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Motivated by a study on adolescent mental health, we
conduct a dynamic connectivity analysis using resting-state
functional magnetic resonance imaging (fMRI) data. A dy-
namic connectivity analysis investigates how the interac-
tions between different regions of the brain, represented by
the different dimensions of a multivariate time series, change
over time. Hidden Markov models (HMMs) and hidden semi-
Markov models (HSMMs) are common analytic approaches
for conducting dynamic connectivity analyses. However, ex-
isting approaches for HSMMs are limited in their ability to
incorporate covariate information. In this work, we approx-
imate an HSMM using an HMM for modeling multivariate
time series data. The approximate HSMM (aHSMM) model
allows one to explicitly model dwell-time distributions that
are available to HSMMs, while maintaining the theoretical
and methodological advances that are available to HMMs.
We conducted a simulation study to show the performance
of the aHSMM relative to other approaches. Finally, we used
the aHSMM to conduct a dynamic connectivity analysis,
where we showed how dwell-time distributions vary across
the severity of non-suicidal self-injury (NSSI) in adolescents.
The aHSMM allowed us to identify states that have greater
dwell-times for those with moderate or severe NSSI.

AMS 2000 subject classifications: Primary 62M05,
62M10; secondary 62P10.
Keywords and phrases: Dynamic functional connectiv-
ity, fMRI, Hidden Markov models, Hidden semi-Markov
models, Multivariate time series.

1. INTRODUCTION

The motivating data for this article is the
resting-state functional magnetic resonance imaging
(fMRI) data obtained from the Brain Imaging De-
velopment of Girls’ Emotion and Self (BRIDGES)
Study (http://radlab.umn.edu/current-research/
bridges-brain-imaging-development-girls-emotion-and-self).

∗Corresponding author.

This is a longitudinal study of non-suicidal self-injury
(NSSI) that recruited adolescents 12-16 years of age who
were identified as female at birth. A central goal of the
BRIDGES Study is to understand how the development of
brain systems may be aberrant in adolescents with NSSI.
The resting-state fMRI data is represented as a multivariate
time series. Our overall objective in this article is to develop
a statistical model for dynamic connectivity analysis, and
determine the association between dynamic connectivity
and NSSI severity.

Dynamic connectivity analysis is the study of how the re-
gions of the brain, which are represented by the different di-
mensions of the time series, are correlated and how this cor-
relation is potentially changing over time. Dynamic connec-
tivity analysis is still a relatively young approach for fMRI
data, but there have been substantial evidence of its utility
[1, 8, 30, 39, 42]. Existing analytic approaches range from
the use of sliding-window correlations [1], hidden Markov
models (HMM) and hidden semi-Markov models (HSMM)
[46, 41], change-point analysis [10], and time series models
with time-varying parameters [31]. Calhoun et al. [8] gave a
thorough overview of analytic approaches for dynamic con-
nectivity analysis.

We focus our attention on HMMs and HSMMs. These
models assume that there is a sequence of unobserved states
over time, and the properties of the data at each time point
within an individual is determined by the current state at
that time point for that individual. In our case, we will char-
acterize the states depending on the patterns of connectiv-
ity, i.e., the structure of the correlation matrix of the multi-
variate time series. Thus, as the state sequence moves from
one state to another state, the correlation matrix will also
change. After fitting an HMM or HSMM, one could extract
summary statistics such as the number of state switches or
the amount of time spent in a state, and one could conduct
post-hoc analyses about these summary statistics. HMMs
and HSMMs have been useful analytic approaches for mod-
eling multivariate time series data from neuroimaging stud-
ies. Indeed, a number of studies have previously used HMMs,
HSMMs, or their variants for dynamic connectivity anal-
yses using fMRI data [4, 41, 42, 44, 46, 48]. In addition,
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neuroimaging studies using other modalities such as elec-
troencephalograms and magnetoencephalograms have also
used this modeling framework [34, 35, 37]. Thus, HMMs and
HSMMs have broad appeal for modeling time series data in
neuroimaging studies.

HSMMs contain HMMs as a special case. In an HMM, the
state sequence is governed by transition probabilities such
that the state sequence will either stay in its current state
or transition to a different state with a certain probability.
Implicit here is that the duration within a state follows a ge-
ometric distribution. Consequently, shorter durations occur
with higher probabilities. In an HSMM, state transitions are
still governed by transition probabilities, but the duration
of the state sequence within a state prior to transitioning
to a different state is governed by a probability distribution.
Thus, an HSMM explicitly models the distribution of the du-
ration within a state, e.g., by assuming that the distribution
follows a Poisson distribution or some other discrete distri-
bution. This additional flexibility can affect summary statis-
tics such as the number of times points in a state or how
often a state transition occurs. Depending on the context of
the problem, practitioners may need the explicit modeling
of each state’s dwell-time distribution.

There have been a number of methodological advances for
HMMs for multivariate time series. In contrast, the method-
ological advances for HSMMs are limited in number, espe-
cially in the context where we observe multivariate time se-
ries data from independent sources, e.g., the adolescents in
the BRIDGES Study. Bulla and Bulla [5] developed HSMMs
for univariate time series data, and software implementa-
tion was later provided by Bulla, Bulla and Nenadić [6].
O’Connell et al. [36] developed the mhsmm package in R,
which is capable of fitting HSMMs for multivariate time se-
ries data from multiple independent sources. Shappell et al.
[41] and Shappell et al. [42] used this package for the dy-
namic connectivity analyses in their fMRI studies. An im-
portant limitation with their approach is that observed co-
variates, e.g., NSSI severity, cannot be embedded directly
into the model and so the impact of covariates must be in-
vestigated in post-hoc analyses. Langrock and Zucchini [26]
showed how one could structure an HMM such that it ap-
proximates an HSMM and its dwell-time distributions with
arbitrary accuracy, and Langrock et al. [27] illustrated the
utility of this approach in modeling animal telemetry data.
We build on the modeling framework by Langrock and Zuc-
chini [26] for multivariate time series data and use it to con-
duct a dynamic connectivity analysis on the resting-state
fMRI time series data from the BRIDGES Study. This mod-
eling framework allows us to have explicit models for the
dwell-time distributions that are potentially modulated by
covariate information, and we will have available to us the
computational tractability and the theoretical and method-
ological advances already available for HMMs.

The rest of this article is organized as follows. In Section
2, we give a more detailed overview of HMMs and HSMMs,

and we describe how one could use an HMM to approximate
an HSMM. In Section 3, we use a simulation study to illus-
trate the performance of the approximate HSMM (aHSMM)
relative to other models. In Section 4, we show the empirical
utility of the aHSMM by using it in a dynamic connectivity
analysis on the resting-state fMRI data from the BRIDGES
Study. Finally, in Section 5 we end with a discussion of the
analysis, potential extensions, and limitations.

2. MODELING DYNAMIC CONNECTIVITY

2.1 Hidden Markov models and hidden
semi-Markov models

We now give an overview of the context of the problem.
Let {yt,n}Nn=1 be a collection of P -variate time series ob-
served from N independent subjects, and we assume that
the time series for each subject we have t = 1, . . . , T . Denote
yn = (y1,n, . . . ,yT,n). Let Z be a N × k matrix of covari-
ates whose n-th row contains the covariate values for subject
n. We now list some assumptions for a given subject n. Let
St,n ∈ {1, . . . ,M} be an unobserved finite-state process such
that yt,n|St,n = m ∼ NP (μm,Σm), where NP (μm,Σm) is
the P -variate normal distribution, also called the emission
distribution, with mean vector and covariance matrix μm

and Σm, respectively, that are common across all N sub-
jects. Denote Sn = (S1,n, . . . , ST,n). We further assume yn

to be independent over time conditional on Sn. With this
setup, conditional on the state sequence, as the state se-
quence switches from one state to the next over t, the cor-
relation between the dimensions of yt,n also changes over
t. Thus, to model the temporal dynamics of the correlation
structure of the time series, our goal is to estimate the co-
variance matrix in the emission distribution for each of the
M unobserved states using the collection of both the ob-
served time series {yn}Nn=1 and observed covariate matrix
Z.

