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Modified recurrent forecasting in singular
spectrum analysis using Kalman filter and its
application for Bicoid signal extraction
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One of the important topics in Drosophila melanogaster
is statistical analysis of bicoid protein gradient. The bicoid
protein gradient plays an important role in the segmentation
stage of embryo development in the head and thorax and
also has considerable noise. Therefore, it has been considered
by many researchers. In this paper the state space model and
Kalman filter algorithms are used for noise elimination and
smoothing bicoid gene expression. The state-space allows
the unobserved variables, each with a specific interpretation,
to be included in the estimate with the observed model and
can be analyzed using the Kalman filter algorithm. Then,
the less noise bicoid gene expression are used for forecast
by singular spectrum analysis (SSA) method. The results
with strong evidence indicate that the proposed method can
be considered as a powerful technique in the analysis and
prediction of gene expression measurements.
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gular spectrum analysis, State space form, Recurrent fore-
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1. INTRODUCTION

This belief has been widely accepted that the pattern
of morphogen products plays a very important role in the
process of developing a simple fertilized cell to a complex
multicellular organism. One of the most important of mor-
phogens is the bicoid, first identified by Nsslein-Volhard in
1988 [1]. During the ovogenesis bicoid mRNA is localised at
the anterior end of the egg. After fertilization, bicoid trans-
lation begins, and as a result, the bicoid protein, which is
distributed in the anterior-posterior (A-P) axis of the egg,
form a concentration gradient that determines most aspects
of head and thorax development [2]. Extensive studies show
that bicoid morphogen plays an important role in developing
of the anterior structure of Drosophila. For example, Frohn-
hfer et al. [3] showed that embryos receiving various doses
of bicoid protein have differently sized anterior structures,
Figure 1, and in the absence of bicoid, anterior structures of
body are replaced with posterior regions.
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Newadays, there exist many datasets in the field of genet-
ics and expression measurement and also there are various
parametric and non-parametric methods and techniques for
analyzing this dataset [4, 5, 6]. Historically, these datasets
have been analyzed using parametric methods. [7, 8] But
most of these parametric methods require a limiting condi-
tion such as the stationary assumption, which has led to
more use of non-parametric methods. One of these non-
parametric methods that has recently been considered by
many researchers in the field of genetics is the SSA method
[9, 10]. For example, Zara Ghodsi et al. [11] used six differ-
ent parametric and non-parametric methods autoregressive
integrated moving average (ARIMA), autoregressive frac-
tionally integrated moving average (ARFIMA), exponential
smoothing (ETS), neural networks (NN), synthesis diffusion
degradation (SDD) and SSA to determine the most efficient
method in the analysis of bicoid genetic data. Their results
show the superiority of the SSA method over other methods
using the Root Mean Squared Error criteria (RMSE). Also
Hassani et al. [12] introduced a modified version of the single
spectrum analysis to filter and extract the expression signal
of the bicoid gene and showed that it is more efficient than
the original SSA. Another comprehensive description of the
theoretical and practical aspects of SSA for bicoid signal
extraction with several examples can be found [13, 14].

The SSA method is a powerful nonparametric technique
which has both filtering and forecasting capabilities, and it
is useful for univariate or multivariate time series data. Un-
like standard methods such as ARIMA methods, the SSA
method does not require the assumption of stationary and
linearity, and since most data are non-stationary, the SSA
method is more general and may be more relevant to a par-
ticular situation. The introduction of SSA dates back to
work by Broomhead and King [15, 16] in 1986. Since then,
there have been different attempts to improve and using this
method in time series analysis including meteorology, ma-
rine science, medicine, signal processing, and econometrics.
While reviewing all the work done in the SSA method is
beyond the scope of this paper, those interested can refer
to the cases [17, 18, 19, 20, 21, 22, 23, 24, 25]. A complete
explanation of the SSA technique can be found in the books
by [26, 27, 28].
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Figure 1. The BCD protein is a morphogen. (A) various doses of bcd affects the size of the head in Drosophila embryo. (B)
Nuclear divisions in 14 cleavage cycles produce a syncytial blastoderm. Figures adapted from [3] with permission.

