self-weights ωt and random weights πt, where ASDi’s are the ASDs calculate by bootstrap

method with random weights {Πi}
n Bias ESD ASD1 ASD2 ASD3

ωt = 1

ρ̂2 500 -0.050 0.042 0.042 0.043 0.043
1000 -0.008 0.031 0.030 0.031 0.031

ρ̂4 500 -0.027 0.045 0.043 0.044 0.044
1000 -0.035 0.031 0.031 0.031 0.031

ρ̂6 500 -0.029 0.044 0.043 0.043 0.044
1000 -0.010 0.031 0.031 0.031 0.031

γ̂2 500 -0.031 0.043 0.042 0.042 0.043
1000 -0.011 0.031 0.030 0.030 0.030

γ̂4 500 -0.028 0.044 0.043 0.044 0.044
1000 -0.006 0.032 0.030 0.031 0.031

γ̂6 500 -0.020 0.042 0.043 0.043 0.044
1000 -0.016 0.030 0.030 0.031 0.031

ωt at (5)

ρ̂2 500 -0.040 0.041 0.041 0.042 0.042
1000 -0.009 0.030 0.030 0.030 0.030

ρ̂4 500 -0.019 0.044 0.043 0.044 0.044
1000 -0.039 0.031 0.031 0.031 0.031

ρ̂6 500 -0.029 0.044 0.043 0.044 0.044
1000 -0.012 0.031 0.031 0.031 0.031

γ̂2 500 -0.027 0.042 0.041 0.042 0.042
1000 -0.009 0.030 0.029 0.030 0.030

γ̂4 500 -0.021 0.044 0.043 0.044 0.044
1000 -0.007 0.032 0.030 0.031 0.031

γ̂6 500 -0.017 0.041 0.043 0.043 0.044
1000 -0.015 0.030 0.030 0.031 0.031

VaR forecasts at τ = 5%, 10%, 90% and 95%. Specifically,
ECR is calculated as the proportion of observations that
fall below the corresponding conditional quantile forecast for
the last 779 data points. Two VaR backtests, i.e. the like-
lihood ratio test for correct conditional coverage (CC) in
Christoffersen (1998) and the dynamic quantile (DQ) test
in Engle and Manganelli (2004) are employed. Denote the
hit by Ht = I(yt < Qyt(τ | Ft−1)). The null hypothe-
sis of CC test is that, conditional on Ft−1, {Ht} are i.i.d.
Bernoulli random variables with success probability being
τ . For the DQ test, following Engle and Manganelli (2004),
we regress Ht on regressors including a constant, four lagged
hits Ht−i, i = 1, 2, 3, 4, and the contemporaneous VaR fore-
cast. The null hypothesis of DQ test is that all regression
coefficients are zero and the intercept equals to the quan-
tile level τ . The forecasting performance will be satisfactory
if the null hypotheses of both VaR backtests cannot be re-
jected and the ECR is close to τ .

Table 3 reports ECRs and p-values of two VaR backtests
for the one-step-ahead forecasts by the fitted DA-LDAR,
LDAR and TDAR models at the lower and upper 5% and
10% conditional quantiles, i.e. 5% and 10% VaRs for long
and short positions. In terms of backtests, the proposed DA-
LDAR model performs satisfactorily at three quantile levels

with p-values no less than 0.15, while the LDAR model only
performs acceptably at the level of 10%, and the TDAR
model fails in the backtests at all levels. With respect to
ECRs, it can be seen that those of the DA-LDAR model are
closest to the nominal quantile levels. Therefore, we con-
clude that the proposed DA-LDAR model dominates the
other two competitors in forecasting VaRs for NASDAQ
Composite Index.

7. CONCLUSION AND DISCUSSION

This paper introduces a dual-asymmetry linear double
AR (DA-LDAR) model to capture the possible asymmet-
ric effects in both the conditional location and volatility for
time series data. A sufficient condition for the strict station-
arity of the new model is established, and robust estima-
tion and diagnostic checking tools are proposed without any
moment conditions on the data process. An asymptotically
valid random-weighting bootstrap procedure is employed to
approximate covariance matrices involving unknown den-
sity. The necessity of the new model and its robust inference
is corroborated by an empirical analysis on stock returns.

