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The majority of countries are facing or will face a serious
water crisis. As a consequence, we observe a deterioration
in the water quality such as the drop in the water table and
a salinity increase. Therefore, it is highly recommended to
conduct a regular monitoring program on groundwater levels
in order to sustain this source. Water table depth (WTD)
is an index of water availability that influences many soil
characteristics. Consequently, there are concerns with WTD
in both time and space. This paper shows how to build a
model for water table depth using Singular Spectrum Analy-
sis (SSA). The study area is located in the Ghahavand plain
in the Hamedan province, western Iran. We used water ta-
ble depth records that were collected by Hamedan regional
water authority as part of their monitoring system program.
The data were obtained monthly by measuring WTD of
about 200 wells within the study area in the period between
1988 and 2016. There were many errors, inconsistencies and
missing cells in the data file. So, we started with improving
data quality and filling the missing cells. The other prob-
lem with the data was related to the well samples that have
changed during the study horizon. Classically, we take a sim-
ple average on the observations at each time point to build
a univariate time series. However, a descriptive analysis re-
vealed that the heterogeneity in the value of the WTD in
the study area has increased over time. So, we used box plot
components to build model for WTD. We used both univari-
ate SSA and multivariate SSA to capture the information
within the box plot components. The performance of the
proposal was accessed by using both in sample fitting errors
and out of sample forecasting errors. The results suggest
that the new approach provides an attractive alternative to
the classical approach.

AMS 2000 subject classifications: Primary 62xx,
62M10; secondary 86xx, 86A05.
Keywords and phrases: Hamedan, Water table depth,
Singular spectrum analysis.

1. INTRODUCTION

The water resource management, in every country, de-
pends on quantitative understanding of hydrology and hy-
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drogeology [28]. In spite of increasing awareness about
the water resource problems in recent years, improvement
in the area of decision-making is still limited [19, 20].
New approaches in decision-making help active stakeholders
to consider environmental problems using computer mod-
elling methods ([29]). Two important tools that can fa-
cilitate strategic decision making in complex environmen-
tal/natural resource management systems are: (i) partic-
ipatory modelling (PM); and (ii) stakeholder engagement
[30, 27, 13, 29, 31]. Water table depth (WTD) is simply the
depth of phreatic water below the surface [12]. WTD affects
the water availability and many other soil characteristics,
see e.g., [18]. According to Iran’s Tasnim news agency there
are 90 sinkholes in the whole country, including 25 in the
Hamadan province. A giant sinkhole about 60 metres deep
has made a surprise appearance in western Iran (see Fig-
ure 1).

The sinkhole opened up on August 19, 2018 near the
small village of Kerdabad, in the Kabudrahang county of the
western province of Hamadan. This is not the first time this
phenomenon has occurred in the region; it is actually the
13th giant sinkhole that appeared in Kabudrahang county
in two decades. So far, none of them have opened up inside
villages or cities, but some are nearby. It has terrified both
locals and experts, who say this phenomenon shows that
groundwater tables have been badly damaged.

Consequently, there are concerns with WTD in both time
and space. Time series associated with climate inputs, such
as rainfall, are usually nonlinear. Thus, using simple time
series techniques for analysing climate inputs may be mis-
leading in selecting the appropriate models. On the other
hand, the majority of techniques are essentially confirma-
tory procedures, which is unrealistic in practice because the
true/real model is unknown.

In this paper, we use a model free time series analysis
technique so called Singular Spectrum Analysis (SSA). This
technique extracts and builds the model in the process of
time series analysis. SSA is a very flexible technique which
does not depends on restrictive assumptions such as lin-
earity, normality and stationary. It is based on the idea of
classical time series analysis and mainly uses matrix alge-
bra ([6]). SSA were successfully employed for analysing time
series in various domains such as meteorological ([2, 7, 9]),
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Figure 1. A giant sinkhole about 60 metres deep that opened
up on August 19, 2018 near the Kabudrahang county of the

western province of Hamadan.

bio-medical ([26]), hydrological ([1, 11, 32]), physical sci-

ences ([3]), economics and finance ([10, 24, 25]), engineering

([5]), among others.