We now give an overview of the Markov and semi-Markov
assumptions for {Sn}Nn=1 and the hidden Markov and semi-
Markov models that arise. If we assume that the n-th sub-
ject’s finite-state process Sn is a Markov process, then for
each n, we have transition probabilities aij,n = Pr(St,n =
j|St−1,n = i) with

∑
j aij,n = 1, and these form the transi-

tion probability matrix An = (aij,n). Note that the Markov
assumption for the state sequence leads to the assumption
that the dwell-time (or sojourn time) within a state, i.e., the
number of consecutive time points that the Markov chain
spends in a state, follows a geometric distribution. A hidden
semi-Markov model (HSMM) relaxes this assumption by al-
lowing the dwell-time for state i follow a discrete distribu-
tion with probability mass function pi(·) that is potentially
parameterized by a vector βi. For example, the dwell-time
distribution for state i could be a Poisson distribution with
rate parameter λi, and we could have a model for this rate
parameter, e.g., log(λi) = Zβi. The dwell-time distribution
characterizes how long the state sequence stays in a state
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Figure 1. A graphical model representation for a hidden Markov model (HMM; left) and a hidden semi-Markov model
(HSMM; right) for the n-th subject. White circles correspond to unobserved state sequence, St,n, and shaded circles

correspond to the observed data, y1,n, . . . ,yT,n.

before switching to a different state (i.e., not itself) with
some probability. Like the HMM, for subject n the state
switches in the HSMM are governed by a transition prob-
ability matrix An = (aij,n), though the diagonal elements
of this matrix are 0. The HSMM contains the HMM as a
special case if we let each pi(·) denote the probability mass
function for the geometric distribution. We give an illustra-
tion of both the HMM and the HSMM in Figure 1.

2.2 Approximate hidden semi-Markov
models

Our goal is to work in a middle ground in having flexibil-
ity to model dwell-time distributions like HSMMs without
losing the theoretical and methodological advances available
to HMMs. To this end, we follow Langrock and Zucchini [26]
in structuring an HMM in a very deliberate way such that
the resulting HMM approximates an HSMM with any form
for the dwell-time distributions. In the following, for each
n, suppose that Sn is a M -state semi-Markov process with
M ×M transition probability matrix An = (aij,n). We now

create a Markov process S̃n = (S̃1,n, . . . , S̃T,n) such that an
aggregate of its states will approximate Sn and its dwell-
time. Let m1, . . . ,mM be integers with each mi ≥ 2, and let
the state sequence S̃t,n take on values in {1, 2, . . . ,

∑M
i=1 mi}

for each t = 1, . . . , T . Let β = (β1, . . . ,βM ) be a k×M pa-

rameter matrix. Let Bn(β,An) be the
∑M

i=1 mi ×
∑M

i=1 mi

transition probability matrix for S̃t,n, such that it is com-
posed of submatrices, namely,

Bn(β,An)

=

⎛⎜⎝ B11,n(β1) · · · B1M,n(β1, a1M,n)
...

. . .
...

BM1,n(βM , aM1,n) · · · BMM,n(βM )

⎞⎟⎠ ,

where Bii,n(βi) are mi × mi matrices and Bij,n(βi, aij,n)
are mi × mj matrices. For ease in notation, we omit the
dependence of Bn(β,An) and its submatrices on Z. These

submatrices have the form

Bii,n(βi)

=

⎛⎜⎜⎜⎜⎜⎜⎝

0 1− ci(1;βi) 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
0 0 · · · 0 1− ci(mi − 1;βi)
0 0 · · · 0 1− ci(mi;βi)

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and for i �= j,

Bij(βi, aij,n) =

⎛⎜⎜⎜⎝
aij,nci(1;βi) 0 · · · 0
aij,nci(2;βi) 0 · · · 0

...
... · · · 0

aij,nci(mi;βi) 0 · · · 0

⎞⎟⎟⎟⎠ ,

where ci(r;βi) = pi(r;βi)/(1 − Fi(r − 1;βi)) for Fi(r −
1;βi) < 1 and ci(r;βi) = 1 for Fi(r − 1;βi) = 1, and
pi(·;β) is the probability mass function with cumulative dis-
tribution function Fi(·;βi) for the dwell-time distribution
of state i in the HSMM, with both functions indexed by
βi to account for the covariates in Z. Note that ci(r;βi) is
the conditional probability that the state sequence switches
away from state i given that it has not switched after
r time points, and can thus be interpreted as the haz-
ard rate of the dwell-time distribution of state i [26]. For

i = 1, . . . ,M , let Ii = {k :
∑i−1

j=0 mj < k ≤
∑i

j=0 mi},
where m0 = 0, be the i-th state aggregate. Ii is a collec-
tion of states in S̃n for the aHSMM, and is constructed such
that Ii corresponds to state i for the state sequence Sn in
the HSMM. Note the deliberate form of the transition prob-
ability matrix Bn(β,An). The properties of the M states
for Sn in the HSMM are approximated by the submatrices
of Bn(β,An). The diagonal block Bii,n(βi) represents tran-
sitions within state aggregate i in the aHSMM, and this cor-
responds to the dwell-time in the HSMM. The off-diagonal
block Bij,n(βi, aij,n), i �= j, characterizes the transitions be-
tween state aggregates in the aHSMM, corresponding to the
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Figure 2. In each plot, we have the shifted Poisson distribution with shift parameter 1 and rate parameter λ = 3 (top row)
and λ = 10 (bottom row). The columns correspond to the different sizes mi of the state aggregates. The vertical lines in each
plot shows the probability mass function of the shifted Poisson distribution, and the dots correspond to the induced dwell-time

distribution of the approximated HSMM for a given mi.

transitions between states in the HSMM. Note that a tran-
sition from state aggregate Ii to state aggregate Ij in the
aHSMM must go to the state with the smallest index in Ij .

We now give a few remarks about the aHSMM being in
an HMM framework, and its relation to the HSMM, which
Langrock and Zucchini [26] discussed in greater detail:

• All entries of Bn(β,An) lie in the interval [0, 1], and
its row sums equal to 1, and so Bn(β,An) is a valid
transition probability matrix.

• One can show that the transition from Ii to a different
state aggregate Ij in the aHSMM has the same prob-
ability of state transition governed by the transition
probability matrix An in the HSMM.

• Different dwell-time distributions will lead to different
formulations for ci(r;βi), and thus different entries for
each submatrix in Bn(β,An). However, the deliberate
structure for Bn(β,An) will remain the same.

• Since the states within Ii in the aHSMM correspond to
state i in the HSMM, the parameters of the emission
distribution for all states within Ii are constrained to
be the same.

