
Statistics and Its Interface Volume 16 (2023) 181–188

Study of impact of COVID-19 on industrial
production indices using singular spectrum
analysis
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This paper investigates the impact of the COVID-19 pan-
demic on 8 different indices of industrial production (IIPs)
for three major European countries: France, Germany, and
the UK. The analysis is based on applying a combination of
Singular Spectrum Analysis (SSA) algorithms, in a way that
allows for the proper separation of the trend and seasonal
subcycles of the IIPs. The main purpose is to illustrate how
to carry out the procedure of the correct decomposition by
SSA for the specific series. The accurately extracted trends
are analysed and the influence of the pandemic is calculated.
The results confirm that necessary goods, such as food and
utilities, have low income elasticity of demand since the ef-
fect of COVID-19 is negligible for these IIPs. However, for
the IIPs of less essential products, the negative impact is
much more extreme, although the severity varies depend-
ing on several factors, which also aligns with the economic
theory.
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1. INTRODUCTION

The 2007 credit crunch and the subsequent crisis has been
the main economic recession experienced in recent history.
However, the COVID-19 pandemic has had a rivalling neg-
ative global impact, which has resulted in a similar eco-
nomic downfall. The permanent income hypothesis [9] may
attempt to explain the reactions of consumers to such oc-
currences by considering the nature of the shock and the
public’s expectations. However, evaluating the effect on the
economy as a whole may prove to be more complicated.
Hence, studying the time series of IIPs, in particular, can
show changes in various economic sectors and give insight
into the responses of economic agents.

The effect of COVID-19 is not globally uniform due to
government policies or other factors relating to certain coun-
tries. There are also differences across sectors of production,
as the public demand for non-essential, or luxury, products
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is much more sensitive to changes in consumers’ disposable
incomes, this is described by the economic theory of income
elasticity of demand. Therefore, to capture the full extent
of the influence of COVID-19 on production, we consider a
range of industrial production components across the UK,
France, and Germany.

The movement of IIPs is often studied by economists to
acquire an understanding of the state of the industry sec-
tor, the extent to which a country relies on imports, and the
gross domestic product (GDP) as a whole. This information
is utilised by governments, policymakers, and central banks,
in particular for predicting the development of related eco-
nomic sectors. Hence, the tendencies and forecasting of IIPs
have been studied from many different angles. Research has
been undertaken into the adequacy of IIP forecasts via au-
toregressive models [23], neural network models [19], among
many other linear and non-linear models. However, the ap-
plication of SSA forecasting has proven to be an increasingly
popular approach with remarkable results, since the work by
[17], in which SSA significantly outperformed ARIMA. Fur-
ther comparison studies into other forecasting algorithms
typically include SSA as a benchmark, see e.g. [18, 22].

The study of catastrophic events has also developed into
an area within the field of event studies in economics. Recent
papers, such as [1, 2, 4] have focused on how COVID-19
and government reactionary policy changes have affected a
range of different economic measures. The relation between
COVID-19 and industrial production has been addressed in
[7], however, it provides little inference from results, as well
as only considering the IIPs in aggregate.

During such events, the economy suffers from shocks, and
thus economic time series experience structural breaks. This
brings complexity to the form of series and highlights the
necessity for the correct application of the SSA techniques
for trend extraction and subcycle separation.

In this paper, we study the impact of COVID-19 by de-
composing the monthly time series of IIPs into the sum
of a trend of complex shape and seasonal subcycles using
DerivSSA and Basic SSA, two algorithms from the SSA
methodology [11]. A combination of these algorithms allows
for accurate trend extraction, hence the severity of the im-
pact of the pandemic can be properly evaluated.
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2. SSA METHODOLOGY

SSA is a methodology comprised of a family of non-
parametric methods rooted in the same idea of decompos-
ing a time series into identifiable components. Its flexibil-
ity stems from the modifications made to the Basic SSA
algorithm [11, 12, 14]. Historically, two separate, yet simul-
taneously progressing, streams of research have culminated
in the present-day methodology of SSA. One set of devel-
opments occurred in the Soviet Union and was disclosed
after its fall in [6] (unsurprisingly this reference along with
other literature from the time are in Russian, however sim-
ilar English alternatives, such as [5] exist), whilst the other
took place in the West and was well publicised, see e.g.
[3, 8, 25, 26].

