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Hankel low-rank approximation and completion in
time series analysis and forecasting: a brief review
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In this paper we offer a review and bibliography of work
on Hankel low-rank approximation and completion, with
particular emphasis on how this methodology can be used
for time series analysis and forecasting. We begin by describ-
ing possible formulations of the problem and offer commen-
tary on related topics and challenges in obtaining globally
optimal solutions. Key theorems are provided, and the paper
closes with some expository examples.
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1. INTRODUCTION

Low-rank techniques have become one of the great success
stories in computational mathematics, linear algebra, engi-
neering and statistics over the last decade. They now con-
stitute the dominant paradigm for solving large-scale prob-
lems from computational fluid dynamics, through computa-
tional meteorology, to molecular modelling. They are also
used in inverse problems, where restricting the rank acts as
a kind of regularisation to make ill-posed problems stable
and tractable. Arguably one of the most exciting develop-
ments in statistics in recent years has been the exploitation
of (approximate) low-rank structure of observed data. This
is the idea that underpins the success of compressed sensing
and matrix completion.

In statistics, approximating a given matrix by one of
small rank, is closely related to principal component analy-
sis and variations of it [103], factor analysis [106] and total
least squares [87]. Such low-rank approximations are now
essential for the application of kernel methods to large-scale
learning problems [71]. Their motivation and need is well
described in the paper [109], where it is asserted that ma-
trices of low-rank are pervasive in data science and that any
sufficiently large matrix with small spectral norm can be
well approximated by a low-rank matrix.

There has been much recent work in the application and
development of low-rank approximation methods to solve
typical problems of time series analysis, namely those of
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modelling and forecasting. Generally speaking the main idea
of the methodology is to embed an observed time series into
a Hankel matrix, the rank of which is taken to be a mea-
sure of the complexity of the time series. There are rich and
historical results connecting properties of a Hankel matrix
and its embedded original time series which directly mean
that finding low-rank approximations of the Hankel matrix
has sensible meaning in yielding a time-series which approx-
imates the original one, but is of smaller complexity.

In this paper we offer a review and bibliography of work
on Hankel low-rank approximation and completion, with
particular emphasis on how this methodology can be used
for time series analysis and forecasting. The structure of the
paper is as follows. Section 2 introduces the problem of Han-
kel low-rank approximation, describing possible choices of
norm to define the optimization problem, as well its possible
formulation via a vector or matrix form. Unstructured low-
rank approximation and its solution via the classic Eckart-
Young-Mirsky-Schmidt theorem is described as well as re-
lated problems. The important relationship between low-
rank Hankel matrices and linear recurrence sequences is pro-
vided in Section 3. Algorithms to approximate a solution of
the Hankel low-rank approximation problem are described
in Section 4, and the problem of forecasting is framed as one
of low-rank matrix completion in Section 5 where use of the
nuclear norm as a convex relaxation of the rank constraint is
explained. The paper closes with some numerical examples
in Section 6.

2. HANKEL LOW-RANK APPROXIMATION

2.1 Problem statement

Let

(1) p = (p1, p2, . . . , pN ),

be a time series of length N > 1, taking real or complex val-
ues. We mostly focus on real-valued time series in this paper
since they more readily appear in statistical application.

Most low-rank based methods of time series analysis em-
bed the vector p into a Hankel matrix. Let L, K be integers
such that L+K − 1 = N . For simplicity of notation we will
assume L ≤ K throughout. The L×K Hankel matrix S(p)
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parameterized by the vector p is defined as
(2)

S(p) = HL(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 p3 · · · · · · pK

p2 p3 . .
. · · · · · ·

...

p3 . .
.

. .
.

. .
.

. .
. ...

... . .
.

. .
.

. .
.

. .
.

pN−1

pL · · · · · · · · · pN−1 pN

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The parameter L is specified by the user, and it referred to as
the window length in techniques such as singular spectrum
analysis (SSA) [51]. Its choice depends on the low-rank ap-
proximation (LRA) problem under consideration. The most
recent book on singular spectrum analysis is [51] and advice
on the choice of L for SSA is given in [66] for this technique,
with some more general discussion available in [46]. Com-
monly L is chosen so that the resulting Hankel matrix is
(close to) square [83]. Another possible strategy is to choose
the window length as small as possible in order to make the
matrix “fat”.

Let the given vector of N observations (time series) be

p0 = (p0,1, p0,2, . . . , p0,N )

and X0 = S(p0) be the associated Hankel structured ma-
trix. Low-rank based methods of approximating/forecasting
a given time series aim to obtain a so-called structured low-
rank approximation (SLRA) of the matrix X0. The prob-
lem of SLRA in the literature is typically formulated in two
ways: vector and matrix form, which informally speaking
refers to the domain in which the SLRA optimization prob-
lem is defined. In fact, these formulations can be shown to
be equivalent, but both of them are used in the literature.
We begin our paper with the vector form, which seems to
be more suited to time series analysis.

Vector (parameter) form For a given time series p0 and
fixed rank r, the SLRA problem is to find the closest time
series p̂, such that the corresponding structured matrix S(p̂)
is low-rank:

(3) min
p̂

‖p̂− p0‖ subject to rankS(p̂) ≤ r,

where ‖ · ‖ is a vector norm (or, in general, an extended
semi-norm). The SLRA problem thus can be interpreted as
an approximation of a time series by a simpler time series
having some structure. The class of time series correspond-
ing to low-rank Hankel matrices is described in Section 3.

The norm ‖·‖ measures the distance between the time se-
ries and its approximation. Typical choices of norm include:

• (Euclidean) 2-norm ‖ · ‖2, which puts equal weights to
all observations;

• elementwise weighted extended semi-norm

‖p‖w =

√∑
k

wkp2k,

defined by a nonnegative vector of weights wk ∈
[0,+∞]; more precisely,

– wk ∈ (0,+∞) quantifies importance of observa-
tions;

– wk = ∞ corresponds to fixed values (i.e., an addi-
tional constraint p̂k = p0,k in (3));

– wk = 0 implies that the value p0,k is not impor-
tant, and therefore can encode missing values;

in particular, if all wk ∈ (0,+∞), then ‖p‖w is a norm.
• General weighted norm

‖p‖W :=
√
p�Wp,

where W is a symmetric positive semidefinite matrix.
In particular,

– the choice W = diag(w1, . . . , wN ) corresponds to
the elementwise weighted extended norm (wk ∈
(0,+∞));

– a general matrix W can be taken as an inverse
covariance matrix of the noise (if an additive noise
model is assumed).

Other types of norms can be considered (see, e.g., examples
in the matrix formulation described next), but the SLRA
problem becomes much more difficult in that case.

Matrix form It is the matrix form that was used in many
of the original papers and classical algorithms on SLRA [24].
For a given matrix X0 = S(p0) ∈ S belonging to the set
of structured matrices S = {S(p) |p ∈ R

N} and a chosen
rank r we seek its best rank-r structured approximation, i.e.

(4) min
̂X

‖X̂−X0‖ subject to rank X̂ ≤ r and X̂ ∈ S ,

where ‖ · ‖ is some matrix norm or, in general, an extended
semi-norm. Examples of common choices of norms are:

• the classic Frobenius norm

‖X‖F =

√∑
i,j

X2
ij ;

• the elementwise weighted Frobenius norm

‖X‖Z =

√∑
i,j

ZijX2
ij ,

where Z is a matrix of nonnegative weights encoding the
importance of the elements in the approximation. As in
the vector formulation described above, the weights can
take the values ∞ and 0, as to encode fixed or missing
values respectively, which makes ‖ · ‖Z an (extended)
semi-norm.

• so-called (Q,R)-norm [43]:

‖X‖Q,R =
√
Trace(QXRXT ),

where Q and R are positive definite matrices.