This study extends the application of SSA method into

the field of Biology and attempts to predict Bicoid gene

expression using the SSA method. The SSA method first

breaks down the observations of bicoid gene expression into

two components of noise and signal (noise-free). Then it cal-

culates the forecast by reconstructing the original series us-

ing the signal component and a recursive linear relationship

from the original series. Since bicoid gene expression data

are often associated with significant noise, the forecasts are

also contaminated with noise which subsequently lead to a

reduction in forecast accuracy. Therefore, to improve the

performance of recursive prediction for bicoid gene expres-

sion, this paper intends to first generate a noise less series

using the space state equations and the Kalman filter algo-

rithm, and then to advance new observations using the SSA

recursive prediction method.

The rest of this paper organized as follows. Section 2

presents a review of the state-space model and the Kalman

filter algorithm. Section 3 presents a short description of

the SSA and SSA-R algorithm. In section 4 we introduce the

newly SSA-R forecasting method based on the Kalman filter

algorithm. In Section 5, we will present empirical results and

the efficiency of new technique is compared with the original

SSA-R method via simulation studies. We will present the

conclusions in Section 6.

2. A SHORT DESCRIPTION OF THE
STATE-SPACE AND KALMAN FILTER

ALGORITHM

State-space models are broad models that include many
linear and nonlinear models, and first introduced by Kalman
[29] and Kalman and Bucy [30]. The goal of the state space is
to infer information about the states, given the observations,
as new data arrives. A well-known algorithm for performing
this method is the Kalman filter, which does not require
stationary and inversions. More detailed information on the
theory of the state-space model and Kalman filter can be
found in [31, 32].The state-space model and kalman filter
algorithm are concisely presented below, and in doing so we
mainly follow [33].

In brief, a state-space model for time series observation
{yt : t = 1, . . . , N} includes a measurement equation and
a transition equation relating in the measurement equation
of the observed data to a state vector, and this state vector
in the transfer equation is obtained as a markovian process.
The state-space equations for t = 1, . . . , N have the follow-
ing form:

yt = Ztαt + εt, εt ∼ N(0, σ2
ε )(1)

αt = Ttαt−1 + ηt, ηt ∼ N(0,Qt)(2)

where Zt is an 1 × m matrix, Tt is an m × m transition
matrix, αt is an m × 1 state vector, α0 ∼ N(a0, P0) is the
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initial state. Note that εt and ηt represent disturbances in
measurement equation and transition equation, respectively
and they are mutually uncorrelated variables and are also
uncorrelated with the initial state. In state space equations
if matrices Zt, Tt and Qt are constant with respect to time,
the model is called time invariant. In this models, the param-
eters are usually easily estimated, so in many applications
the time invariant model is used.

To provide a simple illustration of the results of this sec-
tion, consider model

yt = μt + εt, εt ∼ N(0, σ2
ε )

where μt is the trend component and εt is the disturbance
component. The component μt is taken to be locally linear

μt = μt−1 + βt−1 + ηt, ηt ∼ N(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ N(0, σ2
ζ )

where βt is slope, ηt and ζt are disturbances that are mutu-
ally uncorrelated and are also uncorrelated with the dis-
turbance εt. In the state space form of this model, for
t = 1, . . . , N

αt =

(
μt

βt

)
, Zt =

(
1 0

)
T =

(
1 1
0 1

)
, Q =

(
σ2
η 0
0 σ2

ζ

)

This model is referred to as a local linear trend.

Kalman filter

Kalman filter is the most famous algorithm for analyzing
state-space equations. In the Gaussian state-space model,
the Kalman filter is a set of recursive equations to obtain
the estimates of the vector αt, filtering and predicting time
series data based on observations Yt = {y1, ..., yt}. The filter
includes two sets of predicting and updating equations.

