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Adaptive clustering and feature selection for
categorical time series using interpretable
frequency-domain features

Scott A. Bruce
∗

This article presents a novel approach to clustering and
feature selection for categorical time series via interpretable
frequency-domain features. A distance measure is intro-
duced based on the spectral envelope and optimal scalings,
which parsimoniously characterize prominent cyclical pat-
terns in categorical time series. Using this distance, par-
titional clustering algorithms are introduced for accurately
clustering categorical time series. These adaptive procedures
offer simultaneous feature selection for identifying impor-
tant features that distinguish clusters and fuzzy membership
when time series exhibit similarities to multiple clusters.
Clustering consistency of the proposed methods is investi-
gated, and simulation studies are used to demonstrate clus-
tering accuracy with various underlying group structures.
The proposed methods are used to cluster sleep stage time
series for sleep disorder patients in order to identify partic-
ular oscillatory patterns associated with sleep disruption.

AMS 2000 subject classifications: Primary 62M10,
62M15, 62H30; secondary 62H86.
Keywords and phrases: Categorical time series, Multiple
time series, Optimal scaling, Partitional clustering, Spectral
envelope, Unsupervised learning.

1. INTRODUCTION

Categorical time series are prevalent across a variety
of scientific disciplines including climate science [3], sleep
medicine [24], and genomics [41]. For many studies, cyclical
patterns in categorical time series are of particular interest
and can be useful for characterizing differences among popu-
lations [22, 25] and within a population of interest [24]. This
is due to the valuable and interpretable information con-
tained in the frequency domain that can be used to better
understand the scientific nature of differences among groups
[42]. Specifically, there is a dearth of methods for clustering
categorical time series based on their cyclical behavior, and
the goal of this article is to offer a theoretically-justified
clustering framework and collection of interpretable, adap-
tive frequency-domain algorithms for identifying clusters
and their defining features within a population of categorical
time series.
∗ORCID: 0000-0002-7904-4211.

For example, this article is motivated by a sleep study
in which participants with different types of sleep disorders
are monitored during a night of sleep via polysomnography.
This study can be used to better understand differences in
nocturnal physiology within the population of sleep disor-
der patients. During sleep, the body cycles through different
stages: movement/wakefulness, rapid eye movement (REM)
sleep, and non-rapid eye movement (NREM) sleep, which is
further divided into light sleep (S1,S2) and deep sleep (S3,
S4). These stages are characterized by particular brain ac-
tivity patterns measured via electroencephalography (EEG)
[37] and recorded at regular intervals throughout the night
for each participant. For illustration, Figure 1 displays ex-
amples of full night sleep stage time series for four individu-
als with different sleep-related pathologies: insomnia (INS),
nocturnal frontal lobe epilepsy (NFLE), periodic leg move-
ments (PLM), and rapid eye movement behavior disorder
(RBD). Sleep disorders tend to disrupt normal cyclical be-
havior in different ways, which can negatively impact over-
all health and well-being [33]. The analysis presented herein
seeks to identify common profiles, or clusters, of sleep stage

Figure 1. Sleep stage time series for four sleep study
participants with different sleep-related pathologies: insomnia
(INS), nocturnal frontal lobe epilepsy (NFLE), periodic leg
movements (PLM), and REM behavior disorder (RBD).
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time series among sleep disorder patients to better under-
stand common ways in which sleep disruptions alter typical
nocturnal cyclical patterns. Additionally, it is of interest to
identify which features of sleep stage time series are more
useful in distinguishing clusters. It is possible that cyclical
patterns with particular frequencies or involving particu-
lar sleep stages are more helpful in characterizing different
types of sleep disruptions, so an analysis that can adaptively
identify distinctive features is desirable. Such an analysis
can provide helpful tools in diagnosing sleep disorder and
evaluating treatment efficacy.

Clustering of real-valued time series has been well-
studied; see [27, 40, 30] for a general introduction and sur-
vey of methods and [19] for a review of frequency-domain
methods. However, clustering of categorical time series has
received considerably less attention. The majority of statisti-
cal methods for categorical time series analysis have been de-
veloped for analyzing a single categorical time series. Some
examples include the Markov chain model of [2], the link
function approach of [11], the likelihood-based method of
[12], and the spectral envelope approach for analyzing a sin-
gle time series introduced in [41]. A comprehensive discus-
sion of this research direction can be found in [13]. However,
the features introduced in these works for characterizing cat-
egorical time series have been used more recently for feature-
based clustering. In the statistical literature, [34] introduces
clustering methods for categorical time series based on time-
homogeneous first-order Markov chains via group-specific
transition matrices. More recently, [8] introduces a time-
homogeneous first-order semi-Markov model, which allows
for more flexible modeling of group-specific sojourn time
distributions compared to standard Markov models. In the
computer science literature, [15] introduces a distance mea-
sure and clustering algorithm that accounts for differences
in the raw values of the time series and in the first-order
temporal correlation structures.

For applications where cyclical patterns are of interest,
Markov models offer little help in understanding key dif-
ferences in cyclical patterns among categorical time series.
Also, first-order methods can miss important features of
categorical time series with prominent cyclical patterns at-
tributed to higher order lag dependency or higher order de-
pendence structures [18]. However, these first-order models
cannot be easily extended due to exponential growth in the
feature space for higher-order models. To this end, we pro-
pose using the spectral envelope and its corresponding set of
optimal scalings [41] as low-dimensional, interpretable fea-
tures for clustering categorical time series. Use of these fea-
tures is motivated by noticing that most categorical time
series can be represented in terms of their prominent oscil-
latory patterns, characterized by the spectral envelope, and
by the set of mappings from categories to numerical values
that accentuate specific oscillatory patterns, characterized
by the optimal scalings. [24] introduces the spectral envelope
surface for quantifying the association between the oscilla-
tory patterns of a collection of categorical time series and

continuous covariates. However, it is not immediately use-
ful for clustering. To the best of my knowledge, this article
presents the first statistical approach for frequency-domain
clustering of categorical time series.

