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Uniform consistency for local fitting of time series
non-parametric regression allowing for
discrete-valued response
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Local linear kernel fitting is a popular nonparametric
technique for modelling nonlinear time series data. Investi-
gations into it, although extensively made for continuous-
valued case, are still rare for the time series that are
discrete-valued. In this paper, we propose and develop the
uniform consistency of local linear maximum likelihood
(LLML) fitting for time series regression allowing response
to be discrete-valued under β-mixing dependence condition.
Specifically, the uniform consistency of LLML estimators is
established under time series conditional exponential fam-
ily distributions with aid of a beta-mixing empirical process
through local estimating equations. The rate of convergence
is also provided under mild conditions. Performances of the
proposed method are demonstrated by a Monte-Carlo sim-
ulation study and an application to COVID-19 data. There
is a huge potential for the developed theory contributing to
further development of discrete-valued response semipara-
metric time series models.
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1. INTRODUCTION

The research of local linear regression is of wide interest
in statistical and econometric nonlinear and nonparamet-
ric modelling (c.f., Fan and Gijbels [10], Fan and Yao [11],
Li and Racine [22], Lu and Linton [26]). This is because in
practice people often have no prior knowledge about the re-
lationship between variables, and especially in the age of big
data. Thus, nonparametric models, and especially semipara-
metric models that combine nonparametric and parametric
methods, are particularly of interest to deal with such situ-
ation of nonlinear time series analysis; see e.g., Gao [15] and
Terasvirta et al. [36].

Though in literature continuous-valued response is often
assumed, discrete outcomes are common in practice, e.g., in
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finance, insurance, biology and etc. Specifically, we are in-
terested in the discrete-valued time series datasets, which,
in particular, can be expressed in the form of conditional
exponential family distributions. For example, the Poisson
distribution is widely applied in applications such as in queu-
ing theory, e.g., to express the number of people joining the
queue, and in particular in modelling COVID-19 time se-
ries data such as the series of daily increase number of virus
infected cases. Binomial distribution (or categorical distri-
bution in a more general sense) is another example that
plays an important role in areas of disease diagnosing, de-
fault rate checking, and so on. Within the discrete-valued
time series models, parametric linear or nonlinear autore-
gression technique is very popular. The reader is referred to
Davis et al. [5], Fokianos et al. [14] and Davis et al. [6] for a
comprehensive review on the related developments.

Differently from those parametric models which suf-
fer from model misspecification, in this paper we propose
analysing time series regression in a nonparametric manner
for discrete-valued response under a conditional exponen-
tial family. In this sense, maximum likelihood method is
preferred over ordinary mean least square method. The idea
of adopting maximum likelihood method in local fitting can
be traced back to Tibshirani and Hastie [37], where they
have applied it to the generalised linear models and propor-
tional hazards models for independent data. Later Fan et al.
[9] have discussed the good properties of it in local polyno-
mial fitting. Related research also includes Carroll et al. [3],
among others, where they have done a series of research
work on local estimation.

However, when applied to time series, the independence
assumption often assumed in literature is violated with tem-
poral dependency, characterising of which is also known in
terms of “mixing”. Mixing conditions, as briefly discussed in
Wong et al. [41], are established in literature as a way to ex-
tending results from i.i.d cases to dependent structure (c.f.,
Bradley [2], Lu [25] and Lu and Linton [26]). In particular,
β-mixing, which is often discussed in machine learning [30],
defines the β coefficient at lag n to be the l1 distance from in-
dependence in probability (c.f., Definition 2.1 in Section 2).
The β-mixing property also implies the α-mixing condition
as it is stronger and with a faster decay rate. For a more
detailed discussion of β-mixing conditions, the reader is re-
ferred to Doukhan et al. [7] [Section2.4].
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Our focus in this paper is thus to establish the asymptotic
properties of the local linear maximum likelihood (LLML)
fitting for time series nonparametric regression allowing for
discrete-valued response under β-mixing condition. As is
well known, the uniform consistency results of such non-
parametric kernel-based estimators are widely useful in fur-
ther developments such as semiparametric modelling (c.f.,
Nielsen [32], Hansen [17] and Kristensen [19]). Investigations
into the method, although extensively made for continuous-
valued time series (c.f., Liebscher [23], Masry [28], Bosq
[1], Fan and Yao [11], Hansen [17] and Kristensen [19], Li
et al. [21], and the references therein), are still rare for the
time series that are discrete-valued. In this paper, we de-
velop the uniform consistency of local linear maximum like-
lihood (LLML) fitting under β-mixing dependence condi-
tion. Specifically, the uniform consistency of LLML estima-
tors under time series conditional exponential family distri-
butions is established. The rate of convergence is also pro-
vided under additional mild conditions. Differently from the
local least squares based estimation with available analyt-
ical solution in the literature (c.f., Li et al. [21]), study of
the LLML estimator becomes much harder as it lacks an
analytical solution, which need more efforts by a β-mixing
empirical process theory to cope with (c.f., Lu et al. [27])
in this paper. Performances of the proposed method are
demonstrated by a Monte-Carlo simulation study and an
application to COVID-19 data. There is a huge potential for
the developed theory contributing to further development of
discrete-valued semiparametric time series models.

The rest of this paper is structured as follows. We will
introduce the local linear estimating model in Section 2, fol-
lowed by the establishment of its uniform consistency with
rate of convergence discussed in Section 3. In Section 4, the
numerical examples including a Monte-Carlo simulation and
an application to COVID-19 data will be demonstrated be-
fore the conclusion in Section 5.

2. TIME SERIES LOCAL LINEAR MODEL

We consider a general regression model with (Yt, Xt) be-
ing the β-mixing time series process, where Yt allows to be
discrete valued, and Xt denotes the d-dimensional covari-
ate series. Formally, the β-mixing property can be explicitly
expressed to measure dependence as follows:

Definition 2.1. Let Zt = (Yt, Xt) be a strictly stationary
time series. The process Zt is said to be β-mixing if

β(n) = E

{
sup

B∈F∞
t+n

|P (B)− P (B|Zt, Zt−1, ...)|
}

→ 0

as n → ∞, where F∞
t+n is the information field (also-called

σ-algebra) of {Zs, s ≥ t+ n}.