In order to perform Kalman filter algorithm, first let
Yt = {y1, . . . , yt}, where yj are the observed variable,
at−1 = E[αt−1|Yt−1] is optimal estimator of αt−1 and
pt−1 = E[(αt−1−at−1)(αt−1−at−1)|Yt−1] is MSE matrix of
at−1. Therefore by having at−1 and pt−1, the Kalman filter
is, for t = 1, . . . , N ,

at|t−1 = Ttat−1|t−1,(3)

pt|t−1 = Ttpt−1|t−1T
′
t +Qt,(4)

ŷt|t−1 = Ztat|t−1,(5)

υt = Zt(αt − at|t−1) + εt,(6)

Ft = V ar(υt|Yt−1)

= Ztpt|t−1Z
′
t + σ2

ε ,(7)

at|t = at|t−1 + pt|t−1Z
′
tF

−1
t υt,(8)

pt|t = pt|t−1 − pt|t−1Z
′
tF

′−1
t Ztp

′
t|t−1(9)

Where equations (3) and (4) are prediction equations, equa-
tion (5) is the optimal predictor of yt (the value of yt is
obtained free-noise), equations (6) and (7) are the predic-
tion error and its associated MSE matrix, respectively and
equations (8) and (9) are updating equations.

3. A SHORT DESCRIPTION OF THE SSA

The SSA is a nonparametric method for data analysis
that can break down series into several components and pre-
dict. This method involves decomposition and reconstruc-
tion stages, each of which includes two separate steps. The
Basic SSA method is briefly presented below, and in doing
so, we mainly follow [34, 26].
Stage 1. Decomposition
Decomposition stage includes two steps: embedding and Sin-
gular Value Decomposition (SVD).
Step 1. Embedding
At the first step, first the time series YN = {y1, ..., yN}
is organized into the matrix X = {X1, ..., XK}, where
Xi = (yi, ..., yi+L−1)

′ ∈ R
L, L is the window length and

2 ≤ L ≤ N/2 and K = N −L+1. In this procedure, matrix
X is called trajectory matrix, which is also a Hankel matrix.
Step 2. Singular Value Decomposition (SVD)
In the next step of decomposition stage, the trajectory
matrix X is broken into the sum of rank-one matrices. If
λ1, ..., λL, U1, ..., UL be the eigenvalues, eigenvectors of the
matrix XX′, respectively and d = max{i, such that λi >
0} = rank(X), then the SVD of the trajectory matrix can
be written as X = X1+ . . .+Xd, where Xi =

√
λiUiV

′
i and

Vi = X′Ui/
√
λi(i = 1, . . . , d).

Stage 2. Reconstruction
Reconstruction stage includes two steps: grouping and diag-
onal averaging.
Step 1. Grouping
In this step, the elementary matrices Xi are separated into
several groups and sums the matrices within each group. In
this step the aim is the signal and noise components to be
distinguished. If signal group of indices i1, . . . , ir is denoted
by Ir = {i1, . . . , ir}, then the matrix XIr corresponding to
the group Ir is defined as XIr = Xi1 + . . .+Xir .
Step 2. Diagonal Averaging
In the diagonal averaging step, first the matrices obtained
from the grouping step are converted into a Hankel matrix
and then they are transformed to a time series.

3.1 SSA method parameters

There are two important parameters to the SSA method.
The first parameter is the window length (L), which is re-
quired in the embedding step to form the trajectory ma-
trix. Improper selection of this parameter will lead to im-
proper time series decomposition and grouping. Unfortu-
nately, there is no single way to determine L, but there is
a set of general principles and rules that have good theo-
retical and practical support and can help you choose the
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right L parameter. The second parameter that plays a key
role in signal reconstruction over a time series is the num-
ber of eigentriples that explain the signal and are used in
its reconstruction. This parameter is usually denoted by r
and is called the reconstruction parameter. The information
contained in eigenvalues and eigenvectors can be used to de-
termine r. For more information on choosing the L and r
parameters, can refer to [26, 28].

The SSA method has the capability of generate pre-
dictions after performing decomposition and reconstruction
steps using the two forecasting methods Recurrent (SSA-R)
and Vector (SSA-V) [27]. In what follows, forecasting with
SSA is done with a greater focusing on SSA-R.

