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Detection of signals by Monte Carlo singular
spectrum analysis: multiple testing∗

Nina Golyandina

Detection of a signal in a noisy time series using Monte
Carlo singular spectrum analysis (MC-SSA) is studied from
the statistical viewpoint. The MC-SSA test consists of si-
multaneous testing of several hypotheses related to the pres-
ence of different frequencies. The multiple MC-SSA test pro-
cedure is constructed to control the family-wise error rate.
The technique to control both the type I and the type II er-
rors and also to compare criteria is proposed to study several
versions of MC-SSA.
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1. INTRODUCTION

Singular spectrum analysis (SSA) solves a wide range of
problems of time series analysis and image processing (see
[6] for examples and references). Here we consider a specific
problem of detection of a signal (e.g., a periodic component)
in a noisy time series.

The common scheme of the decomposition stage of SSA
consists of the construction of a so-called trajectory matrix
X from the initial object X and an expansion of this tra-
jectory matrix into a sum of elementary components, which
are ordered by their contribution. In the basic version of
SSA, this expansion is performed using the singular value
decomposition (SVD). The left singular vectors of the SVD
are eigenvectors of the matrix XXT, which is an estimate
of the autocovariance matrix of the time series if its mean
equals zero or the time series is centred. The reconstruction
stage starts with the identification of elementary compo-
nents corresponding to a component under interest (e.g. a
signal) and then the reconstruction of this time series com-
ponent through a grouping of the identified components is
performed.

Generally, SSA is a model-free method. However, a con-
siderable part of the SSA theory is devoted to the extrac-
tion of time series components, which are governed (maybe,
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approximately) by a linear recurrence relation [6]; in par-
ticular, a sum of sine waves with slowly-varying amplitudes
belong to this class of signals. SSA extracts periodic com-
ponents well; however, it is well-known that the extracted
components can be spurious, since they can be produced by
noise. In a sense, this is a payment for the nonparametric
nature of the method. If we want to apply the statistical ap-
proach for judging, a model should be assumed. Usually, the
question about the existence of a signal in the time series
is formulated as testing the hypothesis that the series is a
stochastic process. The criterion should be powerful against
the alternative hypothesis, which states the existence of a
non-random (e.g. periodic) component. There are a lot of
statistical criteria for testing these hypotheses for different
classes of stochastic processes (see e.g. [17] for red noise or
[13] for an Ornstein-Uhlenbeck state space, which is a con-
tinuous analogue of the first-order autoregressive processes
AR(1)). We consider the construction of such a criterion in
the framework of SSA, since SSA is able to reconstruct the
detected time series component.

It follows from the properties of SSA (see e.g. the descrip-
tion of the relation between the spectral density and the
eigenvectors in [7, Sect. 6.4.3], where the results from [9] in
terms of SSA are discussed) that a natural assumption for
the noise model is that noise is red (the AR(1) with a posi-
tive coefficient). This is because the spectral density of red
noise is monotonic; therefore, the eigenvectors are similar
to sinusoids and can be connected to different frequencies.
Recall that ξ = (ξ1, . . . , ξN ) is red noise with parameters ϕ
and δ if ξn = ϕξn−1 + δεn, where 0 < ϕ < 1, εn is white
Gaussian noise with mean 0 and variance 1 and ξ1 has a nor-
mal distribution with mean zero and variance δ2/(1 − ϕ2).
Moreover, in climatology, the common model is a weak sig-
nal (if any) in red noise. Both considerations inspired the
creation of the Monte Carlo SSA method (MC-SSA). MC-
SSA was proposed in [2] and later was considered in many
papers ([1], [4], [8], [10], [14], [15], among others).

However, the terminology in these papers differs from the
standard statistical terminology and therefore it is very im-
portant to bridge the gap between the applied and statistical
approaches. Moreover, this can help to avoid wrong conclu-
sions in real-life applications. Investigation of criterion prop-
erties (and comparison with other tests) will be performed
by the estimation of the type I and type II errors.

Let us briefly describe how the basic MC-SSA test is
constructed. At Decomposition step of SSA, each decom-
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position component (related to the eigenvectors of the sam-
ple autocovariance matrix, in the basic version) can be put
into correspondence with a frequency, since the eigenvectors
of the autocovariance matrix of red noise, which is a Kac–
Murdock–Szegő Toeplitz matrix, are sine waves with almost
equidistant frequencies [16]. The eigenvalues are equal to
the total squared norm of projection of the trajectory ma-
trix columns on the eigenvectors and therefore reflect con-
tributions of the decomposition components (and therefore
of the corresponding frequencies) into the time series. The
original idea of MC-SSA is to estimate the parameters of red
noise and apply the bootstrap simulations to construct pre-
diction intervals for eigenvalues in the case when there is no
signal. If an eigenvalue of the time series is beyond the con-
structed prediction intervals, the corresponding eigenvector
frequency is considered significant. Moreover, it is possible
to reconstruct the detected signal. In the modifications of
MC-SSA, the choice of vectors for projection can vary.