Clustering algorithms for real data applications should
also be capable of adapting to commonly encountered situ-
ations arising in practice. For example, not all features may
be equally helpful in distinguishing clusters. In these sit-
uations, clustering accuracy can be improved by focusing
on important features that exhibit meaningful differences
across clusters [46]. It is also possible that series may ex-
hibit characteristics resembling more than one cluster. In
many cases, this is due to time series dynamics that are
drifting or switching in a vague manner not focused on a
particular point in time [31]. To preserve this information,
[31] introduces a class of fuzzy clustering models for time
series that allows for time series to exhibit partial member-
ships to multiple clusters. This article introduces adaptive
algorithms that can offer feature selection and fuzzy clus-
tering by extending the frameworks of [46, 31] for use in
clustering categorical time series.

The proposed partitional clustering methods have a sim-
ilar structure and are briefly described as follows. Each time
series to be clustered is represented as a vector-valued time
series through the use of indicator variables. The smoothed
spectral density matrix of this vector-valued time series is
then obtained, and the spectral envelope and optimal scal-
ings at each frequency are computed from the estimated
spectral matrix. An initial partition is then randomly deter-
mined, and the spectral envelope and optimal scalings for
each cluster are estimated respectively. A distance measure
that considers both of these features is then used to assess
the distance from each series to each cluster, and each series
is reassigned to its nearest cluster. The algorithms then al-
ternate between reassigning cluster memberships and updat-
ing cluster features until convergence. Under the proposed
framework, the misclassification probability is bounded as
long as the spectral density matrix estimator is consistent.
The proposed algorithms also are shown to perform well in
simulated examples and real data application.

The remainder of the paper is organized as follows. Sec-
tion 2 provides definitions of the spectral envelope and op-
timal scalings and corresponding estimators. Section 3 in-
troduces the components of the proposed clustering frame-
work, including the frequency-domain distance measure and
its theoretical properties, clustering algorithms for standard
K-means and K-medoids clustering, sparse clustering via
feature selection, fuzzy clustering, and simulated examples
to demonstrate strong finite-sample performance. Section 4
details the application of the proposed clustering procedures
to the analysis of sleep stage time series. Section 5 pro-
vides some closing comments and impactful extensions of
this work.
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2. FREQUENCY DOMAIN FEATURES FOR
CATEGORICAL TIME SERIES

2.1 Spectral envelope and optimal scalings

Let Xt, for t = 1, 2, . . ., be a categorical time series with
finite state space C = {c1, c2, . . . , cS}. Assume Xt is station-

ary such that {X1, X2, . . . , Xt} d
= {X1+h, X2+h, . . . , Xt+h}

for h ≥ 0 and infs=1,2,...,S P(Xt = cs) > 0 so that there
are no absorbing states. We can explore the frequency do-
main properties of Xt by assigning numerical values, or scal-
ings, to categories, β = (β1, β2, . . . , βS)

′ ∈ R
S and exploring

prominent oscillatory patterns of the real-valued time se-
ries Xt(β) = βs when Xt = cs. Different sets of scalings are
considered that maximally emphasize oscillatory patterns at
different frequencies [41].

Definition 1. Assuming Xt(β) has a continuous and
bounded spectral density

fx(ω;β) =

∞∑
h=−∞

Cov[Xt(β), Xt+h(β)] exp(−2πiωh)

for ω ∈ R, the spectral envelope and optimal scalings for
frequency ω are defined as

λ(ω) = max
β∈RS ,β �∝1S

fx(ω;β)

Vx(β)
,

B(ω) = argmax
β∈RS ,β �∝1S

fx(ω;β)

Vx(β)
,

(1)

where Vx(β) = Var[Xt(β)] and 1S is an S-dimensional vector
of ones.

Scalings proportional to 1S assign the same value to all
categories and are not considered. In addition to being unin-
teresting, the spectral envelope and optimal scalings are not
well-defined for such scalings since Vx(β) = 0. The spectral
envelope represents the maximal normalized spectral den-
sity at frequency ω for different possible scalings such that
fx(ω, β) ≤ λ(ω) ∀β ∈ R

S �∝ {1S}, and the optimal scal-
ings represent the particular transformation that attains this
bound. Taken together, these interpretable features charac-
terize dominant oscillatory patterns in categorical time se-
ries parsimoniously with minimal loss of information [41]
and offer a good foundation for clustering.

For illustration, consider the four categorical time series
and their corresponding estimated spectral envelopes and
optimal scalings presented in Figure 2. The first time se-
ries cycles through categories slowly compared to the sec-
ond time series. This is captured in the spectral envelope for
each series, which is dominated by low frequency power for
the first series and high frequency power for the second se-
ries. Comparing the third and fourth time series, they have
similar power across frequencies but differ in their traver-
sals through categories. For example, the third time series
consists of longer visits to category 3, which contributes to

Figure 2. Example 1 Visualization: 2 × 2 panel of simulated
time series corresponding to four different clusters (top),
estimated standardized spectral envelopes (middle), and
estimated standardized optimal scalings for each category

(bottom) for each cluster. This figure appears in color in the
electronic version of this article, and any mention of color

refers to that version.

low frequency power for this series, and shorter stays in
other categories. However, the fourth time series consists
of longer visits to category 1 and shorter stays in other cat-
egories. These characteristics are captured in the optimal
scalings over low frequencies for these series, which assign
larger values to categories with longer visits contributing to
low frequency power.