Besides of the ability of the technique, it is important to

adapt its use to the problem in hand. The data of this study

is not a simple univariate time series, it includes multiple

observations at each time step (measurements of the same

phenomenon, but from different locations). Specifying an

appropriate proxy for the value of time series at each time

step is a problem that we address in this study. In particular,

we consider the multivariate SSA applied to the monthly

time series of the five box-plot components: lower bound,

first quartile, median, third quartile, and upper bound.

This paper is structured as follows. A brief description

of SSA is presented in Section 2. The detailed modelling

framework of the proposed approach is provided in Section

3. Finally, we derive some concluding remarks in Section 4.

2. MATERIALS AND METHODS

2.1 A brief introduction to SSA

Here we explain briefly how to apply the SSA method;

for more details see for example [6]. Consider a real-valued

vector/time series YT = (y1, . . . , yT )
′ of length T. Let L

(2 ≤ L ≤ T/2) be an integer called the window length and

set K = T − L + 1. In order to denoise (smooth) the time

series YT , the following four steps must be performed.

Step 1: Embedding. Define the trajectory matrix X as:

(1) X =

⎡
⎢⎢⎢⎢⎢⎣

y1 y2 y3 . . . yK
y2 y3 y4 . . . yK+1

y3 y4 y5 . . . yK+2

...
...

... . . .
...

yL yL+1 yL+2 . . . yT

⎤
⎥⎥⎥⎥⎥⎦

In the trajectory matrix, all the elements along the off
diagonal are equal. Such matrix is called a Hankel matrix.
This property shows that there is a one-to-one relationship
between original time series and trajectory matrix.
Step 2: Singular Value Decomposition. Let λ1 ≥
λ2 ≥ . . . ≥ λL ≥ 0 denote eigenvalues of XX′ and Ui

the normalized eigenvector corresponding to the eigenvalue
λi (i = 1, . . . , L). Then, the singular value decomposition
(SVD) of the trajectory matrix X can be written as:

(2) X = E1 + . . .+EL;

where, Ei =
√
λi UiV

′
i with Vi = X′Ui/

√
λi (i = 1, . . . , L).

Step 3: Grouping. Considering the partition {1, . . . , L} =⋃m
j=1 {Ij} where Ip∩Iq = ∅, p �= q, we can find the following

decomposition:

(3) X = XI1 + . . .+XIm ;

where, XIj =
∑
�∈Ij

E� , j = 1, ...,m. In this paper, we

consider two partitions, one associated to the signal and
another to the noise. This means that there is an integer r
between 1 and L such that:

X =

r∑
i=1

Ei +

L∑
i=r+1

Ei

= signal+ noise

Step 4: Reconstruction. The last step in the basic SSA,
transforms each matrix of the grouped decomposition (Step
3) into a new time series of length T. Indeed, we defined a
Hankel operator in the first step which transforms a vector
of dimension T × 1 into a Hankel matrix of dimension L ×
K. Here, we apply the inverse of that operator that can
be performed with diagonal averaging. Using this operator,
we obtain reconstructed series ỸT = (ỹ1, . . . , ỹT )

′ that is
associated signal matrix.

It must be noted that the general purpose of the SSA
is the decomposition of the original series into the sum of
interpretable components such as trend and periodic com-
ponents. Sometimes, however, it can also be used in spe-
cific tasks, such as: (i) extraction of signal from noise; (ii)
extraction of oscillatory components; (iii) smoothing; and
(iv) forecasting. To implement model fit (e.g. the first three
tasks (i)-(iii) mentioned above), the above SSA algorithm
can be used. However, in order to produce forecast by SSA,
we require further computations, as described in the next
subsection.

