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AutoSpec: detection of narrowband frequency
changes in time series

David S. Stoffer

Most established techniques that search for structural
breaks in time series have a difficult time identifying small
changes in the process, especially when looking for nar-
rowband frequency changes. The problem is that many of
the techniques assume very smooth local spectra and tend
to produce overly smooth estimates. The problem of over-
smoothing tends to produce spectral estimates that miss
slight frequency changes because frequencies that are close
together will be lumped into one frequency. The goal of this
work is to develop techniques that concentrate on detect-
ing slight frequency changes by requiring a high degree of
resolution in the frequency domain.

Keywords and phrases: Spectral analysis, Structural
breaks, Whittle likelihood, Minimum description length.

1. INTRODUCTION

The focus here is the detection of slight frequency changes
in time series as opposed to, for example, the detection
of level shifts, for which many methods exist (e.g., see
Aminikhanghahi and Cook, 2017). Many time series are real-
izations of nonstationary random processes, hence estimat-
ing their time varying spectra may provide insight into the
physical processes that give rise to these time series. For
example, EEG time series are typically nonstationary, and
estimating the time varying spectra based on the EEG of
epilepsy patients may lead to methods capable of predict-
ing seizure onset (e.g., see Aksenova, Volkovych and Villa,
2007). Similarly, analyzing the time varying spectrum of the
Southern Oscillation Index (SOI) may further our knowl-
edge of the frequency of the El Niño Southern Oscillation
(ENSO) phenomenon and its impact on global climate (e.g.,
see An and Wang, 2000).

Most current techniques that search for structural breaks
in time series spectra, however, may not be able to identify
slight frequency changes at the resolution of interest. While
resolution depends on the particular application, a problem
is that established techniques generally assume smooth local
spectra that produce overly smooth estimates. In turn, the
smooth estimates can miss slight frequency changes because
peaks in the spectrum at frequencies that are close together
will be combined by the estimator; see Section 2 for further
details. The goal of this work is to develop techniques that

concentrate on detecting narrowband frequency changes by
requiring a high degree of resolution in the frequency do-
main.

The basic assumptions here are that, conditional on the
location and number of segments, the time series is piece-
wise stationary with each piece having a spectral density. A
detailed description of the model is given in Section 3. In ad-
dition to representing time series that have regime changes,
the model can be used to approximate slowly varying pro-
cesses; e.g., see Adak (1998), which uses dyadic segmenta-
tion to find the approximate location of breakpoints. The
approach taken in Davis, Lee and Rodriguez-Yam (2006)
was to fit piecewise AR models using minimum descrip-
tion length and a genetic algorithm for solving the difficult
optimization problem. Ombao et al. (2001) proposed non-
parametric estimators based on dyadic segmentation and
smooth local exponential functions. Rosen, Wood and Stof-
fer (2009) estimated the log of the local spectrum using a
Bayesian mixture of splines. The basic idea of this approach
is to first partition the data into small sections. It is then
assumed that the log spectral density of the evolutionary
process in any given partition is a mixture of individual log
spectra. A mixture of smoothing splines model with time
varying mixing weights is used to estimate the evolutionary
log spectrum. Later, Rosen, Wood and Stoffer (2012) im-
proved on the technique of Rosen, Wood and Stoffer (2009)
by adaptively selecting breakpoints.

For background, note that spectral analysis has to do
with partitioning the variance of a stationary time series
into components of oscillation indexed by frequency, ω, and
measured in cycles per unit of time. Given a time series
sample, {Xt; t = 1, ..., n}, that has been centered by its
sample mean, the sample spectral density (or periodogram)
is defined in terms of frequency ω:

(1) In(ωkn) =
∣∣∣n−1/2

n∑
t=1

Xt e
−2πiωkn t

∣∣∣2 ,
where ωkn = kn/n for kn = 1, . . . , n − 1. The periodogram
is essentially the squared-correlation of the data with sines
and cosines that oscillate at frequency ω.