3.2 Recurrent SSA forecasting (SSA-R)

In order to obtion SSA-R forecasts for the time series
YN = {y1, . . . , yN}, suppose that Ir = {i1, . . . , ir} be the
selected set of eigentriples from the signal group, Ui ∈ R

L

and i ∈ Ir be the corresponding eigenvectors, Ui ∈ R
L−1

be the vector including of the first L − 1 components of
the vector Ui, πi be the last component of the vector Ui,
ν2 =

∑
i∈Ir

π2
i , and ỸN = {ỹ1, . . . , ỹN} be the series recon-

structed by Ir. Therefore SSA-R forecasts can be presented
as follows:

zi =

{
ỹi, i = 1, . . . , N∑L−1
j=1 φjzi−j , i = N + 1, . . . , N + h.

where zN+1, ..., zN+h are the h step ahead the SSA-R
method forecasts and φ1, . . . , φL−1 are called linear recur-
rent relation (LRR) coeffcients and be computed as follows:

R = (φL−1, . . . , φ1)
′ =

1

1− ν2

∑
i∈Ir

πiUi

Next, we introduce the newly suggested SSA-R forecasting
method.

4. NEW SSA-R FORCASTING USING
KALMAN FILTER ALGORITHM

Suppose the initial model for observations {yt : t =
1, . . . , N} is

(10) yt = st + εt

where st and εt are the signal and the noise components,
respectively. Therefore if X is L ×K trajectory matrix for
observations {yt : t = 1, . . . , N}, it is clear that:

(11) X = S+ ε

where S and ε represent L×K trajectory matrices for these
components.

For any time series with constant window length L, there
are L−1, SSA-R coefficient φ1, . . . , φL−1, which are obtained

from eigenvectors of XX′. Therefore if the observational se-
ries includes noise, it is evident that the eigenvectors ob-
tained from the trajectory matrices are also contaminated,
and the estimated coefficients φ1, . . . , φL−1 may not be very
accurate. Using these incorrect coefficients play an impor-
tant role in forecasting and will reduce the accuracy of the
prediction. We will use the state-space equation and Kalman
filter algorithms to obtain data with less noise and improve
our prediction using the SSA-R method. With this idea, we
will define a new prediction method of SSA based on the
Kalman filter (KF-SSA-R).

Let {ŷt : t = 1, . . . , N} be a less-noise time series gener-
ated by the Kalman filter equation (5), X̃ be the trajectory
matrix of less-noise series and λ̃1, . . . , λ̃L and Ũ1, . . . , ŨL are

the eigenvalues and eigenvectors of X̃X̃
′
, respectively. Let Ir

be the selected set of eigentriples, then the coefficients of the
KF-SSA-R method are:

(12) R = (φ̃L−1, . . . , φ̃1)
′ =

1

1− ν̃2

∑
i∈Ir

π̃iŨi

where Ũi is the vector including of the first L−1 components
of the vector Ũi, π̃i is the last component of the vector Ũi

and ν̃2 =
∑

i∈Ir
π̃2
i . The h step ahead forecast for the KF-

SSA-R method is:

(13) zi =

{
˜̃yi, i = 1, . . . , N∑L−1
j=1 φ̃jzi−j , i = N + 1, . . . , N + h.

˜̃yi, i = 1, ..., N are the series reconstructed by Ir.
In the next section, in order to evaluate the results of

the KF-SSA-R forecasting method, we compare the forecast
accuracy of orginal SSA-R and KF-SSA-R methods using
the Root Mean Squared error criteria (RMSE).

5. EMPIRICAL RESULTS

In this section, we compare the performance of original
SSA-R and KF-SSA-R forecasting methods using simulated
time series and real data based on the RMSE criteria. The
time series YN = {y1, . . . , yN} is divided into two parts: a
training set and a test set. To compare the SSA-R and KF-
SSA-R forecasting methods, we will find the ratio of RMSE
given by:

RRMSEh =
RMSEh(KF-SSA-R)

RMSEh(original SSA-R)
(14)

=
(
∑N−h

t=M (yt+h − ŷt+h|t)
2)1/2

(
∑N−h

t=M (yt+h − ˆ̂yt+h|t)2)1/2
,

Where N is the length of time series data, M is the num-
ber of observations in the training set and h is the forecast
horizon. On the other hand ŷt+h|t and ˆ̂yt+h|t are the h-step
ahead forecast generated by KF-SSA-R and SSA-R, respec-
tively. If the RRMSEh < 1, then the KF-SSA-R procedure
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performs better than SSA-R. It should be noted that to per-
form calculations related to SSA method and Kalman filter,
R software programming environment and Rssa and stats
packages have been used.