280 R. Mahmoudvand et al.



2.1.1 Forecasting by SSA

The basic SSA recurrent forecasting algorithm discussed
in [6] should be regarded as the main forecasting algorithm.
Although, there have been proposed several natural modifi-
cations to this algorithm which can provide better forecasts
in specific situations (e.g [6, 14]), here we consider standard
recurrent forecasting algorithm and denote it by SSA-R. Let
ŷh|T denote the SSA-R forecast at the time point T , for the
lead time h (or for h steps ahead). According to the SSA-R,
the following recursive formula can be used to obtain fore-
casts:

(4) ŷh|T =

⎧⎨
⎩

ỹh h = 1, . . . , T
L−1∑
t=1

atŷ(h−t)|T h = T + 1, . . .

where, (ỹ1, . . . , ỹT )
′ denote the reconstructed time series,

R = (aL−1, . . . , a1)
′ =

1

1− ν2

r∑
i=1

πiU
�
i

such that ν2 =
r∑

i=1

π2
i , and πi is the last component of

the vector Ui, and U∇
i is the vector containing the first L−1

components of Ui, for i = 1, . . . , L.

2.1.2 SSA choices

There are two basic, but very important, parameters that
must be selected when performing SSA for forecasting. The
first parameter is window length, L, and the second is the
number of eigentriples/components to conduct the recon-
struction, r. The window length is applied for the embedding
and the other parameter is used for grouping and construct-
ing the forecast engine. To select the window length, a value
between 2 and N/2 should be considered, being proportional
to the number of observations per period (e.g. proportional
to 12 for monthly time series). There are several methods
for choosing the number of components used for reconstruc-
tion, being two of the most popular methods based on the
scree plot of the singular values and on the weighted cor-
relation between components. We used the first method to
determine an appropriate values for pair (L, r). For more
details on the choice of these two parameters can be found,
for example in [6, 15, 16, 5, 14, 22].

2.2 Multivariate SSA

Multivariate SSA, or MSSA, is a natural extension
of SSA for analysing multivariate time series. Let Yt =[
y
(1)
t , . . . , y

(M)
t

]
, t = 1, . . . , T , denote a sample of a M -

variate time series with length T . Note that it is possible
to consider different number of observations for the individ-
ual time series in the multivariate framework ([8, 23]), but
here we assume equal number of observations. Let us assume

that Yt can be written in terms of a signal plus noise model
as:

YT =

⎡
⎢⎢⎢⎣
Y1

Y2

...
YT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y
(1)
1 . . . y

(M)
1

y
(1)
2 . . . y

(M)
2

... . . .
...

y
(1)
T . . . y

(M)
T

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

s
(1)
1 . . . s

(M)
1

s
(1)
2 . . . s

(M)
2

... . . .
...

s
(1)
T . . . s

(M)
T

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

n
(1)
1 . . . n

(M)
1

n
(1)
2 . . . n

(M)
2

... . . .
...

n
(1)
T . . . n

(M)
T

⎤
⎥⎥⎥⎥⎦ .

The MSSA algorithm denoises (smooths) the multivari-
ate time series YT = [Y1, . . . , YT ]

′
using the same steps as

the univariate SSA, i.e. embedding, SVD, grouping and re-
construction. The only difference is related to the definition
of trajectory matrix. Although there are several forms to
define the trajectory matrix in MSSA ([8]), here we use the
horizontal form defined as:

X =
[
X(1) . . .X(M)

]
=

⎡
⎢⎢⎢⎢⎣

y
(1)
1 y

(1)
2 . . . y

(1)
K . . . y

(M)
1 y

(M)
2 . . . y

(M)
K

y
(1)
2 y

(1)
3 . . . y

(1)
K+1 . . . y

(M)
2 y

(M)
3 . . . y

(M)
K+1

...
... . . .

... . . .
...

... . . .
...

y
(1)
L y

(1)
L+1 . . . y

(1)
T . . . y

(M)
L y

(M)
L+1 . . . y

(M)
T

⎤
⎥⎥⎥⎥⎦.

where L and K are chosen similarly as before and X(j) is
an Hankel matrix for the column j of the YT . This means
that the trajectory matrix for the MSSA algorithm is a block
Hankel matrix and this property is considered for the recon-
struction step.