Assume that Yt has a conditional distribution in the ex-
ponential family given the past information up to time t− 1

expressed in Xt. Then the generic form of density function
of the conditional exponential family can be expressed as:

(1) mY (y; θt) = a(y) exp(yθt − φ(θt)),

where a(.) and φ(.) are known functions for a particular
distribution family, and θt is the canonical parameter de-
pending on the given information in Xt, which can also be
expressed by a link function η(μt). Here μt is the conditional
mean μt = E(Yt|Xt) that is to be estimated, which connects
the covariate vector Xt, satisfying μt = E(Yt|Xt) = φ′(θt),

where φ′(·) stands for the derivative of φ(·). So φ′−1
(·) is a

canonic link function, which is known for a specific distri-
bution, where φ′−1

stands for the inverse function of φ
′
. We

will hence consider a known link function η = φ′−1
by which

we express the regression as follows:

(2) η(μt) = θt = f(Xt),

with f(·) the unknown function that we need to estimate.
Therefore this problem of nonparametric estimation is es-
sentially semi-parametric in the sense that nonparametric
function f and conditional exponential family for Yt given
the information expressed in Xt apply.

Then given the observations {(Yt, Xt), t = 1, 2, · · · , n} of
the size n, the local log conditional likelihood for the Yt’s
(given initial information) is thus given by

�h,x(μ;Y ) =

n∑
t=1

logmYt(Yt,θt)Kh(Xt − x),(3)

where Kh(·) = h−dK(·/h) with K(·) a kernel function on
R

d, and h > 0 is a bandwidth satisfying h = hn → 0 as
n → ∞.

Since the relationship between Yt and Xt is often un-
known, non-parametric smoothers can be used to estimate
the conditional mean by estimating equations obtained by
setting the partial differentiations of (3) being zero,

(4)
1

n

n∑
t=1

ω(Yt, θt)Kh(Xt − x) = 0,

where ω() is an appropriately defined function denoting the
distance between Yt and θt. For instance, if a canonical link
function applies, then ω(Yt, θt) = Yt − φ′(θt). The model in
population can then be expressed as:

(5) E[ω(Yt, θt)|Xt] = 0.

Suppose f(x) has (p+1)-th continuous derivative at any
given point x. If the dimension d = 1, for the data points
Xt in the neighbourhood of x, we can approximate f(Xt)
via Taylor expansion by polynomial of degree p:

f(Xt) ≈ f(x) + f ′(x)(Xt − x) + ...+
f (p)(x)

p!
(Xt − x)p
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≡ xT
t β, |Xt − x| ≤ h,(6)

where xt = (1, ((Xt − x)/h), ..., ((Xt − x)/h)p)T , with
the superscript T denoting a transpose, and β =
(β0,β1h..., βph

p)T with βj = f (j)(x)/j!, and f (j)(x) is the
j-th order derivative of f(x) w.r.t. x.

In a general sense, the larger degree of polynomial would
give a smoother estimator but at the cost of stronger as-
sumptions with more local parameters to estimate, espe-
cially when the dimension d of Xt is greater than 1. In this
regard, a local linear fitting is usually preferred, i.e., p = 1
(c.f., Fan et al. [9]). We are considering a general dimension
d for Xt below.

Thus under the first order partial derivative,

f(Xt) ≈ f(x) + f ′(x)T (Xt − x)

≡ β0 + hβT
1 (Xt − x)/h, if |(Xt − x)| ≤ h,

(7)

where β1 = f ′(x) is the derivative of β0 = f(x) w.r.t. x,
and β = (β0,β

T
1 )

T ∈ R
1+d is a vector of local coefficients at

x, with f a generic function (not necessarily being the true
function) in (2).

Our estimator β̂ = β̂n is defined as the solution to:

(8) Ωn(β, x, h) =

(
Ω

(1)
n (β, x, h)

Ω
(2)
n (β, x, h)

)
= 0,

where

Ω(1)
n (β, x, h) =

1

n

n∑
t=1

{ω(Yt;β0 + hβT
1 ((Xt − x)/h))(9)

·Kh(Xt − x)},

Ω(2)
n (β, x, h) =

1

n

n∑
t=1

{ω(Yt;β0 + hβT
1 ((Xt − x)/h))

· [(Xt − x)/h]Kh(Xt − x)},

with β = (β0,β
T
1 )

T and the bandwidth h > 0. In general
h is supposed to tend to 0 (seen as depending on n) as
n → ∞, in the literature. Here we may see this bandwidth h
as a small positive number, an independent parameter not
necessarily depending on n though there should be some
relationship in our assumptions specified below as n → ∞
and h → 0. This perspective helps to make it easier for our
proof below.

By solving the local maximum likelihood estimation
above (see Fan et al. [9]), which is easy as it could be seen
as a locally weighted linear regression, we then get the es-
timation at x as the intercept f̂(x) in the equation (7).
Since x is chosen arbitrary, we now let x go through each
point in Xt and hence get the estimated conditional mean
μ̂t = η−1(f̂(Xt)) with η−1() standing for the inverse func-
tion of the link function η().

3. UNIFORM CONSISTENCY

In this section, we will derive the uniform consis-

tency of the local fitting estimator β̂ = (β̂0, β̂
T

1 )
T =

(f̂(x), (f̂ ′(x))T )T to β0 = (β00,β
T
01)

T = (f(x), (f ′(x))T )T

(with f in β0 standing for the true function f in (2) at a
slight confusion cost of notation) with respect to x ∈ A, a
closed subset of Rd. It is based on the general local estimat-
ing equations (8) and (9) given in Section 2.

For greater generality, we allow f̂(x) to be an approxi-

mate solution to the equation so that Ωn(β̂n, x, h) goes to
zero in probability at a rate to be specified later. For in-
dependent and identically distributed (i.i.d.) data, the con-
vergence of the estimators was established by Nielsen [32].
However, for our concerned β-mixing time series, we give
the theorems with proofs shown in this Section 3.

Before jumping into the results, we need the following
assumptions.

3.1 Assumptions

A1 (i) The process (Yt, Xt), with Yt of a conditional dis-
tribution in the exponential family given Xt, is strictly
stationary β-mixing with the mixing coefficient β(t) =
O(t−b) for some b > max(2(ρr+1)/(ρr−2), (r+a)/(1−
2/ρ)) with a ≥ (ρr − 2)r/(2 + ρr − 4r); (ii) the joint
probability density function gXt1 ,··· ,Xts

(x1, · · · , xs) is
bounded uniformly for any t1 < · · · < ts and 1 ≤ s ≤
2(r − 1); (iii) E|ω(Yt, f(Xt))|ρr < ∞, E|Xt|ρr < ∞ for
some real number ρ > 4 − 2/r, where r ≥ 1 is some
positive integer.