The spectral density, f(ω), of a stationary time series
can be defined as the limit (n → ∞ and ωkn → ω) of
E[In(ωkn)], provided that the limit exists; details can be
found in Shumway and Stoffer (2017, Ch. 4). It is worth-
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while to note that f(ω) ≥ 0, f(ω) = f(−ω), and

(2)

∫ 1/2

−1/2

f(ω) dω = 2

∫ 1/2

0

f(ω) dω = σ2,

where σ2 = var(Xt) < ∞. Thus, the spectral density can
be thought of as the variance density of a time series rela-
tive to frequency of oscillation. That is, for positive frequen-
cies between 0 and 1/2, the proportion of the variance that
can be attributed to oscillations in the data at frequency
ω is roughly 2f(ω)dω. If the time series Xt is white noise,
that is, E(Xt) = 0 and cov(Xs, Xt) = 0 for all s �= t, then
f(ω) ≡ σ2. The designation white originates from the anal-
ogy with white light and indicates that all possible periodic
oscillations are present with equal strength.

Under mild conditions, for large samples (n → ∞ and
ωkn → ω),

(3)
2 In(ωkn)

f(ω)

·∼ χ2
2 ,

where χ2
2 is the chi-squared distribution with 2 degrees of

freedom. It follows from (3) that

E[In(ωkn)] ≈ f(ω) and Var[In(ωkn)] ≈ f2(ω).

Thus, the periodogram is not consistent for the spectral den-
sity. To get a consistent estimate, we can use nonparametric
kernel smoothing. Most estimates can be written in the form

(4) f̂(ω) =

∫ 1/2

−1/2

Kn(ω − λ)In(λ)dλ,

where Kn(ω) is the spectral window. The integral is typi-
cally approximated by a sum, and the amount of smooth-
ing of the periodogram is controlled by the bandwidth, B,
of the window. The bandwidth determines essentially the
number of parameters being estimated; i.e., the number of
distinct bands of frequencies for which f(ω) is estimated.
We mention that Hannan and Rissanen (1988) presented
a method based on Rissanen (1978) to choose the band-
width B via stochastic complexity and minimum description
length (MDL), which of interest in this paper. The idea will
be discussed further in the Appendix.

A parametric approach is to fit an AR(p) to the data,

Xt − μ =

p∑
j=1

φj(Xt−j − μ) + Zt ,

where Zt is white noise with variance σ2, and the fitted order
p is determined by a model selection criteria such as AIC or
BIC. The spectral density of an AR(p) model is given by

(5) f(ω) = σ2
w |φ(e−2πiω)|−2,

where

φ(z) = 1− φ1z − φ2z
2 − · · · − φpz

p.

If φ̂1, φ̂2, . . . , φ̂p and σ̂2
w are the estimates from an AR(p)

fit to data, then an estimate of f(ω) is attained by substitut-
ing the estimates for the parameters in (5). The development
of autoregressive spectral estimators has been summarized
by Parzen (1983).

Obtaining confidence intervals for spectra is difficult in
this case. Most techniques rely on unrealistic assumptions.
An interesting fact about spectra of this form is that any
spectral density can be approximated, arbitrarily close, by
the spectrum of an AR process (see Shumway and Stoffer,
2017, §4.5). Unfortunately, the order of the model, p, may
be very large to achieve a decent approximation.

2. RESOLUTION

The problem of frequency resolution was discussed in the
literature in the latter half of the twentieth century and
culminated in the early 1980s with the extensive work on
resolution in Kay and Marple (1981) and Marple (1982).
Further discussion of resolution may be found in texts such
as Bloomfield (2004) and Brillinger (1981).

When considering resolution, the basic rule of thumb is
that the achievable frequency resolution should be approxi-
mately (depending on the signal-to-noise ratio) the recipro-
cal of the observational time interval of the data. That is, if
most of the signal energy is concentrated in an interval of Δt
units of time, then the Fourier transform of the signal will
have most of its energy concentrated in a frequency interval
of Δω cycles per unit of time, where

Δω ≈ 1

Δt
.

This relationship is the basis of being able to distinguish be-
tween two narrow band signals (e.g., sinusoids). Two signals
can be as close as 1/Δt apart before there is significant over-
lap in the transform and the separate peaks are no longer
distinguishable.