The cardinality of Ii is mi, and this is a parameter that is
set a priori for each state aggregate. Langrock and Zucchini
[26] showed that the errors in the approximation is in the
right tail of the dwell-time distribution, and that a larger
value of mi leads to a better approximation of the dwell-
time distribution. In Figure 2, we show how the choice of mi

affects the approximation of the dwell-time distribution. In
the example in the figure, suppose the dwell-time distribu-
tion for one of the states in the HSMM is the shifted Poisson
distribution with shift parameter 1 and rate parameter λ,
and suppose the aHSMM uses the correctly specified dwell-
time distribution. The rows in Figure 2 correspond to dwell-
time distributions with different rate parameters, where in
the top row we have λ = 3 and the bottom row we have
λ = 10. The three columns in Figure 2 correspond to the
different sizes of the state aggregates, namely, mi = 5, 10,
or 15. The vertical lines correspond to the actual values of
the dwell-time distribution, and the dots correspond to the
values of the dwell-time distribution induced by the approx-
imation that arises for each mi. In the top row, we see that
setting mi = 10 or 15 approximates the dwell-time distri-
bution really well, but setting mi = 5 leads to errors in the
right tail of the distribution. When λ = 3 we see that the
error in the approximation when using mi = 5 is in the
right-tail of the distribution, but using mi = 10 or 15 leads
to good approximations. When λ = 10 we see that the errors
are very pronounced for mi = 5, but the approximation is
much better for larger values of mi. In fact, we see that the
larger the mean for the dwell-time distribution the larger
we need to set mi. Altogether, mi is a parameter where
larger values lead to better approximations, with the trade-
off that larger values of mi will increase the dimensions of
Bn(β,An) and hence will increase the computational cost.
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The above describes how we can approximate the HSMM
with an HMM using state aggregates and a transition prob-
ability matrix with a specific structure. The use of state ag-
gregates allows us to approximate dwell-time distributions
within a state aggregate such that dwell-times are not nec-
essarily geometric, and since the aHSMM is itself an HMM
constructed in a special way we therefore inherit the theoret-
ical and methodological properties and benefits of an HMM.
Langrock and Zucchini [26] developed the above strategy for
univariate time series data, and we show using synthetic and
empirical data that this strategy also works well for multi-
variate time series.

2.3 Estimation

Our use of an HMM to approximate an HSMM allows
us to use the approaches developed for HMMs to estimate
the parameters, being mindful of constraints, namely, the
deliberate form of the transition probability matrix and the
emission distribution parameters being the same within a
state aggregate. Let M̃ =

∑M
i=1 mi, and let fi(·;μi,Σi) be

the density function for the P -variate normal distribution
with mean vector μi and covariance matrix Σi. Following
Langrock and Zucchini [26], the likelihood function for the
model is

N∏
n=1

(
δ′nf(y1,n)

T∏
t=2

Bn(β,An)f(yt,n)1

)
,(1)

where δn is the M̃ × 1 vector containing the initial proba-
bilities of each state, 1 is the M̃ × 1 vector of 1s, and f(yt)
is a M̃ × M̃ diagonal matrix defined as

f(yt,n) = diag
(
f1(yt,n;μ1,Σ1), . . . , f1(yt,n;μ1,Σ1)︸ ︷︷ ︸

m1 times

, . . . ,

fM (yt,n;μM ,ΣM ), . . . , fM (yt,n;μM ,ΣM )︸ ︷︷ ︸
mM times

)
.

Optimizing Equation (1) directly can be challenging given
that we have multivariate time series data. Instead, if we
know the true state sequences, then we could optimize the
complete data likelihood given the observed data y1, . . . ,yn

and the known state sequences S1, . . . ,SN . For t = 1, . . . , T
and n = 1, . . . , N , let ui,n(t) = 1 if St,n = i and 0 other-
wise, and for t = 2, . . . , T let vi,j,n(t) = 1 if both St−1,n = i
and St−1,n = j and 0 otherwise. Let bij,n(β,An) denote
the (i, j)-th entry of the matrix Bn(β,An). Given the ob-
served data and known state sequences, the complete data
log-likelihood is

�(Ω|y1, . . . ,yn,S1, . . . ,SN )(2)

=

N∑
n=1

M̃∑
i=1

ui,n(1) log δi,n

+

N∑
n=1

M̃∑
i=1

M̃∑
j=1

(
T∑

t=2

vi,j,n(t)

)
log bij,n(β,An)

+

N∑
n=1

M̃∑
i=1

T∑
t=1

ui(t) log fi(yt,n;μi,Σi),

where Ω is the set of all parameters. We will use the EM
algorithm to optimize Equation (2) [12, 53]. The EM algo-
rithm iterates between the E step and the M step. The goal
for the E step is to calculate the conditional expectation of
{ui,n(t)}i,n and {vi,j,n(t)}i,j,n given an estimate for Ω. On
the other hand, the goal for the M step is to optimize Equa-
tion (2) replacing {ui,n(t)}i,n and {vi,j,n(t)}i,j,n with their
conditional expectations obtained from the E step. The EM
algorithm alternates between these two steps until a conver-
gence criterion is reached, which, in our case, is when there
is a small relative change in the log-likelihood.

The E step remains the same as in standard HMMs, and
so in the following we focus only on the M step. To update
the transition probabilities in the M step we optimize the
second term in Equation (2). There are two sets of parame-
ters in this term: the parameter vector β = (β1, . . . ,βM ) re-
lated to the dwell-time distribution and the transition prob-
abilities An = (aij,n). In this work for the dwell-time dis-
tribution we use a shifted Poisson distribution with shift
parameter set to 1 and rate parameter λi, which we relate
to the covariates using the model log(λi) = Zβi, though
other discrete distributions for the dwell-time distributions
are possible. The shift parameter can be estimated, but we
fixed that parameter here for simplicity. Thus, dwell-times
potentially vary across states and could relate to covari-
ates in different ways. To update β, we numerically op-
timize the second term of Equation (2) using the optim

function in R. Next, we use a closed-form solution to up-
date each An using {vi,j,n(t)} that was updated in the

previous E step, namely, âij,n = νij,n/
∑M

k=1 νik,n, where

νij,n =
∑

i∈Ii

∑T
t=2 vi,j,n(t). We point out that Bn(β,An)

is a sparse matrix and so a number of its elements should be
constrained to 0 and thus do not need to be optimized. Given
this update for Bn(β,An), we can update the initial prob-
abilities. For each subject n, we assume that the underlying
Markov chain is stationary, and so δn can be determined
solely by the transition probability matrix Bn(β,An) by
setting δn = (I−Bn(β,An)+U)−11, where I is the M̃×M̃
identity matrix and U is the M̃ ×M̃ matrix of ones [26, 53].
To update the parameters of the emission distribution in
the M step we optimize the third term in Equation (2). A
closed-form solution for these parameters exists. Since the
parameters of the emission distribution must be the same
across states within a state aggregate, then for state aggre-
gate i = 1, . . . ,M , we have

(3) μ̂i =
1

N

N∑
n=1

∑T
t=1

(∑
j∈Ii

uj,n(t)
)
yt,n∑T

t=1

∑
j∈Ii

uj,n(t)
,
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and

Σ̂i =
1

N

N∑
n=1

∑T
t=1

(∑
j∈Ii

uj,n(t)
)
(yt,n − μ̂i)(yt,n − μ̂i)

′∑T
t=1

∑mi

j∈Ii
uj,n(t)

.

(4)

Recall that larger state aggregates improve the approx-
imation to the dwell-time distribution but at a computa-
tional cost. Since the aHSMM is in the framework of an
HMM, then the algorithmic complexity for the EM algo-
rithm for the aHSMM is O(M̃2T ) [38]. In contrast, for a
standard HSMM, the worst-case computational complexity
for the EM algorithm is O(M2T + MT 2) [18]. The com-
putational complexity for the aHSMM remains linear with
respect to the length of the time series even though we in-
crease the dimensionality of the problem through the use of
state aggregates. Larger state aggregates may be necessary
depending on the context of the problem. In that case, one
may want to take advantage of the sparse structure of the
transition probability matrix Bn(β,An) to improve compu-
tational speed and for more efficient use of memory [19].