A2 The kernel K(·) is a bounded and symmetric density
function on R

d with bounded support SK , satisfying
μ2K =

∫∞
−∞ uuTK(u)du with ‖μ2K‖ < ∞, where ‖ · ‖

stands for the Euclidean norm for a vector or matrix.
Furthermore, |K(z)−K(x)| ≤ C‖z − x‖ for z, x ∈ SK

and some 0 < C < ∞.
A3 The bandwidth h → 0 and the sample size n → ∞

satisfy the condition lim infn→∞,h→0 nh
2(r−1)a+(ρr−2)

(a+1)ρ >
0 for some integer r ≥ 3. Furthermore, there exists a
sequence of positive integers sn → ∞ such that sn =

o((nhd)1/2), ns−b
n → 0 and snh

2(ρr−2)
[2+b(ρr−2)] > 1 as n → ∞

and h → 0.
A4 For any function f given in (2), defined on a close set

A ⊂ R
d, we define its Lipschitz norm: For some ψ > 0,

let [ψ] be the largest integer not greater than ψ, and
define (if it exists)

‖f‖∞,ψ = max
0≤κ≤[ψ]

sup
x∈A

‖f (κ)(x)‖

+ sup
x �=x′;x,x′∈A

‖f ([ψ])(x)− f ([ψ])(x′)‖
‖x− x′‖ψ−[ψ]

,(10)

where f (κ)(x) stands for the κ-th derivative of f(x) with
respect to x. Define a functional space

Cψ
c (A) := {f :f is a continuous function from A to R
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with ‖f‖∞,ψ ≤ c},(11)

where c is a positive constant.
We require β0 = (β00,β

T
01)

T ∈ F := Cψ
c (A) ×

(Cψ−1
c (A))d with β00 = f ∈ Cψ

c (A) and β01 = f ′ ∈
(Cψ−1

c (A))d, with f here standing for a true function
f in (2) (at a slight cost of notational confusion), for
some ψ ≥ 2 satisfying

d/[2(ψ − 1)] < 1− r/[b(r − 1)].

A5 Assume that E[ω(Yt, z)
2] < ∞ for all z ∈ R. Let

(12) Φ(x, z) = E[ω(Yt, z)|Xt = x].

• (i) (x, z) → Φ(x, z) · g(x) is three times continu-
ously differentiable as a function from R

d+1 to R,
where g(x) is the marginal density of Xt, which is
strictly positive and continuous over A. We denote
the derivative of Φ with respect to x by Φ̇x, and
the derivative with respect z by Φ̇z, etc.

• (ii) For any fixed y the function z → ω(y, z) is Lip-
schitz continuous on a compact set. For any com-
pact C̃ ⊂ R there is a function Ω∗(y) (depending
on C̃) such that

(13) |ω(y, z)− ω(y, z̃)| ≤ Ω∗(y) · |z − z̃|,

for all z, z̃ ∈ C̃, where E[(Ω∗(Yt))
2r(1+‖Xt‖2r)] <

∞ with r given in assumption A1.

Remark 3.1. Assumption 1 shows a standard β-mixing
process which is satisfied by many linear and non-linear
time series models [11, 27]. The kernel is guaranteed to be
bounded by Assumption 2, which is commonly seen in this
type of problem [18, 42]. Assumption 3 is also standard in
time series topics [12, 26] though we see the bandwidth h
as an independent parameter in this paper. The Lipschitz
norm conditions (Assumptions A4 and A5) are introduced
to give a tighter bound than uniform norm [32]. In A4,
if d = 1 and ψ = 2, then the condition d/[2(ψ − 1)] <
1 − r/[b(r − 1)] is satisfied under b > 2r/(r − 1) imposed
mildly on the mixing coefficient in A1. Note that we are con-
cerned with β, β̂ and β0, which, as a function of x, are in
F = Cψ

c (A)× (Cψ−1
c (A))d. Under A4, the Lipschitz contin-

uous norm is stronger than the uniform norm for a function
in F, i.e.
(14)

‖β‖F = ‖β‖∞ = max
i=1,2,··· ,d+1

supx∈A|βi(x)| ≤ ‖β‖∞,ψ,

where βi(x) denotes the i-th component of β. Thus, con-
sistency in Lipschitz norm implies uniform consistency.
Assumption A5 was introduced for a general case of lo-
cal estimating equations (c.f., Nielsen [32]). Recalling that
f(Xt) = η(μt) under canonical link function η = φ′−1 and
(9), we have ω(Yt, z) = Yt−φ′(z), Φ(x, z) = E[ω(Yt, z)|Xt =

x] = E(Yt|Xt = x) − φ′(z) = φ′(f(x)) − φ′(z). Clearly
Φ(x, f(x)) = 0, where f(x) is the true function defined in
(2), also denoted as β00 below. Here assumption A5 holds
automatically under assumption A1.

3.2 Theorems

We first need to study the properties of Ω
(1)
n and Ω

(2)
n in

expectation.

Theorem 3.1. Suppose the assumptions A1-A4 with
model 2 are satisfied. Then, as n → ∞ and h → 0,

E[Ωn(β, x, h)] = (1 + o(1))diag(1, hId)Ω0(β, x),

where o(1) is uniformly with respect to x ∈ A and
β ∈ F, Id is a d × d identity matrix, and Ω0(β, x) =

(Ω
(1)
0 (β, x), (Ω

(2)
0 (β, x))T )T , with Ω

(1)
0 (β, x) = Φ(x, β0)g(x)

and

Ω
(2)
0 (β, x) = (β1Φ̇z(x, β0) + Φ̇x(x, β0))g(x) + Φ(x, β0)g

′(x).

The true value of the local parameter β0 = (f(x), (f ′(x))T )T

is the solution to

E[Ωn(β, x, h)] = 0.

Further, E[Ωn(β, x, h)] = 0 has the unique solution at β0.

Proof. We only outline the proof as it is similar to the
derivation in Section 2 of Nielsen [32].

First, we note that the solution of Ωn(f(x), x, h) = 0 is
also the solution to

(15) Mn(β, h) = sup
x∈A

|Ωn(β, x, h)| = 0.

Now consider the solution point β0 of Mn(β, h) = 0
over Lipschitz continuous function β(x) (define on A) with
‖β‖∞,φ ≤ c and c > 0. Note that by differentiability of the
β0 = β0(x) = (f(x), (f ′(x))T )T and the boundedness of A,
such a c exits.