Denote by Ỹ
(j)
T = (ỹ

(j)
1 , . . . , ỹ

(j)
T )′ the reconstructed val-

ues of the time series j. The h-steps ahead forecasts obtained
by the MSSA algorithm can be obtained with the following
recursive formula:

(5) ŷ
(j)
h|T =

⎧⎨
⎩

ỹ
(j)
h h = 1, . . . , T

L−1∑
t=1

atŷ
(j)
(h−t)|T h = T + 1, . . .

where R = (aL−1, . . . , a1)
′ will be obtained from trajec-

tory matrix X similarly as in the univariate SSA-R. The
methodology of the multivariate SSA shows that it also
needs two choices for its application in practice: the win-
dow length L, and the cutting point r. We can determine
these values using the same approaches mentioned for the
univariate SSA. It is worth mentioning that the complexity
of the multivariate SSA model is smaller than the univariate
SSA, when we apply both models for analysing multivariate
time series. This happens because multivariate SSA needs
two choices (L, r) whereas the univariate SSA needs 2M
choices {(L1, r1), . . . , (LM , rM )}.
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Figure 2. Location of wells in the study area in terms of
WTD.

3. EMPIRICAL RESULTS

The study area is located in the Ghahavend plain, which
is located in the East Hamedan province, Iran (34◦24′19.87′′

– 35◦17′27.39′′N, 48◦33′46.79′′ – 49◦28′31.67′′E). Its exten-
sion is about 50 km to east-west direction and about 100
km in the north-south direction, with represents an area
of approximately 2500 km2. The regional structure is of
a broad asymmetrical syncline known as the “Ghahavand-
Kabudrahang” basin. The regional structure is well repre-
sented by the Mesozoic to Cenozoic Groups. Static ground-
water levels were measured at about 200 hand-dug and
drilled wells within the study area. Figure 2 shows the dig-
ital elevation model and locations of the wells which were
collected from Hamedan regional water authority, as part
of their monitoring system program in the area, in March
2016. WTDs in the area increase from 8 to 80 meters from
the north to the centre of the study area.

3.1 Description of data

The data for this study consists on monthly WTD records
obtained from about 200 wells located in the study area. The
data covers the period between October 1988 and March
2016, with a total number of 49232 records. The number
of wells at each month (sample sizes) is shown in Figure 3.
This figure shows that the majority of sample sizes range
from 100 to 150 wells. These sample sizes are quite enough
for our study, as guidelines suggest that a sample between
20 and 30 wells are enough to provide statistical confidence
([4]).

Suppose that a sample of size wt wells is chosen at the
time point t. Denote by yi(t) the WTD for well i at time

Figure 3. Number of sampled wells in each month between
October 1988 and March 2016.

t. Then, we calculated monthly time series by using the fol-
lowing formula:

(6) yt =
1

wt

wt∑
i=1

yi(t).

Using this formula, we computed observations
(y1, . . . , y330) corresponds to period between October
1988 and March 2016. The data between April 2003 and
September 2003 (observations y175 to y180) were missing. In
order to impute these missing observations, the algorithm
proposed by [21] and [17] was used. According to their
approach, the time series data before and after the missing
block of observations is used to produce two estimates
for the missing observations, which are then combined,
considering a given weighting scheme, into a single estimate
for a greater precision. Here, we used y1, . . . , y174 to obtain
forecasts for observations y175 to y180. In addition, we find
another estimates for y175 to y180 by back casting observa-
tions y330, . . . , y181. Finally, we combine two estimates by
the procedure in [17] to produce the ultimate estimates.
Figure 4 shows the monthly time series of WTD, including
estimates for the missing observations.

The plot in Figure 4 shows several important results.
A clear nonlinear trend emerges, indicating that the water
resources suffered a decline over the years (approximately
three times more depth in 2015 than in 1988). At the same
time, the monthly figures will follow an almost identical pat-
tern each year (e.g., more depth during summer than dur-
ing any other time of the year). This data also illustrates
the amplitude of the seasonal changes fluctuating along the
years. It decreases with the year up to 1999, and suddenly
increased thereafter up to about 2008, and decreases up to
2013, with a slightly increases thereafter. Taking another

282 R. Mahmoudvand et al.



Figure 4. Time series of monthly water table depth between
October 1988 and March 2016.