To illustrate this idea for our problem, we generated a
time series of length 2000 where

(6) Xt =

{
X1t 1 ≤ t ≤ 1000 ,

X2t 1001 ≤ t ≤ 2000 ,

with

X1t = 2 cos(2πω t) cos(2πδ t) + Z1t ,

X2t = cos(2πω t) + Z2t ,

and ω = 1/25, δ = 1/150, and Zit for i = 1, 2 are inde-
pendent i.i.d. standard normals. The difference between the
two halves of the data is that X1t is a modulated version
of X2t. Modulation is a common occurrence in many signal
processing applications, e.g., EEG (see Novak, Lepicovska
and Dostalek, 1992). In addition, note that

X1t = cos(2π[ω + δ] t) + cos(2π[ω − δ] t) + Z1t ,
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Figure 1. top: Realization of (6) showing the true breakpoint as a solid vertical line. bottom: Individual periodograms of
the first and second halves, and all of the data shown on the top.

so that X1t is distinguishable at the sampling rate by twin
peaks in the frequency domain. We note that in this ex-
ample, Xt does not have a spectral density but there is a
spectral distribution that is a mix of discrete and absolutely
continuous components.

Figure 1 shows a realization of Xt on the top with the
changepoint marked. The two signals are distinguishable at
this sampling rate as pointed out by the individual peri-
odograms of the first half and second half of the data (bot-
tom of the figure).

3. SOME EXISTING METHODS

Let a time series {Xt; t = 1, . . . , n} consist of an unknown
number of segments, m, and let ξj be the unknown location
of the end of the jth segment, j = 0, 1, . . . ,m, with ξ0 = 0
and ξm = n. Then conditional on m and ξ = (ξ0, . . . , ξm)′,
assume that the process {Xt} is piecewise stationary. That
is,

(7) Xt =

m∑
j=1

Xt,j δt,j ,

where, for j = 1, . . . ,m, the processes Xt,j have spectral
density fθ

j (ω) that may depend on parameters θ, and δt,j =
1 if t ∈ [ξj−1 + 1, ξj ] and 0 otherwise.

Consider a realization x = (x1, . . . , xn) from process (7),
where the breakpoints are known. Let nj be the number of
observations in the jth segment. We assume that each nj is
large enough for the local Whittle likelihood (Whittle, 1957)
to provide a good approximation to the likelihood. Given a
partition of the time series x, the jth segment consists of
the observations xj = {xt : ξj−1+1 ≤ t ≤ ξj}, j = 1, . . . ,m,
with underlying spectral densities fθ

j and periodograms Ij ,
evaluated at frequencies ωkj = kj/nj , 0 ≤ kj ≤ nj − 1. For

a given partition ξ, the approximate likelihood of the time
series is given by

(8) L(fθ
1 , . . . , f

θ
m | x, ξ) ≈

m∏
j=1

(2π)−nj/2

×
nj−1∏
kj=0

exp
{
−1

2

[
log fθ

j (ωkj ) + Ij(ωkj )/f
θ
j (ωkj )

]}
.

Note that in setting up the model, most items depend on
the number of regimes, m. For ease, that dependence is un-
derstood and dropped from the notation.

3.1 AdaptSpec

The frequency domain approach used in Rosen, Wood
and Stoffer (2012) is a Bayesian method that incorpo-
rates (8) with a linear smoothing spline prior on the
log fθ

j (ω) for j = 1, . . . ,m. In addition, a uniform prior
is placed on the breakpoints, Pr(ξj = t | m) = 1/pj , for
j = 1, . . . ,m − 1, where pj is the number of available lo-
cations for split point ξj , as is the prior on the number of
segments, Pr(m = k) = 1/M for k = 1, . . . ,M and M is
some large but fixed number. The approach uses reversible
jump Markov chain Monte Carlo (RJ-MCMC) methods to
evaluate the posteriors. The technique is available in an R
package called BayesSpec.

To keep the exposition simple, we concentrate on estima-
tion of the spectrum in one particular segment j and drop
it from the notation for now. Let yn(ωk) = log In(ωk) and
g(ωk) = log f(ωk), the representation (3) suggests the log-
linear model

(9) yn(ωk) = g(ωk) + εk,

where the εk’s are independent, εk ∼ log(χ2
2/2). Note that

yn(k/n) = yn(1 − k/n). Representation (9) was used by
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Figure 2. AdaptSpec does not find breakpoint in the full sequence specified in (6) and displayed in Figure 1. When the
breakpoint is given to the algorithm, the figure displays individual AdaptSpec spectral estimates of X1t, X2t, and Xt.

a number of authors for nonparametric estimation of the
log spectral density; e.g., Wahba (1980); Carter and Kohn
(1997).