It is clear from the method description that there is the
problem of multiple testing when the probability of the false
detection of a periodic component for one of the consid-
ered frequencies (family-wise error rate) is unknown and
is much larger than the given significance level (single-test
error rate). This problem is discussed in different papers
devoted to MC-SSA. The theoretical approach to multiple
testing, which we propose in this paper, allows constructing
the multivariate criterion with the given family-wise error
rate.

Novelty. The novelty of the paper is applying the statis-
tical approach to the signal-detection problem in the frame-
work of Monte Carlo SSA to control the type I error and
estimate the type II error. For simultaneous testing of the
presence of multiple frequencies, a multiple version of MC-
SSA is proposed to control the family-wise error rate. Bas-
ing on the numerical study, we discuss pluses and minuses
of several versions of MC-SSA.

Structure. In Section 2, we briefly describe the statis-
tical approach to hypothesis testing. In Section 3, versions
of the MC-SSA algorithms are presented, including the pro-
posed multiple testing algorithms. Section 4 is devoted to
the investigation of the MC-SSA approach using the statis-
tical approach. All numerical studies were performed in R,
with the use of the Rssa package [11].

2. STATISTICAL APPROACH TO
HYPOTHESIS TESTING

In papers starting from [2], the method MC-SSA is de-
scribed mostly as a method for applied problems and there-
fore the way of description is not conventional for statisti-
cians. Therefore, let us start with a statistical approach to
the problem.

Let the null hypothesis be that the time series is a pure
stationary stochastic process. In the considered context, it
can be white or red noise. Sometimes, one says that the

presence of a signal in noise is tested, whereas the null hy-
pothesis is formulated as the hypothesis about the absence
of a signal in noise. Consider a criterion, which determines
if the null hypothesis is rejected or is not rejected. If the
null hypothesis is rejected at the given significance level α,
then one can claim the presence of a signal (more precisely,
a deviation from the null hypothesis). The probability to
reject the null hypothesis if it is true is called type I error
(αI). If a criterion is correct, then the type I error is equal
to the given significance level (or at least not larger than α).
Different criteria differ by the power against an alternative
hypothesis. The power is the probability to reject the null
hypothesis if the alternative hypothesis is true. The alter-
native hypothesis that the time series contains a periodic
component is important in practice; therefore, we will con-
sider criteria, which are powerful against such hypotheses.

If we want to make a false discovery rarely, then we choose
a small significance level α and this guarantees that we will
reject the true null hypothesis with probability not larger
than α. However, we can not choose a very small significance
level, since the test power decreases as α decreases.

Note that it is not permitted to consider a criterion if
its type I error exceeds the given significance level (a lib-
eral criterion). Therefore, before a comparison of criteria by
power, one should be sure that the type I error lies in the
given range. If the type I error is less than the significance
level (a conservative criterion), this is admissible; however,
this means that this criterion can be improved, that is, the
power can be increased by a correction to obtain the type I
error closer to the significance level.

A useful characteristic of a criterion is the possibility to
interpret the difference from the null hypothesis if this hy-
pothesis is rejected.

2.1 Bootstrapping

Most of the criteria have the following form. A con-
structed test statistic measures the difference between data
and the null hypothesis in some way. There is a threshold
such that if the test statistic is larger than the threshold,
the null hypothesis is rejected. Certainly, this threshold de-
pends on the significance level α. It is not uncommon that
this threshold can not be obtained theoretically. Then sim-
ulations are used. Surrogate data are simulated according
to the null hypothesis and the test statistic is calculated
many times (G) to determine the threshold; this approach
is widely used, see e.g. [12]. Consequently, the threshold,
for which the null hypothesis is rejected approximately αG
times, is found. The estimated threshold is used for testing
the hypothesis for real-life data. The surrogate data should
be obtained exactly in the same way as the test statistic was
generated for the original data. The described approach can
be called Monte-Carlo one. This approach helps to construct
the criterion with the type I error tending to α as G tends
to infinity.
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However, the Monte Carlo approach can be applied if the
null hypothesis fully determines the data. For example, the
null hypothesis states that the time series is red noise with
variance δ2 and coefficient ϕ, where δ2 and ϕ are known
numbers.

Unfortunately, this is not the case in practice. Therefore,
the so-called bootstrapping is used (“pull yourself up by
your bootstraps”). If δ2 and ϕ are unknown, then they are
estimated with the help of the real-life data under study and
then the surrogate data are produced by simulations with
the estimated parameters. Since the estimated parameters
differ from the true (unknown) parameters, then the type I
error can generally be far from α and the test can become
liberal or conservative. Thus, Monte-Carlo SSA (this is the
name of a family of concrete algorithms) is a kind of testing
with bootstrapping.

2.2 Estimation of type I error and power

The above considerations about the relation between the
type I error, the significance level α and the level of power
can not be applied in practice, since the type I error and the
power are unknown. If something is unknown theoretically,
then simulation helps again.