Intuitively, if Ωn(β, x, h) is uniformly close to
E[Ωn(β, x, h)]. Then β̂ should be close to the solution
of E[Ωn(β, x, h)] = 0, and is a consistent estimator of β0.
We first check β0 is the solution to E[Ωn(β, x, h)] = 0 with
our local estimating equations for the local exponential
family model estimated by local maximum likelihood
estimation under model (2):

E[Ω(1)
n (β, x, h)]

= E

[
1

n

n∑
t=1

[Yt − φ′(β0 + βT
1 (Xt − x))]Kh(Xt − x)

]

= E

[
E[

1

n

n∑
t=1

[Yt − φ′(β0 + βT
1 (Xt − x))]]Kh(Xt − x)|Xt

]

= E

[
1

n

n∑
t=1

[E[Yt|Xt]− φ′(β0 + βT
1 (Xt − x))]Kh(Xt − x)

]

308 R. Peng and Z. Lu



= E

[
1

n

n∑
t=1

[φ′(f(Xt))− φ′(β0 + βT
1 (Xt − x))]Kh(Xt − x)

]
,

where E[Yt|Xt] = φ′(f(Xt)) follows from (2).
Let f̃(zj) = φ′(zj), and by Taylor expansion together

with assumptions A4 and A2 we find:

E[Ω(1)
n (β, x, h)] = E

[
1

n

n∑
t=1

[f̃(f(Xt))

− f̃(β0 + βT
1 (Xt − x))]Kh(Xt − x)

]
= (1 + o(1))[f̃(f(x))− f̃(β0)]g(x),(16)

where o(1) is uniformly in x ∈ A owing to assumption A4.
Although we are mainly interested in the generalised local

regression model in Section 2, where ω(y; z) = y − φ′(z) as
indicated above, but for a general ω(y, z) under assumption
A5, we can still establish (16) as in Nielsen [32]:

E[Ω(1)
n (β, x, h)]

= E[ω(Yt;β0 + βT
1 (Xt − x))Kh(Xt − x)]

= E[Φ(Xt;β0 + βT
1 (Xt − x))Kh(Xt − x)]

= Φ(x, β0)g(x) +O(h2),

where the O-term does not depend on x nor on ‖β(x)‖∞ ≤
C, and corresponding to the local exponential family regres-
sion in Section 2, Φ(x, β0) = f̃(f(x))− f̃(β0).

Similarly from (9), as done above (Nielsen [32]),

E[Ω(2)
n (β, x, h)] = hμ2K [(β1Φ̇z(x, β0)

+ Φ̇x(x, β0))g(x) + Φ(x, β0)g
′(x)] +O(h3),

where corresponding to the local exponential family re-
gression in Section 2, Φ̇x(x, β0) = f̃ ′(f(x))f ′(x) =
f ′(x)φ′′(f(x)) and Φ̇z(x, β0) = −f̃ ′(β0) = −φ′′(β0), with
f̃ ′(z) = φ′′(z) as defined above.

Thus we get:

(17) E[Ω(1)
n (β, x, h)] = Ω

(1)
0 (β, x) +O(h2)

and

(18) E[Ω(2)
n (β, x, h)] = hΩ

(2)
0 (β, x) +O(h3)

where

Ω
(1)
0 (β, x) = Φ(x, β0)g(x)

Ω
(2)
0 (β, x) = μ2K [(β1Φ̇z(x, β0) + Φ̇x(x, β0))g(x)

+ Φ(x, β0)g
′(x)].

Denote by β0 = (β00,β
T
01)

T the solution to Ω0(β, x) =

0, where Ω0(β, x) = (Ω
(1)
0 (β, x), (Ω

(2)
0 (β, x))T )T . Then we

have:

(19)

{
Φ(x, β00) = 0

β01(x) = − Φ̇x(x,β00)

Φ̇z(x,β00)
,

which is actually unique correspondingly to our local general
linear regression in Section 2, with β00 = f(x) and β01 =
f ′(x) (at a slight cost of notational confusion with f(x) for
the true function here). The proof of Theorem 3.1 is done.

We turn to the uniform consistency of β̂ = β̂n in prob-

ability. For Ω
(i)
0 (β, x), i = 1, 2, we further know from the

above that Ω
(i)
0 (β, x) is continuous in β ∈ F (in Lipschitz

norm) and x ∈ A (in Euclidean norm). Therefore, by the
unique solution in (19) to Ω0(β, x) = 0, for any δ > 0, there
exists some ε > 0, such that

(20) ‖β̂ − β0‖∞ > δ ⇒ max
i=1,2

|Ω(i)
0 (β̂, x)| > ε, for x ∈ A.

As done in Nielsen [32], we will assume that C > 0 has
been chosen so that ‖β0(x)‖ ≤ C for any x ∈ A. Note
that by the differentiability of β0 and the boundedness of A
such a C exists. Further, the estimating function in equation
(8) will typically be sufficiently smooth to guarantee (via
the implicit function theorem) that the estimator defined by
equation (8) is continuously differentiable and thus Lipschitz
on A. In this case, minimising over Lipschitz functions is not
a restriction, but it allows us to define an estimator β̂ even
if equation (8) cannot be solved. Minimising over a bounded
set of Lipschitz functions is a restriction, though, and one
should be careful that C is chosen sufficiently large.

By (20), if we show maxi=1,2 supx∈A |Ω(i)
0 (β̂, x)| =

maxi=1,2 supx∈A |Ω(i)
0 (β̂, x)−Ω

(i)
0 (β0, x)| → 0 in probability

as n → ∞ and h → 0, then we have the uniform consistency
as follows.

Theorem 3.2. Suppose the assumptions A1-A5 are sat-
isfied. Then diag(1, h−1Id)Ωn(β, x) converges uniformly in
probability to Ω0(β, x) with respect to β ∈ F, x ∈ A, and

further β̂n(x)− β0(x) → 0 uniformly for x ∈ A, as n → ∞
and h → 0.

Proof. Let Dn = diag(1, hId). In view of (20), we need the
fact that Ω̃n(β, x) = D−1

n Ωn(β, x) converges in probability
to DnΩ0(β, x) uniformly with respect to β ∈ F and x ∈
A, the proof of which is sketched below, under the given
assumptions.

We notice from (8) and (19) that Ω
(i)
n (β̂(x), x) = 0 and

Ω
(i)
0 (β0(x), x) = 0, and hence

Ω
(i)
0 (β̂, x) = Ω

(i)
0 (β̂, x)− Ω

(i)
0 (β0, x)

= (Ω
(i)
0 (β̂, x)− Ω̃(i)

n (β̂, x)).(21)
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Letting Zt = (Yt, X
T
t )

T , define the empirical process:

Gn(β, x, h) =
1√
n

n∑
t=1

(ω∗(Zt,β, x, h)− E[ω∗(Zt,β, x, h)]),

(22)

where, letting ωt(β, x) = ω
(
Yt, β0 + βT

1 (Xt − x)
)
,

ω∗(Zt,β, x, h) = ωt(β, x)K((Xt − x)/h)

[
1

(Xt−x
h )

]
.

Note that

√
nhdD−1

n (Ωn(β, x)− EΩn(β, x)) = h−d/2Gn(β, x, h).

(23)

Then Ω̃n(β, x)−EΩ̃n(β, x) = D−1
n (Ωn(β, x)−EΩn(β, x)),

which is equal to (nhd)−1/2h−d/2Gn(β, x, h).
The two components of Gn(β, x, h) are denoted by

G
(i)
n (β, x, h), i = 1, 2. In this proof, we need to deter-

mine when Gn(β, x, h) converges uniformly in distribution
to a multivariate Gaussian process G(β, x, h) indexed by
ϑ ≡ (β, x) ∈ F × A for any fixed h > 0. Note that we see
h and n are two independent parameters in this paper, the
perspective of which helps to make the proof easier here.
This can be done as follows in two steps.