Table 1. Summary statistics (first quartile, mean, standard
deviation and third quartile) for time series of WTD between

October 1988 and March 2016.

Quantity Q1 Mean SD Q3

value -36.87 -27.32 20.08 -8.21

careful look at Figure 4, it reveals that the WTD series has
four cycles:

(i) 1988 to 1992, in which the WTD have fallen sharply;
(ii) 1992 to 1999, in which the severity of decline in the

WTD decreases in comparison with those of the period
1988 to 1992;

(iii) 1999 to 2013, in which we observe again a sharp decline
in the WTD; and

(iv) 2013 to 2015, in which the direction of time series has
turned upward.
In addition, some descriptive statistics for the time se-
ries of WTD are provided in Table 1. Notations Q1 and
Q3 in this table, represent the first and third quartiles,
respectively.

3.2 Model fitting

In order to fit a model to the monthly WTD data, using
the SSA algorithm, we need to set up an appropriate pair of
parameters (L, r). Considering the behaviour of the singular
values of the trajectory matrix and weighted correlation be-
tween pairwise components, for L = 12 it can be seen that
the first three components are enough to reconstruct the
original noise-free time series. The first component captures
the trend and the second and third components are associ-
ated to the periodic components of the series. These compo-
nents taken together explain about 95% of the variability in

Figure 5. SSA model fit for the WTD data.

the original time series. Therefore, we fit SSA model using
L = 12 and r = 3. This model will be obtained by diagonal
averaging of the matrix:

(7) X̃ = E1 +E2 +E3

where the matrices Ei, i = 1, 2, 3, are defined as before.
Figure 5 shows the original time series and the fitted values
with that model.

3.3 Further strategies for WTD modelling

It is well known in hydrological studies that, statistical
measures such as mean, minimum and maximum are used
to construct time series. In the previous section, we used
a simple average to construct the WTD time series. In the
approach proposed in the section, we use the information
from all sampled wells at each time point by considering
the distribution of the WTD. Due to the problems in data
collection and data quality, the proposed approach can be
resistant to outliers. Accordingly, we propose to use box-
plots of the WTD observed in the sampled wells at each
time point. On one hand it provides more useful informa-
tion than a statistical measure (e.g. mean values) and, on
the other hand, it is less likely to be affected by outliers. Fig-
ures 6 and 7 show the box-plot time series for our data set.
Note that there is a high number of observations for each of
these box-plots. For instance, each box-plots in Figure 6 was
constructed by using about 150 samples and, for Figure 7,
this number increases to more than 1500 observations. This
provides more confidence in the results and conclusions.

Figures 6 and 7 provide similar conclusions:

• There is a considerable decreasing trend,
• There are outliers in all time points (months and years),
• The variation of the distribution of the WTD increased

by time,
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Figure 6. Box-plot of the WTD time series per month,
between October 1988 and March 2016.

Figure 7. Box-plot of the WTD time series per year, between
1988 and 2016.

• The box-plots are asymmetric in the beginning of the

time points and then they approach symmetric in more

recent years and months.

This new description of the data may help us to produce

a better model using other approaches such as multivariate

time series analysis and functional data analysis. Indeed, we

know that a box-plot can be constructed using five values:

upper bound, third quartile (Q3), median, first quartile (Q1)

and lower bound. It is also popular to use the following

formulas for finding lower and upper bounds:

upper bound = min(max(y), Q3 + 1.5 ∗ IQR)

lower bound = max(min(y), Q1 − 1.5 ∗ IQR)

where the inter-quartile range can be obtained as IQR =
Q3−Q1. So, we may consider this information in the frame-
work of the multivariate SSA and produce a new model.
This new model uses more information than a simple av-
erage as presented before. Therefore, we expect to obtain
better results with this proposal.

Firstly, we built an univariate SSA model for each com-
ponent of the monthly box-plot using the SSA choices given
in Table 2.