Let a criterion be constructed to make the decision (re-
ject or not reject) for a given significance level α. It can be
constructed theoretically or with bootstrapping/simulations
within, it does not matter. Let the sample data with given
parameters according to the null hypothesis (this is the
Monte-Carlo approach) be simulated many times (M). Then
the proportion of cases with the rejection of the null hypoth-
esis is an estimate of the type I error.

To estimate power, we should set an alternative hypoth-
esis. There is freedom in the choice. The common rule is
to include into the alternative hypothesis the case, which
is important, that is, the case that should be distinguished
from the null hypothesis. For example, the alternative can
state that the time series is a sine wave with a given fre-
quency, amplitude and phase corrupted by noise with the
same parameters as were considered for the null hypothesis.

For power estimation, the procedure similar to that for
the type-I error is fulfilled. We simulate surrogate data with
the given parameters according to the alternative hypothesis
many times (M). Then the proportion of cases with the
rejection of the null hypothesis is the estimate of the power.

2.3 Prediction intervals for testing
hypotheses

Let a test statistic t provide an interpreted characteristic
of data (e.g. a contribution of a frequency to the observed
time series). Thus, the question about the presence of a sig-
nal can be reformulated as “can this value of t be caused by
the noise component only?”.

The answer to the question can be obtained in the stan-
dard way. Since the contribution t is random, there is a

prediction interval for it. The prediction interval can be con-
structed by simulation. If we generated a sample of possible
contributions, then the 95% prediction interval is the inter-
val between the 2.5% and 97.5% quantiles of this sample. In
statistical terminology, this interval is not called confidence,
since confidence intervals are constructed for unknown (non-
random) parameters and their length would tend to zero as
the number of simulations (sample size) tends to infinity.

γ-Prediction intervals serve for testing hypotheses with a
significance level α for α = 1− γ. If the observed value of t
does not belong to the prediction interval, the null hypothe-
sis is rejected. It is convenient to depict, say, 95%-prediction
intervals for t to visualize the hypothesis testing with the
significance level 5%.

2.4 One-tailed and two-tailed criteria

We mentioned that a criterion consists of a test statistic t
and a threshold t0. The use of this threshold can be different.
Moreover, the threshold can consist of two numbers, t1 and
t2. For example, the null hypothesis can be rejected if the
test statistic is larger than t1 or smaller than t2 (two-tailed
test) or if t > t0 (one-tailed test). The choice of the criterion
type depends on the alternative hypothesis, since we want
to increase the power against the chosen alternative.

If we want to detect both cases, when the contribution
of a frequency is either larger or smaller than that for pure
noise, then we choose a two-tailed test. If we want to detect
only the excess of the frequency contribution, we choose a
one-tailed test. This approach can be expressed in terms of
prediction intervals. If we are interested to find the frequency
with contribution larger than that of noise, then the one-
sided prediction interval has the form [0, t0] (in the general
case, [−∞, t0]; however, in our case the test statistic is non-
negative). In the two-tailed case, the two-sided prediction
interval is [t1, t2].

2.5 Multiple testing

The problem of multiple testing is well-known. The ap-
proach to the statistical testing described above is applicable
for single tests only, since the probability of false discovery
is controlled for each individual test only.

If we test several tests (m) simultaneously, we are in-
terested in the so-called family-wise error rate (FWER).
FWER is the probability of false discovery in at least one
of m tests. This probability can be vastly larger than the
chosen small α. Thus, we should not use a set of single tests
with α if we want to control FWER. Ideally, we should con-
struct one multivariate test instead of several single tests.
If this is technically hard, the Bonferroni correction is used
(performing single tests with significance level α/m); this
trick controls the FWER not larger than α (usually, this
does the family-wise type I error considerably smaller than
α; that is, the multiple testing is conservative and therefore
decreases the test power). If the single tests are independent,
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the Šidák correction (performing single tests with signifi-
cance level 1− (1−α)1/m) provides the exact test; however,
in the general case, testing with the Šidák correction can be
liberal and therefore the Šidák correction is not applied.

3. MONTE CARLO SSA

3.1 Singular spectrum analysis

Let us shortly describe the scheme of SSA to introduce
notation used further (see e.g. [6] for details).

Denote by X = (x1, . . . , xN ) a time series of length N and
by L, 1 < L < N , a window length. The trajectory matrix
X = T(X) is determined as X = [X1 : . . . : XK ], where
K = N−L+1 and Xi = (xi, . . . , xi+L−1)

T ∈ R
L are lagged

vectors.
The next step is the SVD expansion X =∑d
i=1

√
λiUiV

T
i =

∑d
i=1 Ui(X

TUi)
T, where {Ui}di=1 is

the orthonormal system of the eigenvectors of the matrix
XXT, λ1 ≥ λ2 ≥ . . . ≥ λd > 0 are the corresponding
non-zero eigenvalues. This is Basic SSA (or BK ver-
sion); sometimes Toeplitz SSA (VG version) designed for
stationary time series is considered.