288 J. Gillard and K. Usevich



• Generalized weighted Frobenius norm, defined by a
symmetric positive definite matrix Wm ∈ R

LK×LK ,

(5) ‖X‖Wm =
√
(vecX)TWm vecX.

In fact, the general weighted Frobenius norm general-
izes the previous two norms, with

– Wm = diag(vecZ) for the elementwise weighted
norm;

– Wm = R ⊗Q for the (Q,R)-norm, with ⊗ being
the Kronecker product;

– in particular, a norm that is both an elementwise
and a (Q,R)-norm corresponds to a rank-one ma-
trix Z and diagonal matrices Q and R:

Z = qrT , Q = diag(q) and R = diag(r) .

• Other norms can be considered, e.g., the spectral norm,
but this results in a much more difficult problem and
very few results and practical algorithms are available
[68, 8, 101, 38]. The spectral norm is the dual of the
nuclear norm [33], and so is often studied when con-
sidering properties of nuclear norm minimization. The
spectral norm underpins the work of Adamyan, Arov
and Krein which has come to be known as AAK theory
[2]: a series of results connecting the theory of complex
functions on the unit circle to infinite Hankel matri-
ces. Optimal approximations of Hankel matrices in the
spectral norm is gaining traction in developing modern
model reduction methods necessary for recurrent neural
networks [9].

General remarks

• For the Frobenius norm, unstructured LRA (without
the structure constraint) is solved by the singular value
decomposition (see the following subsection).

• The SLRA problem is formulated exactly in the same
manner as in for general (affine) matrix structures. In
this paper, however, we focus on the Hankel SLRA, but
discuss related structures in Section 3.6.

• In the general case, the SLRA problem is a difficult
NP-hard global optimization problem [44]. For Hankel
SLRA (as shown in [93, Corollary 3.9] for the case of
Frobenius norm), the number of stationary points grows
polynomially in N and exponentially in r. The minimiz-
ers possess narrow regions of attraction and the effect
of observing noisy observations further compounds the
difficulty, dampening and shifting the location of the
global minimum [41].

• The two formulations (matrix and vector), in gen-
eral, are equivalent in the case of the general weighted
semi-norm [63]. We review this correspondence in Sec-
tion 2.4.

• All definitions and problem formulations given thus far
are naturally extended to the complex case, whereupon
we replace transpose by the Hermitian transpose, and
squares (e.g., p2i ) by the squares of the absolute values
(e.g., |pi|2) in the definitions of the norms.

2.2 Unstructured low-rank approximation
and global solutions

Before discussing properties of SLRA, we recall results
on unstructured low-rank approximation problems. The first
result is the classic Eckart-Young-Mirsky-Schmidt theorem
(see e.g., [45]) which treats the case of unitarily invariant
norms, and the Frobenius norm in particular.

Theorem 2.1. Let A ∈ R
L×K be a given matrix (L ≤

K) with singular value decomposition (SVD) given by A =
UΣVT , where U ∈ R

L×L, V ∈ R
K×K and Σ ∈ R

L×K ,
with elements Σi,i = σi being the singular values σ1 ≥ σ2 ≥
· · · ≥ σL ≥ 0. Let Σ(r) ∈ R

L×K with elements

Σ
(r)
i,j =

{
σi, 1 ≤ i ≤ r and j = i
0, otherwise.

Then

A(r) := UΣ(r)VT = argmin
B:rank(B)≤r

‖A−B‖2� ,

where ‖ · ‖� is an arbitrary unitarily invariant norm.

Remark 2.1. The best low-rank approximation is not
uniquely defined in the case σr = σr+1, which is due to
nonuniqueness of the singular vectors corresponding to re-
peating singular values. In such a case, all the possible SVDs
give the set of all best rank-r approximations, according to
Theorem 2.1.

An extension of the above theorem to the (Q,R)-norms
is as follows.

Lemma 2.1. Let A ∈ R
L×K , B ∈ R

L×K , Q and R be
positive definite matrices of dimension L × L and K × K
respectively. Then

‖A−B‖2Q,R = ‖Q1/2(A−B)R1/2‖2F .

A proof of Lemma 2.1 and a discussion of its importance
in relating problems of time-series analysis and low-rank ap-
proximation is given in [83, Theorem 4.12] (see also [43] for
a detailed study). Note that as the matrices Q and R are
assumed to be positive definite, then Q1/2 and R1/2 exist,
as do their inverses.

Theorem 2.2. Let A ∈ R
L×K be a given matrix (L ≤ K)

with Q and R be given positive definite matrices of dimen-
sion L × L and K × K respectively, and SVD of Ã :=
Q1/2AR1/2 as described in Theorem 2.1. Then

A
(r)
Q,R := (Q1/2)−1ŨΣ̃(r)Ṽ(R1/2)−1

= argmin
B:rank(B)≤r

‖A−B‖2Q,R
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These results do not consider structured approximations,
in that there are no constraints on the elements of the ma-
trix approximation. However, these results are necessary for
SLRA algorithms to obtain either: an initial point to begin
iterations of some numerical algorithm and/or to provide
projections to the ‘closest’ matrix of rank ≤ r. Indeed we
will use these results to introduce some algorithms which
aim to approximate a solution of (3) in Section 4.

2.3 Related problems

In some literature, instead of low-rank matrix approxima-
tion, the problem is formulated as one of rank minimization.
For example, in the vector formulation, for a given approx-
imation error ε, we wish to minimize the rank

(6) min
p̂

rank S(p̂) subject to ‖p̂− p0‖ ≤ ε.

This formulation is dual to that of SLRA (3), as both prob-
lems explore the same Pareto optimality front (see e.g., [80]
or [83] for a discussion on this topic). In fact, if we are able
to solve one of the problems we can find a solution of the
other one. One particular drawback of the formulation in (6)
is that the solution is in most cases non-unique, and this is
one reason why we prefer the SLRA formulation.

Another possible formulation is the “regularized” form,

(7) min
p̂

rank S(p̂) + λ‖p̂− p0‖2,

but this formulation is much less intuitive and makes it dif-
ficult to find the regularization parameter. Yet another re-
lated problem is trace regression [99] (or matrix sensing),
but we leave it out of the scope of this paper.

2.4 Parameterizations and norms

The Hankel matrix structure belongs to the class of affine
matrix structures [83], i.e. matrix structures which can be
parameterized as:

(8) S(p) = S0 +

N∑
i=1

piSi

where Si, i ∈ {0, 1, . . . , N} ∈ R
L×K are given linearly inde-

pendent basis matrices. In particular, for the Hankel matrix
structure (30), the basis matrices in (8) are given as S0 = 0,

S1 =

⎛⎜⎜⎝
1 0 ··· 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 ··· 0 0

⎞⎟⎟⎠,S2 =

⎛⎜⎜⎝
0 1 ··· 0 0

1 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 ··· 0 0

⎞⎟⎟⎠, . . . ,

SN−1 =

⎛⎜⎜⎝
0 0 ··· 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 1
0 0 ··· 1 0

⎞⎟⎟⎠,SN =

⎛⎜⎜⎝
0 0 ··· 0 0

0 0 . .
.

0 0
... . .

.
. .
.
. .
. ...

0 0 . .
.

0 0
0 0 ··· 0 1

⎞⎟⎟⎠.

(9)

The optimization problems (3) and (4) are equivalent for
particular choices of vector and matrix norm. For example

‖S(p)− S(p0)‖2F =

N∑
j=1

κj(pj − p0,j)
2

where the weights

(10) κj =

⎧⎨⎩
j, if 1 ≤ j < L,
L, if L ≤ j ≤ K,
N − j + 1, if K < j ≤ N.