Firstly, by the usual Slutsky’s skill, it is easy to show the
convergence in distribution of h−d/2Gn(ϑ, h) to a multivari-
ate Gaussian distribution h−d/2G(ϑ, h) at any finite number
of pairs of ϑ = (β, x)’s (c.f., Lu et al. [27]), with the mean 0
and the covariance between h−d/2G(ϑ, h) and h−d/2G(ϑ′, h),
at ϑ, ϑ′ ∈ F×A, equal to

Γh(ϑ, ϑ
′) = h−d

∞∑
j=−∞

cov(W ∗(Zt, ϑ, h),W
∗(Zt+j , ϑ

′, h)).

Note that under the mixing condition A1, as h → 0,

(24) Γh(ϑ, ϑ
′) → Γ(ϑ, ϑ′),

where Γ(ϑ, ϑ′) equals zero if ϑ = ϑ′, and Γ(ϑ, ϑ) =

E(ω2
t (ϑ)|Xt = x)

[∫
Rd K

2(u)du 0
0

∫
Rd uu

TK2(u)du

]
.

The proof is routine because of the CLT for mixing processes
based on the Bernstein blocking technique (see, e.g., Hallin,
Lu and Tran [16] Theorem 3.1, and Lu and Linton [26]), and
therefore the details are omitted. Secondly, to show the weak
convergence in process, we will need to show the stochastic

equicontinuity of {G(i)
n (β, x, h) : β ∈ F, x ∈ A}, that is, for

every ε > 0 and η > 0, there is a δ > 0 such that:

lim sup
n→∞

P ( sup
β∈F,x∈A

sup
(β′,x′)∈B((β,x),δ)

|G(i)
n (β′(·), x′, h)

−G(i)
n (β(·), x, h)| > ε) < η.(25)

Here B(ϑ, δ) represents a ball in the parameter space, cen-
tred at ϑ = (β, x) and whose radius depends on δ. For this
we need a lemma owing to Doukhan et al. [7].

Lemma 3.1. To prove the stochastic equicontinuity of the
empirical process we need to check the following conditions

(a) {Zt = (Yt, Xt) : t ≥ 1}is a stationary absolutely regular
sequence with mixing coefficient β(s) = O(s−b) for some
b > r/(r − 1), and r > 1.

(b) Ep[{Ω̃∗(Zt)}2r] < ∞, where r > 1 in (a), and Ω̃∗(Zt) is
the envelope of M = {ω∗(·,β, x, h) : β ∈ F, x ∈ A}, that is
|ω∗(·,β, x, h)| ≤ Ω̃∗(·) for any β ∈ F, x ∈ A.

(c) ∀ε > 0, logN2(ε,M) = O(ε−2η) for some η > 0 satisfy-
ing η < 1− r/[b(r−1)], for b and r as in (a) and (b), where
N2(ε,M) is the L2-bracketing cover number of M in (b)

This lemma is an alternative statement of Application 4
in Doukhan et al. ([7], 1995, page 405).

Now the following proof is to check if the conditions above
are met.

(a) holds by the Assumption A1.

(b) can be validated as we have ‖β‖ ≤ C for a sufficiently
large C > 0. Note that

{(y, z) −→ω(y;β0(x) + βT
1 (x)(z − x)K(

z − x

h
) :

x ∈ A, h > 0,β ∈ F, ‖β‖F < C}

with the envelope

(|ω(y, 0) + (C1 + C2‖z‖)Ω∗(y)) · sup
u∈SK

K(u),

where Ω∗(y) is defined in assumption A5(ii), and SK is the
support of K(·). Similarly,

{(y, z) −→ω(y;β0(x) + β1(x)(z − x))
z − x

h
K(

z − x

h
) :

x ∈ A, h > 0,β ∈ F, ‖β‖F < C}

with the envelope

(|ω(y, 0) + (C1 + C2‖z‖)Ω∗(y)) · sup
u∈SK

‖u‖K(u).

Hence (b) holds by conditions A1 and A2.

(c) The proof can be done as in Lu et al. [27] (page S26), so

we only have a simple idea given here. For β, β̃ ∈ F with
Lipschitz norm ‖β‖, ‖β̃‖ ≤ C and x, x̃ ∈ A we have, for the
i-th component,

|βi(x)− β̃i(x̃)| ≤ |βi(x)− β̃i(x)|+ |β̃i(x)− β̃i(x̃)|

≤ sup
x∈A

|βi(x)− β̃i(x)|+ ‖x− x̃‖ · sup
x �=x′∈A

|β̃i(x)− β̃i(x
′)|

‖x− x′‖
≤ ‖β − β̃‖∞ + 2C‖x− x̃‖.
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Similarly, by Lipschitz norm

|β1(x)
Tx− β̃1(x̃)

T x̃|
≤ ‖β1(x)‖ · ‖x− x̃‖+ ‖x̃‖ · ‖β1(x)− β̃1(x̃)‖
≤ C‖x− x̃‖+ sup

x∈A
‖x‖ · (‖β − β̃‖∞ + 2C‖x− x̃‖).

As F = Cψ
c (A) × (C

(ψ−1)
c (A))d with ψ ≥ 2, for ∀ε > 0, we

can cover F by finite number, say N1, of balls of radius ε
with centres βi, i = 1, .., N1, in F, such that: ∀β ∈ F, ∃βi,
such that

‖β − βi‖∞ ≤ ε

2C
.

By Van der Vaart and Wellner [40] (Theorem 2.7.1), it is
known thatN1 = N(ε,F, ‖·‖∞) satisfies logN(ε,F, ‖·‖∞) ≤
Cε−d/(ψ−1) = Cε−2η with η = d/[2(ψ−1)] < 1−r/[b(r−1)]
by condition A4. Similarly, A is a closed subset in R

d, for
∀ε > 0, we can cover A by finite number, N2 = Cε−d, of
balls of radius ε with centres xj , j = 1, .., N2, in A, such
that: ∀x ∈ A, ∃xi, such that

‖x− xj‖ ≤ ε

2C
.

As ω∗(Zt,β, x, h) =

ω
(
Yt, β0 + β1(Xt − x)

)
·K((Xt − x)/h)

[
1

(Xt−x
h )

]
is a continuous function of (β, x), ω∗(·,β, x, h) can be ap-
proximated by, say, ω∗(·,βi∗ , xj∗ , h) for some i∗ and j∗

for any β ∈ F, x ∈ A. Therefore we can cover M =
{ω∗(·,β, x, h) : β ∈ F, x ∈ A} by N2(ε,M) ≤ N1 × N2

suitably defined balls as specified in (c) (Van der Vaart and
Wellner [40], Theorem 2.7.1). The details are omitted here
(c.f., Lu et al. [27]).