The components of the obtained matrix decomposition
are reasonably grouped and each grouped matrix is trans-
ferred to a time series. Thus, the result of SSA is a time
series decomposition.

Although SSA is a model-free method, there is a model
that fits it. This is a class of signals, which are approxi-
mated by a sum of products of polynomials, exponentials
and sine waves. In particular, a sum of sine waves is perfect
for SSA. SSA can extract sine waves with different frequen-
cies if these frequencies are not too close and can separate
a sum of sinusoids from noise. If a sine wave series compo-
nent can be extracted from the time series (we say that it is
separated from the residual by SSA), then the SVD decom-
position contains two eigenvectors Ui and Ui+1, which have
the same dominant frequency as the original sine wave.

By the properties of the SVD, λi = ‖Π{Ui}X‖2 =

‖XTUi‖2 =
∑K

j=1(X
T
j Ui)

2 can be interpreted as the total
squared norm of projections of lagged vectors to span(Ui).

3.2 General comments

On the one hand, Monte Carlo SSA is a well-developed
method. In [2], the foundation of the method is thoroughly
described. On the other hand, many questions are still un-
der investigation; they are, among others, the best way of
estimating the noise parameters and taking into considera-
tion the presence of the nuisance signal. In this paper, we
consider a most simple version of Monte Carlo SSA to con-
centrate on the problem of multiple testing.

In some cases, we will assume that the noise parameters
are known. Also, we will show how can the criterion errors
change if the parameters are estimated.

There is a natural modification of Monte Carlo SSA,
which does not use the SSA decomposition step except for

the construction of the trajectory matrix (a part of the study
will be performed for such a modification). However, the re-
lation with SSA is essential, since the detected signal can be
reconstructed through SSA if we keep the connection with
the eigenvectors in SSA.

3.3 Single test

Let ξ = (ξ1, . . . , ξN ) be a red noise with parameters ϕ
and δ. Denote by L the window length and by Ξ = T(ξ)
the trajectory matrix of ξ. Let a vector W ∈ R

L, ‖W‖ = 1,
be given. If we are interested in a frequency contribution,
then W can be a sine wave with a given frequency. The total
squared norm of the projection of the columns of Ξ to the
vector W is calculated as

p = ‖ΞTW‖2 = WT
(
ΞΞT

)
W.

The null hypothesis states that the observed time series
X is a realization of ξ with some parameters ϕ and δ. Denote
p̂ = ‖XTW‖2. If W is an eigenvector of XXT, then p̂ is the
corresponding eigenvalue. Note that for a sinusoidal W , p̂
negligibly depends on the phase of this sinusoid, since for
large K = N − L + 1 the lagged vectors consist of many
shifts.

Let ϕ and δ be known. Under some assumptions, the
distribution of p can be calculated theoretically. Then the
prediction interval with confidence level γ is calculated as
the interval between (1− γ)/2- and (1 + γ)/2- quantiles for
the two-tailed test and between zero and γ-quantile for the
one-tailed test (upper-tailed test). In both cases, p̂ belongs
to the constructed predicted interval with probability γ.

If the theoretical distribution is unknown, then these
quantiles can be calculated by simulation of G samples ξi of
the random vector ξ and the use of empirical (sample) quan-
tiles for the obtained sample pi = ‖ΞT

i W‖2, i = 1, . . . , G.
The probability that p̂ belongs to the empirical (Monte
Carlo) prediction interval tends to γ as G tends to infin-
ity.

Recall that the significance level α is equal to 1− γ and
therefore one can say that the probability of the type I error
αI tends to α.

For both theoretical considerations and simulations, the
values of the parameters ϕ and δ are used. Here we do not
discuss the estimation of noise parameters in the presence
of a signal. Note that the proposed approach to hypothe-
sis testing is valid for various modifications of the MC-SSA
technique.

Remark 1. It is important to note that W may be pro-
duced by the time series itself. However, as was discussed in
[2], then the surrogate data should be projected also to the
vectors produced by them. There is a temptation to con-
sider the version when the projection vector is produced by
the observed time series and the test is constructed by pro-
jection to this vector. However, then the type-I error is not
controlled and the test is liberal.
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3.4 Choice of vectors for projection

In practice, we do not know the frequency of a possible
periodic signal component. Therefore, the approach is to
consider many vectors for projection, which correspond to
a set of frequencies. For example, one can take a set of sine
waves W1, . . . ,WH ∈ R

L with equidistant frequencies from
some frequency interval [ω1, ω2] ⊂ (0, 0.5). To obtain slightly
dependent tests, the number of vectors should not exceed
their dimension L.

The other choice is to take the set of eigenvectors pro-
duced by SSA (this is a common case in MC-SSA) with
consideration to Remark 1.

The compromised version suggested in [2] is W1, . . . ,WH

to be eigenvectors of the general-population covariance ma-
trix. That is, the sample covariance matrix isXXT, whereX
is the L-trajectory matrix, whereas the general-population
correlation matrix of red noise has the (i, j)-th term φ|i−j|.
They are close; however, the difference from the viewpoint
of type-I error can be drastic. If one wants to include to the
set of projection vectors the sine wave vector with a specific
frequency ω, then the eigenvectors of the matrix with the
(i, j)-th term φ|i−j| + C cos(2πω|i− j|) can be considered.