2.4 Normal pseudo-residuals

To assess model fit, we develop the normal pseudo-
residuals for our proposed model, motivated by the nor-
mal pseudo-residuals for HMMs for univariate time se-
ries [53]. For subject n and time point t, note that, un-
der our assumed model, marginal across the states, we

have yt,n ∼ N(
∑M̃

i=1 ui,n(t)μi,
∑M̃

i=1 ui,n(t)Σi). Thus, the
quadratic form

D(yt,n) =

⎛⎝yt,n −
M̃∑
i=1

ui,n(t)μi

⎞⎠′ ⎛⎝ M̃∑
i=1

ui,n(t)Σi

⎞⎠−1

×

⎛⎝yt,n −
M̃∑
i=1

ui,n(t)μi

⎞⎠
follows the χ2

P distribution. Motivated by Zucchini, Mac-
Donald and Langrock [53], we construct the normal pseudo-
residuals

zt,n = Φ−1[Q(D̂(yt,n))],

where Q(·) denotes the distribution function of the χ2
P dis-

tribution, Φ−1(·) denotes the inverse distribution function

of the standard normal distribution, and D̂(yt,n) denotes
the quadratic form above obtained by plugging in the esti-
mates from the EM algorithm. This construction for normal
pseudo-residuals for the aHSMM is the exact same for con-
structing normal pseudo-residuals for HMMs. From here, we
can construct quantile-quantile (QQ) plots for the normal
pseudo-residuals to give a qualitative assessment on model
fit. In Figure 3 we used one simulated data set as described
in Section 3, fit the HMM and aHSMM, and constructed the

Figure 3. QQ plot using the HMM and aHSMM fits on
simulated data.

QQ plot for the normal pseudo-residuals. We see that nearly
all the points fall on the identity line. Incorrect distribution
assumptions (e.g., the true distribution is non-normal) will
result in the points of the QQ plot falling away from the
identity line. We will see another example in Figure 9 from
the data analysis.

3. SIMULATION STUDY

3.1 Simulation settings

We conducted a number of simulations to show the per-
formance of the aHSMM relative to other approaches un-
der various conditions. In all cases, we simulated zero-mean
P -variate time series data, P ∈ {10, 30}, from a 3-state
HSMM for N = 100 independent subjects, each time se-
ries having length T = 500. The emission distribution was
a P -variate zero-mean normal distribution. The covariance
matrices were as follows:

• State 1. Σ1 had a first-order autoregressive structure,
such that its (a, b)-th element was set to 0.7|a−b|;

• State 2. Σ2 had a fourth-order autoregressive struc-
ture. The (a, b)-th element of the precision matrix (i.e.,
Σ−1

2 ) was set to 1(|a − b| = 0) + 0.41(|a − b| =
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1)+0.21(|a−b| = 2)+0.21(|a−b| = 3)+0.11(|a−b| = 4),
where 1(·) is the indicator function that evaluates to 1
if its argument is true and 0 otherwise;

• State 3. Σ3 = (Φ+Id)−1, where Id is the P ×P iden-
tity matrix and Φ is a random symmetric matrix such
that an off-diagonal element was set to 1/P with prob-
ability 0.5 or 0 with probability 0.5. Thus, the degree of
sparsity remained constant as P varied, but the values
of these elements were closer to 0 for larger P .

The above covariance matrices were used in the simulation
studies by Rothman et al. [40] and Städler and Mukherjee
[43], though we made slight modifications to Σ3. We simu-
lated time series from an HSMM with transition probability
matrix common to all subjects, namely,

An = A =

⎛⎝ 0 0.5 0.5
0.3 0 0.7
0.7 0.3 0

⎞⎠ ,

using a dwell-time distribution that was either i) a shifted
Poisson distribution whose shift and rate parameters for the
i-th state (1, βi), respectively, where log(β) = (2.5, 0.5, 1.5),
or ii) a shifted negative binomial distribution whose shift,
size, and mean parameters were (1, 10, βi), respectively,
where β = (5, 10, 15). The purpose of the shift parameter
is so that the dwell-time within a state is at least 1. Note
that this setup corresponds to an intercept-only model for
the dwell-time distribution, i.e., Z is a n × 1 vector of 1s.
This was deliberate so that we can compare the aHSMM to
the MHSMM.

We assessed the performance of three competing models:

• MHSMM. We used the implementation of the HSMM
in the mhsmm package in R [36]. We set this model to
have a Poisson distribution with rate parameter initial-
ized to 1 for each state’s dwell-time distribution, transi-
tion probability matrix initialized to have 0.45 along the
off-diagonal elements, and emission distribution param-
eters initialized to the maximum likelihood estimates
obtained from segmenting each subject’s time series
into three equal-sized segments. We fit the MHSMM
20 times, each with different initial segmentations lead-
ing to different initializations of the mean vectors and
covariance matrices, yielding 20 MHSMM fits, and we
kept the fit that yielded the largest log-likelihood.

• HMM. We fit an HMM using custom code. For the
emission distribution, we initialized the mean vectors to
the zero vector, and we initialized each state’s covari-
ance matrix to have a compound symmetry structure by
drawing the correlation from the Uniform(−1/P, 1/P )
distribution and drawing the common standard devi-
ation from the Uniform(1,

√
3) distribution. To ensure

positive-definiteness of each state’s covariance matrix,
we added 0.1 to the diagonal elements. We initialized
the transition probability matrix to have 0.8 along the
diagonals and 0.1 in the off-diagonals. We ran the EM

algorithm and declared convergence when the relative
change in the log-likelihood was < 10−5. We repeated
this procedure 20 times, yielding 20 HMM fits, and we
kept the fit that yielded the largest log-likelihood.

• aHSMM. We fit the aHSMM described in Section 2.
We set the size of the state aggregate m to be the same
value across state aggregates, with m ∈ {5, 10, 15}. We
initialized the parameters of the emission distribution
and the transition probability matrix to the estimates
obtained by the HMM. We initialized the parameters
of the dwell-time distribution (a shifted Poisson dis-
tribution with shift parameter 1 and rate parameter
log(λi) = βi) to a random draw from the normal distri-
bution with mean 1.0 and standard deviation 0.5. Just
as in the HMM, we used a tolerance criterion of 10−5

for the relative change in the log-likelihood for the EM
algorithm, and after 20 random initializations, we kept
the fit that yielded the largest log-likelihood.

After fitting each model, we addressed the label-switching
problem by relabeling the states such that we minimize the
Frobenius norm, denoted as || · ||F , between the estimated
covariance matrices and the true covariance matrices across
the three states. To assess model performance, we calcu-
lated the Frobenius norm between the estimated covariance
matrix and the true covariance matrix for each state, and
we report the estimate for E(β̂). Note that whenever the
true dwell-time distribution was the negative binomial dis-
tribution, both the MHSMM and the aHSMMwere therefore
deliberately misspecified since their dwell-time distributions
were the Poisson distribution. Due to this misspecification,
we instead compare E(β̂i) to the log of the center of dwell-
time distribution for the i-th state. Finally, after relabeling
the states, we reconstructed each subject’s state sequence
using the Viterbi algorithm [38, 53], and then calculated
the misclassification rate averaged across time and subjects.
We repeat each simulation study 100 times and averaged
our assessments across the 100 simulations.