The prior on g(ωk) follows Wahba (1990, p. 16), which
expresses g(ωk) as the sum of its linear and nonlinear com-
ponents, so that

(10) g(ωk) = α0 + α1ωk + h(ωk),

where h(ωk) is the nonlinear component. A linear smoothing
spline prior was put on the vector h = (h(ω0), . . . , h(ωn/2))

′,
i.e., h ∼ N(0, τ2Ω), where τ2 is a smoothing parameter with
prior U(0, cτ2), and (Ω)ij = min(ωi, ωj). The parameters α0

and α1 are the values of g(ω) and its first derivative at ω = 0,
respectively. The symmetry and periodicity of the spectral
density mean that (∂g(ω)/∂ω)|ω=0 = 0. Accordingly, α1 is
set to be identically zero, and the prior on α0 is N(0, σ2

α),
for some large σ2

α.
Prior distributions are placed on the number of segments,

m, and the partition, ξm. Without going into explicit details,
the partitions given m are assumed a priori to be uniform
over the number of time points in an interval (while guaran-
teeing a reasonable number of observations in a segment),
and the number of breakpoints m is also assumed a priori to
be uniform over M (large) values. Explicit details are given
in Rosen, Wood and Stoffer (2009).

3.2 AutoParm

Although this method, which is described in Davis, Lee
and Rodriguez-Yam (2006), is a time domain approach, it
is well-known that AR models are dense in the space of
bounded spectral densities and can thus be used in the
frequency domain. The basic assumption is that, in each
segment, the time series {Xt,j} is a stationary AR(pj),
j = 1, . . . ,m. Then, minimum description length (MDL) as
described in Rissanen (1983) is used to find the best com-
bination of the number of segments, m, the breakpoints ξj
(or segment sizes nj), and the orders/estimates of the piece-
wise AR processes. The idea is to minimize the code length

(CL) necessary to store the data (i.e., the amount of mem-
ory required to encode the data), which leads to a BIC-type
criterion to find the model that minimizes the negative of
the log-likelihood penalized by the number of segment and
the number of parameters in each segment. Details may be
found in Davis, Lee and Rodriguez-Yam (2006) and and
the criterion is similar to the one for our proposed method,
which is described in the Appendix.

Because of the Markov structure of AR models, the like-
lihood has a simple form; see Brockwell and Davis (2013,
Prob. 8.7) for details. Fitting the model has to be done via
numerical optimization, which is accomplished via a genetic
algorithm (a derivative free smart search for minimization
based on evolutionary biology concepts). Basic information
on genetic algorithms may be obtained from Mathworks
(2018), which provides informative videos. We discuss some
details in the Appendix.

4. THE PROBLEM

The problem with the techniques presented in Section 3.1
and Section 3.2 is that they are not designed to detect nar-
rowband frequency shifts and tend to over-smooth the spec-
tral estimates. Local autoregressions (AutoParm) will rarely
be able to resolve narrowband shifts unless the order is al-
lowed to be very large, which is prohibitive in this compu-
tationally expensive scenario. Also, as packaged, AdaptSpec
(via BayesSpec) puts a smooth prior on the spectra. It may,
however, be possible to change AdaptSpec by putting a prior
on the spectra that is not smooth (assuming one was a pri-
ori certain), perhaps using techniques in Bretthorst (2013,
Ch. 2).

For the example in Section 2, the breakpoint was given to
the methods, but the techniques cannot distinguish between
the spectral distributions of each half of the data. Figure 2
shows the individual AdaptSpec estimates ofX1t,X2t and of
the entire sequence Xt. There is a slight difference between
the spectral estimates of the first and second halves, but the
technique indicates that the spectra of the combined halves
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Figure 3. AutoParm does not find breakpoint in the full sequence specified in (6) and displayed in Figure 1. When the
breakpoint is given to the algorithm, the figure displays individual AutoParm spectral estimates of X1t, X2t, and Xt.

is explaining the process better than dividing the process
into two parts.

Also, Figure 3 shows the AutoParm estimates of X1t,
X2t and of the entire sequence Xt. The results are similar
to the AdaptSpec results, but notice that the AR spectra
are perhaps the smoothest of the estimates. Again, there is
a slight difference between the spectra of the two halves of
the data, but the algorithm does not detect the difference.