Further, the core version of SSA, Basic SSA, is intro-
duced, along with its modification DerivSSA. The latter is
prominently used for decomposing a time series into the sum
of components (usually subcycles) that are better separated
from each other.

2.1 Basic SSA

A brief overview of the Basic SSA algorithm is provided
below, however for an in-depth description of Basic SSA
with full technical details see [12, 15, Chapter 1].

Let F = (x1, . . . , xN ) be a time series of length N . Given
a window length L (1<L<N), a sequence of L-lagged vec-
torsXi=(xi, . . . , xi+L−1)

T , i = 1, 2, . . . ,K=N−L+1, is con-
structed and composed into the matrix X = (xi+j−1)

L,K
i,j=1 =

[X1 : . . . : XK ] . This matrix has size L × K and is often
called the ‘trajectory matrix’. It is a Hankel matrix, which
means that all the elements along the antidiagonals i+j=
const are equal. The columns Xj of X can be considered as
vectors in the L-dimensional space R

L.
The singular value decomposition (SVD) of X yields a

sum of L matrices of rank 1

X =

L∑

j=1

√
λjUjV

T
j ,

where λj , j = 1, . . . , L, are eigenvalues of the matrix

XXT (typically given in descending order), Uj are the cor-
responding eigenvectors (left-singular vectors), and Vj =
XTUj

√
λj are factor vectors (right-singular vectors), to-

gether they form eigentriples. The SVD is closely related
to the eigenvalue decomposition of XXT , namely XXT =∑L

j=1 λjUjU
T
j . In the reconstruction stage of Basic SSA,

an averaging over the antidiagonals of the matrix, whose
columns are projections of Xi on Uj , is performed, which
yields some Hankel matrix that is in a one-to-one correspon-
dence with the time series Fj (the j-th elementary com-

ponent), then F =
∑L

j=1 Fj is the Basic SSA decompo-
sition of the original time series F into the sum of, usu-
ally simple structured, components that can be grouped so
that they have some interpretation. For example, we may

create groups that correspond to a trend, subcycles of cer-
tain frequency, and components with non-regular behaviour.
The possibility to swap operations of diagonal averaging and
grouping is described in more detail in [11, 12, 15].

2.2 DerivSSA

DerivSSA is a modification of Basic SSA which differs in
the way that the trajectory matrix is constructed, see [13]
for thorough explanations of the idea and mechanism be-
hind this method. In short, the difference lies in that the
trajectory matrix is constructed as XD = [X1 : . . . : XK :
X2 −X1 : . . . : XK −XK−1] instead of X, hence changing
the SVD, since the eigentriples considered now correspond
to the new matrix XD. Following the rest of the steps in
a similar fashion to Basic SSA, we obtain F =

∑L
j=1 F̃j ,

the DerivSSA decomposition of the original time series F ,
where the elementary components F̃j are usually sorted by
decreasing frequency. This is due to the fact that the trajec-
tory matrix with the sequential differences causes changes
in the component contributions resulting in an increase in
the impact of higher frequency components [11, 13].

3. THE DATA

The industrial production data considered in this paper
has been acquired from Eurostat, the European Commu-
nity’s official statistical agency. It consists of 24 unadjusted
monthly series, covering 3 countries: France, Germany and
the UK; over 8 main sectors of industry: Food Products,
Chemicals, Basic Metals, Fabricated Metals, Machinery and
Equipment, Electrical Equipment, Vehicles (motor vehicles,
trailers and semi-trailers), and Utilities (electricity, gas,
steam and air conditioning supply). These are shown in Fig-
ure 1, where green corresponds to France, blue to Germany,
and red to the UK IIPs. The data spans different time peri-
ods for the different countries, depending on the availability
from the source. The sample period begins in January 1990
for France, in January 1991 for Germany, and in January
1998 for the UK. It ends in October 2020 for the UK, but
in November 2020 for both France and Germany.