2.2 Computation

A multivariate point process representation of the cate-
gorical time series Xt is used to facilitate computation of
these frequency-domain features [41, 24, 25]. Let Yt be an
(S − 1)-dimensional vector such that the sth element of Yt

equals one if Xt = cs for s = 1, . . . , S−1 and zero elsewhere.
Defining Yt in this way corresponds to setting the scaling for
the Sth category to zero, thus restricting the set of optimal
scalings to a lower-dimensional space. This property is also
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present in the original formulation of the spectral envelope
and optimal scalings; interested readers can find more de-
tails in [41]. The assumption that fx(ω, β) is continuous is
necessary and sufficient for ensuring Yt has a continuous
spectral density

fy(ω) =

∞∑
h=−∞

Cov[Yt, Yt+h] exp(−2πiωh).

fy(ω) is a positive definite Hermitian (S−1)×(S−1) matrix.
Assuming fy(ω) and Vy = Var[Yt] are non-singular for all
ω ∈ R [4], we can define the spectral envelope and optimal
scalings via eigendecomposition.

Definition 2. For ω ∈ R, the spectral envelope, λ(ω), is de-

fined as the largest eigenvalue of h(ω) = V
−1/2
y fy(ω)V

−1/2
y .

The (S − 1)-variate vector of optimal scalings, γ(ω), is de-
fined as the eigenvector associated with λ(ω).

Some remarks are in order. First, since the spectral den-
sity matrix is Hermitian with a skew symmetric imaginary
component, for every a ∈ R

S−1, a′fy(ω)a = a′fre
y (ω)a,

where fre
y (ω) is the real part of fy(ω). Thus, the spectral

envelope is equivalent to the largest eigenvalue of h(ω)re =

V
−1/2
y fre

y (ω)V
−1/2
y . Second, the optimal scalings derived in

this manner are connected with those of the original formu-

lation introduced in (1) [24]. If V
1/2
y γ(ω) is an eigenvector

of hre(ω) associated with λ(ω), then[
γ(ω)
0

]
= argmax

β∈RS ,β �∝1S

fx(ω;β)

Vx(β)
.

Furthermore, assuming the eigenvalues of hre(ω) are

distinct, there exists a unique γ(ω) such that V
1/2
y γ(ω)

is an eigenvector of hre(ω) associated with λ(ω) where
γ(ω)′Vyγ(ω) = 1 and with the first nonzero entry of
V 1/2γ(ω) to be positive.

2.3 Estimation

Consider finite realizations of Xt and Yt denoted as
{Xt}Tt=1 and {Yt}Tt=1. A popular and computationally-
efficient estimator of the spectral matrix fy(ω) is the pe-
riodogram

I(ωj) = T−1

∣∣∣∣∣
T∑

t=1

Yt exp(−2πiωjt)

∣∣∣∣∣
2

where ωj = j/T for j = 1, . . . , J = �(T − 1)/2	 are the
Fourier frequencies. The periodogram is well-known to be an
asymptotically unbiased but inconsistent estimator of fy(ω)
and can be smoothed over frequencies to obtain a consistent
estimator [4]. Consider the smoothed periodogram estimator

(2) f̂y(ωj) =

BT∑
�=−BT

WBT ,�I(ωj + �/T ),

where 2BT + 1 is the smoothing span and WBT ,� are non-
negative weights that satisfy the following conditions:

WBT ,� = WBT ,−�,

BT∑
�=−BT

WBT ,� = 1.

Generally, weights are chosen such that WBT ,0 is a decreas-
ing function of BT , and many options are available in prac-
tice [40]. It is known that f̂y(ωj) is consistent if BT → ∞
and BTT

−1 → 0 as T → ∞ [4]. In what follows, modi-
fied Daniell kernel weights are used with smoothing span
BT = �

√
T 	. The literature on spectral matrix estimation

is vast, and many other approaches [9, 38, 23] can be used
here. However, kernel smoothing offers both computational
efficiency and ease of theoretical exposition.

Following Definition 2, eigendecomposition of ĥ(ω)re =

V̂
−1/2
y f̂re

y (ω)V̂
−1/2
y where f̂y(ω) is the smoothed peri-

odogram estimator (2) and V̂y is the sample covariance ma-
trix of Yt then provides both the estimated spectral enve-
lope, λ̂(ω), and optimal scalings, γ̂(ω), as the largest eigen-
value and corresponding eigenvector respectively.

3. FEATURE-BASED CLUSTERING FOR
CATEGORICAL TIME SERIES

Consider a population of categorical time series with com-
mon state space C = {c1, c2, . . . , cS} composed of k =
1, 2, . . . ,K clusters with K being fixed. Each cluster con-
sists of a collection of independent stationary series with
common spectral envelope, λ(k)(ω), and (S − 1)-variate op-

timal scalings, γ(k)(ω) = {γ(k)
s (ωj)}S−1

s=1 . Suppose we have
a collection of N independent time series from this pop-
ulation, X1t, X2t, . . . , XNt and observe finite realizations,
{X1t}Tt=1, {X2t}Tt=1, . . . , {XNt}Tt=1. Assuming each series be-
longs to one of the K clusters, let gi ∈ {1, 2, . . . ,K} repre-
sent the unknown cluster membership for the ith series. For
better illustration, consider the following example.