Thus, we will consider two choices:
1. W1, . . . ,WH are the eigenvectors of the matrix

(1) {φ|i−j| + C cos(2πω|i− j|)}Li,j=1.

2.W1, . . . ,WH are the eigenvectors of the matrixXXT;H ≤
min(L,N − L+ 1).

Since we study the version of Monte Carlo SSA, where
the projections of surrogate data are performed on the fixed
vectors, the second version is generally wrong. We will con-
sider an example to show this.

3.5 Multiple testing

In Monte Carlo SSA, the prediction intervals are con-
structed for the contribution of each projection vector inde-
pendently. Let W1, . . . ,WH be a set of projection vectors.
Denote

p̂k = ‖XTWk‖2, k = 1, . . . , H.

For each vector Wk, the sample of squared projection norms
is constructed: Pk = (pk1, . . . , pkG)

T, where pki is calculated
as

(2) pki = ‖ΞT
i Wk‖2, i = 1, . . . , G;

here Ξi = T(ξi) is the trajectory matrix of the ith sample
of red noise ξi = (ξi1, . . . , ξ

i
N ) with given parameters.

We can construct single prediction intervals for the con-
tribution of each vector Wk as it is described in Section 3.3.
The problem of multiple testing (the problem of FWER,
which can be much larger than the given significance level α)
can be solved by means of the Bonferroni correction. How-
ever, if the Bonferroni correction is used, the test becomes

conservative (FWER is less than α). To obtain an exact test,
an approach similar to that of Tukey’s HSD applied to post
hoc comparisons in ANOVA can be considered. That is, we
can construct a test, which is based on the distribution of
the maximum of the standardized contributions pk. If this
test rejects the null hypothesis, then all frequencies, which
correspond to the projection vectors with the contribution
lying outside the corrected prediction intervals, are consid-
ered significant. Thus, we can talk about the significance of a
frequency if put into correspondence projection vectors and
frequencies. Note that for this approach, FWER is equal to
α.

Let us describe the algorithm of constructing the predic-
tion intervals with correction for multiple testing.

The first version (Algorithms 1 and 2) is straightforward;
this is the single test for each vectorWk with Bonferroni cor-
rection, that is, the significance level α/H is taken instead
of α.

Algorithm 1 (Single one-tailed test with Bonferroni cor-
rection)

1. For each k, k = 1, . . . , H, calculate the test statistic p̂k
and the sample Pk = {pki}Gi=1, see (2).

2. Find qk as the sample (1− α/H)-quantile of Pk.
3. The null hypothesis, which states that the time series

is pure red noise, is not rejected if for each k the inequality
p̂k < qk is valid; otherwise, the null hypothesis is rejected
and a signal is detected.

4. If H0 is rejected, then post-hoc testing can be per-
formed: the contribution of Wk (and of the correspond-
ing frequency) is significant if p̂k exceeds qk. Thus, [0, qk]
are considered as the corrected prediction intervals, k =
1, . . . , H.

Algorithm 2 (Single two-tailed test with Bonferroni cor-
rection)

1. For each k, k = 1, . . . , H, calculate the test statistic p̂k
and the sample Pk = {pki}Gi=1, see (2).

2. Find qlowk and qupk as the sample (0.5α/H)- and (1 −
0.5α/H)-quantiles correspondingly.

3. The null hypothesis, which states that the time series is
pure red noise, is not rejected if for each k qlowk < p̂k < qupk ;
otherwise, the null hypothesis is rejected and a signal is
detected.

4. If H0 is rejected, then post-hoc testing can be per-
formed: the contribution of Wk (and of the corresponding
frequency) is significant if p̂k does not belong [qlowk , qupk ].
Thus, [qlowk , qupk ] are considered as the corrected prediction
intervals, k = 1, . . . , H.

Let us extend the multiple-testing approach, which was
considered in [3] in the framework of Monte Carlo SSA. The
approach is based on the distribution of max1≤k≤H(pki −
μk)/σk, where μk and σk are mean and standard deviation
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of Pk, k = 1, . . . , H. Here σk reflects the size of the k-th
prediction intervals. Normalization by σk keeps the same
difference between the intervals sizes as in the single tests.
By construction, the size of a prediction interval is related
to the test power against the existence of the signal at the
corresponding frequency. In Algorithms 3 and 4, we con-
sider σ̃k = wkσk, where wk is a weight; an increase of the
weight corresponds to more expectation of a signal at the
frequency matched to Wk. Some weights wk can be zero;
this means that the corresponding projection vectors do not
participate in the testing and the test is disabled to detect
the signal at the corresponding frequencies. Thus, it is the
same, to set zero weights outside the frequency range (and
unit weights within it) or just consider the subset of the pro-
jection vectors matched to the frequency interval. However,
the approach with weights is much more flexible and allows
to take arbitrary weights between 0 and 1.