There have been several papers studying the same 24
IIPs, see e.g. [17, 19, 21, 24], due to their good represen-
tation of the industry, since these sectors cover over 50% of
industrial production in their respective countries.

4. APPLICATION OF SSA TO IIPS

The choice of algorithm from the SSA methodology is
crucial for a correct decomposition of the given time series
into the sum of a trend, a seasonal component, and a non-
regular component. A good decomposition of the seasonal
component into a sum of cycles of different frequencies may
also be of interest. Further in this section, we demonstrate
how to choose the appropriate algorithm for decomposing
the IIPs.
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Figure 1. Original time series of IIPs for Germany, France and the UK.
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Figure 2. W-correlation matrices of elementary components
of the Basic SSA decomposition for eight German IIPs.

4.1 Separability of elementary components

We begin by applying Basic SSA with parameter L = 12
to the German IIPs. This particularly small value for L is
chosen because IIPs tend to have rather complex trends,
which would be very difficult to capture with a large
window length.

The quality of the Basic SSA decomposition can be as-
sessed by looking at plots of the L elementary components
and the plot of the W-correlation matrix of these compo-
nents. This matrix shows the level of orthogonality of com-

Figure 3. W-correlation matrices of elementary components
of the DerivSSA decomposition for eight German IIPs.

ponents and allows for easy identification of whether ele-
mentary components are well separated or mixed.

We can see in Figure 2 that the Basic SSA decompo-
sition contains components, many of which are correlated
since there are numerous dark grey off-diagonal entries. The
darkness of the shade corresponds to a higher degree of cor-
relation, i.e. a lower level of separability. Thus, Basic SSA
fails to give a good decomposition with separable, non-mixed
components for the German IIPs.

Following this, we apply DerivSSA with L = 12 to the
German IIPs. Figure 3 depicts the W-correlation matrices
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for the DerivSSA decomposition and we can observe that
the elementary components are almost uncorrelated except
for blocks of size 2 by 2. These blocks indicate that the cor-
responding components are likely to be oscillations with the
same frequency, which can be confirmed by plots of the el-
ementary components and their 2D scatterplots [11, Sect.
2.1.5]. Thus, the DerivSSA decomposition allows for an eas-
ier grouping of elementary components, with a clearer inter-
pretation. Specifically, we create groups as follows: group 1
contains the first elementary component, group 2 contains
the second and third elementary components, group 3 con-
tains the fourth and fifth elementary components, and so
on.

Comparing the W-correlation matrices for Basic SSA and
DerivSSA decompositions, we conclude that the use of De-
rivSSA is more beneficial for studying the German IIPs.
Note that the W-correlation matrices for French and UK
IIPs are rather similar to the German case.

4.2 Frequency estimation and interpretation
of grouped components

For an interpretation of components of the grouped De-
rivSSA decomposition, we apply the function parestimate
from the package Rssa in R to these components. In par-
ticular, this function provides estimators by the ESPRIT
method for the frequency and rate parameters of the set of
eigenvectors given, more details can be found in [20, Sec-
tion 2.4.2.4. and 3.8.2] and [10, 12, 16].

In Table 1 we show estimators of the period of compo-
nents for the German Food Production IIP. We can observe
that estimators of the period are close to values 2, 2.4, 3, 4,
6, and 12 which are usually observed in seasonal data.