Thus {Gn(β, x, h) : β ∈ F, x ∈ A} converges in distri-
bution to process {G(β, x, h) : β ∈ F, x ∈ A}, and hence
{h−d/2Gn(β, x, h) : β ∈ F, x ∈ A} converges in distribution
to the process {h−d/2G(β, x, h) : β ∈ F, x ∈ A} for a fixed
h > 0. Note that as h → 0, {h−d/2G(β, x, h) : β ∈ F, x ∈ A}
converges to a Gaussian process indexed by ϑ = (β, x) ∈
F × A, with mean zero and variance-covariance equal to
Γ(ϑ, ϑ′) defined in (24). Hence,

(26) sup
‖β(x)‖≤C,x∈A

|h−d/2G(i)
n (β, x, h)| = Op(1), i = 1, 2.

By (26) together with Equation (17) we have

sup
‖β(x)‖≤C,x∈A

|Ω(1)
n (β(x), x, h)− Ω

(1)
0 (β(x), x)|

≤ 1√
nhd

sup
‖β(x)‖≤C,x∈A,h>0

|h−d/2G(1)
n (β(x), x, h)|

+ sup
‖β(x)‖≤C,x∈A,h>0

|E[Ω(1)
n (β(x), x, h)− Ω

(1)
0 (β(x), x)]|

= Op(1/(
√
nhd)) +O(h2)

P−→ 0;

(27)

and, similarly, by (26) together with (18),

sup
‖β(x)‖≤C,x∈A

| 1
h
Ω(2)

n (β(x), x, h)− Ω
(2)
0 (β(x), x)|

≤ sup
‖β(x)‖≤C,x∈A

‖ 1
h
[Ω(2)

n (β(x), x, h)− EΩ(2)
n (β(x), x)]‖

+ sup
‖β(x)‖≤C,x∈A

‖ 1
h
EΩ(2)

n (β(x), x, h)− Ω
(2)
0 (β(x), x)‖

≤ h−1 1√
nhd

sup
‖β(x)‖≤C,x∈A,h>0

|h−d/2G(2)
n (β(x), x, h)|

+ sup
‖β(x)‖≤C,x∈A

‖ 1
h
EΩ(2)

n (β(x), x, h)− Ω
(2)
0 (β(x), x)‖

= Op(
1√

nhd+2
) +O(h2).

(28)

Thus by (20) and (21) with nhd+2 → ∞ and h → 0, it
follows that (21) converges in probability to zero uniformly

with respect to x ∈ A, and ‖β̂(.)−β0(.)‖F = op(1) is proved.

Based on Theorem 3.2, we can simply have f̂(x) is uni-
formly consistent to f(x) over x ∈ A, a closed subset of
Rd. This is a very useful theoretical result. For example, in
practice, we are interested in μt = E(Yt|Xt) = η−1(f(Xt))
(following from (2), with η−1 the inverse function of a known
link η) for prediction of Yt, which can therefore be estimated

by μ̂t = Ê(Yt|Xt) = η−1(f̂(Xt)). We can thus have the con-
sistency as follows.

Theorem 3.3. Under the assumptions of Theorem 3.2 with
a continuous link function η, we have

sup
Xt∈A

|μ̂t − μt| → 0

in probability as n → ∞ and h → 0.

In practice, we can take the close set A ⊂ R
d very large so

that the observed values of Xt belong to it. This guarantees
that our predicted value μ̂t, i.e., Ŷt, is uniformly consistent
to the theoretically optimal predictor μt as the training sam-
ple size n tends to infinity and the bandwidth h to zero.

Next, we provide a uniform convergence rate for β̂(x) =

(f̂(x), (f̂ ′(x))T )T over a closed set A by refining the argu-
ment in the proof of Theorem 3.2.

Theorem 3.4. Suppose the assumptions A1-A4 with
model (2) are satisfied. Then, uniformly for x ∈ A,

(29) Ω̇β0
(β̂(x)− β0(x)) =

[
Op(

1√
nhd

+ h2)

1dOp(
1√

nhd+2
+ h2)

]
,
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as n → ∞ and h → 0, where Ω̇β0
is a (1 + d) × (1 + d)

matrix partitioned into 4 blocks with the (1, 1)th block a
1× 1 sub-matrix whose element equal to Φ̇z(x, β00)g(x), the
(1, 2)th block being a 1 × d sub-matrix of elements 0’s, the
(2, 1)th block being a d×1 sub-matrix μ2K{[β01Φ̈zz(x, β00)+
Φ̈xz(x, β00)]g(x)+Φ̇z(x, β00)g

′(x)}, and the (2, 2)th block be-
ing a d×d sub-matrix μ2KΦ̇z(x, β00)g(x), and 1d stands for
a d-dimensional vector of elements equal to 1.

Proof. Note that the map β �→ ω(β, x) is continuously dif-
ferentiable at point of β0 with the first derivative at β0 (re-
calling the notation β = (β0,β

T
1 )

T and β0 = (β00,β
T
01)

T ).
Also take notice of the function Ω0(β, x) defined in (17) and
(18) with the derivate at β = β0:

Ω
(1)
0 (β, x)− Ω

(1)
0 (β0, x)

= Φ(x, β0)g(x)− Φ(x, β00)g(x)

= Φ̇z(x, β00)g(x)(β0 − β00) +O(‖β − β0‖2∞),(30)

and

Ω
(2)
0 (β, x)− Ω

(2)
0 (β0, x)

= μ2K [(β2Φ̇z(x, β0) + Φ̇x(x, β0))g(x) + [Φ(x, β0)]g
′(x)

− μ2K [(β01Φ̇z(x, β00) + Φ̇x(x, β00))g(x)

+ (Φ(x, β00))g
′(x)]

= μ2K{[β01Φ̈zz(x, β00) + Φ̈xz(x, β00)]g(x)

+ Φ̇z(x, β00)g
′(x)} × (β0 − β00)

+ μ2KΦ̇z(x, β00)g(x)(β1 − β01) +O(‖β − β0‖2∞).

Hence,

Ω0(β, x)− Ω0(β0, x)

= Ω̇β0
(β − β0) +O(‖β − β0‖∞)(β − β0).(31)

Now let β̂n be the uniformly consistent estimator of β0

with assumption held. It then follows from the above that
‖β̂n − β0‖∞ and Ω0(β̂n, x)−Ω0(β0, x) have the same con-
vergence rates uniformly with respect to x ∈ A. We have,
by noticing that Ωn(β̂, x, h) = 0 and Ω0(β0, x) = 0,

Ω0(β̂n, x)− Ω0(β0, x)

=
{
D−1

n Ωn(β̂n, x, h)− Ω0(β̂n, x)
}
≡ In.(32)

It is noted that, uniformly for x ∈ A and ‖β̂ − β0‖F ≤
δn → 0, we have

sup
x∈A

‖In‖ ≤ sup
x∈A

sup
‖β−β0‖F≤δn

‖
{
D−1

n Ωn(β, x, h)−Ω0(β, x)
}
‖.