This remark has a large implication on the use of SLRA
for time series applications. Should the Frobenius norm be
used in (3), then the weights as given in (10) are (possibly
unintentionally) bestowed upon the time series p0. Work
to suggest solutions to rectify this problem is covered in
[119], whereby given desired weights wj methods to obtain
matrices Q and R such that

‖S(p)− S(p0)‖2Q,R ≈
N∑
j=1

wj(pj − p0,j)
2 ,

are described. For certain cases of elementwise weights wj

it is possible to find exact equivalencies between ‖S(p) −
S(p0)‖2Q,R and

∑N
j=1 wj(pj −p0,j)

2, but in general only ap-
proximations are possible. However, if the general weight
matrices are allowed, as in (5), then the vector and matrix
formulations (3) and (4) can be shown to be equivalent [63].

3. LOW-RANK HANKEL MATRICES AND
LINEAR RECURRENCE SEQUENCES

Rank-deficient Hankel matrices are well-studied [59], in
particular, they are tightly linked to linear recurrence se-
quences. Such sequences, can be characterized by a so-called
canonical representation of sums of products of polynomial,
exponential and cosine functions, which is a very useful class
of time series. In this section, we provide a summary of these
connections, together with references to the relevant litera-
ture.

3.1 Rank properties of Hankel matrices and
time series of finite rank

The algebraic theory of Hankel matrices goes back to
Sylvester [108], who studied them in the context of decompo-
sitions of binary forms, and Prony [95]. The most complete
reference is the book of Heing & Rost [59, Ch.5 and 8], how-
ever, this reference was not known very well until recently
for historical reasons. While not pretending to provide a
comprehensive treatment of the subject, we briefly review
the key points that are particularly useful in the context of
time series analysis, following the details provided in [110]
and [40].
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Figure 1. Rank of the Hankel matrix HL for varying L.

The key property is that of how the rank varies with
respect to the window length. Assume that we fix the length
of the time series N and we vary the window length L from
1 to N (allowing in this case that L may be bigger than K).

Lemma 3.1 ([59, Corollary 5.2]). For any sequence p ∈ C
N

there exists a number d ≤ 	N+1
2 
 such that

rankHL(p) = min(L,K, d).

Figure 1 illustrates the behaviour of ranks as described
in Lemma 3.1. As it can be seen from Fig. 1, the rank of
the matrix is maximal, excepting a “plateau” at d. The case
d = N+1

2 (for time series of odd length) is special, as in
this case the Hankel matrix is full rank for any value of L
(and is square nonsingular for L = N+1

2 in particular). For

other cases (d < N+1
2 ), the matrices have a very particular

structure; we will call such p time series of finite rank, as
in the SSA literature [49].

There is a following important consequence of Lemma 3.1:
if a Hankel matrix is rank-deficient (i.e., rankHL(p) ≤ r <
min(L,K), and this is a time series of finite rank), then
rankHL(p) = rankHr+1(p), where Hr+1(p) is a Hankel
matrix of built from the same vector but with r + 1 rows.
This leads to the following corollary.

Corollary 3.1. In the vector formulation (3), the SLRA
problem with r < L and S = HL is equivalent to the SLRA
problem for the rank r and structure S = Hr+1, for the same
choice of the (semi-)norm ‖ · ‖ (i.e., the search space and
the optimal solutions of both problems coincide).

Thanks to the Corollary 3.1 mentioned above, some au-
thors (e.g., in the work of Markovsky and coauthors, [83])
argue that it makes no sense to consider Hankel SLRA with
other window length than L = r + 1 (and therefore ignore
other window lengths). This, however, leads to a confusion
in the literature as it leaves an impression that the approach
of [83] cannot handle other cases than rank reduction by 1.

3.2 Linear recurrence relations (LRR)

Low-rank Hankel matrices are tightly linked to linear re-
currence relations. We say that a (real- or complex-valued)
time series p ∈ C

N satisfies a linear recurrence relation
(LRR) of order r if there exists a non-zero vector θ =
(θ0, . . . , θr) ∈ C

r+1 \ {0} such that

(11) θ0pk + . . .+ θrpk+r = 0, for all k = 1, ..., N − r.

For real-valued p, the coefficients of the linear recurrence
relation can be also be chosen to be real-valued.

Next, we remark that the linear recurrence property is
related to rank-deficiency of a Hankel matrix.

Remark 3.1. In the matrix form, we can rewrite (11) as

(12)
(
θ0 · · · θr

)
Hr+1(p) = 0.

Here, as in Lemma 3.1, the Hankel matrix may have more
rows than columns. This implies that if a Hankel matrix is
rank-deficient, then the underlying time series satisfies an
LRR.

Note that, in general, θ0 and θr may be zero. If the last
coefficient is non-zero, then the linear recurrence (11) can
be represented in a slightly different form, which is more
common in time series analysis (e.g., [49]).

Remark 3.2. If1 θr �= 0, then we can define ak = −θk/θr,
and we can rewrite (11) as

(13) pj = ar−1pj−1 + ar−2pj−2 + · · ·+ a0pj−r.

The LRR (13) (linear recurrent formula in the terminol-
ogy of [49]) gives a way to recursively compute the next
values of the time series based on the previous ones. This
serves as a base for time series forecasting, explained in Sec-
tion 5.3.1.

3.3 Linear recurrence relations and sums of
exponentials

In this subsection, we explain the connection between
time series of finite rank and sums of (modulated) complex
exponentials. This connection is well-known for infinite se-
quences (or infinite time series), see, for example, [56], but
in this and subsequent sections, we show what happens for
finite-length time series as well.

The key tool is the characteristic polynomial of the LRR,
which is

θ(z) = θrz
r + θr−1z

r−1 + · · ·+ θ1z + θ0 .

Assuming that the first and last coefficients are nonzero,
the characteristic polynomial can be factorized thanks to
the fundamental theorem of algebra,

(14) θ(z) = (z − λ1)
ν1(z − λ2)

ν2 · · · (z − λs)
νs ,

with ν1+ . . .+ νs = r. Moreover, the form of the time series
can be determined from its roots, as shown by the following
lemma.

1The case θr �= 0 is called “continuable time series” in the SSA theory
[49]. Indeed, from Remark 3.1, the case θr �= 0 corresponds to the case
when eL �∈ span(HL) for L > r, which is a necessary and sufficient
condition of continuability in [49].
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Theorem 3.1 ([56, Theorem 3.1.1]). A complex-valued time
series2 p satisfies a linear recurrence with θ0 �= 0 and θs �= 0
if and only if it can be expressed as

(15) pk =

s∑
j=1

Pj(k)λ
k
j , k = 1, 2, . . .

where Pj(k) are complex polynomials of degrees at most νj−
1 and λj ∈ C \ {0} are the roots of the polynomial in (14).
The coefficients of the polynomials in (15) are determined
by the first s values of the time series.

Roughly speaking, Theorem 3.1 implies that the Hankel
SLRA problem becomes a problem of approximating a given
time series by time series of the form (15). Indeed, thanks
to Remark 3.1, the Hankel matrix is rank-deficient if and
only if it satisfies a linear recurrence relation, and therefore
in most cases its form is given by Theorem 3.1. (The general
case will be discussed at the end of this subsection.) In the
case when the characteristic polynomial has simple roots
(s = r and νj = 1 in (14)), we have that

(16) pk =

r∑
j=1

ckλ
k
j , k = 1, 2, . . .

which is known as a sum-of-exponential model in signal pro-
cessing, see also Section 3.6.

In time series analysis, the real-valued time series are
more common. Therefore, we formulate a corollary of The-
orem 3.1.