In Figure 4 we depict components of the grouped De-
rivSSA decomposition for the German Food Production IIP,
where the last component G7 represents the trend. We can
observe that the cyclical behaviour of components G1,. . . ,
G6 is rather stable in terms of the period but the amplitude
can vary. We also see that the amplitude of components
with 2-, 2.4-, 3-, and 4-points per period is smaller than the
amplitude of components with 6- and 12-points per period.
Since the amplitude of components G5 and G6 is rather sta-
ble, we conclude that the single application of DerivSSA to

Figure 4. Components of the grouped DerivSSA
decomposition for the German Food IIP.

the German Food Production IIP is sufficient, as it resulted
in a good decomposition of the original time series into a
sum of components with clear interpretation.

In Table 2 we show estimators of the period of compo-
nents of the grouped DerivSSA decomposition for the UK
Vehicles IIP. Again these components can be interpreted as
cycles with approximately 2-, 2.4-, 3-, 4-, 6-, and 12-points
per period.

In Figure 5 we observe the components of the grouped
DerivSSA decomposition for the UK Vehicles IIP, we can
see that these cycles have non-constant amplitude. The 12-
month cycle (component G6) is not well extracted because
it is poorly separated from the trend, while the 6-month

Table 1. Estimators of the period of components of the grouped DerivSSA decomposition for the German Food IIP

Group 1 2 3 4 5 6

Elementary components 1 2&3 4&5 6&7 8&9 10&11

Estimator of the period 2.000 2.362 2.912 4.004 5.992 12.129

Table 2. Estimators of the period of components of the grouped DerivSSA decomposition for the UK Vehicles IIP

Group 1 2 3 4 5 6

Elementary components 1 2&3 4&5 6&7 8&9 10&11

Estimator of the period 2.000 2.393 2.943 3.988 5.810 11.649
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Figure 5. Components of the grouped DerivSSA
decomposition for the UK Vehicles IIP.

cycle (G5) also suffers from this, although the degree of non-
separability is weaker.

Particularly, G6 shows higher volatility corresponding
to 2020, when the trend exhibits the essential structural
changes. Therefore, we have to decompose the component
G6 into the sum of a nice 12-month cycle and a remainder,
which can be interpreted as a correction to the trend G7.

4.3 Decomposition of the component G6 for
the UK Vehicles IIP

We notice that for the example of the grouped DerivSSA
decomposition for the UK Vehicles IIP (where the influence
of COVID-19 is particularly harsh), there are one or more
components with a non-simple shape, that is, their ampli-
tudes show high disparities caused by outside influence of
other components due to incorrect separation and, there-
fore, require a further decomposition. Since the component
G6 has the form of a corrupted 12-month cycle, we have to
decompose G6 into the sum of an appropriate 12-month cy-
cle and a remainder, as previously mentioned. This task can
be achieved by Basic SSA with large window length. In Fig-
ure 6 we show the grouped Basic SSA decomposition with
L = 60 for the component G6, where the group S1 contains
the first and second elementary components and the group
S2 contains all other elementary components

Figure 6. Components of the grouped Basic SSA
decomposition for the component G6.

Figure 7. Components of the grouped Basic SSA
decomposition for the component S1.

The component S1 still has the form of a corrupted 12-
month cycle, but there has been some improvement com-
pared to G6, since the degree of corruption is lower, in the
sense that the amplitude variation is less volatile. However,
there is still a drastic increase in amplitude in 2020 indicat-
ing the presence of outside impact from COVID-19 which
should be attributed to the trend. Hence, we have to de-
compose S1 again for a better extraction of the 12-month
cycle.

Figure 7 depicts the grouped Basic SSA decomposition
with L = 60 for the component S1, where the group T1
contains the first and second elementary components and
the group T2 contains all other elementary components. We
observe that the component T1 has the shape of a nice 12-
month cycle without any drastic changes in amplitude. Fi-
nally, we consider the components S2 and T2 as a correction
to the trend, specifically the trend for the UK Vehicles IIP
is the sum of G7, S2, and T2.