Note that

D−1
n Ωn(β, x, h)− Ω0(β, x)

= D−1
n [Ωn(β, x, h)− EΩn(β, x, h)]

+ [D−1
n EΩn(β, x, h)− Ω0(β, x)](33)

Now from equations (27) and (28) as well as Theorem 3.1,
we have

In = D−1
n 1OP {(1/(nhd))1/2}+ h21,

where 1 is a (1 + d) × 1 vector of elements being 1’s. The
proof is done.

Before ending this section, we make a remark as a ref-
eree commented. Indeed, other mixing, such as α-mixing,
dependence has been one of the popular dependence condi-
tions in statistical and econometric literature; see Masry and
Tjøstheim (1995) [29] and Lu (1998) [24] for example. The
α-mixing is implied by the β-mixing condition that is guar-
anteed by the geometric ergodicity of time series models.
In fact, under certain weak assumptions, many autoregres-
sive and more general nonlinear time-series models are geo-
metrically ergodic and β-mixing, and hence strongly mixing
(i.e., α-mixing), with exponential mixing rates (c.f., Masry
and Tjøstheim (1995) [29] and Lu (1998) [24]). See also
Pham and Tran (1985) [35], Pham (1986) [34] and Tjøstheim
(1990) [38] for more information. Note that in those men-
tioned references, the geometric ergodicity is studied for
time series models (either linear or nonlinear), by which
the β-mixing, and hence α-mixing, is derived with expo-
nentially decreasing mixing coefficients. In this sense, from
the time series modelling perspective, β-mixing is clearly an
ideal mixing concept characterising the technical condition
on the dependence of data as well. In this paper, we adopted
this technical concept of β-mixing because we applied the
empirical process theory from the reference Doukhan, Mas-
sart and Rio (1995, p.405, [7]), which needs β-mixing. Al-
though there have been some references studying empirical
process under α-mixing (c.f., Mohr (2020) [31] and the re-
lated references therein), their condition imposed on the cov-
ering/bracketing number N1(ε) = N(ε,F, ‖·‖∞) is of a form∫ 1

0
x−γ/(1+γ)(N1(x))

1/Qdx < ∞ for some γ > 0 and Q ≥ 2,
which cannot be satisfied by the N1(x) = O(1) exp{Cx−2η}
for the class of functions F with η > 0 as specified in the
proof of Theorem 3.2 above. It can be conjectured that our
uniform consistency holds true under α-mixing, which how-
ever needs further investigation. With different mixing con-
cepts, the conditions on the mixing coefficients may change,
reflecting the strength of dependence for two segments of a
time series, which will result in a difference in Assumption
A1. We leave all these questions for future research.

4. NUMERICAL EXAMPLES

In this section, a Monte-Carlo simulation is first present
to show the advantage of this method. The response Yt gen-
erated is assumed to follow a binomial distribution given
Xt. This is the case that our proposed method works as a
binary classification, which can be applied to a wide range
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of applications in practice. Then we give an application to
the COVID-19 data of which the daily confirmed number of
new cases are estimated and predicted. A poisson distribu-
tion is assumed for the response variable, which is commonly
adopted in epidemiology studies. We hope to demonstrate
that the proposed local linear method is robust for the ex-
ponential family.

4.1 Simulation

Let the mixing time series data of size n be generated by

Xt = cos(2Xt−1) + εt

Yt = I(Xt > 0),(34)

where εt ∼ i.i.dN(0, σ2). For the sake of simplicity, here we
choose σ2 = 1. According to the assumption, Yt given Xt

follows a binomial distribution with probability pt. Hence
we have

[Yt|Xt] ∼ Bin(1, pt),

where pt = p(Xt) is defined as:

p(x) = P (Yt = 1|Xt−1 = x)

= P (cos(2Xt−1) + εt > 0|Xt−1 = x)

= P (
εt
σ

>
−cos(2x)

σ
)

= 1− Φ(−cos(2x)

σ
) = Φ(

cos(2x)

σ
)

(35)

The corresponding log odds can be obtained from:

(36) f(Xt) = log
pt

1− pt
,

Now we can re-write the log likelihood function as:

(37) logL =

n∑
i=1

[log(pi)·Yi+log(1−pi)(1−Yi)]K(
Xi − x

h
),

where K(Xi−x
h ) is the Epanechnikov kernel with standard

formulation

(38) K(u) =
3

4
(1− u2)I[−1,1](u),

and the range [−1, 1] is used here to generate a sequence of
points within it to estimate.

It is known that, the bandwidth h selected for kernel
would have large impact on its performance [9]. Different
criterion would also lead to different optimal h. In this pa-
per, we are going to use cross validation based on log like-
lihood to select the best h within given data sample. Note
that the logL

logL =

n∑
i=1

[log(
1

1 + e−(f+f ′(Xi−x))
) · Yi

+ log(1− 1

1 + e−(f+f ′(Xi−x))
) · (1− Yi)]K(

Xi − x

h
).(39)

The idea is to remove the ith point of Xt and Yt each
time for i ∈ (1, 2, ..., n). With the new data Y[−i] and X[−i],

we can estimate f̂[−i](Xi) using our local exponential family
model and then estimate the probability. The cross valida-
tion function is thus maximised with the optimal bandwidth
to be selected:

(40) p̂
h[−i]

i =
1

1 + e
−f̂h

[−i]
(Xi)

,

(41) CV (h) =

n∑
i=1

[log(p̂
h[−i]

i )Yi + log(1− p̂
h[−i]

i )(1− Yi)].

Similarly, for other exponential family distribution, e.g.,
Poisson distribution, the log likelihood function (37) need
be re-written appropriately and the cross validation is de-
fined correspondingly. This is omitted to save space.

The performance of our proposed method is then exam-
ined on the fixed points of the set [−1, 1] with a grid of
0.01. To evaluate the quality of estimation, here we give a
criterion, namely Squared Estimation Error (SEE), defined
by

(42) SEE =
1

nest

nest∑
j=1

(f̂(xj)− f(xj))
2,

where f(xj) = log(
pj

1−pj
) with pj = p(xj) and p(x) defined

in (35). Here xj ’s are the points of the partition of [−1, 1]
into small intervals of length 0.01 with nest = 201.