5. AUTOSPEC

Because of the problem with some of the existing meth-
ods is resolution, we consider a method that allows for the
possibility of narrowband spectral estimators in a fully non-
parametric technique. First, consider a triangular (Bartlett)
kernel, {h�; � = 0,±1, . . . ,±b} with h� ∝ 1 − |�|/(b + 1)
such that

∑
h� = 1. Then, to nonparametrically evaluate

the likelihood, (8), in each segment j = 1, . . . ,m, use

(11) f̂j(ωkj ) =

bj∑
�=−bj

h� I
tpr
j (ωkj+�)

for bj = 0, 1, 2, . . . , where Bj = 2bj + 1 are the bandwidths
for each segment. Here, Itprj (·) represents the periodogram of
the fully cosine tapered data in segment j for j = 1, . . . ,m.

For example, if {xt,j} represents the data in segment j =
1, . . . ,m, and t = 1, . . . , nj , then they are preprocessed as
yt,j = ct,jxt,j where ct,j is the cosine bell taper favored by
Blackman and Tukey (1958),

ct,j = .5

[
1 + cos

(
2π(t− tj)

nj

)]
,

tj = (nj + 1)/2. In this case, the periodogram is of the
preprocessed data, yt,j . Figure 4 shows an example of
the Bartlett window with b = 4; the corresponding spec-
tral window (see Shumway and Stoffer, 2017, §4.4) of the
Bartlett kernel is not very good unless the data are tapered.
The spectral window corresponding to the Bartlett kernel

(known as the Fejér kernel) with tapering is also displayed
in Figure 4.

The AutoSpec procedure is to use minimum description
length (MDL) as derived in (15) and a Genetic Algorithm,
which are discussed in the Appendix to fit the model. The
MDL term is, of course, a BIC-type term that balances ac-
curacy and complexity. In this case, the spectral estimates
governed by (15) can choose very small bandwidths. This
concept is contrary to the fitting of local autoregressions or
smoothing splines as in AutoParm or AdaptSpec, respec-
tively, where the local spectra are assumed to be smooth.

Figure 5 shows the results of running AutoSpec described
on the simulated data Xt, as described in Section 2. As seen
from the figure, the procedure is able to distinguish between
the two processes (with a breakpoint at t = 1002).

6. ENSO AND CLIMATE CHANGE

El Niño and La Niña are the warm and cool phases of
a recurring climate pattern across the tropical Pacific, also
referred to as the El Niño–Southern Oscillation (ENSO).
The pattern can shift back and forth irregularly every two to
seven years, and each phase triggers predictable disruptions
of temperature, precipitation, and winds.

The Southern Oscillation Index (SOI) measures changes
in air pressure related to sea surface temperatures in the
central Pacific Ocean. The central Pacific warms every two
to seven years due to the El Niño effect, which has been
blamed for various global extreme weather events. Very early
on, Hansen and Lebedeff (1987) concluded that, “A strong
warming trend between 1965 and 1980 raised the global
mean temperature to the highest level in the period of in-
strumental records.” These changes disrupt the large-scale
air movements in the tropics, triggering a cascade of global
side effects. More recently, Wang et al. (2017, 2019) con-
cluded that, “Since the 1970s, El Niño has changed its orig-
ination from the eastern Pacific to the western Pacific, along
with increased strong El Niño events due to a background
warming in the western Pacific warm pool. This suggests
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Figure 4. Example of the Bartlett kernel and the corresponding Fejér spectral window when a taper is applied.

Figure 5. AutoSpec finds a breakpoint at t = 1002 for the simulated data specified in (6) and displayed in Figure 1. The
estimated spectra for each data piece is exhibited and can be compared to estimates in Figure 1. The estimates are of the

form given in (11) each with an optimal bandwidth (chosen by MDL) with b = 3.

the controlling factors that may lead to increased extreme
El Niño events in the future. If the observed background
changes continue under future anthropogenic forcing, more
frequent extreme El Niño events will induce profound so-
cioeconomic consequences.”

Monthly values of the SOI are displayed in Figure 6 for
years 1866–2019 (Climatic Research Unit, 2018); addition-
ally, the data have been filtered to exhibit the ENSO cycle.
Also shown in Figure 6 are the AutoParm results (verti-
cal dashed line) and AdaptSpec results (vertical solid line)
when applied to the SOI series. AutoParm prefers a break-
point around 1920, whereas AdaptSpec is indicating there
are no breakpoints because Pr(break | data) = .3. However,
assuming that there is one structural break, the posterior
distribution of the breakpoints (with a vertical line at the
mean) is displayed in the figure.