Corollary 3.2. A real-valued time series satisfies a linear
recurrence (11) with real coefficients θ ∈ R

r+1, θ0, θr �= 0 if
and only if it can be written as the following sum [76]:
(17)

pk =

q∑
j=1

Pj(k) exp(dkk) sin(2πωjk + φj), k = 1, . . . , N

where {Pj(k)} are real polynomials (which can be just con-
stant amplitudes), {dl} are the dampings, {ωl} are the fre-
quencies and {φl} are the phases, to use terminology com-
mon in signal processing.

Corollary 3.2 follows from the fact that if the coefficients
of the linear recurrence are real, then the non-real roots of
the characteristic polynomial must come in complex conju-
gate pairs. The number of terms q is equal to the number
of real roots of θ(z) plus the number of complex conjugate
pairs (i.e., for the case of q = s/2 in (16) if there are no real
roots). More details on Corollary 3.2 can be found, e.g., in
[49, 110, 40, 120].

2In [56] Theorem 3.1 was formulated for infinite-length time series, but
it holds for finite time series by restriction.

3.4 Minimal linear recurrences and complete
characterisation of finite-length case

While Theorem 3.1 and Corollary 3.2 gives us a form of
the time series for several cases, it does not give any in-
formation whether this representation is unique. Another
drawback is that it does not give a complete characteriza-
tion, as it does not treat the cases when θ0 = 0 and θr = 0.

Let us first discuss the uniqueness issue. In fact, we can
define the linear recurrence relation of minimal length [70],
which we can find as a corollary of Lemma 3.1 and Re-
mark 3.1

Lemma 3.2. For a time series of finite rank d, the mini-
mal length linear recurrence relation is of length d with co-
efficients (q0, . . . , qd). It exists and is unique up to multipli-
cation by a constant factor, and can be found from the left
kernel of the corresponding Hankel matrix

(q0, . . . , qd)Hd+1(p) = 0.

Indeed, a shorter linear recurrence is not possible (which
would imply Hd to be rank-deficient), and the left kernel
of Hd+1(p) is generated by a single vector, which is de-
fined uniquely up to normalization and sign. Such a vector
(q0, . . . , qd) is related to the first characteristic polynomial
in the terminology of [59]. For a range of lengths, all LRRs
can be obtained from q, as explained in Section 3.5.

Moreover, the time series p possesses a unique minimal
representation similar to (16). In what follows, we formulate
the general case in the following theorem (as to allow the
coefficients q0 and qd to be zero). Let λ1, . . . , λs ∈ C \ {0},
ν1, . . . , νs be some positive integers, and ν0, ν∞ ∈ N be non-
negative integers such that

(18) ν0 + ν1 + · · ·+ νs + ν∞ = d.

Consider a signal p ∈ C
N such that

(19) pk =

ν0∑
j=1

ajδj−1(k) +

ν∞∑
l=1

blδN−l(k)︸ ︷︷ ︸
transient terms (beginning and end)

+

s∑
j=1

Pj(k)λ
k
j ,

where

1. each Pj(k) is a polynomial of degree νk − 1;
2. δx(k) is the (Kronecker) delta-function:

δx(k) =

{
1, x = k,

0, x �= k;

3. and aν0 �= 0, bν∞ �= 0.

Finally, let (q0, . . . , qd) be coefficients of the characteristic
polynomial of the minimal linear recurrence

(20) q(z) = q0+q1z+· · ·+qdz
d = zν0(z−λ1)

ν1 · · · (z−λs)
νs ;
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note ν0 denotes the multiplicity of the root 0 (if present)
and ν∞ encodes the number3 of zero leading coefficients (qd,
qd−1,...). The q(z) is precisely the characteristic polynomial
of the minimal linear recurrence relation q in Lemma 3.2.

Theorem 3.2 (Special case of [59, Theorem 8.2]). The time
series p is of finite rank d if and only if the signal p has the
form (19). Moreover, the representation (19) with d satis-
fying (18) (called the canonical representation in [59]), is
unique.

For real-valued time series, a corollary of Theorem 3.2
can be derived giving a complete characterisation of real
values time series of finite rank in terms of their canonical
representation, in a similar manner to Corollary 3.2.

3.5 Non-minimal linear recurrences and left
kernel of Hankel matrices

In this section, we give some details about the way the
other linear recurrences (11) (for r > d) can be obtained
from the minimal one. The following proposition gives a
complete characterisation for a wide range of values of r.

Proposition 3.1 (Special case of [59, Theorem 5.1]). Let p
be a complex-valued time series of finite rank d and q ∈ C

d+1

be the coefficients of its minimal LRR. Then for any r ∈
{d, . . . , N − d} all linear recurrence relations

(
θ0 · · · θr

)
of length r satisfied by p must have the form

(21)

⎛⎜⎝θ0
...
θr

⎞⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q0 0 · · · 0

q1 q0
. . .

...
... q1

. . . 0

qd
...

. . . q0
0 qd q1
...

. . .
. . .

...
0 · · · 0 qd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
︸ ︷︷ ︸

Mr−d(q)

⎛⎜⎜⎜⎝
b0
b1
...

br−d

⎞⎟⎟⎟⎠ ,

where bk are some complex coefficients (in the case of real-
valued p, the coefficients bk can be chosen to be real as well).

In fact, (21) can be conveniently interpreted in terms of
the characteristic polynomial of the linear recurrence. In-
deed, the equation (21) is equivalent to

θ(z) = q(z)c(z);

this is why Mr−d(q) is often called a multiplication matrix,
because it represents multiplication by the polynomial q(z).
Thanks to Remark 3.1, such linear recurrences correspond to
all the vectors in the left kernel of the matrix Hr+1(p) (i.e.,
the set of all vectors such that θ�Hr+1(p) = 0). Thus, for
d ≤ r ≤ N − d, the span of columns of the matrix Mr−d(q)

3This corresponds to the multiplicity of ∞ root in the terminology of
[59].

in (21) coincides with the left kernel of the matrix Hr+1(p)
(which is a linear subspace of Cr+1 of dimension r− d+1).

Note that for N − d < r ≤ N − 1, the situation is more
complicated: a second generating linear recurrence comes
into play, as explained in [59, Theorem 5.1, Definition 5.4].
This is due to the fact that as r > N − d, the rank defect
of Hr+1(p) grows twice faster as r increases (see Fig. 1).
Note that in the case of time series of infinite length, the
second polynomial does not appear, and all possible linear
recurrences are given by (21), see e.g. [56].

Finally, we make a remark that there is a representation
similar to (21) for the tangent space to the manifold of time
series of finite rank d (of dimension 2d). In fact, the tangent
space is spanned by the matrix MN−1−2d(q

2), where q2 is
the vector of coefficients of squared polynomial q2(z) [120,
Theorem 2.3]. Similar results are known in the field of alge-
braic geometry in the study of so-called secant varieties (see
e.g. [61, Theorem 3.9] or [14, Theorem 2.1]).

3.6 Other uses of Hankel SLRA and other
matrix structures

As already remarked, the SLRA problem (3) can be for-
mulated in the same manner for an arbitrary affine struc-
ture. We list below some common problems and structures.

Hankel structure in signal processing Fitting and analysing
the sum-of-exponentials model is very common in signal
processing and so there has been much attention on Han-
kel SLRA to obtain solutions in problems such as: spec-
tral estimation [96, 107], sparse signal recovery [84], and
denoising particular types of signal [15, 27]. Other uses of
the sum-of-exponentials model include: finite rate of innova-
tion [30], shape-from-moments [31], and superresolution [18]
problems. Note that in spectral estimation it is customary
to restrict to unit-norm exponents |λk| = 1, which requires
an additional constraint on positive semidefiniteness of the
corresponding Toeplitz matrix [18]. Some literature exists on
developing approximate Prony methods (see [118] and ref-
erences therein), which are closely linked to Hankel SLRA.
The Hankel structure is a special case of the block-Hankel
structure which is discussed later in this subsection.