5.1 Simulation studies

In the following simulation studies, 150 data points were
generated using different models and normally distributed
noise, then we consider 100 observations as the training
sample, i.e M = 100, to obtain less noisy data by using
State space equations and Kalman filter alghorithm in the
Kf-SSA-R method. In both methods, the number of eigen-
values for reconstruction and forecasting (r) were obtained
based on the rank of the trajectory matrix. The simulation
for each of the models were repeated 1000 times and the
average of RRMSEs were computed. In order to evaluate
the effect of noise levels on forecasting results, different
levels of signal to noise variance ratios (SNR) for various
forecast horizons were used as SNR = 0.125, 0.5, 1, 1.5, 10.

Example 5.1. Sin series
Consider the Sin series for t = 1, 2, . . . , 150:

yt = sin(
πt

6
) + εt, εt ∼ N(0, σ2

ε ),

where sin(πt6 ) is the signal component and εt is the noise
component. In both methods SSA-R and KF-SSA-R, based
on the rank of the trajectory matrix, the first two eigenvalues
were chosen for reconstruction and forecasting (r = 2). In
addition, structural models using the StructTS option in R
software were used to obtain low-noise data in the Kf-SSA-R
method. Figure 2 shows the RRMSE for different values of
SNR for different lengths of forecast horizons h = 1, 3, 6, 12
of the Sin series. Based on the RRMSE results obtained from
this figure, it can be concluded that the KF-SSA-R method
forecasting performs better than the SSA-R method, espe-
cially when the values of the SNR are low and also the val-
ues of window length (L) are low. It can also be seen that
there are no differences between RRMSEs for various fore-
cast horizons h. In Table 1, the RRMSE values are presented
the ratio of the minimum RMSE of the KF-SSA-R method
over all possible window lengths to the minimum RMSE
of the SSA-R method over all possible window lengths for
various values of forecast horizons h. Based on the results
obtained from this table, it can be concluded that the SSA-
R method forecasting using Kalman filter performs better
than the performance of SSA-R method.
Example 5.2. Deterministic linear trend model
As a second example, consider the local linear trend model
for t = 1, 2, . . . , 150:

yt = μt + εt, εt ∼ N(0, σ2
ε )

μt = μt−1 + βt−1 + ηt, ηt ∼ N(0, σ2
η)

βt = βt−1 + ζt, ζt ∼ N(0, σ2
ζ )

Table 1. RRMSE for the ratio of the minimum RMSE of the
KF-SSA-R method over all possible window lengths to the
minimum RMSE of the SSA-R method over all possible

window lengths

h SNR RRMSE

1 10 0.83
1.5 0.79
1 0.67
0.5 0.62

0.125 0.59
3 10 0.83

1.5 0.78
1 0.68
0.5 0.62

0.125 0.60
6 10 0.84

1.5 0.79
1 0.68
0.5 0.63

0.125 0.59
12 10 0.82

1.5 0.79
1 0.68
0.5 0.63

0.125 0.60

where μ0 = 2.5, β0 = 0.005, εt is the disturbance component,
ηt and ζt are disturbances that σ