Example 1. Four clusters with differences in par-
ticular features. Following [13], realizations of categorical
time series Xit belonging to the kth cluster can be generated
from the multinomial logit model

P (Xit = cs) =
exp(α′

k,sYit−1)

1 +
∑S−1

s=1 exp(α′
k,sYit−1)

, s = 1, . . . , S − 1,

and

P (Xit = cS) =
1

1 +
∑S−1

s=1 exp(α′
k,sYit−1)

,

where Yit is the (S − 1)-dimensional point process rep-
resentation of Xit introduced in Section 2.2 and αk,s for
s = 1, . . . , S−1 are regression parameters for the kth cluster.
This model satisfies

∑S
s=1 P (Xit = cs) = 1 for t = 1, 2, . . .
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and incorporates a lag of order one. Let the number of cat-
egories S = 4, the number of clusters K = 4, and cluster-
specific regression parameters

α1,1 =(3, 1, 1)′, α1,2 = (1, 3, 1)′, α1,3 = (1, 1, 3)′,

α2,1 =(−1, 1, 1)′, α2,2 = (1,−1, 1)′, α2,3 = (1, 1,−1)′,

α3,1 =(−1, 1, 1)′, α3,2 = (1, 1, 1)′, α3,3 = (1, 1, 2)′,

α4,1 =(2, 1, 1)′, α4,2 = (1, 1, 1)′, α4,3 = (1, 1,−1)′.

Consider N = 100 realizations of length T = 200 composed
of N/K = 25 independent realizations from each cluster.
Figure 2 displays a single realization from each of the four
clusters and the estimated spectral envelopes and optimal
scalings for each cluster. This example is particularly in-
teresting since all clusters are not well-separated along all
features, which is likely to be the case in practice. Clusters 1
and 2 are different in their spectral envelopes but share com-
mon optimal scalings, and clusters 3 and 4 share a common
spectral envelope but are different in their optimal scalings.
In the following sections, this example will be used to eval-
uate performance of the proposed clustering algorithms.

3.1 A distance measure

Let λ̂i(ωj) and γ̂i(ωj) = {γ̂i,s(ωj)}S−1
s=1 represent the esti-

mated spectral envelope and optimal scalings for Xit where
ωj = j/T for j = 1, . . . , J = �(T − 1)/2	 are the Fourier
frequencies. To measure the distance from the ith series to
the kth cluster, consider the following distance measure

di,k =

J∑
j=1

(
λ̂i(ωj)

||λ̂i||2
− λ(k)(ωj)

||λ(k)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ̂i,s(ωj)

||γ̂i||2
− γ

(k)
s (ωj)

||γ(k)||2

)2
(3)

where

||λ||2 =

√√√√T−1

J∑
j=1

|λ(ωj)|2 ≈

√∫ 1/2

0

|λ(ω)|2dω and

||γ||2 =

√√√√S−1∑
s=1

T−1

J∑
j=1

|γs(ω)|2 ≈

√√√√S−1∑
s=1

∫ 1/2

0

|γs(ω)|2dω.

Features are standardized to ensure (3) is similarly sen-
sitive to differences in the spectral envelope and optimal
scalings. In order to demonstrate that this distance mea-
sure offers consistent clustering, the following assumptions
are needed.

Assumption 1 (Mixing). Let Yit be the multivariate point
process representation of Xit. Yit is strictly stationary and
the span of dependence is small such that cumulants of all
orders exist and are absolutely summable [4, Assumption
2.6.1].

Assumption 2 (Smoothness). Let fiy(ω) be the (S − 1)×
(S−1) spectral density matrix of Yit. Each element of fiy(ω)
has bounded and continuous first derivatives.

Assumption 3 (Separation). Cluster features are well-
separated such that

J∑
j=1

(
λ(k)(ωj)

||λ(k)||2
− λ(k′)(ωj)

||λ(k′)||2

)2

+
J∑

j=1

S−1∑
s=1

(
γ
(k)
s (ωj)

||γ(k)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)2

≥ CT

for a positive constant C ∀k, k′ ∈ {1, 2, . . . ,K}.
Under Assumptions 1 and 2, asymptotic consistency of

the estimates λ̂i(ω) and γ̂i(ω) can be established, and the
largest eigenvalue of the spectral density matrix is contin-
uous and bounded from above. Assumption 3 implies that
the cluster-specific features are well-separated in the sum-
of-squares sense. It should be noted that this assumption
does not require all features to be well-separated; it is possi-
ble that separation may be concentrated within certain fre-
quency bands or occurring primarily in the spectral envelope
or optimal scalings. With these assumptions, the following
theorem states the consistency for using (3) for clustering.

Theorem 1. Let Xit be a time series belonging to clus-
ter k∗. Under Assumptions 1-3, the probability of the dis-
tance between Xit and cluster k∗ exceeding the distance be-
tween Xit and a different cluster k �= k∗ is bounded such
that

P (di,k∗ > di,k) = O(BTT
−1) for ∀k �= k∗.

where di,k is defined in (3).

Proof for this theorem is provided in the Appendix.

3.2 K-means clustering

Using this distance measure, the standard K-means clus-
tering framework [28, 29] can be adapted for categorical time
series as follows. Let ĝ = (ĝ1, . . . , ĝN ) be the collection of
estimated cluster membership values, then

(4) ĝ = argmin
g

N∑
i=1

K∑
k=1

I(gi = k)di,k

where I(gi = k) = 1 if the ith series is assigned to the kth
cluster and I(gi = k) = 0 otherwise. In practice, cluster
features are unknown and estimated from the data as

λ̂(k)(ωj)

||λ̂(k)||2
=

∑N
i=1 I(ĝi = k)

λ̂i(ωj)

||λ̂i||2∑N
i=1 I(ĝi = k)

γ̂
(k)
s (ωj)

||γ̂(k)||2
=

∑N
i=1 I(ĝi = k)

γ̂i,s(ωj)
||γ̂i||2∑N

i=1 I(ĝi = k)

Adaptive clustering and feature selection for categorical time series 323



for k = 1, . . . ,K. K is also unknown and can be estimated
from the data. Many data-driven methods are presented in
the literature for selecting K [32, 44]. The traditional scree
plot is used in what follows. For a particular choice of K, the
above optimization problem can be solved via the iterative
algorithm presented in Algorithm 1. Multiple initializations
should be considered to avoid settling at local optima.