For Chemicals, Basic Metals, Fabricated Metals, Machin-
ery and Equipment, and Electrical Equipment IIPs it is suf-
ficient to apply the Basic SSA decomposition to G6 once for
obtaining a good 12-month cycle.

5. IMPACT OF COVID-19 ON IIP TRENDS

In Figure 8 we show trends for all IIPs which are obtained
by a combination of DerivSSA and Basic SSA decomposi-
tions.

For all the series the initial step is to apply DerivSSA
with L = 12 and r = 12. In the DerivSSA decomposition,
the components 1 to 9 correspond to subcycles of the sea-
sonality (ordered in decreasing frequency), components 10
and 11 are the 12-month cycle that may need further clean-
ing, and component 12 corresponds to the trend that may
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Figure 8. Trends of IIPs for Germany, France and the UK
from 2018 to 2020.

need a correction. For Utilities and Food IIPs, due to the
absence of a complex trend, one DerivSSA decomposition is
sufficient and no further work is required for a good sepa-
ration, hence components 1 to 11 can be attributed to the
seasonality immediately and component 12 is attributed to
the trend. For other IIPs further decomposition is required,
hence we have to decompose the corrupted 12-month cycle
by applying Basic SSA with L = 60. For the Vehicle IIPs
for Germany and the UK, we repeated iteratively the Basic
SSA decomposition to extract the 12-month cycle, as shown
in Section 4.3.

To measure the impact of COVID-19, we compute the
decline of the IIP trend as follows

D = 100% min
t∈M

It − IOct2019

IOct2019
,

where It is an IIP at month t and M is the set of months in
2020. We present this decline for the 3 countries and 8 IIPs
in Table 3. We observe that the declines of different sectors
are rather similar to each other across the three countries.

Table 3. The decline of IIPs trends as a percentage change

IIP series Germany France UK

Food Products -0.1% -1.2% -1.3%
Basic Metals -20.7% -30.6% -19.1%
Chemicals -5.2% -13.6% 0.3%
Fabricated Metals -17.4% -28.6% -19.5%
Utilities -4.2% -3.2% -1.1%
Machinery&Equipment -14.2% -22.1% -31.0%
Electrical Equipment -11.9% -18.1% -15.1%
Vehicles -45.5% -52.7% -60.2%

As expected, the results in Table 3 corroborate the hy-
pothesis that the industrial production of essential products,
such as food and utilities, would be less negatively impacted
than that of non-essentials, like vehicles. This is a good indi-
cation that the procedure shown has been correctly applied
and the trends successfully extracted, allowing for reliable
results and inference. Hence, the demonstration can be ap-
propriate for other challenging cases where structural breaks
and weak separability are present.

In fact, the decline of the Food IIPs is very small across
all countries. This can be explained by the countries’ need
to maintain domestic food production at a similarly high
level to overcome shortages created by the pandemic’s effect
on the food exports from other countries, coupled with the
consumer’s unwavering demand for food.

Another inference from these results is that the Chem-
icals IIPs did not suffer as much as other sectors, in fact,
the UK saw an increase during 2020. This may be linked
to the type of shock experienced and other specifics of the
chemical industry. In particular, since the economic decline
was caused by the COVID-19 pandemic, chemicals used in
medications or disinfectants also became essential in this
case, hence explaining the negligible influence on the indus-
trial production of chemicals. Additionally, pharmaceutical
companies from the UK and Germany have actively car-
ried out research and created vaccinations for the virus (e.g.
Oxford–AstraZeneca, Pfizer–BioNTech respectively) which
heavily rely on certain chemicals and is thus reflected in the
results.

For the rest of the IIPs which were quite strongly im-
pacted, there seem to be some differences between countries.
For example, the UK experienced an abnormally high fall in
Machinery and Equipment IIP in comparison to the other
countries, whereas France had a similar, large decline in Ba-
sic and Fabricated Metals IIPs. This shows that indeed the
influence of COVID-19 has been non-uniform across sectors
of production and countries.
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