Algorithm 3 (Weighted multiple one-tailed test)
1. For each k, k = 1, . . . , H, calculate the test statistic p̂k,

the sample Pk = {pki}Gi=1, see (2), and calculate its mean
μk and standard deviation σk.

2. Calculate η = (η1, . . . , ηG), where

ηi = max
1≤k≤H

(pki − μk)/σ̃k, σ̃k = wkσk, i = 1, . . . , G.

3. Find q as the sample (1− α)-quantile of η.
4. The null hypothesis, which states that the time series

is pure red noise, is not rejected if

max
1≤k≤H

(p̂k − μk)/σ̃k < q;

otherwise, the null hypothesis is rejected and a signal is
detected.

5. If H0 is rejected, then post-hoc testing can be per-
formed: the contribution of Wk (and of the corresponding
frequency) is significant if p̂k exceeds μk + qwkσk. Thus,
[0, μk + qwkσk] are considered as the corrected prediction
intervals, k = 1, . . . , H.

Algorithm 4 (Weighted multiple two-tailed test)
1. For each k, k = 1, . . . , H, calculate the test statistic p̂k,

the sample Pk = {pki}Gi=1, see (2), and calculate its mean
μk and standard deviation σk.

2. Calculate η = (η1, . . . , ηG), where

ηi = max
1≤k≤H

|pki − μk|/σ̃k, σ̃k = wkσk, i = 1, . . . , G.

3. Find q as the sample (1− α)-quantile of η.
4. The null hypothesis, which states that the time series

is pure red noise, is not rejected if

max
1≤k≤H

|p̂k − μk|/σ̃k < q;

otherwise, the null hypothesis is rejected and a signal is
detected.

5. If H0 is rejected, then post-hoc testing can be per-
formed for a fixed k: the contribution of Wk (and of the cor-
responding frequency) is significant if |p̂k − μk|/σ̃k exceeds
q. Thus, [max(0, μk− qwkσk), μk+ qwkσk] are considered as
the corrected prediction intervals, k = 1, . . . , H.

Algorithms 2 and 4 correspond to two-sided prediction
intervals (this is the conventional version of Monte Carlo
SSA), while Algorithms 1 and 3 correspond to the one-
sided case. This yields hyper-rectangular and half hyper-
rectangular prediction regions, respectively.

Remark 2. The choice of the vectorsWk, k = 1, . . . , H, was
discussed in Section 3.4. To increase the criterion power,
the number H of the vectors should be as small as pos-
sible, e.g., only vectors with dominant frequencies from a
given frequency range can be taken. If the vectors Wk are
sine waves, the choice of vectors with frequencies from the
given range is trivial. If Wk are the eigenvectors, then their
dominant frequencies can be calculated by e.g. the ESPRIT
method [6, Section 3.1]. This has a little sense for white
noise, for which each eigenvector is a mixture of a lot of
frequencies. However, for red noise, it has sense, since the
eigenvectors correspond to narrow ranges of frequencies. As
we mentioned above, increasing the power can be performed
by setting the weights.

4. NUMERICAL INVESTIGATION

Let us introduce abbreviations for the test versions. We
consider 3-symbols abbreviations with an optional informa-
tion

(3) {M,S,B}{T,E}{1,2}[Est].

The first letter M (Multiple) corresponds to Algorithms 3
and 4, S (Single) corresponds to Algorithms 1 and 2 with-
out Bonferroni correction, while B means using this correc-
tion. The second letter is related to the way of generating
the projection vectors: T means that the eigenvectors of the
theoretical covariance matrix (1) of red noise (C = 0) are
considered; E means that the eigenvectors of the empiri-
cal covariance matrix XXT are used. The last digit means
what (one- or two-tailed) test is considered. We consider
the method MT1 as the basic one, which is exact and more
powerful.

This abbreviation corresponds to the use of true parame-
ters of red noise and unit weights wk. If the noise parameters
are estimated, then we will add ‘Est’ after the digit. If an-
other modification is used, this is indicated separately.

R-scripts in [5] contain an implementation of the above
algorithms.

Let us demonstrate the results of different versions of
Monte Carlo SSA.
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Figure 1. ME2. Left — ordered by frequency, right — ordered by projection value (p̂k).

Figure 2. {S,B}T2. Left — without correction, right — with Bonferroni correction.

4.1 Example

The model of an artificial time series is

(4) xn = A sin(2πωn) + ξn,

where ξn is red noise with parameters ϕ and δ, n = 1, . . . , N .
The case A = 0 corresponds to the null hypothesis and the
case A > 0 yields the presence of signal, that is, corresponds
to an alternative. Hereafter we consider the AR(1) parame-
ters ϕ = 0.7 and δ = 1.

For illustrative examples, we take N = 1000 and the sig-
nal parameters A = 0.4 and ω = 0.2 in H1. The parameters
of MC-SSA are L = 40 and G = 1000.