Result: Cluster assignments, ĝ = (ĝ1, . . . , ĝN ), and

features,
λ̂(k)(ωj)

||λ̂(k)||2
,
γ̂
(k)
s (ωj)

||γ̂(k)||2
for k = 1, . . . ,K,

j = 1, . . . , J , s = 1, . . . , S − 1.
Initialize ĝ by independently drawing each ĝi from
{1, . . . ,K} with equal probability.

stop ← 0
while stop=0 do

Update cluster features

λ̂(k)(ωj)

||λ̂(k)||2
←

∑N
i=1 I(ĝi = k)

λ̂i(ωj)

||λ̂i||2∑N
i=1 I(ĝi = k)

,

γ̂
(k)
s (ωj)

||γ̂(k)||2
←

∑N
i=1 I(ĝi = k)

γ̂i,s(ωj)

||γ̂i||2∑N
i=1 I(ĝi = k)

,

for j = 1, . . . , J , k = 1, . . . ,K, and s = 1, . . . , S − 1
where I(ĝi = k) = 1 if series i is assigned to cluster
k (0 otherwise).

Update distances

di,k ←
J∑

j=1

(
λ̂i(ωj)

||λ̂i||2
− λ̂(k)(ωj)

||λ̂(k)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ̂i,s(ωj)

||γ̂i||2
− γ̂

(k)
s (ωj)

||γ̂(k)||2

)2

for i = 1, . . . , N, k = 1, . . . ,K.

Update cluster assignments
g̃i ← argmin

k
di,k, i = 1, . . . , N.

if g̃ = ĝ then stop ← 1
else ĝ ← g̃

end

return ĝ, λ̂(k)(ωj)/||λ̂(k)||2, γ̂(k)
s (ωj)/||γ̂(k)||2

Algorithm 1: K-means clustering

3.3 K-medoids clustering

In some cases, it is preferable to estimate cluster features,

λ(k)(ωj)/||λ(k)||2 and γ
(k)
s (ωj)/||γ(k)||2, using the estimated

features for a particular time series belonging to the cluster,
rather than the mean across all members of the cluster. This
can be especially beneficial when clusters contain outliers
that would impact the mean [21]. This section describes how
the K medoids clustering framework introduced by [21] can
be adapted for categorical time series.

Let φ = (φ1, φ2, . . . , φK) be the collection of indices for
the time series serving as medoids for clusters 1, 2, . . . ,K
and φ̂ be a corresponding estimate. Cluster features would
then be estimated by directly using estimates from the
medoid time series

λ̂(k)(ωj)

||λ̂(k)||2
=

λ̂φ̂k
(ωj)

||λ̂φ̂k
||2

,
γ̂
(k)
s (ωj)

||γ̂(k)||2
=

γ̂φ̂k,s
(ωj)

||γ̂φ̂k
||2

for k = 1, . . . ,K. To further mitigate the impact of outliers,
the L1 distance is used

d̃i,k =

J∑
j=1

∣∣∣∣∣ λ̂i(ωj)

||λ̂i||2
− λ(k)(ωj)

||λ(k)||2

∣∣∣∣∣
+

J∑
j=1

S−1∑
s=1

∣∣∣∣∣ γ̂i,s(ωj)

||γ̂i||2
− γ

(k)
s (ωj)

||γ(k)||2

∣∣∣∣∣ .
(5)

This distance measure can then be used in (4), and this
optimization problem can be solved by the iterative algo-
rithm presented in Algorithm 2. Similar to K-means, mul-
tiple initializations should be considered for the K-medoids
approach as well to avoid settling at local optima. The fol-
lowing example illustrates a data setting where such an ap-
proach is advantageous.

Example 2. Four clusters with outliers. Realizations of
categorical time series are again generated from the multi-
nomial logit model [13], and let the number of categories
S = 4, the number of clusters K = 4, and cluster-specific
regression parameters, αs,k s = 1, . . . , S and k = 1, . . . ,K
be the same as in Example 1.

Consider 40 realizations composed of 10 independent re-
alizations from each cluster. For each cluster, 2 of the 10 re-
alizations are considered as outliers and their cluster-specific
regression parameters are altered such that α̃s,k = αs,k +Z
where Z ∼ U(0, 1). This setting mimics practical situations
in which a few outlier series exhibit features deviating from
the typical behavior of the cluster and can negatively impact
the performance of standard K-means clustering.

Finite sample performance for K-means and K-medoids
approaches on this example are evaluated in Section 3.5.

3.4 Feature selection

In practice, it is of particular interest to identify the fea-
tures most responsible for distinguishing clusters. Perhaps
clusters are well-separated for certain frequency bands, or,
as in Examples 1 and 2, some clusters are distinguishable
across a particular subset of features while other clusters
are distinguishable across an entirely different subset of fea-
tures. In these cases, clustering accuracy could be improved
by focusing on important features for which clusters are well-
separated. Following [46], a sparse clustering algorithm for
categorical time series is introduced in this section for si-
multaneous clustering and feature selection.

324 S.A. Bruce



Result: Cluster assignments, ĝ = (ĝ1, . . . , ĝN ), medoids

φ̂ = (φ1, . . . , φK), and features,
λ̂φ̂k

(ωj)/||λ̂φ̂k
||2, γ̂φ̂k,s

(ωj)/||γ̂φ̂k
||2 for

k = 1, . . . ,K, j = 1, . . . , J , s = 1, . . . , S − 1.
Initialize φ̂ by independently drawing K of the time
series with equal probability and compute distances

d̃i,k ←
J∑

j=1

∣∣∣∣∣ λ̂i(ωj)

||λ̂i||2
−

λ̂φ̂k
(ωj)

||λ̂φ̂k
||2

∣∣∣∣∣
+

J∑
j=1

S−1∑
s=1

∣∣∣∣∣ γ̂i,s(ωj)

||γ̂i||2
−

γ̂φ̂k
(ωj)

||γ̂φ̂k
||2

∣∣∣∣∣
for i = 1, . . . , N, k = 1, . . . ,K.