3.2 Simulation results

Tables 1 and 2 shows the results whenever the true dwell-
time distribution was the shifted Poisson distribution or
shifted negative binomial distribution, respectively. First,
we discuss the impact of the effects of different sizes of the
state aggregates. When the true dwell-time distribution was
the shifted Poisson distribution, the aHSMM generally es-
timated the true β well except for State 1, where we see a
slight downward bias when m = 10 and a larger downward
bias when m = 5. For State 1, the dwell-time distribution
was truly centered at exp(2.5), and so the state aggregates
were too small, similar to the example we showed in Fig-
ure 7. We draw similar conclusions when the true dwell-
time distribution was the shifted negative binomial distribu-
tion. Note that due to the misspecification of the dwell-time
distribution, we compare β̂ to the log of the true means,
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Table 1. Simulation results showing the performance under various conditions of the MSHMM, the HMM, and the aHSMM
reported as the average (SD) across the 100 simulations whenever the dwell-time distribution was a shifted Poisson

distribution. The true value for (β1, β2, β3) is (2.5, 0.5, 1.5). The HMM does not have a parameterized dwell-time distribution,
hence its entries corresponding to β are marked with a hyphen (-). Entries in bold correspond to the lowest mean squared

error or lowest misclassification rate across methods.

Misclassification

P Method E(||̂Σ1 −Σ1||F ) E(||̂Σ2 −Σ2||F ) E(||̂Σ3 −Σ3||F ) E(̂β1) E(̂β2) E(̂β3) Rate

10 MHSMM 0.254 0.675 0.274 2.496 0.032 1.454 0.098
(0.021) (0.593) (0.189) (0.016) (4.469) (0.616) (0.049)

HMM 0.062 0.546 0.195 - - - 0.110
(0.013) (0.151) (0.054) - - - (0.016)

aHSMM, m = 5 0.062 0.281 0.114 1.953 0.589 1.437 0.081
(0.013) (0.040) (0.013) (0.002) (0.086) (0.029) (0.003)

aHSMM, m = 10 0.062 0.285 0.115 2.373 0.573 1.499 0.080
(0.013) (0.045) (0.012) (0.003) (0.089) (0.038) (0.003)

aHSMM, m = 15 0.062 0.278 0.115 2.494 0.556 1.493 0.080
(0.013) (0.040) (0.013) (0.005) (0.073) (0.046) (0.003)

30 MHSMM 0.447 1.468 0.556 2.499 -1.093 1.064 0.060
(0.023) (1.247) (0.372) (0.014) (6.091) (0.674) (0.057)

HMM 0.179 0.658 0.283 - - - 0.029
(0.018) (0.026) (0.010) - - - (0.001)

aHSMM, m = 5 0.179 0.647 0.276 1.955 0.514 1.426 0.023
(0.018) (0.025) (0.010) (0.002) (0.023) (0.010) (0.001)

aHSMM, m = 10 0.179 0.645 0.276 2.372 0.504 1.493 0.023
(0.018) (0.025) (0.010) (0.004) (0.022) (0.012) (0.001)

aHSMM, m = 15 0.179 0.645 0.276 2.492 0.503 1.493 0.023
(0.018) (0.025) (0.010) (0.006) (0.022) (0.012) (0.001)

Table 2. Simulation results showing the performance under various conditions of the MSHMM, the HMM, and the aHSMM
reported as the average (SD) across the 100 simulations whenever the dwell-time distribution was a shifted negative binomial
distribution. The true value for (β1, β2, β3) is (log(5), log(10), log(15)). The HMM does not have a parameterized dwell-time
distribution, hence its entries corresponding to β are marked with a hyphen (-). Entries in bold correspond to the lowest mean

squared error or lowest misclassification rate across methods.

Misclassification

P Method E(||̂Σ1 −Σ1||F ) E(||̂Σ2 −Σ2||F ) E(||̂Σ3 −Σ3||F ) E(̂β1) E(̂β2) E(̂β3) Rate

10 MHSMM 0.581 0.639 0.375 1.583 2.314 2.697 0.081
(0.049) (0.036) (0.015) (0.300) (0.072) (0.029) (0.007)

HMM 0.119 0.136 0.082 - - - 0.088
(0.028) (0.017) (0.008) - - - (0.006)

aHSMM, m = 5 0.116 0.136 0.074 1.507 1.840 1.997 0.084
(0.023) (0.018) (0.007) (0.010) (0.008) (0.004) (0.006)

aHSMM, m = 10 0.116 0.132 0.071 1.629 2.248 2.470 0.078
(0.023) (0.015) (0.007) (0.014) (0.012) (0.005) (0.005)

aHSMM, m = 15 0.116 0.132 0.071 1.627 2.317 2.671 0.078
(0.023) (0.015) (0.007) (0.014) (0.018) (0.009) (0.005)

30 MHSMM 1.046 1.043 0.622 1.452 2.324 2.724 0.015
(0.049) (0.029) (0.010) (0.449) (0.086) (0.124) (0.001)

HMM 0.336 0.371 0.194 - - - 0.015
(0.029) (0.019) (0.006) - - - (0.001)

aHSMM, m = 5 0.337 0.370 0.193 1.505 1.874 2.018 0.014
(0.029) (0.018) (0.006) (0.011) (0.005) (0.003) (0.001)

aHSMM, m = 10 0.337 0.369 0.192 1.615 2.238 2.467 0.014
(0.029) (0.018) (0.006) (0.014) (0.008) (0.005) (0.001)

aHSMM, m = 15 0.337 0.369 0.192 1.617 2.307 2.655 0.014
(0.029) (0.018) (0.006) (0.015) (0.011) (0.007) (0.001)

266 M. B. Fiecas et al.



(log(5), log(10), log(15)). As before, we see the aHSMM un-
derestimating the true mean of the dwell-time distribution
for States 2 and 3 for m = 5 and State 3 for m = 10. While
larger values of m led to a reduction in bias in estimating
the mean of the dwell-time distribution, we also see that
larger values of m also led to greater variability in the esti-
mates. Finally, we see that the misclassification rate for the
aHSMM were comparable over the different values of m.

Now we compare the performances across the different
methods. First, we point out that in some instances for
MHSMM, the estimates of β diverged to −∞. We removed
these instances when tabulating results, and so the results
for MHSMM reported here are more optimistic than they
truly are. With respect to estimating each state’s covari-
ance matrix, generally the aHSMM performed as well as or
improved on the HMM. The MHSMM overall had mixed re-
sults, whether in estimating each state’s covariance matrix
or in estimating the mean of the dwell-time distributions. All
methods had similar performances when estimating the true
underlying state sequence. The low misclassification rate for
all methods under all scenarios is likely because of how dis-
tinct the covariance matrices were across the three states.

In Table 3, we show the computational speed of each
method, standardized to seconds per EM iteration for com-
parability across methods. We report only the results for
the setting where the dwell-time distribution was the shifted
Poisson distribution. The HMM was the fastest relative to
the other methods, and the MHSMM was faster than the
aHSMM. We see that increasingm does not linearly increase
the computational cost. At higher dimensions, all methods
are slower, with the HMM paying the greatest price in the
relative decrease in speed.

Table 3. Mean (SD) seconds per EM iteration for each
method.

aHSMM aHSMM aHSMM
P MHSMM HMM m = 5 m = 10 m = 15

10 0.56 0.15 1.86 5.23 10.19
(0.02) (0.01) (0.21) (0.15) (0.37)

30 1.39 0.63 2.32 5.72 10.79
(0.29) (0.03) (0.20) (0.19) (0.38)

In summary, our simulation study shows that the
aHSMM performed well at estimating the covariance ma-
trices, and its performance at estimating the mean of the
dwell-time distribution depended on the size of the state
aggregates. The aHSMM can be biased in estimating the
mean of the dwell-time distribution if the size of the state
aggregates is too small. In contrast, the estimates of the
MHSMM can be relatively unstable. Finally, we showed that
the strengths of the aHSMM come at a computational price,
since the aHSMM is the slowest relative to the other meth-
ods we considered, and its speed is slower for larger state
aggregates.