Yet another and classical use of the model (16) in pure
mathematics appeared in the field of algebraic geometry and
tensor decompositions. In fact, (16) corresponds exactly to
the decomposition of a 2 × · · · × 2 symmetric tensor into a
sum of rank-one symmetric tensors [108, 61, 26], see also [93]
(equivalently, as a decomposition of a binary form into sums
of powers of linear forms, the so-called Waring problem).
This is why many aspects of the theory of Hankel matrices
trace back to classic works in algebraic geometry and are
in parallel studied in the works on tensor decompositions.
Low-rank approximation of Hankel matrices is also a useful
tool for function approximation [10, 52].
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Block-Hankel and mosaic Hankel structure This structure
often appears when we wish to model a multivariate time
series, i.e., a collection of M time series p(1), . . . ,p(M). A
typical way is to stack the Hankel matrices corresponding
to different time series into one structure

(22)
[
HL(p

(1)) · · · HL(p
(M))

]
.

A low-rank approximation of such series is performed when
we assume some common structure of time series [94], which
is used, for example, in multivariate SSA [47]. Another use
of such matrices occurs when the different time series are
inputs and outputs of a dynamical systems, which allows
for solving system identification problems, thanks to be-
havioural systems theory [88, 80, 83, 116].

If the time series are of the same length, then the ma-
trix (22) can be reshaped to have a block-Hankel structure.
In the general case (of different lengths), (22) is a special
case of so-called mosaic Hankel structure [86, 57]. The block-
Hankel matrix structure has the form which in general has
the following block form:

(23)

⎛⎜⎜⎜⎝
H1 H2 H3 · · · HK

H2 H3 H4 · · · HK+1

...
... . .

.
. .
. ...

HL HL+1 HL+2 · · · HN

⎞⎟⎟⎟⎠ ,

where Hk are p × q Hankel matrices. Low-rank approxi-
mations of block-Hankel matrices are widely used in linear
system theory, where it is related to the problems of real-
ization and model reduction for linear systems [72, 60, 80].
There is also a link between block-Hankel matrices and the
short-time Fourier transform [112].

The algebraic theory for finite-size block-Hankel matri-
ces (similar to that given in Sections 3.1-3.5) is also linked
to linear recurrences, however, several linear recurrences are
needed in this case [58], which makes the explicit parame-
terization more complicated [37].

Multilevel Hankel matrices Multilevel Hankel matrices
(also called quasi-Hankel matrices [90]) appear in problems
dealing with higher-dimensional data arrays (e.g., images),
where the model of sum-of-exponentials [89, 117] is often ap-
plicable. A special case (for two-dimensional data) concerns
Hankel-block-Hankel matrices, which have the structure as
in (23), but with block also having Hankel structure. Some
application areas include: magnetic resonance imaging [104],
seismic data analysis [64, 92], two-dimensional extensions of
SSA [50, 47, 105], and symmetric tensor decompositions in
the general case [13]. A complete algebraic theory for finite-
size multilevel Hankel matrices is not available; the charac-
terization is available in the infinite case, where the mul-
tivariate linear recurrences are linked to polynomial ideals
[89, 73].

Sylvester matrices The Sylvester matrix structure is com-
posed of (two or more) multiplication matrices (i.e., the ma-
trix in (21)) stacked together. The rank of the Sylvester ma-
trix is related to the degree of the greatest common divisor of
the polynomials whose co-efficients populate the elements of
the Sylvester matrix. Consequently, Sylvester low-rank ap-
proximation appears in the problem of finding approximate
common divisors of polynomials [23, 114], and in some signal
processing applications, e.g., blind deconvolution [35].

4. ALGORITHMS

4.1 Alternating projections and
subspace-based approaches

4.1.1 Cadzow’s iterations and singular spectrum analysis

One of the simplest (and earliest) algorithms to describe
are the so-called Cadzow iterations [17] which can broadly
be described as an alternating projections algorithm, which
alternates approximations between the closest low-rank ma-
trix and the closest Hankel matrices. Each of these projec-
tions are described next.

Projection to the closest low-rank matrix Suppose we are
given A = S(p0). Denote

π
(r)
(Q,R)(A) = argmin

B:rank(B)≤r

‖A−B‖2Q,R .

The matrix π
(r)
(Q,R)(A) is obtained from the SVD of A, as

described in Theorem 2.1.

Projection to the closest Hankel matrix For a given matrix
A = S(p0) we denote

(24) πH
(Q,R)(A) = argmin

B:B∈S
‖A−B‖2Q,R,

where S is the set of structured (Hankel) matrices. In the
special case when Q and R are identity matrices then (24)
has an explicit solution. In this case, let AH = πH

(I,I)(A) and
the projection is given by averaging over the antidiagonals

AH
l,k = κ−1

l+k−1

∑
l+k=l′+k′

Al′,k′

with κj as defined in (10). The advantage of this case (Frobe-
nius norm) that the projection can be efficiently imple-
mented with the Fast Fourier Transform, which brings the
complexity of the Cadzow iterations down to O(rN logN)
(see e.g. [69, 47]); in addition, the whole Hankel matrix need
not be stored.

In the general case, thanks to Lemma 2.1, the projection
can be found as πH

(Q,R)(A) = S(p̃) with

(25) p̃ = argmin
p

‖S̃(p)−Q1/2AR1/2‖F ,
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where S̃(p) := Q1/2S(p)R1/2 is a modified matrix struc-
ture, which is still linear. The minimizer of (25) has an ex-
plicit solution as shown in [63, Lemma 1].

Alternating projections Using the projections π
(r)
(Q,R) and

πH
(Q,R) then we can construct the following alternating pro-

jections algorithm.
Set A(0) = A = S(p0). For i = 1, 2, . . .

(26) A(i) = πH
(Q,R)

(
π
(r)
(Q,R)(A

(i−1))
)

If Q and R are identity matrices then iterations of (26)
are known as Cadzow iterations, with the special case of
one iteration corresponding to the basic version of singu-
lar spectrum analysis (SSA). Numerical studies of Cadzow
iterations and SSA are provided in [39]. Versions and the
relative merits of SSA and Cadzow iterations where obser-
vations are allocated different weights are described in [119].

4.1.2 Convergence of Cadzow iterations and improvements

As seen from the form of the Cadzow iterations, the ma-
trices A(i) get closer to both the set S of structured ma-
trices and the set M≤r of the manifold of fixed rank; but
they are not, in general guaranteed to converge to a point in
the intersection of S and M≤r. However, if a point in the
intersection is well-behaved (satisfies some regularity condi-
tions, see [77] and [5]), then the Cadzow iterations converge
linearly; as argued in [5, §7], for Hankel matrices almost all
matrices in the intersection are well-behaved. Also, for rank-
1 matrices, it was shown in [68] that the Cadzow iterations
always converge. For rank-r matrices, as shown [41, 119]
there always exists a convergent subsequence of Cadzow it-
erations.

Another issue is that the Cadzow iterations do not min-
imize the cost function (4) of interest (i.e., it is not guar-
anteed that the point in the intersection is the closest to
S(p0)); a classic example of convergence to a suboptimal
solution is given in [29]. An easy and cheap scalar correc-
tion is described in [42] (see also [119]) is as follows. Suppose
Z is an approximation of A = S(p0). Then, if we take c as
the solution

(27) c = argmin
b∈R

‖A− bZ‖2Q,R

then this defines a better approximation in the sense ‖cZ−
S(p0)‖2Q,R ≤ ‖Z − S(p0)‖2Q,R. Note that such a correction
preserves the rank and the structure of the matrix (e.g.,
Hankel). In case of the Frobenius norm (Q,R = I), the
correction can be simply computed as

c =
Trace(ZTS(p0))

Trace(ZTZ)
.