Initialize cluster assignments ĝi ← argmink d̃i,k, for
i = 1, . . . , N .

Initialize total cost D̂ =
∑K

k=1

∑N
i=1 I(ĝi = k)d̃i,k

stop ← 0
while stop=0 do

D0 ← D̂
Evaluate swaps
for k = 1; k ≤ K; k ++ do

for i = 1; i ≤ N ; i++ do

φ̃ ← φ̂, φ̃k ← i
Obtain new distances

d̃i,k ←
J∑

j=1

∣∣∣∣∣ λ̂i(ωj)

||λ̂i||2
−

λ̂φ̃k
(ωj)

||λ̂φ̃k
||2

∣∣∣∣∣
+

J∑
j=1

S−1∑
s=1

∣∣∣∣∣ γ̂i,s(ωj)

||γ̂i||2
−

γ̂φ̃k
(ωj)

||γ̂φ̃k
||2

∣∣∣∣∣
for i = 1, . . . , N, k = 1, . . . ,K.

Obtain new cluster assignments
g̃i ← argmink d̃i,k, for i = 1, . . . , N .

Compute new total cost
D̃ =

∑K
k=1

∑N
i=1 I(g̃i = k)d̃i,k

if D̃ < D̂ then
D̂ ← D̃, φ̂new ← φ̃, ĝnew ← g̃

end

end

if D̂ = D0 then stop ← 1

else φ̂ ← φ̂new, ĝ ← ĝnew

end

return ĝ, φ̂, λ̂φ̂k
(ωj)/||λ̂φ̂k

||2, γ̂φ̂k,s(ωj)/||γ̂φ̂k
||2

Algorithm 2: K-medoids clustering

Let

WJ×S =
[
{w(λ)

j }Jj=1, {w
(γ)
j,1 }Jj=1, . . . , {w

(γ)
j,S−1}Jj=1

]
be a collection of non-negative feature-specific weights.

Given a fixed set of weights, we can construct a weighted

version of the previous distance measure (3)

di,k(W ) =
J∑

j=1

w
(λ)
j

(
λ̂i(ωj)

||λ̂i||2
− λ(k)(ωj)

||λ(k)||2

)2

(6)

+

J∑
j=1

S−1∑
s=1

w
(γ)
j,s

(
γ̂i,s(ωj)

||γ̂i||2
− γ

(k)
s (ωj)

||γ(k)||2

)2

.

This enhancement allows (6) to be more sensitive to differ-
ences in features with larger weights while reducing or elim-
inating sensitivity to features with smaller or zero weights
respectively. Similar theoretical results can be proved given
a slightly modified assumption regarding cluster separation.

Assumption 4 (Weighted Separation). Given a set of
weights, cluster features are well-separated such that

J∑
j=1

wλj

(
λ(k)(ωj)

||λ(k)||2
− λ(k′)(ωj)

||λ(k′)||2

)2

+
J∑

j=1

S−1∑
s=1

wγsj

(
γ
(k)
s (ωj)

||γ(k)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)2

≥ CT

for a positive constant C ∀k, k′ ∈ {1, 2, . . . ,K}.
Assumption 4 implies that cluster features must be well-

separated specifically along features with non-zero weights.
This is generally a reasonable assumption, but it depends
on how weights are determined and may be violated in sit-
uations where weights are unduly sparse. The next result
states the consistency for using (6) for clustering.

Corollary 1. Let Xit be a time series belonging to cluster
k∗. Under Assumptions 1, 2, and 4, the probability of the
weighted distance between Xit and cluster k∗ exceeding the
weighted distance between Xit and a different cluster k �= k∗

is bounded such that

P (di,k∗(W ) > di,k(W )) = O(BTT
−1) for ∀k �= k∗.

where di,k(W ) is defined in (6).

It remains to introduce a data-driven framework for
determining appropriate feature weights. Following Sec-
tion 3.2, replacing di,k with di,k(W ) in the standard K-
means formulation (4) and imposing sparsity-inducing reg-
ularization constraints on the weights [46] yields

(ĝ, Ŵ ) = argmin
(g,W )

N∑
i=1

K∑
k=1

I(gi = k)di,k(W )

subject to || vecW ||22 ≤ 1, || vecW ||1 ≤ r, and

w
(λ)
j ≥ 0, w

(γ)
j,s ≥ 0 ∀j, s,

(7)

where r is a tuning parameter that determines the level
of sparsity in the weights. However, the objective function
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in (7) is minimized by setting all weights to zero, which is not
an interesting solution. Instead, recognizing that traditional
K-means clustering (4) seeks to maximize between-cluster
sum-of-squares [46], the problem can be reformulated as

(ĝ, Ŵ ) =

argmax
(g,W )

J∑
j=1

w
(λ)
j

⎡⎣N−1
N∑
i=1

N∑
i′=1

d
(λ)
i,i′,j−

K∑
k=1

N−1
k

∑
gi=g′

i=k

d
(λ)
i,i′,j

⎤⎦
+

J∑
j=1

S−1∑
s=1

w
(γ)
j,s

⎡⎣N−1
N∑
i=1

N∑
i′=1

d
(γ)
i,i′,j,s−

K∑
k=1

N−1
k

∑
gi=g′

i=k

d
(γ)
i,i′,j,s

⎤⎦
subject to || vecW ||22 ≤ 1, || vecW ||1 ≤ r, and

w
(λ)
j ≥ 0, w

(γ)
j,s ≥ 0 ∀j, s,

(8)

where Nk =
∑N

i=1 I(gi = k) and

d
(λ)
i,i′,j =

(
λ̂i(ωj)

||λ̂i||2
− λ̂i′(ωj)

||λ̂i′ ||2

)2

,

d
(γ)
i,i′,j,s =

(
γ̂i,s(ωj)

||γ̂i||2
− γ̂i′,s(ωj)

||γ̂i′ ||2

)2

.