2
η = σ2

ζ = 0. This model are
called deterministic linear trend model. For both methods,
based on the rank of the trajectory matrix, the first two
eigenvalues were chosen for reconstruction and forecasting
(r = 2). In addition, structural models using the StructTS
option in R software were used to obtain low-noise data in
the Kf-SSA-R method. Figure 3 shows the RRMSE for dif-
ferent values of SNR for different lengths of forecast horizons
h = 1, 3, 6, 12 of the deterministic linear trend models. Simi-
lar to sin model, Based on the RRMSE results obtained from
this figure, it can be concluded that the KF-SSA-R method
forecasting performs better than the SSA-R method, espe-
cially when the values of the SNR are low and also the val-
ues of window length (L) are low. It can also be seen that
there are no differences between RRMSEs for various fore-
cast horizons h. In Table 2, the RRMSE values are presented
the ratio of the minimum RMSE of the KF-SSA-R method
over all possible window lengths to the minimum RMSE
of the SSA-R method over all possible window lengths for
various values of forecast horizons h. Based on the results
obtained from this table, it can be concluded that the SSA-
R method forecasting using Kalman filter performs better
than the performance of SSA-R method.

5.2 Real data

In this section, to appraise the efficiency of our presented
algorithm, the efficiency of orginal SSA-R forecasting algo-
rithm and SSA-R forecasting algorithm using Kalman filter
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Figure 2. RRMSE for Sine series.

Table 2. RRMSE for the ratio of the minimum RMSE of the
KF-SSA-R method over all possible window lengths to the
minimum RMSE of the SSA-R method over all possible

window lengths

h SNR RRMSE

1 10 0.85
1.5 0.81
1 0.73
0.5 0.69

0.125 0.63
3 10 0.85

1.5 0.80
1 0.73
0.5 0.68

0.125 0.62
6 10 0.84

1.5 0.80
1 0.72
0.5 0.68

0.125 0.64
12 10 0.86

1.5 0.81
1 0.74
0.5 0.69

0.125 0.62

are compared for real data. Five Drosophila melanogaster

embryos introduced by Alexandrov et al. [14], which was

originally obtained from FlyEx database [35, 36] are consid-

ered. The biological characteristics of these series and the
statistical methods performed on them could be found in
[11, 12, 36, 37, 38, 39, 40]. Figures 4 show the time series
plots of these data sets.

In Table 3, the value of RRMSE are presented for vari-
ous values of forecast horizons h. At each of forecast hori-
zons h, different values of window length (L) and r have
been employed. For both methods, the number of eigen-
values for reconstruction and forecasting (r) were obtained
based on the rank of the trajectory matrix. In addition,
structural models using the StructTS option in R soft-
ware were used to obtain low-noise data in the Kf-SSA-R
method. Based on the results obtained from this table, it
can be concluded that the SSA-R method forecasting us-
ing Kalman filter performs better than the performance
of SSA-R method, especially when the values of window
length (L) are low. This is consistent with previous results
in simulated series. In Table 4, the RRMSE values are pre-
sented the ratio of the minimum RMSE of the KF-SSA-
R method over all possible window lengths to the mini-
mum RMSE of the SSA-R method over all possible window
lengths and the ratio of the minimum RMSE of the KF-
SSA-R method over all possible window lengths to RMSE
from forecasting equation in state space model for vari-
ous values of forecast horizons h. Based on the results ob-
tained from this table, it can be concluded that the SSA-
R method forecasting using Kalman filter performs better
than the performance of SSA-R method and state space
model.
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Figure 3. RRMSE for Deterministic linear trend series.

Table 3. RRMSE for real data of the Drosophila melanogaster embryos

Embryo h RRMSE (L,r)

ab2 1 0.86 (14,3) 0.90 (16,3) 0.92 (36,2) 0.79 (12,2) 0.87 (32,5)
3 0.79 (13,3) 0.87 (26,5) 0.92 (24,3) 0.95 (28,2) 0.75 (20,4)
6 0.93 (30,5) 0.98 (33,4) 0.92 (27,2) 0.74 (13,3) 0.87 (35,3)
12 0.77 (16,3) 0.80 (14,2) 0.91 (27,4) 0.94 (25,3) 0.91 (20,2)

ab7 1 0.96 (36,2) 0.98 (36,1) 0.96 (25,1) 0.87 (32,3) 0.89 (25,2)
3 0.98 (26,1) 0.91 (30,2) 0.99 (32,1) 0.93 (36,2) 0.86 (26,3)
6 0.98 (34,1) 0.95 (36,2) 0.90 (22,2) 0.86 (32,3) 0.91 (27,2)
12 0.81 (27,2) 0.99 (34,1) 0.82 (34,2) 0.86 (31,3) 0.99 (36,1)