The correction can be applied at each step or at the end of
the algorithm.

A further improvement was proposed in [102], where in-

stead of π
(r)
(Q,R)(A

(i−1)) on the space S of structured ma-

trices, a Newton-like step was suggested: the next iteration
A(i−1) is computed as a projection of A(0) on the intersec-
tion of S and the tangent space to the manifold of Mr of

fixed rank matrices at π
(r)
(Q,R)(A

(i−1)). It was shown that this

algorithm is quadratically convergent, but the cost of each
iteration becomes higher. Another recently proposed modifi-
cation of Cadzow [27] is based on mimicking proximal split-
ting methods from convex optimization. Yet another method
which can be seen as an modification of Cadzow, is the al-
ternating direction method of multipliers proposed in [7]; it
requires however storing the dual variables, which increases
the storage complexity compared to Cadzow iterations.

4.1.3 Multistart/global optimization

With suitable modifications, (26) can be used as the basis
to construct algorithms known to (at least linearly) converge
to the global optima. Possible options include running iter-
ations of (26) from several starting points (akin to random
multistart), as a multi-stage algorithm and also as an evo-
lutionary method.

The main algorithm studied within the family con-
structed by the authors in [42] is the so-called multistart
APBR (alternating projections with backtracking and ran-
domization) where theoretical conditions are also given for
its convergence to the global optima. Within this algorithm,
backtracking to the initial data is beneficial to ensure that
the approximation remains close to it, whilst adding ran-
domisation assists in moving the iterations away from pos-
sible local minima.

The multistart APBR is briefly described as follows.
Let X denote a random Hankel matrix which corresponds
to a realization of a white noise Gaussian process ξ =
(ξ1, ξ2, . . . , ξN ), that is, X = S(ξ) = HL(ξ). We assume
each ξ are independent Gaussian random variables with zero
mean and some variance to be set by the user.

Set A(0) = A = S(p0), In multistart APBR, we run M
independent trajectories starting at random Hankel matri-
ces A(0,j) = (1 − s0)A

(0) + s0X, with some 0 ≤ s0 ≤ 1,
where for trajectory j = 1, . . . ,M ,
(28)

A(i+1,j) = ci,j

[
(1− δi)π

H
(
π(r)(A(i,j))

)
+ δiA

(0) + σiX
]
,

where πH = πH
(Q,R), π

(r) = π
(r)
(Q,R) and ci,j is the correction

defined in (27) for the matrix in brackets. Each trajectory
is either run until convergence or for a pre-specified number
of iterations. If s0 = δi = σi = 0 then the iterations (28)
co-incide with those of (26) albeit with some local improve-
ment as already described. If s0 > 0 then the j-th trajec-
tory of multistart APBR starts at a random matrix in the
neighbourhood of A(0), with the width of this neighbour-
hood controlled by the parameter s0. If σi > 0 then there
is a ‘random mutation’ at iteration i. When δi > 0 the i-th
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iteration ‘backtracks’ towards A(0) At some point it is rec-
ommended to set δi = σi = 0 and directly have iterations of
the form (26) to accelerate convergence to the set of rank-
r Hankel matrices. Recommendations as to the selection of
the parameters δi and σi are also offered in [42].

4.2 Local optimization

There is a significant body of work adressing the prob-
lem (3) focused on developing computationally efficient
methods for computing a locally optimal solution. Two
types of parameterization are typically used: kernel and im-
age representation, where the latter is related to optimizing
the manifold of rank-r matrices. We provide below a sum-
mary of these approaches, with a focus on Hankel SLRA
(see also the introduction of [63] for more details on kernel
vs. image representation).

We note that there is no guarantee that a globally optimal
solution is found, and the solution will depend on the initial
point selected. Many existing algorithms are highly sensitive
to the choice of the initial point, and due to the existence of
several local minima often do not move significantly from it
[42]. However, these methods can be improved by choosing
different (random) starting points.

4.2.1 Kernel representation and variable projection

Consider the Hankel low-rank approximation problem (3)
in the vector formulation with S = Hr+1 (so that L =
r+1), which aims at reducing the rank by one4. Then thanks
to Remark 3.1, we can replace the rank constraint with a
constraint on the kernel of the Hankel matrix, which leads
to an equivalent formulation

min
θ∈Rr+1,θ �=0,p̂∈Rr+1

‖p̂− p0‖2

subject to θ�Hr+1(p̂) = 0,
(29)

where θ�Hr+1(p) = 0 is a shortcut for the constraint (12),
and the norm is squared to make the objective smooth. The
reformulation (29) is called the kernel representation, be-
cause the search space is augmented by an additional vector
parameterizing the kernel. The kernel representation is also
closely related to desingularization in algebraic geometry
[67]. Also note the kernel representation was described here
only for rank reduction of the given matrix by 1, rank re-
duction by more than one is also possible (which leads to
minimization of a cost function on a Grassmann manifold,
see [86]).

In the kernel representation, we are free to choose a scal-
ing of the vector θ, as it does not change the cost function.
Earlier approaches addressed Hankel SLRA from a struc-
tured total least squares [1] viewpoint (see [81] or [88] and
for a survey), which corresponds to a particular choice of

4Note that by virtue of Corollary 3.1, any Hankel SLRA problem with
L > r can be reduced to the case L = r + 1

θr = 1 (fixing one of the coordinates to 1, which parameter-
izes a part of the search space). This was the approach of
De Moor [29], who developed a non-linear extension of the
SVD named the Riemannian SVD, which aims to solve a La-
grange multipliers formulation of (3), and also Rosen et al.
[100], who proposed a linear approximation to (29) and then
use Newton’s method. A modification of this approach for
rank reduction more than by 1 was described in Van Huffel
[115], but this involves Kronecker products which dramati-
cally inflate the dimension of the involved matrices. Struc-
tured total least squares can be also viewed as the problem
of estimating an errors-in-variables regression model which
has constraints on the matrix structure.

One of the most successful approaches is the variable pro-
jection approach, initially proposed in [88], which was de-
veloped in a series of papers [86, 85]). It uses the fact that
for a fixed θ, the minimum of (29) (denoted as f(θ)) has a
closed form solution and thus the SLRA problem is equiv-
alent to the minimization of f(θ) (and thus the variable p̂
was eliminated). The cost function f(θ) can be minimized by
general purpose constrained optimization methods, such as
Gauss-Newton and Levenberg-Marquardt. For elementwise
weights, the complexity of evaluating f(θ) and its gradient
is O(rN) and the complexity of evaluating an approxima-
tion of the Hessian is O(r2N) [113]. However, this approach
is more difficult to implement efficiently in case of missing
data [85] (unlike other approaches, presented in the previous
and the following subsections).

There are some further improvements of the variable pro-
jection approach and other methods that operate in the ker-
nel representation. For example, in [120, 121], a modified
Gauss-Newton iteration was proposed, that makes use of the
parameterization of the tangent space and a fast projection
onto it. A convex relaxation based on the kernel representa-
tion was proposed in [25] that globally solves the SLRA if
S(p0) is in a small neighborhood of a low-rank and struc-
tured matrix. Another recent approach using kernel repre-
sentation is based on an iterative reweighting scheme [118].
An augmented Lagrangian approach in kernel representa-
tion was proposed in [12, Ch. 5].