Figure 6 also shows the estimated spectra for each seg-
ment for the AutoParm technique; i.e., AR spectra. The gray
swatch shows the 2–7 year cycle known ENSO cycle (see
McPhaden, Zebiak and Glantz, 2006). Both methods indi-
cate that in the second segment, the ENSO cycle is much
more broad, including both slower and faster frequencies
than the usual ENSO cycle. One thing that is clear from
both methods is that the estimated spectra are too smooth
(broad) to reveal if there has been a decisive frequency shift
in the ENSO cycle. In addition, no experts have pointed to
a suspected shift around 1920 so it is not clear why there
would be a breakpoint then. It is possible that the air pres-

sure data collection or definition of SOI changed around that
time.

Finally, Figure 7 displays the analysis based on AutoSpec,
which finds three regimes with breakpoints at mid-1880
and the spring of of 1975. The bandwidths, as defined be-
low (11), of the selected Bartlett windows in each segment
had Bj = 3, 15, 9, respectively. The bottom row of the figure
shows the estimated spectra for each segment. The data in
each segment are standardized so that the spectra are com-
parable. It is difficult to interpret the first breakpoint be-
cause there is not much discussion about ENSO during that
period. However, as previously mentioned, the second break-
point has been discussed in the climate literature (Wang
et al., 2019).

The difference between the segment 2 and 3 spectra is
that the segment 2 spectrum has more power at the lower
frequencies, whereas the segment 3 spectrum has less power
there, and consequently more power at higher frequencies.

7. AN AWAY GAME

In this section, we use a simulation to see how AutoSpec
competes with AdaptSpec and AutoParm while playing on
AutoParm’s field; i.e., when the true models are autoregres-
sions. In this case, the family of densities is known and once
breakpoints are located, AutoParm only has to estimate a
few parameters to estimate the spectral density. As previ-
ously mentioned, AdaptSpec will use smoothing splines to
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Figure 6. Top: Monthly values of SOI for years 1866–2019 with breakpoints (vertical lines) determined by AutoParm ( | )
and by AdaptSpec ( -

-

). The solid smooth line is the filtered series that exhibits the ENSO cycle. AutoParm finds a breakpoint
in June 1921 whereas AdpatSpec finds one at January 1920. For AdaptSpect, however, Pr(a break | data) = .3 indicates there

is probably not a breakpoint. The dots at the bottom of the graph indicate the distribution of breakpoints found by
AdaptSpec when one is found; the line shows the mean location. Bottom: The segmented AR spectral estimates with a

breakpoint at 1921. The gray swatch shows the 2–7 year cycle known ENSO cycle range.

estimate spectra and AutoSpec will use kernel density esti-
mation.

Here, we take an example from Davis, Lee and Rodriguez-
Yam (2006, §4.1) but slightly simplified. The time series is
given by two AR(2)s,
(12)

Xt =

{
1.69Xt−1 − .81Xt−2 + Zt for 1 ≤ t ≤ 500 ,

1.32Xt−1 − .81Xt−2 + Zt for 501 ≤ t ≤ 1000 ,

where the Zt are i.i.d. standard normals (we note that there
is no overlap in the generation of the data, we simply gen-
erated two AR(2)s, each of length 500, and put them to-
gether). Both segments have complex roots; the first has
a somewhat broad spectrum with a peak at approximately
ω = .055, while the second segment is more narrow band
with a peak at about twice the frequency of the first seg-
ment. The simulated data are shown in Figure 8. We note
that the location of the breakpoint is obvious, as is the fact
that the data in first segment have a lower frequency of os-
cillation than that of the second segment.

As expected, AutoParm does very well, finding a break-
point at t = 498, choosing an AR(2) for each segment, and
with parameter estimates very near the truth (the standard
error of any AR parameter estimate in this game is about
[1 − (−.81)2]/

√
500 ≈ .015, so we expect the estimates to

be very close). The resulting spectral estimates via (5) are
shown in Figure 9 and are, as expected, very close to the
true spectra, which are also displayed in the figure.

AdaptSpec does a good job capturing the dynamics of
the example. The posterior probability of one breakpoint is

about .46, whereas the probabilities of zero or two break-
points are about .32 and .22, respectively. Figure 10 shows
the distribution of breakpoint locations for 500 runs. Al-
though the distribution is wide, model averaging puts the
mean location at t = 530 (the median at t = 526). The esti-
mated spectra (posterior means) are displayed in Figure 11
and compared to the true values. The estimated spectra are
close to the truth but with the peak of the second segment
being slightly shifted toward the lower frequencies.