Figure 1 depicts the statistics of bandwidth selected of
three different cases n = 200, 400 and 800 with 100 repli-
cations. It clearly shows that with the increase of sample
size n, the local exponential family model would require a
smaller kernel to capture the insight of data over time, which
is consistent to the expectation. The estimation results, as
depicted in Figure 2, further confirms that with larger num-
ber of sample size n, the estimation would converge to the
real value. It also indicates the difficulty in estimating the
curves by a small range of local observations due to the fact
that there might be a sequence of all Yt = 1s or Yt = 0s.
The box-plot of SEE indicates that all three cases perform
well with small errors and few outliers. However, larger sam-
ple size would further increase the estimation accuracy as
suggested by the narrower 95% confidence level range and
smaller SEE mean in the case of n = 800.

In summary, the performance of our proposed model com-
bined with the bandwidth selection technique is quite well
in estimation when the actual data has mixing structure.
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Figure 1. Bandwidth selected for sample size n = 200, n = 400 and n = 800 with 100 repetitions.

Figure 2. Estimation results of sample size n = 200, n = 400 and n = 800 with 100 repetitions.

4.2 An illustrative application to the
COVID-19 daily increase in UK

In this subsection, we will introduce a simple applica-

tion of the local Poisson estimation in healthcare forecast-

ing. We have collected roughly 9 months data of COVID-19

daily increase number [39]. The data covers the time pe-

riod from 16th-Jan-2020 to 1st-Sep-2020 in UK, consisting

of 230 observations in total. We will estimate the daily in-

crease number Yt, given some known information Xt. Ow-
ing to curse of dimensionality for nonparametric estimation
of μt = E(Yt|Xt) with the dimension d of Xt being large,
we only give a simple illustration, with Xt being taken with
d = 1. For more practical scenario of high dimension d, some
kind of semiparametric models will be necessary, which is
left for research elsewhere.

Here, as a demonstration, we consider two cases forXt. In
Case 1, the past value Yt−i, say i = 7, forXt is considered on
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Figure 3. Estimated Daily Increase (Blue dots) based on EPU Index versus Actual Daily Increase (Black line).

one-week lag effect, where we will see Yt as discrete-valued
for count number, but simply put Xt = Yt−7 as continuous-
valued so that our method can be applied in this paper.
In Case 2, alternatively, we will take Xt for the log of UK
Daily News Index, which can be seen as continuous-valued
more naturally. This UK Daily News Index is also known as
newspaper-based Economic Policy Uncertainty (EPU) In-
dex [8], which is considered as people may be interested in
how COVID-19 is connected to our daily life in many dif-
ferent aspects. The data is divided into two samples. The
training sample contains the first 200 observations to fit the
model. The predicting sample contains the rest 30 observa-
tions to validate the ability of prediction.

Suppose that Yt|Xt ∼ Poisson(λt) (as it is reported to be
roughly symmetric and bell-shaped in epidemiology studies,
see also Farr [13]). We can estimate the log conditional mean
of Yt given Xt, that is log λt = f(Xt), using the proposed
method. Here λt can be interpreted as the expected daily
increase rate of COVID-19.

We first look at Case 2, with the estimation of λt =
exp{f(Xt)} based on EPU Index. The estimations of λt at
each time t are depicted in Figure 3. It indicates that there
is a very weak (and maybe even weaker) correlation between
it and the daily increase number, as the Index itself covers
a rather too wide aspects. For example, after the daily in-
crease Yt has been controlled, e.g., during the quarantine,
we still have news with regard to policies and vaccine. The
Brexit is also an important factor that may impact EPU
Index better than the daily increase number. We also ex-
amined the estimation based on the lags of log(EPU), with
similar outcomes omitted here. As a consequence, the esti-
mation based on the logarithm of EPU fails to provide the
accurate estimation nor the prediction.

We now look at Case 1. The usage of past information is
widely tested in the domain of time series. In this example,
we find that the daily increase number Yt has a week pattern.
By applying our model toXt = Yt−7 and estimate λt at each
t, which is provided in Figure (4). It shows that the lagged
value Xt = Yt−7 can provide the much better information

and thus results, including both estimation and prediction.
Such weekly pattern may be a result of the incubation period
and diagnosis as it is now known that it takes on average
5 days (range 1-11 days and the maximum is 14 days) for
the patient to show symptoms and then it may take some
time for the patient to be treated and confirmed by NHS;
see also, Lauer et al. [20].

To further benchmark the performance of our model, we
fit the data also into a GLM model with Poisson family
based on the same information. The results of the estimated
λt over the prediction sample period are plotted with red
dots for GLM in Figure (5), where the predictions by our
proposed local linear method are coloured in blue, with ac-
tual observations in black. It is therefore obvious that allow-
ing the relationship to be nonlinear by our method shows
its value.

In summary, the performance of our proposed gener-
alised local linear method shows great potential in dealing
with discrete-valued time series. The application of empiri-
cal data further indicates that such method can well capture
the nonlinear relationship between response and covariate.
Future usage of it in the areas of discrete-valued time series
analysis and forecasting is therefore warranted.

Indeed, the model and method developed in this pa-
per can be easily adopted for low-dimensional covariates.
The theoretical results are obtained for arbitrary numbers
of dimensions of Xt, that we can estimate E(Yt|Xt :=
{x1t, . . . , xdt}) for any d. However, when the dimension d
is high, a so-called “curse of dimensionality” shows that the
performance of such nonparametric estimation will deterio-
rate with the dimension d increasing. This is an active re-
search area in the field of statistics and econometrics, where
the results of this paper can help to establish further re-
search for semiparametric modelling in the case of discrete-
valued response time series data in future; see, for example,
Chen et al. [4] in the continuous valued response case and
Peng and Lu [33] for the binary-valued response case. We
leave this for more investigation in future.
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Figure 4. Estimated Daily Increase (blue dots) and Predicted Daily Increase (red dots) base on past information Yt−7 versus
Actual Daily Increase (black line).

Figure 5. Predicted Daily Increase by Local Linear Regression (blue dots) and Generalised Linear Regression (red dots) based
on past information Xt = Yt−7, versus Actual Daily Increase (black line).

5. CONCLUSION

In this paper, we have introduced a generalised local lin-

ear fitting of discrete-valued time series under mixing condi-

tions. Theoretical results including the uniform consistency

property and corresponding proofs are presented. A simu-

lation study of binomial distributed time series is used to

illustrate the performance of our method. In addition, an

application to COVID-19 dataset is examined. Results of

these numerical examples show the great power and poten-

tial of our method. We thus believe it can contribute to the

further development of discrete-valued time series estima-

tion and forecasting in the future.

The investigation of nonparametric smoother for time se-

ries data is still an active area that can be applied to many

disciplines. The results in this paper thus can further con-

tributes to the studies related to count time series data.
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