ab11 1 0.96 (36,2) 0.95 (36,3) 0.91 (16,2) 0.96 (32,2) 0.95 (30,4)
3 0.97 (36,3) 0.88 (10,3) 0.97 (32,2) 0.97 (30,3) 0.96 (36,4)
6 0.98 (36,2) 0.98 (36,3) 0.98 (29,2) 0.98 (33,3) 0.96 (34,4)
12 0.94 (28,2) 0.93 (28,3) 0.96 (35,3) 0.95 (34,4) 0.95 (34,3)

ac30 1 0.98 (36,1) 0.98 (30,1) 0.97 (25,1) 0.98 (25,2) 0.98 (30,2)
3 0.98 (29,1) 0.98 (36,1) 0.97 (36,2) 0.97 (27,2) 0.97 (32,2)
6 0.97 (28,2) 0.98 (36,3) 0.98 (27,1) 0.97 (34,2) 0.99 (34,1)
12 0.95 (36,1) 0.93 (35,3) 0.95 (33,2) 0.97 (28,1) 0.94 (36,2)

ad4 1 0.71 (30,2) 0.98 (86,2) 0.67 (24,2) 0.98 (78,2) 0.97 (70,2)
3 0.67 (32,3) 0.98 (86,2) 0.98 (90,3) 0.98 (67,2) 0.70 (32,2)
6 0.98 (67,2) 0.98 (77,2) 0.99 (80,1) 0.73 (43,3) 0.99 (77,1)
12 0.97 (70,3) 0.98 (80,2) 0.98 (72,2) 0.97 (66,2) 0.97 (66,1)

6. CONCLUSION

In this paper, to predict the expression of bicoid gene us-
ing SSA method, a new approach based on the state-space
equations and Kalman filter algorithms is suggested. The
KF-SSA-R forecasting coefficients are then obtained from
the less noise time series after filtering the original data. In
a Monte Carlo simulation study, we investigated the impact

of noise on the accuracy of forecast. We assessed the fore-

casting performance of the proposed denoised SSA method

for different levels of signal to noise ratio (SNR) and for

various forecast horizons based on the RMSE criteria. The

results obtained from the simulation studies illustrate that

the suggested method forecasting is better than the SSA-R,

especially for lower values of the SNR and the window length
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Figure 4. Time series plot of Drosophila melanogaster embryos data.

Table 4. RRMSE for ratio of the minimum RMSE of the KF-SSA-R method over all possible window lengths to the minimum
RMSE of the SSA-R method over all possible window lengths

Embryo h RRMSE RRMSE
(KF-SSA-R, SSA-R)(r) (KF-SSA-R, State space)

ab2 1 0.89 (3) 0.87 (3)
3 0.90 (2) 0.87 (2)
6 0.90 (3) 0.87 (3)
12 0.93 (4) 0.88(4)

ab7 1 0.89 (3) 0.88 (3)
3 0.92 (2) 0.90 (2)
6 0.89 (3) 0.88 (3)
12 0.98 (1) 0.92(1)

ab11 1 0.95 (2) 0.93 (2)
3 0.96 (3) 0.94 (3)
6 0.96 (2) 0.94 (2)
12 0.96 (3) 0.94(3)

ac30 1 0.97(1) 0.95 (1)
3 0.96 (2) 0.94 (2)
6 0.98 (1) 0.95 (1)
12 0.96 (2) 0.94(2)

ad4 1 0.89 (3) 0.88 (3)
3 0.89 (2) 0.88 (2)
6 0.92 (1) 0.90 (1)
12 0.89 (2) 0.88(2)

(L). Finally, the results show that the KF-SSA-R technique
mentioned performs better than the SSA technique used to
predict noisy bicoid and can be considered as a powerful
method for analyzing the expression of bicoid gene data.

Received 23 May 2021
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