4.2.2 Image representation and other methods

The image representation approach (according to the cat-
egorization in [63, 83]), consists of using the fact that any
rank-r matrix X ∈ Mr can be factorized as X = PL, where
P ∈ R

L×r and L ∈ R
r×L and hence the SLRA problem

can be posed as optimization over P and L. The difficulty
in using the image representation for the SLRA problem is
that an additional constraint X ∈ S needs to be handled.
In [63], it was proposed to minimize the following objective:

min
P,L

‖PL−X0‖2Wm
+ λ‖PL− πH(PL)‖2F ,

where the second term penalizes the distance to structured
matrices and λ is increased adaptively, from small to large.
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For fixed λ, the objective function is minimized using the
alternating least squares strategy (for fixed P, the problem
becomes a least squares problem in L, and vice versa). An
extension of this approach based on Lagrangian formulation
was proposed in [55]. Another extension based on proximal
methods was proposed in [78] in order to handle multiple
rank constraints. In general, other methods for optimization
on the set (manifold) of rank-r matrices can be applied to
such a reformulation of SLRA.

Recently, in a series of papers [54, 35, 36] it was shown
that a solution to SLRA can be found as a solution of a gra-
dient system for eigenvalues or singular values. Therefore, it
was suggested to solve SLRA by integrating the correspond-
ing ordinary differential equation. While the approach works
very well for some matrix structures (e.g., Sylvester [54, 35]),
its behaviour in the Hankel case is not completely clear and
ad-hoc adjustments to the algorithm are needed [36].

A class of convex relaxation methods have been proposed,
whereby a common strategy is to replace the rank constraint
with the nuclear norm [32, 34, 11] (these approaches will be
mentioned in the next section in the context of time series
forecasting). Tighter relaxations were also proposed based
on convex envelopes [21, 6, 4], [53, §VI] which take into
account the particular cost function under consideration.
Finally, several iteratively reweighted least squares methods
based on surrogates for rank were proposed, which possess
local convergence and theoretical guarantees [75, Ch.3], [74],
and allow for a fast implementation [91].

5. CONVEX RELAXATIONS FOR
FORECASTING

5.1 Forecasting as matrix completion

For forecasting, we introduce some additional notation
for simplicity of the presentation. We denote N = n + m,
where n is be the length of the given time series that we
wish to forecast and m is the number of observations to be
forecast. We use the notation p(1:n) = (p1, p2, . . . , pn) for
the first ‘known’ n elements of p. Two obvious important
cases are when m = 0 (where there are no observations to
forecast) and m > 1. The Hankel matrix with p embedded
takes the form

(30) S(p) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p1 p2 · · · · · · · · · pK

p2 p3 · · · . .
. · · ·

...
... · · · . .

.
. .
. · · · pn

... . .
.

. .
.

. .
.

. .
.

pn+1

... . .
.

. .
.

. .
.

. .
. ...

pL · · · pn pn+1 · · · pn+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

In (30), the grey-shaded values are “known” and others are
“missing”.

5.2 Nuclear norm relaxation

Often the nuclear norm relaxation of the rank constraint
is used, since the nuclear norm is a convex envelope of the
rank function. Formally, for a matrix X ∈ C

L×K its nuclear
norm is defined as

‖X‖∗ =

min(L,K)∑
k=1

|σk(X)|,

where σk(X) are the singular values of X. This idea has a
rich recent history and has been discussed by several emi-
nent authors, see [20, 19, 97] for example.

There is an analogy between the use of the nuclear norm
in matrix completion problems and the use of the 
1 norm for
sparse approximation (see [98] for an overview of this topic)
and its use has underpinned several successful works describ-
ing how to impute the missing values of a matrix with as-
tonishing accuracy. More generally nuclear norm relaxation
has proved a useful tool in: spectral estimation [3], recom-
mender systems [65], system identification [79] and several
other application areas.

In what follows we will describe the low-rank matrix com-
pletion problem and the remainder of this review describes
work which followed the initial proposal of Butcher and
Gillard [16] who proposed that a time series be embedded
into a Hankel matrix, with the data to be forecasted being
missing elements stored in the bottom right-hand corner of
this matrix.

As well as low-rank approximation offering the potential
for many new algorithms for forecasting, the main theoreti-
cal question is when the nuclear norm relaxation solves the
original low-rank matrix completion problem [82]. Existing
work mainly assumes that the position of the missing ele-
ments is random [22], and often that the known entries are
non-random. In general, unstructured matrices are studied,
yielding many of the theoretical results in famous works such
as [19] redundant for our problem of Hankel structure with
missing values in a particular section of the matrix.

5.3 Exact low-rank matrix completion

Let p0 = (p0,1, p0,2, . . . , p0,n) be a given vector of obser-
vations (a time series). For a given matrix structure (8), the
exact Structured Low-Rank Matrix Completion (SLRMC)
problem is posed as

(31) p̃ = argmin
p∈R(n+m)

rank S(p) subject to p(1:n) = p0.

The implicit low-rank assumption of the Hankel matrix cor-
responds to the class of time series of so-called finite rank,
which are described in [110]. Here the notation p(1:n) repre-
sents the first n (known) elements of p and so the constraint
p(1:n) = p0 ensures that the known elements are fixed in the
approximation. The optimization problem (31) thus acts on
m variables, corresponding to the m missing values.
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A convex relaxation of (31) is obtained by replacing the
rank with the nuclear norm:

(32) p̂ = argmin
p∈R(n+m)

‖S(p)‖∗ subject to p(1:n) = p0 .

The intuition behind this relaxation is the same as for us-
ing the 
1 norm in compressed sensing: the nuclear norm is
expected to force all but a few singular values to be zero
hopefully rendering solutions of (32) at least close to (31).

5.3.1 Solution of the exact matrix completion

For the Hankel matrix case, the solution of (31) is known.
Before describing the approximate case we recall the class of
so-called time series of finite rank and hence give the solution
of (31). The performance of the nuclear norm relaxation is
important in this exact case and is crucial to understand
the behaviour of forecasting in the approximate case to be
introduced later.

For time series of finite rank, the solution to (31) with
Hankel structure (30) can be found by the so-called minimal
rank extension of Hankel matrices, solved by [62] for square
matrices and [59] for rectangular matrices. We summarise
their results in the following theorem.

Theorem 5.1. Consider the Hankel matrix structure (30)
and let r ≤ min(L − 1,K − 1, n

2 ). For any complex-
valued time series (p0,1, p0,2, . . . , p0,n, . . .) of finite rank r
and vector p0 = (p0,1, p0,2, . . . , p0,n) then the unique solu-
tion of (31) is given by

p̃ = (p0,1, p0,2, . . . , p0,n, p0,n+1, . . . , p0,n+m)

where p0,n+1, . . . , p0,n+m are found from the linear recur-
rence formula (13).

A proof is available in, for example, [111].

5.3.2 Known results on the performance of the nuclear norm

Recent results are described in [111, 40] with the first
described by [28]. We summarise some of the known results.

Theorem 5.2. Let p0 = (p0,1, p0,2, . . . , p0,n) be a complex-
valued vector given as

p0,k = cλk, k = 1, . . . , n,

where λ ∈ C.

• If |λ| ≤ 1 the solution of (31), i.e.

p0,k = cλk, k = n+ 1, . . . , n+m

is also a solution of (32), in particular, if |λ| < 1, then
the solution of (32) is unique.

• In the case L = K = n = m + 1, if |λ| > 1, then the
unique solution of (32) is given by

p0,n+k = c
λn

λ
k
, k = 1, . . . ,m.

A version of Theorem 3 was originally given in [28], and
has been later refined in [111, Theorem 6] and [40, Propo-
sitions 4.2 and 4.5]. In this case the exponential needs to
be damped for the solution of (31) to equal that of (32).
Despite concerning what might be a simple case of a “rank
1” Hankel matrix it yields many clues as to when the nu-
clear norm relaxation will coincide with the original problem
when there is no convex relaxation, and this is described in
the next theorem, originally stated in [111] and extended for
rectangular Hankel matrices in [40].