Finally, Figure 12 shows the results of AutoSpec, which
finds one breakpoint at t = 499. The estimated spectra are
based on bandwidths B1 = 23 and B2 = 5, respectively.
The results are similar to the AdaptSpec results wherein the
first segment estimate is close to the truth, but the second
segment has a peak that is slightly shifted toward a lower
frequency.

8. CONCLUDING REMARKS

There are a number of directions to take this work. It
seems as though using a nonparametric approach via MDL
in conjunction with the Whittle likelihood is a viable so-
lution to the problem of detecting small frequency shifts
in time series. It would be worthwhile to explore the use of
more general kernels in addition to the Bartlett kernel. Also,
it may be important to restrict the Whittle likelihood ap-
proximation to frequency regions of interest. For example, in
the ENSO cycle problem, the interest is in frequencies well
below the annual cycle. Hence, we may restrict the second
product in (8) to be over frequencies in some small band of
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Figure 7. Top: Monthly values of SOI for years 1866–2019 with breakpoints (vertical lines) determined by AutoSpec. The
solid smooth line is the filtered series that exhibits the ENSO cycle. AutoSpec finds a breakpoint at the beginning of 1880 and
the beginning of 1975. Bottom: The segmented AutoSpec spectral estimates for each segment. The gray swatch shows the

2–7 year cycle known ENSO cycle range.

Figure 8. Simulated AR(2) data with an obvious breakpoint at t = 500 and an obvious increase in frequency (in fact it is a
two-fold increase) in the second half of the data.

frequencies of interest. In addition, as discussed in Bloom-
field (2004, Ch. 9), tapering increases the variance of a spec-
tral estimate and only tapering the 10% or 20% ends of the
data is a good tradeoff to protect against leakage with only
modest increases in variance. Consequently, the technique
might try various (discrete) levels of tapering.

Another approach in the univariate case would be to use
MDL along with a wavelet spectrum such as discussed in
Chiann and Morettin (1998). Finally, in many cases, the in-
terest is in nonstationary multivariate time series. For exam-
ple, there are various measurement series for the sea surface
temperature of the Pacific Ocean; e.g., see L’Heureux, Tip-
pett and Barnston (2015). Similarly, when monitoring EEG
signals, several locations on the scalp are typically used;
e.g., see Aksenova, Volkovych and Villa (2007). Although
it has not yet been tried, it should be easy to extend the
fully nonparametric approach of Section 5 to the multivari-
ate case.

APPENDIX: AUTOSPEC MDL AND
OPTIMIZATION

In this section, we derive a minimum description length
(MDL) criterion for choosing the best fitting model from
the autospec procedure. The “best” model is defined as
the one that enables the best compression of the observed
series x = {x1, . . . , xn}.

There are various versions of the minimum description
length principle as put forth by Rissanen (Rissanen, 1978,
1989) and the version adopted here is a two-part code. In
this case, the first part, denoted by C, represents the com-
plexity of the fitted model, and the second part, denoted by
A, which represents the accuracy of the fitted model. The
idea of the minimum description length principle is to find
the best pair of C and A so that via encoding (or compress-
ing) C and A, x can be transmitted (or stored) with the
least amount of codelength (or memory). To quantify this
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Figure 9. Estimated spectra for Figure 8 data using AutoParm (solid line) compared to the true spectra (dashed line) for each
of the two segments. AutoParm finds a breakpoint at t = 498. In this and similar figures, the vertical dashed line indicates the

locations of the peak of each true spectrum (at approximate frequencies of .055 and .11).

Figure 10. AdpatSpec posterior distribution of a breakpoint location for 500 runs for Figure 8 data in. The solid vertical line
shows the posterior mean location of a breakpoint at t = 530.

idea, let CL(·) denote the codelength of an object based on
a given model. Then we have the decomposition

(13) CL(x) = CL(C) + CL(A | C)

for the data x. This approach leads to familiar concepts such
as AIC and BIC where accuracy is measured by the negative
of the log-likelihood evaluated at the estimated parameters,
and the complexity is a penalty based on the number of
parameters in the model and possibly the sample size.

For the complexity term in (13), we must consider the
various parameters of the model, which includes the number
of segments, m, the change points, ξ = (ξ1, . . . , ξm), and
the individual bandwidths in each segment, B1, . . . , Bm as
defined in (11). In this case we have

CL(C) = CL(m) + CL(ξ1, . . . , ξm | m)(14)

+ CL(B1, . . . , Bm | m, ξ) .