Let us consider a fixed significance level 0.2 (that is, the
confidence level equals 0.8). To weaken the dependence on

the time series length N , we consider ‖X‖2 =
∑N

i=1 x
2
i /N .

We used the true parameters of AR(1) for the creation of
surrogate data. The continuous curve is the spectral density
of AR(1) with the parameters that were used in the simula-
tion. We calculated the dominant frequencies of Wk by the
ESPRIT method with the rank r = 2.

Although one-tailed versions of the tests are more pow-
erful, on most of the figures we show two-sided prediction
intervals for a clearer visual presentation.

The presence of a sine-wave signal mostly corresponds to
exceeding the upper bound. Therefore, as a rule, for exact
tests, if the upper bound is smaller, then the test is more
powerful.

Fig. 1 demonstrates generally a liberal test, which there-
fore cannot be used in practice as is. In this version the
projection vectors are generated by the observed time se-
ries; this choice corresponds to a popular version of Monte
Carlo SSA.

Fig. 2 shows prediction intervals for the single test with
projection vectors chosen as theoretical eigenvectors; the
Bonferroni correction is used in Fig. 2 (right). The test in
Fig. 2 (left) is strongly liberal, while Fig. 2 (right) is slightly
conservative.

Fig. 3 contains multiple prediction intervals, which pro-
vide the exact test with theoretical eigenvectors as the pro-
jection vectors. In Fig. 3 (left), the eigenvectors of the ma-
trix (1) with C = 0 are taken as Wk. The upper bounds are
slightly lower than in Fig. 2 (left). In Fig. 3 (right), the infor-
mation about the presence of a signal of frequency ω = 0.2
is used and the eigenvectors of the matrix (1) with C = 1
are taken as Wk.

Figs. 4 and 5 are related to the case of zero weights for
the frequencies of the projection vectors outside the fre-
quency interval [0.1, 0.3]. Fig. 4 demonstrates the differ-
ence between two-sided and one-sided prediction intervals.
In the one-sided case, the upper bound is slightly lower.
Fig. 5 shows how the weights influence the prediction inter-
vals sizes. We set weights = c(seq(6.25,8,0.25), 8:1),
what means that the weights increase from 6.25 to 8 with
step 0.25 and then decrease from 8 to 1. Influencing weights
on the test power will be studied later.
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Figure 3. MT2. Left — eigenvectors of pure red-noise covariance matrix, right — eigenvectors of the covariance matrix of
red-noise with an added sinusoid at frequency 0.2.

Figure 4. MT{1,2}, frequency range [0.1, 0.3]. Left — two-tailed test, right — one-tailed test.

Figure 5. MT2, weighted, frequency range [0.1, 0.3], two-tailed test. Left — the weights to obtain equal prediction intervals
(wk = 1/σk), right — the weights to increase the power against frequencies around 0.2.

4.2 Study of statistical properties of
MC-SSA

Let us describe the methodology of the study of statistical
properties of the constructed criteria with bootstrapping.
The key items are:

1. The first step is to simulate synthetic data according to
the null hypothesis M times and estimate αI = αI(α)
as the proportion of the rejected null hypothesis for
a given significant level α. Check that the necessary
condition αI ≤ α is fulfilled. It is essential to choose a
sufficient size G of the surrogate data.

2. If the necessary condition is fulfilled, then the second
step is to simulate synthetic data according to an al-
ternative hypothesis M times and estimate the power
1−αII against this hypothesis as the proportion of the
rejected null hypothesis for a given significant level α.

3. Compare different criteria by power against the alter-
native hypothesis under interest and use the one with
the larger power.

4. If there is no test with sufficient power, then it is pos-
sible to improve a test, where αI < α or αI > α. Then
find α̃ such that αI(α̃) ≈ α and use the significance
level α̃ instead of α.
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Figure 6. Type I error for different L, empirical and theoretical eigenvectors. Left — the multiple test, right — the single test
with the Bonferroni correction.

Below we consider these items. As before, we consider the
AR(1) parameters ϕ = 0.7 and δ = 1. In a case when the
AR(1) parameters are estimated, the maximum likelihood
method was applied for estimation, where the conditional-
sum-of-squares method was used to find starting values.

Choice of G. A sufficient value G in item 1 can be deter-
mined theoretically. The value of G should be considerably
large to estimate the quantiles for the surrogate data. In
the case of single prediction intervals with Bonferroni cor-
rection, (1−α/H)-quantiles should be estimated (let us con-
sider one-tailed tests), while in the case of multiple testing,
we need (1−α)-quantiles only. For example, if α = 0.05, for
multiple testing, G = 1000 is enough, since the estimate is
the 50-th value from the maximum in an ordered sample.
However, for single testing and H = 100 projection vectors,
α/100 = 0.005 and therefore the 0.995-quantile will be un-
derestimated (and therefore the test will be liberal). Table 1
contains the estimates of the type I errors for N = L = 200
and α = 0.2 (then the Bonferroni correction gives the sig-
nificance level 0.001); M = 10000 simulations were used.
Table 1 confirms that the multiple methods need smaller
G. Hereinafter, the columns ‘2.5%’ and ‘97.5%’ show the
bounds of 95%-confidence intervals for the estimated prob-
abilities (the type I error or the power).