Our research can be extended in two directions. First,
accurate VaR forecasts of financial assets is of vital impor-
tance in practice, and it is useful to study the conditional
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Table 8. Biases (×10), ESDs and ASDs of ρ̂k and γ̂k for DGP2 and DGP3 at k = 2, 4 and 6 when the innovations follow the
Laplace(0, 1), standardized t3 or standardized st3,−1 distribution, where ASDs are calculated by bootstrap method with i.i.d.

exponential random weights {Π1}
Laplace(0, 1) t3 st3,−1

n Bias ESD ASD Bias ESD ASD Bias ESD ASD

DGP2

ρ̂2 500 -0.019 0.030 0.039 -0.004 0.028 0.035 -0.017 0.028 0.034
1000 -0.007 0.021 0.027 0.002 0.020 0.024 -0.010 0.020 0.024

ρ̂4 500 -0.046 0.042 0.043 -0.033 0.043 0.041 -0.044 0.041 0.041
1000 -0.007 0.030 0.031 -0.007 0.029 0.029 -0.008 0.031 0.029

ρ̂6 500 -0.007 0.043 0.044 -0.020 0.045 0.042 -0.001 0.042 0.042
1000 0.026 0.031 0.031 -0.004 0.031 0.030 -0.019 0.029 0.030

γ̂2 500 -0.021 0.038 0.038 -0.011 0.032 0.031 -0.020 0.032 0.031
1000 -0.003 0.025 0.026 0.007 0.021 0.021 0.010 0.021 0.022

γ̂4 500 -0.035 0.044 0.043 -0.005 0.040 0.040 -0.040 0.041 0.039
1000 -0.008 0.031 0.030 -0.007 0.029 0.028 0.001 0.031 0.028

γ̂6 500 -0.009 0.043 0.043 -0.010 0.042 0.041 -0.010 0.042 0.040
1000 0.012 0.031 0.031 -0.014 0.029 0.029 -0.021 0.030 0.029

DGP3

ρ̂2 500 -0.026 0.045 0.043 -0.041 0.042 0.041 -0.036 0.042 0.041
1000 -0.020 0.031 0.031 0.009 0.030 0.029 -0.006 0.028 0.029

ρ̂4 500 -0.034 0.042 0.043 -0.021 0.041 0.041 -0.029 0.041 0.041
1000 -0.011 0.029 0.030 -0.005 0.029 0.029 -0.002 0.031 0.029

ρ̂6 500 -0.004 0.042 0.043 -0.026 0.041 0.042 -0.039 0.042 0.042
1000 -0.016 0.029 0.031 -0.007 0.030 0.029 -0.018 0.028 0.029

γ̂2 500 -0.018 0.041 0.046 -0.031 0.039 0.042 -0.046 0.037 0.042
1000 -0.017 0.028 0.033 0.008 0.026 0.030 0.006 0.027 0.030

γ̂4 500 -0.030 0.043 0.043 -0.020 0.041 0.040 -0.014 0.041 0.040
1000 -0.013 0.030 0.031 -0.009 0.030 0.028 0.037 0.030 0.028

γ̂6 500 -0.008 0.042 0.043 -0.025 0.040 0.040 -0.039 0.039 0.041
1000 -0.014 0.030 0.031 -0.014 0.028 0.028 -0.024 0.029 0.028

Table 9. Rejection rates of the tests Q(6) for DGP4 and DGP5 at the 5% significance level, where the innovations follow the
Laplace(0, 1), standardized t3 or standardized st3,−1 distribution

Laplace(0, 1) t3 st3,−1

d1 d2 500 1000 500 1000 500 1000

DGP4

0.0 0.0 0.031 0.040 0.044 0.050 0.033 0.050
0.2 0.0 0.774 0.987 0.731 0.980 0.765 0.975
0.4 0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.0 0.2 0.265 0.774 0.255 0.654 0.234 0.645
0.0 0.4 0.919 1.000 0.860 0.998 0.864 0.996

DGP5

0.0 0.0 0.034 0.049 0.036 0.046 0.040 0.042
0.2 0.0 0.397 0.787 0.391 0.771 0.409 0.755
0.4 0.0 0.989 1.000 0.987 1.000 0.985 1.000
0.0 0.2 0.285 0.746 0.239 0.615 0.242 0.603
0.0 0.4 0.885 0.999 0.816 0.998 0.843 0.994

quantile estimation in the framework of DA-LDAR models.
Second, the DA-LDAR model can be generalized to a vec-
tor form to jointly model multivariate time series, and it is
interesting to investigate whether the robust inference tools
are still applicable for the multivariate DA-LDAR model.
We leave these topics for future research.

SUPPLEMENTARY MATERIAL

To view the supplementary material for this article,
please visit: http://intlpress.com/site/pub/files/ supp/sii/
2023/0016/0001/SII-2023-0016-0001-s001.pdf.
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