Table 2. SSA choices for modelling the components of the
boxplots.

Component Lower Q1 Med Q3 Upper

L 12 12 12 12 12
r 1 3 3 3 5

Then we consider L = 12 and r = 3 to obtain the results
for the multivariate SSA, using the time series of the five
box-plot components. Fitting errors (in sample) and fore-
casting errors (out-of-sample) were evaluated using the root
mean squared error (RMSE). In order to find the RMSE for
out of sample observations, we examined 30 forecasts and
compute RMSE using the following formula:

(8) RMSE =

√√√√ 1

30

30∑
i=1

(
yT−i+1 − ŷh|T−h−i+1

)2
,

where T is the length of time series and ŷh|T−h−i+1

denotes h-steps ahead forecast with starting time point
T − h − i + 1. The results for h = 6, 12, 24 steps-ahead are
given in Table 3.

Table 3. Root mean square errors for the univariate and
multivariate SSA algorithms, for the five box-plot

components, considering model fit and out-of-sample model
forecast for 6, 12 and 24 steps-ahead.

Method Lower Q1 Med Q3 Upper

Fit SSA 3.404 0.686 0.776 0.329 0.205
MSSA 2.613 0.688 0.775 0.330 0.288

6 steps SSA 1.203 1.750 2.221 1.218 0.660
MSSA 1.110 1.274 1.543 1.059 0.690

12 steps SSA 1.597 2.234 2.660 1.330 0.716
MSSA 1.433 1.618 1.847 1.150 0.777

24 steps SSA 3.544 3.811 4.999 2.087 0.724
MSSA 2.903 2.632 2.986 1.637 0.770

Table 3 shows that the MSSA algorithm produces more
accurate results than SSA in both in-sample model fit and
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out-of-sample model forecasting. The only exception is the
time series of the box-plot upper bound, where SSA provided
more accurate results than the MSSA for all cases. To better
understand this fact, Table 4 shows the linear correlation
between the box-plot components, where it is visible that
the correlation between “Upper” and the other variables are
lower than the other correlations. This is the main reason
of a weaker performance of MSSA when compared with the
SSA.

Table 4. Linear correlation between the five box-plot
components, lower bound, first quartile, median, third

quartile, and upper bound.

Lower Q1 Med Q3 Upper

Lower 1.000 0.948 0.871 0.806 0.461
Q1 0.948 1.000 0.958 0.891 0.489
Med 0.871 0.958 1.000 0.958 0.438
Q3 0.806 0.891 0.958 1.000 0.499

Upper 0.461 0.489 0.438 0.499 1.000

4. CONCLUSION

In this paper, we analysed monthly WTD records that
were collected by the regional water authority of Hamedan,
in Iran, as part of their monitoring system program. We used
two approaches for data preparation. The first approach em-
ployed a simple average on the observation for each time
point/month. Whereas in the second approach we extracted
the monthly time series for the five box-plot components,
lower bound, first quartile, median, third quartile, and up-
per bound. We used SSA to model the fluctuation in both
approaches, and the multivariate SSA for the second ap-
proach. We observed that the SSA algorithm fits the data
very well. Generally speaking, the descriptive analysis of the
data and the SSA fitted model showed that there is a de-
creasing trend in the WTD, which might be the result of
not enough intervention by the related institutions to pre-
vent the severity of this crucial problem in the area. It should
be mentioned that the data sets for this study suffered from
several problems including (1) many mistakes in registering
the right name of the well; (2) missing information; and (3)
lack of access to recent data. The first problem was solved
by using the other information such as longitude and lat-
itude of the wells, which was time consuming. The second
problem was solved by using statistical methods for impu-
tation of missing observations. The third problem required
funds and specific official permission that could not be solve
for this analysis.

The results showed that the propose strategy of consid-
ering the time series of the box-plot components in the
MSSA algorithm prided better results that using the uni-
variate SSA or the SSA for each of the five box-plot compo-
nents. This strategy can be applied to WTD in other loca-
tions/countries, other applications in the field of hydrology,

and also to other areas of application.
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