Solutions to (8) will assign weight to each feature depend-
ing on its contribution towards the overall between-cluster
sum-of-squares and may result in zero weights for some fea-
tures. Optimizing (8) can be done in an iterative fashion by
alternating between two steps until convergence.

1. Given fixed weights W , optimize the objective function
in (8) with respect to g via standard K-means clustering
with weighted distance (6).

2. Given fixed cluster centers and fixed cluster member-
ship g, optimize the objective function in (8) with re-
spect to W by assigning more weight to features with
larger between-cluster sum-of-squares.

The solution to the convex optimization problem in the sec-
ond step can be easily obtained via soft thresholding [46].
Algorithm 3 presents the complete iterative algorithm for
sparse clustering of categorical time series. It is important
to note that this framework can be further generalized. For
example, K-medoids clustering can also be used in the first
step above along with different distance measures, including
a weighted version of (5), so long as the distance measure is
additive over features [46].

In order to select the value of sparsity tuning parameter
r, the permutation-based gap statistic of [46] can be easily
adapted for this setting. The steps are outlined as follows.

1. Obtain B permuted data sets by independently per-
muting observations within each feature.

2. For each candidate tuning parameter r, calculate
Gap(r) = logO(r) − B−1

∑B
b=1 logOb(r) where O(r)

Result: Cluster assignments, ĝ = (ĝ1, . . . , ĝN ), features,
λ̂(k)(ωj)

||λ̂(k)||2
,
γ̂
(k)
s (ωj)

||γ̂(k)||2
and weights, ŴJ×S for

k = 1, . . . ,K, j = 1, . . . , J , s = 1, . . . , S − 1, .
Initialize ĝ by independently drawing each ĝi from
{1, . . . ,K} with equal probability.

Initialize Ŵ as 1/
√
JS for all J × S features.

stop ← 0
while stop=0 do

Given Ŵ fixed, update ĝ,
λ̂(k)(ωj)

||λ̂(k)||2
, and

γ̂
(k)
s (ωj)

||γ̂(k)||2
via

k-means clustering (Algorithm 1) using di,k(Ŵ )
defined in (6).

Given ĝ fixed, update Ŵ via soft thresholding

vec W̃ =
S[a+,Δ]

||S[a+,Δ]||2
where x+ denotes the positive part of x,
S[x, c] = sign(x)(|x| − c)+, and
a = [a′

λ, a
′
γ1, . . . , a

′
γS−1]

′ where

aλj =
1

N

N∑
i=1

N∑
i′=1

d
(λ)

i,i′,j −
K∑

k=1

∑
ĝi=ĝi′=k d

(λ)

i,i′,j∑N
i=1 I(ĝi = k)

,

aγsj =
1

N

N∑
i=1

N∑
i′=1

d
(γ)

i,i′,j,s −
K∑

k=1

∑
ĝi=ĝi′=k d

(γ)

i,i′,j,s∑N
i=1 I(ĝi = k)

,

for j = 1, . . . , J and s = 1, . . . , S − 1. Let Δ = 0 if
that results in || vec W̃ ||1 < r where r is a sparsity
tuning parameter. Otherwise, choose Δ > 0 such
that || vec W̃ ||1 = r.

if || vec W̃ − vec Ŵ ||1/|| vec Ŵ ||1 < ε where ε > 0 is
small then stop ← 1

else Ŵ ← W̃

end

return ĝ, Ŵ , λ̂(k)(ωj)/||λ̂(k)||2, γ̂(k)
s (ωj)/||γ̂(k)||2

Algorithm 3: Sparse k-means clustering

is the value of the objective function in (8) for the orig-
inal data set and Ob(r) is the objective function in (8)
for the bth permuted data set.

3. Choose r∗ = argmaxr Gap(r) or as the smallest r such
that Gap(r) is within a standard deviation of logOb(r)
of Gap(r∗).

3.5 Finite sample performance

We now return to Example 1 to evaluate the performance
of the proposed clustering and feature selection algorithms
on this simulated example. Recall that this example consists
of N = 100 time series of length T = 200 each belonging
to one of K = 4 equally-sized clusters such that Nk = 25
for k = 1, 2, 3, 4. Figure 3 displays the relevant fit and per-
formance details. The scree plot indicates a decrease in the
rate of decline in within-cluster sum-of-squares after K = 4,
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Figure 3. Example 1 Performance: Scree plot and gap statistic
plot for selecting K and r respectively (top), feature weights
for the spectral envelope and optimal scalings (middle), and
adjusted Rand index values for 100 replications of the data

setting in Example 1 for different cluster sizes Nk = 10, 25, 50
(bottom). This figure appears in color in the electronic version
of this article, and any mention of color refers to that version.

which matches our simulation setting. Using the gap statis-
tic to consider various tuning parameter values between 1.1
and 25, r = 7 is the smallest r with a gap statistic within
one standard deviation of the maximum gap statistic and
is used to determine feature weights via sparse clustering.
With this choice of r, a larger proportion of the total weight
is assigned to the spectral envelope (89.5%) compared to
the optimal scalings (10.5%). The algorithm correctly as-
signs more weight to low (< 0.1Hz) and high (> 0.3Hz)
frequency bands in the spectral envelope, which are largely
responsible for distinguishing clusters 1 and 2. Also, the al-
gorithm correctly assigns more weight to differences in the
scalings for category 1, which are largely responsible for dis-
tinguishing clusters 3 and 4, while weights for other cate-
gories are mostly wiped out. This shows that the algorithm
can still perform well even when all clusters are not well-
separated along all features.