4. APPLICATIONS TO DYNAMIC
CONNECTIVITY ANALYSIS

4.1 Data description

The data came from the BRain Imaging Development of
Girls’ Emotion and Self (BRIDGES) Study at the University
of Minnesota. This longitudinal study recruited adolescents
12-16 years of age who were identified as female at birth
and who exhibited a continuum of NSSI severity which was
then classified into 4 categories of NSSI severity: no NSSI,
mild NSSI, moderate NSSI, or severe NSSI. The adolescents
were enrolled to participate in three annual evaluations that
involved clinical, physiologic and neuroimaging assessments.
The current study focused on a cross-sectional analysis of
the neuroimaging data, and considered two clinical groups
for comparison: adolescents with moderate or severe NSSI
versus those with no or mild NSSI.

Brain scanning sessions were conducted at the Cen-
ter for Magnetic Resonance Research at the University of
Minnesota. The resting-state functional magnetic resonance
imaging (fMRI) data consisted of a 12-minute scan during
which each participant was instructed to stay awake, keep
their eyes open focused on a fixation cross, and to “not think
about anything in particular”. These fMRI scans consisted
of whole brain T2∗-weighted functional volumes with 2 mm
isotropic voxel resolution, with the following fMRI param-
eters: TR = 800ms, TE = 37 ms, flip angle = 52◦, FOV
= 212 mm, 2 mm isotropic voxel, Multiband factor=8. All
functional data were acquired using the Human Connectome
Project multiband echo planar imaging sequence. When par-
ticipants’ data from the baseline visit was not usable, but
usable data were available from the second visit, the us-
able data from the second visit was included in this cross-
sectional analysis. Altogether, we used neuroimaging data
from N = 126 subjects.

Group level spatial ICA was utilized to estimate intrin-
sic connectivity networks (ICNs) using the GIFT toolbox
(https://trendscenter.org/software/gift/) [7]. Voxel time
courses were linearly detrended and converted to z-scores
to normalize the time course variance. Subject level time
courses were reduced to 110 principal components and
concatenated along the time dimension. The concatenated
time courses were reduced to 100 principal components
through a group level PCA. Group level ICN’s were esti-
mated using the infomax algorithm to optimize temporal
independence [7]. Calculations on group level ICN’s were
repeated 20 times using the ICASSO technique for relia-
bility [21]. The spatial maps from the infomax ICA out-
put were used as spatial templates for Group Information
Guided ICA (GIG-ICA). The GIG-ICA calculations esti-
mated 100 group level ICN’s also optimizing the indepen-
dence at the subject level [14, 15]. 41 ICN spatial maps
were selected to be binarized, setting the bottom 50% of
nonzero absolute voxel intensities to zero, and evaluated for
mutual overlap with ROIs from the Yeo 17 network and
the Harvard-Oxford cortical and subcortical structural at-
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lases (https://identifiers.org/neurovault.collection:262) [50].
Each ICN was labeled using the atlas region with which it
had the most overlap.

In summary, the final data used in our analysis was a time
series with length T = 902, dimension P = 41, observed
from N = 126 subjects, and with each time series having
zero mean and unit variance. Of these 126 subjects, 78 were
classified to have moderate or severe nonsuicidal self-injury
(NSSI), and 48 were classified to have no or mild NSSI.

4.2 Overview of the statistical procedure

Vidaurre, Smith and Woolrich [46], Vidaurre et al. [47],
and Shappell et al. [41] each fit a 12-state model to their
resting-state fMRI data, and so we also used a 12-state
model. Selecting the number of states is an open problem,
which we will highlight in Section 5. We set the covariate ma-
trix Z to have two columns, where the first column is an indi-
cator for moderate or severe NSSI and the second column is
an indicator for no or mild NSSI. For the dwell-time distribu-
tion for the i-th state we used a shifted Poisson distribution
with shift parameter set to 1 and rate parameter log(λi) =
Zβi, where βi = (βi1, βi2)

′ captures the relationship be-
tween NSSI severity and dwell-time. For the i-th state, we
set mi = 20. Thus, the aHSMM had a total of 240 states.

We now describe how we fit the aHSMM. As in our sim-
ulation study, we first fit a standard HMM with 12 states
using the EM algorithm. We used the same strategy as in
our simulation study for the random initializations, so we
refer to Section 3 for details. We ran the EM algorithm and
declared convergence when the relative change in the log-
likelihood was < 10−6. After obtaining fits from 50 random
initializations, we kept the fit that yielded the largest log-
likelihood.

We used the estimates of the parameters of the emission
distribution for the HMM and its transition probability ma-
trix (setting its diagonal entries to 0 and then standardizing
the off-diagonals to have a unit row sum) to initialize the
parameters for the EM algorithm to fit the aHSMM. To
initialize the dwell-time distribution β, we randomly drew
each coefficient from the normal distribution with mean 2.5
and standard deviation 0.5, so that the resulting prior dwell-
time for each state would be roughly between 1 and 32.5 TR
units (or between 0.8 and 26 seconds). We ran the EM algo-
rithm and declared convergence when the relative change in
the log-likelihood was < 10−6. We repeated this procedure
50 times, yielding 50 aHSMM fits, and we kept the fit that
yielded the largest log-likelihood. To test for differences in
the dwell-time distribution between NSSI severity groups,
we used a permutation test to test H0 : βi2 − βi1 = 0 for
each i = 1, . . . , 12. To this end, we permuted the rows of
Z 200 times, and each time we refit the model to obtain
the null distribution for βi2 − βi1 for each i while keeping
all the other parameters (mean vectors, covariance matrices,
transition probability matrices) fixed at their respective es-
timates obtained from the original fit. This ensures that the

characterization of the states remain the same and only β
changes in the permuted data. To ease the computational
burden, when fitting the aHSMM to the permuted data we
used a higher convergence tolerance of < 10−4.

We used the Viterbi algorithm for state reconstruction
for each subject [53], and then mapped each state sequence
over the 240 states back to the 12 state aggregates. Given
each subject’s state reconstruction, we computed their state-
switching frequency, defined as a transition from one state
aggregate to another, and their fractional occupancy, de-
fined as the proportion of time spent in a state. To assess
the similarity between the 12 state aggregates, we used hi-
erarchical clustering, using the symmetric Kullback-Liebler
divergence between covariance matrices as a measure of dis-
tance between states. Given P × P covariance matrices C1

and C2, the Kullback-Liebler divergence is D(C1,C2) =
0.5

(
−P + log(|C1|/|C2|) + tr(C−1

2 C1)
)
, where | · | denotes

the determinant and tr(·) is the trace function, and this
comes from the Kullback-Liebler divergence between zero-
mean P -variate normal distributions with these covari-
ance matrices. The symmetric Kullback-Liebler divergence
is Dsymmetric(C1,C2) = D(C1,C2)+D(C1,C2) = tr((C1−
C2)(C

−1
2 −C−1

1 )).
Finally, to facilitate an empirical comparison of results

across methods, we also fit i) the HSMM as implemented
in the mhsmm package (denoted as MHSMM), ii) the HMM,
and iii) the aHSMM setting each mi = 10.

4.3 Results

Henceforth, in the context of the aHSMM we will use the
terms “state” and “state aggregate” interchangeably. Figure
4 shows the correlation matrix for each of the 12 states in
the aHSMM. Across the 12 states we see varying degrees of
the strength of the correlation between regions. For instance,
States 1, 2, and 12 are characterized by strong inter-region
correlations, whereas States 3, 6, and 11 are characterized
by weak inter-region correlations.