Table 1. Type-I error for different G

Method G est. type I error 2.5% 97.5%

MT1 100 0.466 0.456 0.476
BT1 100 0.864 0.857 0.870

MT1 500 0.250 0.241 0.258
BT1 500 0.326 0.316 0.335

MT1 1000 0.219 0.211 0.227
BT1 1000 0.212 0.204 0.221

Type I error. The estimates of the family-wise type I
errors are contained in Fig. 6; we use N = 100, M = 1000,
and G = 1000.

Fig. 6 (left) demonstrates the difference between the use
of theoretical and empirical eigenvectors. The pluses and
minuses of these versions are as follows.

1. Multiple test, empirical eigenvectors.
Plus: It is possible to reconstruct the signal on the basis

of significant projection vectors (empirical eigenvectors).
Minus: The test is liberal.
2. Multiple test, theoretical eigenvectors.
Plus: The test is exact.
Minus: If the SSA reconstruction of a detected signal

should be performed, a paring is needed to put into cor-
respondence theoretical and empirical eigenvectors.

The comparison of Fig. 6 (right) and Fig. 6 (left) shows
the difference between multiple and Bonferroni-corrected
single tests. The pluses and minuses of multiple and single
versions are as follows.

1. Multiple test
Plus: The test is exact.
Minus: Recalculation is necessary to consider a subset of

the projection vectors.
2. Single test
Plus: It is easy to consider subsets of projection vectors

without recalculation.
Minus: For the version without correction, it is a very

liberal test. For the version with Bonferroni correction, it is
a slightly conservative test (this is visible for small L) and
large G is needed (visible for large L).

In addition, Fig. 6 shows that if the noise parameters are
estimated, then the MT and BT tests becomes very con-
servative (the type I error is considerably smaller than the
given level α = 0.2). Also, the conservativeness of Bonfer-
roni correction can compensate for the liberality of the test
{M,B}E; it can be a reason why the BE test is a bit less
liberal than the ME one in Fig. 6.

Power. Let us estimate the power of different versions
of the Monte Carlo SSA tests. Consider the presence of a
signal in H1 with A = 1 and study the dependence of test
power on the signal frequency. We used a standard method
of estimation of AR(1) parameters, which ignores a possible
presence of a signal.

The estimates of power are depicted in Fig. 7. One can
see that both the one-tailed version and a narrow frequency
interval can increase the test power.
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Figure 7. Power for alternatives with sinusoidal signals of
different frequencies.

Correction of type I error. Let us illustrate item 4

of the described scheme with the help of the example (4),

where H0 corresponds to A = 0 and H1 corresponds to

A = 1, ω = 0.1. As before, we consider a fixed significance

level 0.2.

If the noise parameters are estimated, then the criterion

becomes very conservative (the type I error is two times

smaller than the given α = 0.2). Changing α, we can find

that for α̃ = 0.35 we obtain αI ≈ 0.2 = α (Table 2, the first

three rows).

The criterion with the adjusted formal significance level is

more powerful than the original conservative criterion. The

last three rows of Table 2 show that the use of the conser-

vative test MT1est decreases the power in comparison with

that of MT1, while after correction of the significance level

to α̃ = 0.35, the power of MT1est considerably increases.

Table 2. Improvement of the power of a conservative test

est. type I error 2.5% 97.5%

MT1 0.200 0.176 0.226
MT1est(α̃ = 0.2) 0.069 0.054 0.086
MT1est(α̃ = 0.35) 0.208 0.183 0.234

est. power 2.5% 97.5%

MT1 0.800 0.774 0.824
MT1est(α̃ = 0.2) 0.575 0.544 0.606
MT1est(α̃ = 0.35) 0.731 0.702 0.758

Note that the dependence of the test power on the sig-

nificance level shows the test strength against a chosen al-

ternative hypothesis. To find how the test would work if

the formal significance level is corrected to obtain a given

probability of type I error the dependence of the test power

on the probability of type I error should be studied; this

dependence is a kind of ROC curve.

5. CONCLUSION

In this paper, we studied Monte Carlo SSA from a sta-
tistical viewpoint. A scheme for checking the MC-SSA algo-
rithms for correct family-wise type I errors and comparing
the algorithms by power was proposed to avoid wrong con-
clusions in practice. We demonstrated this scheme on a basic
version of MC-SSA. However, it can be applied in a general
case.

The numerical comparison of multiple and single versions
(with Bonferroni correction), of different choices of the pro-
jection vectors, and of two-tailed and one-tailed tests was
performed. Also, we considered weighted versions of the
multiple MC-SSA. Our recommendation is to use the mul-
tiple one-tailed MC-SSA; weights are applied if information
about the possible frequencies is available. Also, we propose
to correct the significance level if the used test is liberal or
conservative.
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