Theorem 5.3 ([40, Proposition 4.5]). Fix L,K, n,m, r as

in Theorem 5.1, and let r ≤ min (L,K)+1
2 . Then there exists a

number 0 < ρmax,r,m < 1 such that for any complex-valued
time series of finite rank r with

|λj | < ρmax,r,m,

the solution of (32) is unique and coincides with the solution
as described in Theorem 5.1.

5.4 Approximate matrix completion

The approximate rank minimization can be posed as fol-
lows. Given p0, vector of weights w ∈ Rn, m ≥ 0 and τ ≥ 0
find
(33)
p̃ = argmin

p∈R(n+m)

rank S(p) subject to ‖p(1:n) − p0‖W ≤ τ ,

which is a special case of the rank minimization problem (6).
The parameter τ controls the precision of approximation
and two extreme cases can be distinguished:

• if τ = 0, then (33) is equivalent to the exact matrix
completion problem (31), i.e. there is no approximation;

• if m = 0 in (33), then p̃ is an approximation to the
given vector p0 with no forecast.

Unlike (31), the problem (33) does not have a known solu-
tion.

In [40], the following relaxation of (33) using the nuclear
norm was introduced and studied:
(34)
p∗ = argmin

p∈R(n+m)

‖S(p)‖∗ subject to ‖p(1:n) − p0‖W ≤ τ .

There are alternative ways to extend the problem (32) to
approximate versions. For example, consider the following
equivalent formulations:

min
p∈R(n+m)

‖p(1:n) − p0‖W subject to ‖S(p)‖∗ ≤ δ,(35)

min
p∈R(n+m)

‖p(1:n) − p0‖W + γ‖S(p)‖∗,(36)

where δ and γ are regularisation parameters for each of the
formulations.

Problems (34), (35) and (36) are equivalent in the follow-
ing sense: for any value of τ , there exist δ and γ such that
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Figure 2. Plots of p for different σ, plot of time-series without
noise in light colour, plot of time-series with noise in black.

the solutions to (34), (35) and (36) coincide. However, the
relation between “equivalent” τ , δ and γ is not known (a
priori).

6. NUMERICAL EXAMPLES

6.1 Example 1: structured low-rank
approximations

Here we provide some commentary on the methods de-
scribed earlier, via a simple example, to find a structured
low-rank approximation of a Hankel matrix in which a time
series has been embedded.

Assume we have observed a time-series (n = 20, m = 0)
of the form p = (p1, p2, . . . , p20) where pj = sj + εj . Here
sj = exp(λj) sin(2πωj) and εj is a noise term. We take
L = 10 and compare r = 3 structured low-rank approx-
imations to S(p) using Cadzow iterations (26), multistart
APBR (as described in [42] and in Section 4.1.3), and the
variable projections algorithm of Markovsky using the soft-
ware provided in https://slra.github.io/software-slra.html
and described in [86], which we will abbreviate as VP. We
take λ = 0.05 and ω = 0.2. We consider different forms of
the noise term εj .

Case 1: white noise, εj ∼ N [0, σ2] We first consider the
case of so-called white noise, that is εj ∼ N [0, σ2] for j =
1, 2, . . . , 20, with some σ2, and cov[εi, εj ] = 0 for i �= j. Plots
of typical time-series with different values of σ2 are given in
Figure 2.

We vary σ and below report the norm ‖p − papprox‖2
taken over 1000 simulations, where papprox is the solution
to (3) as found by the three methods described above. Fig-
ure 3 contains boxplots for each of these methods for differ-
ent σ.

Case 2: deterministic ‘noise’ We now consider the case
εj = c(−1)j for some c > 0. Table 1 reports the norm
‖p−papprox‖2 obtained from the three methods considered.

Case 3: red noise, εj = αεj−1 + ηj We now consider the
case εj = σ (αεj−1 + ηj), where ηj ∼ N [0, 1 − α2] for j =
1, 2, . . . , 20, α = 0.5, cov[ηi, ηj ] = 0 for i �= j, and σ > 0.
This is red noise, more precisely, an autoregressive process
of order 1. We vary σ and below report the norm ‖p −

Figure 3. Boxplots of log ‖p− papprox‖2 taken over 1000
simulations for the case of white noise.

Table 1. The norm ‖p− papprox‖2 obtained from three
methods, for different c.

0.2 0.4 0.6 0.8

Cadzow 25.6373 26.6507 28.2001 30.2832
APBR 25.4312 26.4329 28.1950 30.1874
VP 25.6373 26.6507 28.2001 30.2832

papprox‖2 taken over 1000 simulations, where papprox is the
solution to (3) as found by the three methods described
above. Figure 3 contains boxplots for each of these methods
for different σ.

We make the following remarks. We note that for the
examples considered, there are only marginal differences
between each of the methods described. Improvements are
found when using the multistart APBR method, which as
noted, aims to approximate the global minimum of the prob-
lem. One may postulate that in bigger, more complex ex-
amples, perhaps this difference would be more pronounced.
However it is a pleasing validation of each method that in
this example each of the approximations they yield are close.
More generally, each method seems relatively robust to the
type and amount of additive noise it is exposed to. Finally,
the performance of the VP approach can be improved by
choosing different (random) starting points.

6.2 Example 2: structured low-rank matrix
completion

To illustrate structured low-rank matrix completion and
its application to forecasting we consider a small classical
example “Cowtemp” which records the daily morning tem-

Figure 4. Boxplots of log ‖p− papprox‖2 taken over 1000
simulations for the case of red noise.
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Figure 5. Forecasts of the Cowtemp time series, with original
data (black), for different weighting schemes.

Figure 6. Root mean square error of the forecast against a
and l.

perature of a cow. This time-series is available in several on-
line repositories. The time-series consists of 75 observations,
and the exercise is to forecast the last m = 14 observations,
based on the first n = 61 observations. This exercise was also
performed in [48], comparing forecasts of SSA with various
parameter choices. As there, we select L = 28.

We solve (36) with γ = 100 and explore different weight
vectors W . Figure 5 contains plots of the forecasts of the
Cowtemp time series for three weight vectors W . First, we
give each observation unit weight,W1 = (1, 1, . . . , 1). Second
we introduce the weights such that the weighted vector norm
in (36) becomes the Frobenius norm ‖S(p(1:n))− S(p0)‖F .
Finally we have the exponential weighing, where the jth
element of W3 is given by a exp(lj) for scalars a and l.

Figure 6 contains plots of the root mean square error
(RMSE) of the forecast obtained using exponential weight-
ing, that is (36) with W = W3, for different a and l. Note
that the approximately optimal RMSE found from (36) is
4.9928 obtained when a = 0.001 and l = 0.017. A plot of
the data with this forecast is given in Figure 7, and it has
approximating rank of 28, in this case. The RMSE obtained
by SSA as described in [48] was found to be 5.253602.

7. CONCLUSION

In this paper we have attempted to give a review, com-
mentary and bibliography of papers associated with Han-
kel low-rank approximation/completion, through the lens of
time series modelling and forecasting. It is clear that this is

Figure 7. Forecast when a = 0.001 and l = 0.017 for
weighting scheme W3.

an active area of pursuit, with both rich theoretical work,
several algorithms and much possibility for practical appli-
cation. Open questions remain around when the solution of
the nuclear norm relaxation coincides with the ‘equivalent’
rank minimization problem, and this is the motivator be-
hind much present research. It remains to be the case to
see such technology embraced by forecasting practitioners,
but one would assume, that in time, the work described in
this paper will be. Future big data applications on modelling
several time series simultaneously are surely on the horizon.
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[52] Gonnet, P., Güttel, S. and Trefethen, L. N. (2013). Ro-
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