Figure 5 shows the similarity between the 12 states across
the four methods. We see across all methods that the 12
states can be separated into two metastates, in agreement
with previous findings [46, 41]. Specifically, for the MHSMM
States 1-6 form Metastate 1 and States 7-12 form Metastate
2, whereas for the HMM and the two aHSMMs States 1-7
form Metastate 1, and States 8-12 form Metastate 2. Vidau-
rre, Smith and Woolrich [46] and Shappell et al. [41] showed
that transitions from one state to another are greater if the
two states are within the same metastate. Our results are in
partial agreement. Figure 6 shows the transition probability
matrix across methods. For the HMM and the aHSMMs, the
probability of state transitions from states within Metastate
1 was, on average, higher to other states within Metastate
2, but the probability of state transitions from states within
Metastate 2 was, on average, higher to other states within
Metastate 2. For the MHSMM, the transitions of any given
state seem to be more focal towards a few states, and not
necessarily to states within the same metastate.
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Figure 4. The correlation matrix for each state, with upper and lower triangles corresponding to different states. The black
squares within the plot correspond to the ICNs mapped to the same Yeo regions.
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Figure 5. Dendrogram for the covariance matrices across the 12 states as obtained by each method.

Table 4 shows the estimates of β across all states, which
we then mapped back to the rate parameter of the shifted
Poisson distribution as shown in Figure 7. The dwell-time
distributions were generally centered around TR = 10, cor-
responding to 8 seconds. The No/Mild group tended to
have shorter dwell-time distributions relative to the Moder-
ate/Severe group, but this was only statistically significant
for States 7 and 11 (permutation p-value < 1/200 = 0.005).
Setting m = 10 yielded similar, though smaller, parameter
estimates. We also report the results from the MHSMM,
where we see that the parameters are generally larger. Re-
call that the MHSMM does not allow for covariates in the
dwell-time distribution, and so we were not able to obtain
parameter estimates for each of the two clinical groups.

We now describe the effect of the dwell-time dis-
tributions on the state reconstructions, summarized as
state/metatstate switching and fractional occupancy. In Fig-

ure 8(a), we see that the median state-switching frequency
was lower for the Moderate/Severe group, regardless of the
method used to estimate the state sequence, but there is
no strong evidence of a difference in state-switching fre-
quency between the NSSI groups. Comparing across meth-
ods, the MHSMM yielded the lowest number of state switch-
ing compared to the other methods, whereas the HMM and
aHSMMs yielded similar estimates. In Figure 8(b), we see
that the median metastate switching was higher for the
Moderate/Severe group, regardless of the method, but this
difference was not pronounced. Table 5 shows the fractional
occupancy for each of the 12 states and each of the 2 metas-
tates. Looking only at the HMM and aHSMMs, we see that
State 6 was the most visited state for both groups, and State
6 is the state with the weakest correlations. The dwell-time
parameter for State 6 was not the highest, but since states
tended to switch to State 6 (see Figure 6), we conclude that
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Figure 6. Group-level transition probability matrix for each method. So that the HMM result is comparable, we set the
diagonal elements for each subject’s transition probability matrix obtained by the HMM to 0, rescaled so that the row sums
equal 1, and then averaged across all subjects. The aHSMM subject-level transition probability matrices were averaged across

all subjects. For MHSMM, states 1-6 and 7-12 correspond to metastates 1 and 2, respectively. For HMM and aHSMMs,
States 1-7 and 8-12 correspond to metastates 1 and 2, respectively. These states are outlined in the black squares.

the larger fractional occupancy was due to the number of
transitions into States 6 as opposed to the longer dwell-
times. Fractional occupancy values were similar between the
NSSI severity groups, and were similar between HMM and
the aHSMMs. We point out that we cannot compare the
fractional occupancies obtained by the MHSMM with those
obtained by either HMM or aHSMMs within a state due to
the label switching problem.

Finally, we assess the fit of the HMM and aHSMMs us-
ing the normal pseudo-residuals as shown in Figure 9. In
general, across these methods the normal pseudo-residuals
have heavy tails, suggesting that there is a source of vari-

ation that the methods are not able to capture. Further
investigations are needed to show the impact of the heavy
tails on statistical inference about the dwell-time distribu-
tions and on the state reconstructions and their summary
statistics (e.g., state-switching frequency and fractional oc-
cupancy). Though the quality of the fit of the model varied
from subject to subject, in general we conclude from the
normal pseudo-residuals that there is substantial room for
improvement in the models.

In summary, using our aHSMM, we saw differences be-
tween NSSI severity groups in the dwell-time distribution
for two states. This would not have been possible using the
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Figure 7. Dwell-time distributions for each state, stratified by NSSI severity group.

MHSMM because it cannot explicitly account for the group
membership in the model. Investigations into the dwell-time
distributions are not possible using the HMM because the
HMM does not explicitly model dwell-time distributions.
The HMM and aHSMM yielded similar estimates in the
summary statistics (state/metatstate switching frequency
and fractional occupancy) obtained after state reconstruc-
tion. Across all methods, those with No/Mild NSSI severity
had a larger (smaller) median number of state (metastate)
switches compared to those with Moderate/Severe NSSI
severity, but the difference was not pronounced.

5. DISCUSSION

We developed a statistical model, the aHSMM, for ap-
proximating HSMMs using an HMM, and showed its util-
ity in analyzing resting-state fMRI time series. Our analy-
sis showed that dwell-time distributions varied over states,
and differed between NSSI severity. Our results are consis-
tent with previous work on evidence of two metastates, but
we did not see strong evidence that states tended to tran-
sition to other states within the same metastate [46, 41].
It may be the case that the transition probabilities be-
tween states is associated with NSSI severity which we
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Table 4. Parameter estimate for the dwell-time distribution for each state and each NSSI severity group for the aHSMM, and
for all subjects for the MHSMM. States marked with an asterisk (∗) denote a statistical significant difference between the

Moderate/Severe and No/Mild groups as determined by a permutation test (permutation p-value < 1/200), which was carried
out only for the aHSMM with m = 20.

aHSMM, m = 20 aHSMM, m = 10 MHSMM
State No/Mild Moderate/Severe No/Mild Moderate/Severe All

State 1 2.187 2.275 2.110 2.152 3.871
State 2 1.941 1.912 1.915 1.895 3.850
State 3 2.153 2.220 2.052 2.131 2.090
State 4 2.128 2.200 2.087 2.111 3.829
State 5 1.942 1.988 1.868 1.931 2.341
State 6 2.148 2.204 2.114 2.147 2.477

∗State 7 1.829 2.108 1.836 1.972 2.526
State 8 1.820 1.830 1.816 1.858 1.800
State 9 2.048 1.963 1.894 1.871 2.155

State 10 2.130 2.103 2.037 1.993 1.941
∗State 11 1.986 2.187 1.952 2.080 2.329
State 12 1.948 1.989 1.911 1.947 3.004

Figure 8. Boxplots of (a) state-switching frequency and (b) metastate-switching frequency per NSSI severity group estimated
by each method.

did not account for in our model. Indeed, in our analy-
sis NSSI severity was only included in the dwell-time dis-
tributions. Previous work has shown that the strength of
connectivity and the variability in the temporal dynamics
of connectivity between specific regions of the brain can
be useful for characterizing depression and suicide ideation

[11, 23, 22, 49]. Furthermore, our findings showed that
dwell-time distributions can be longer for those with mod-
erate or severe NSSI severity. Although no prior studies
have examined dynamic connectivity in relation to NSSI,
a small number of prior studies utilized different techniques
to study resting-state connectivity in patients with depres-
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Table 5. Mean (SD) fractional occupancy per state and metastate for each NSSI severity group estimated by each method.