To evaluate (14), the codelength for an integerm is log2 m
bits. For the second term, we note that knowledge of the
breakpoints, ξj , is equivalent to knowledge of the number of
observations in segment j, namely nj . Noting that the nj

are bounded by the number of observations, n, we have a
bound, CL(nj) = log2 n so that

CL(ξ1, . . . , ξm | m) = CL(n1, . . . , nm | m) = m log2 n .

Each bandwidth value will cost about log2 Bj bits. In
addition, the bandwidth in each segment j = 1, . . . ,m is
determined by maximizing the likelihood based on the seg-
ment data of nj observations. For this, we can use a result
of Rissanen that states a maximum likelihood estimate of a
parameter computed from nj observations can be effectively
encoded with 1

2 log2 nj bits, making the third term

CL(B1, . . . , Bm | m, ξ) = 1
2

m∑
j=1

log2(nj B
2
j ) .

For the second term in (13), it is shown in Rissanen (1989)
that the codelength of the accuracy term, A, is the negative
of the log2 likelihood of the fitted model C. In our case, we
use the Whittle likelihood approximation; see (8).

Combining the results and working with natural log in-
stead of base 2, we obtain an approximation to the MDL of
the model,

MDL = logm+m logn+ 1
2

m∑
j=1

log(nj B
2
j )

+

m∑
j=1

{nj

2
log(2π) + 1

2

nj−1∑
kj=0

[
log f̂j(ωkj ) +

Ij(ωkj )

f̂j(ωkj )

]}
.

(15)
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Figure 11. Estimated spectra (posterior means) for Figure 8 data using AdaptSpec (solid line) compared to the true spectra
(dashed line) for each of the two segments. AdaptSpec finds a breakpoint (posterior mean) at t = 530.

Figure 12. Estimated spectra for Figure 8 data using AutoSpec (solid line) compared to the true spectra (dashed line) for
each of the two segments. AutoSpec finds a breakpoint at t = 499.

Because the search space is enormous, optimization is a
nontrivial task. As in Aue et al. (2014) or Davis, Lee and
Rodriguez-Yam (2006) and many others, we use a genetic
algorithm (GA) to effectively tackle the problem. Briefly, ge-
netic algorithms are a class of iterative optimization meth-
ods that use the principles of evolutionary biology. The al-
gorithm typically begins with some initial randomly chosen
population and each generation afterwards produces an off-
spring population using genetic operators. Genetic operators
include selection, crossover, and mutation, which are based
on the principle of natural selection to find the best solution
while using the principle of diversity to avoid convergence to
a local minima. Selection operators are used to select which
offspring survive to the next generation. It is crucial that
the fitter individuals are not kicked out of the population,
while at the same time diversity should be maintained in
the population. Truncation is the simplest selection operator
which simply chooses the fittest individuals from the parent
and offspring population. Tournament selection is another
selection operator that randomly sorts the individuals into
blocks and chooses the best individual from each block. In
Age-Based Selection, there is not a notion of a fitness but
it is based on the premise that each individual is allowed

in the population for a finite generation where it is allowed
to reproduce and then it is kicked out of the population
no matter how fit. In Fitness Based Selection, the children
tend to replace the least fit individuals in the population.
The selection of the least fit individuals may be done using
a variation of any of the selection policies described before;
e.g., tournament selection. Recombination operators, often
referred to as crossover, are used to mix two or more par-
ents to produce similar, but slightly different offspring. Most
crossover operators convert the individual into binary rep-
resentation to perform the operations. One-point crossover
crosses the binary digits at some crossover point of two par-
ents to create two new individuals. Mutation operators are
used to further preserve the diversity of a population to en-
sure convergence to an optimum. A simple type of mutation
involves the addition of a number chosen from a standard
normal. Another type of mutation known as flip bit also per-
forms operations on the binary representation of a number
where each bit in the representation has some probability of
being mutated. A flow chart of a genetic algorithm is shown
in Figure 13.
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Figure 13. Flow chart of a Genetic Algorithm. The algorithm typically begins with an initial randomly chosen population.
Afterwards, each generation produces an offspring population using genetic operators. Selection operators are used to select

which offspring survive to the next generation. Recombination operators, often referred to as Crossover are used to mix two or
more parents to produce similar, but slightly different offspring. Mutation operators are used to further preserve the diversity

of a population to ensure convergence to an optimum.
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