No/Mild Moderate/Severe
State MHSMM HMM aHSMM, m = 20 aHSMM, m = 10 MHSMM HMM aHSMM, m = 20 aHSMM, m = 10

1 0.074 (0.110) 0.061 (0.038) 0.064 (0.042) 0.063 (0.042) 0.082 (0.126) 0.059 (0.043) 0.06 (0.043) 0.059 (0.044)
2 0.079 (0.099) 0.049 (0.029) 0.048 (0.028) 0.049 (0.029) 0.065 (0.098) 0.052 (0.029) 0.054 (0.032) 0.053 (0.031)
3 0.131 (0.187) 0.087 (0.061) 0.086 (0.057) 0.086 (0.059) 0.116 (0.168) 0.080 (0.056) 0.077 (0.053) 0.078 (0.054)
4 0.109 (0.085) 0.100 (0.072) 0.100 (0.072) 0.122 (0.110) 0.046 (0.137) 0.110 (0.095) 0.110 (0.092) 0.111 (0.093)
5 0.085 (0.178) 0.055 (0.035) 0.056 (0.036) 0.055 (0.035) 0.113 (0.227) 0.061 (0.033) 0.061 (0.033) 0.060 (0.032)
6 0.107 (0.150) 0.129 (0.103) 0.120 (0.094) 0.121 (0.097) 0.097 (0.147) 0.126 (0.106) 0.117 (0.098) 0.117 (0.101)
7 0.039 (0.156) 0.080 (0.043) 0.082 (0.043) 0.081 (0.042) 0.025 (0.065) 0.074 (0.040) 0.078 (0.039) 0.077 (0.040)
8 0.080 (0.195) 0.102 (0.057) 0.104 (0.053) 0.105 (0.055) 0.046 (0.137) 0.108 (0.054) 0.111 (0.048) 0.112 (0.051)
9 0.083 (0.187) 0.077 (0.035) 0.079 (0.036) 0.080 (0.037) 0.086 (0.194) 0.084 (0.041) 0.085 (0.044) 0.085 (0.043)

10 0.042 (0.151) 0.084 (0.050) 0.086 (0.051) 0.085 (0.049) 0.041 (0.163) 0.086 (0.060) 0.087 (0.059) 0.087 (0.060)
11 0.110 (0.172) 0.100 (0.054) 0.100 (0.052) 0.101 (0.052) 0.109 (0.164) 0.089 (0.052) 0.088 (0.049) 0.088 (0.048)
12 0.061 (0.168) 0.074 (0.042) 0.075 (0.042) 0.075 (0.043) 0.099 (0.229) 0.071 (0.046) 0.073 (0.046) 0.073 (0.047)

Metastate 1 0.585 (0.326) 0.353 (0.153) 0.353 (0.153) 0.353 (0.152) 0.594 (0.358) 0.361 (0.166) 0.363 (0.166) 0.362 (0.165)
Metastate 2 0.415 (0.326) 0.647 (0.153) 0.647 (0.153) 0.647 (0.152) 0.406 (0.358) 0.639 (0.166) 0.637 (0.166) 0.638 (0.165)

Figure 9. QQ plots of the normal pseudo-residuals obtained by each method for (a) all subjects and (b,c) select subjects.

sion. Different directions of association between temporal
variability and connectivity have been previously reported,
but these studies used different analytic approaches (e.g.,
sliding-window correlations, cluster analysis, graph theory),
and time series data from different regions of the brain
[11, 23, 22, 49, 51, 52]. Notably, these prior studies have
been primarily conducted on adults, and no prior stud-
ies have applied HMMs or HSMMs to examine state du-
ration and transition frequency in depressed patients. Fur-

thermore, while depression and NSSI are related constructs
in the sense that NSSI usually occurs in the context of neg-
ative affect [25] and the two problems commonly co-occur,
growing evidence suggests that depression and NSSI might
have both overlapping and distinct underlying biological
patterns [24, 3]. Finally, we showed that fractional occu-
pancy was the greatest for a state characterized by weak
inter-region correlations. This is consistent with Marusak
et al. [33] who showed that healthy children spend more
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time in a state characterized by weak inter-regional connec-
tions.

The aHSMM has natural extensions that can provide the
practitioner with further flexibility. In our application, we
accounted for the NSSI Severity group in the dwell-time
distribution, but our use of the HMM framework means we
could model the parameters of the emission distribution or
in the transition probability between state aggregates [53].
However, we may encounter challenges with respect to up-
dating the parameters in the M-step of the EM algorithm.
Furthermore, we restricted our analysis to P = 41 dimen-
sions. One could consider a model with higher dimensions,
though one may need to include some form of regularization
in the model. While there have been theoretical and method-
ological developments for HMMs for high-dimensional time
series [16, 43], to our knowledge there have been no devel-
opments for HSMMs. Since the aHSMM is in the HMM
framework, one could therefore utilize the developments for
HMMs for modeling high-dimensional time series data. An-
other potential extension is to account for the autocorrela-
tion of the data, which could improve estimates of and statis-
tical inference on functional connectivity [17, 20]. One pos-
sibility is to use a Markov-switching vector autoregressive
(MS-VAR) model, which uses a stationary VAR conditional
on the state sequence [45, 35]. The normal pseudo-residuals
in our data analysis suggested poor model fit, and so there is
a need for further extensions to HMMs and aHSMMs such as
the ones above to account for other sources of variability. Fi-
nally, our analysis only used data from a single time point in
the BRIDGES Study. One could conduct a longitudinal dy-
namic connectivity analyses by incorporating random effects
into the model. There have been developments for HMMs
with random effects [2, 13], and one could potentially adapt
these developments to the aHSMM.

We now describe some limitations with our modeling ap-
proach. In our analyses, we assumed that the number of
states was known a priori. This will not always be the case
in practice, and so one would need to use, e.g., the Akaike
or Bayesian information criterion (AIC or BIC, respectively)
or other model comparison metrics to select the number of
states [53]. In the aHSMM, we also have the size of the state
aggregates as a tuning parameter, and we showed that this
can affect performance if it is too small with respect to the
true underlying dwell-time distribution. In our data analy-
sis, when we set the size mi = 20 for all state aggregates our
approximation of dwell-time distributions will be accurate
for up to 16 seconds. We saw in our analysis that dwell times
were generally centered at TR = 10, corresponding to 8 sec-
onds, and thus the right-tail of the dwell-time distribution
was likely not affected by our choice for mi. In fact, results
using mi = 10 were very similar. There are a number of
open problems and questions surrounding dynamic connec-
tivity [32]. For instance, it is important to demonstrate if the
summary measures extracted from the aHSMM (e.g., state-
specific correlations, state reconstructions) are robust and

reproducible. We showed the performance of the aHSMM
using synthetic data, but empirical evidence will be more
useful. The literature is mixed on the test-retest reliability
of summary measures extracted from dynamic connectiv-
ity analyses [9, 28]. On the other hand, Vidaurre et al. [47]
showed that HMMs yielded reproducible results in model-
ing brain dynamics. Finally, it is important to be clear on
what we mean when we say that connectivity is “dynamic”,
since this can influence the appropriate “null model” to use
to test for the presence of such dynamics and can also affect
the interpretation of results [29, 32]. The aHSMM, like the
HMM, assumes that the correlations vary over time condi-
tional on the state sequence. However, we point out that
unconditional on the state sequence the first and second-
order moments do not vary over time.

Altogether, we showed using synthetic data and resting-
state fMRI data that the aHSMM provides an excellent
modeling framework for conducting dynamic connectivity
analyses in resting-state fMRI. The theoretical and method-
ological foundations of the aHSMM are based on those al-
ready established for HMMs, and thus this framework has
the flexibility to be extended or adapted based on the needs
of the practitioner. Finally, the model is fairly general, and
even though we used this model to analyze resting-state
fMRI data, it can be adapted to analyze multivariate time
series data from other scientific fields.

R and Rcpp code that implements the HMM and aHSMM
described in this paper are available at github.com/mfiecas/
dFCHMM and github.com/mfiecas/dFCaHSMM, respec-
tively.
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