Finally, to evaluate clustering accuracy, both the stan-
dard and sparse K-means algorithms are applied to 100

Figure 4. Example 2 Performance: Adjusted Rand index
values for 100 replications of the data setting in Example 2
for different time series lengths T = 200, 400, 1000 with 10

time series for each cluster. K-means and K-medoids are both
used to evaluate cluster membership. This figure appears in
color in the electronic version of this article, and any mention

of color refers to that version.

replications of this data setting for different cluster sizes
Nk ∈ {10, 25, 50}. The adjusted Rand index [36, 20] is used
to assess clustering accuracy. Values of the adjusted Rand
index close to 0 indicate poor estimation of the true cluster
memberships and values close to 1 indicate good estima-
tion of the true cluster memberships. The distributions of
adjusted Rand index values are presented at the bottom
of Figure 3. The mean adjusted Rand index values are 0.59,
0.82, and 0.92 for the proposed standard K-means algorithm
for Nk = 10, 25, 50, and the mean adjusted Rand index val-
ues are 0.81, 0.90, and 0.94 for the proposed sparse K-means
algorithm for Nk = 10, 25, 50. Notice that for Nk = 10, 25,
the sparse K-means algorithm significantly outperforms the
standard K-means algorithm in terms of the adjusted Rand
index (p-values for Wilcoxon rank-sum tests of <0.0001 and
0.0002 respectively). This demonstrates the potential for the
sparse K-means algorithm to exhibit superior finite-sample
performance due to its simultaneous clustering and feature
selection ability.

Next we turn to Example 2 to compare the proposed
K-means and K-medoids algorithms in clustering categori-
cal time series with outliers. Recall that this example con-
sists of K = 4 clusters each of size Nk = 10 in which
2 of the 10 realizations are outliers generated by adding
standard uniform noise to their cluster-specific regression
parameters. Figure 4 displays the adjusted Rand index
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values over 100 replications using the proposed K-means
and K-medoids algorithms. Different lengths of time series
T = 200, 400, 1000 are considered. The K-medoids algo-
rithm significantly outperforms K-means for this data set-
ting (p-values for Wilcoxon rank-sum tests below 0.004 for
T = 200, 400, 1000) which demonstrates the improved finite-
sample performance of K-medoids when outliers are present.

3.6 Clustering under fuzzy membership

In real data applications, it is entirely possible that some
time series may exhibit characteristics that resemble multi-
ple clusters. In this case, it can be helpful to relax the re-
quirement of strict membership to a single cluster for each
time series and allow for partial membership to multiple
clusters, which is known as fuzzy clustering [1]. This phe-
nomenon can be due to dynamic drifting or switching behav-
ior over time that results in features with some resemblance
to multiple clusters. If this behavior corresponds to a par-
ticular trajectory through time, methods that characterize
nonstationary time series [5, 26, 17] would be more appro-
priate for use in clustering such series. However in many
cases, this dynamic behavior may be vague and not tied to
a particular course in time [31] and can be naturally treated
via fuzzy clustering. For better illustration, consider the fol-
lowing example.

Example 3. Two clusters with switching series. Real-
izations of categorical time series are again generated from
the multinomial logit model [13] as in Example 1. Let the
number of categories S = 4, the number of clusters K = 2,
and cluster-specific regression parameters

α1,1 =(2.5, 1, 1)′, α1,2 = (1, 1, 1)′, α1,3 = (1, 1, 2, 5)′,

α2,1 =(1, 1, 2)′, α2,2 = (1, 1, 1)′, α2,3 = (2, 1, 1)′.

Consider 50 realizations of length T = 400 composed of
25 independent realizations from each cluster and an ad-
ditional 5 realizations of switching time series such that
α1 = (2.5, 1, 1)′, α2 = (1, 1, 1)′, α3 = (1, 1, 2, 5)′ for t =
1, . . . , 300 and α1 = (1, 1, 2)′, α2 = (1, 1, 1)′, α3 = (2, 1, 1)′

for t = 301, . . . , 400. This setting mimics practical situations
for which most series can be mapped to a single cluster, but
some series exhibit similarities to multiple clusters. Figure 5
displays a single realization from each of the two clusters and
the switching group along with estimated spectral envelopes
and optimal scalings.

Let U be an N × K membership matrix such that each
element, ui,k ∈ [0, 1], represents the degree of membership
of the ith time series to the kth cluster for i = 1, . . . , N and
k = 1, . . . ,K. Then the fuzzy clustering solution is

Û = argmin
U

N∑
i=1

K∑
k=1

um
i,kdi,k

subject to

K∑
k=1

ui,k = 1 ∀ i, ui,k ≥ 0 ∀ i, k,

(9)

Figure 5. Example 3 Visualization: 3× 1 panel of simulated
time series corresponding to two different clusters and
switching series (top), estimated standardized spectral
envelopes (middle), and estimated standardized optimal
scalings for each category (bottom) for each cluster and

switching group. This figure appears in color in the electronic
version of this article, and any mention of color refers to that

version.

where m > 1 is a tuning parameter controlling the fuzzi-
ness of the cluster membership matrix such that m close to
1 results in membership values, ui,k, close to 0 and 1 and
ui,k → 1/K as m → ∞. Following [31], this optimization
problem can be solved using Lagrangian multipliers result-
ing in an iterative solution that updates cluster features and
the membership matrix in turn until convergence. See Al-
gorithm 4 for a detailed implementation of this approach.
A fuzzy K-medoids algorithm can also be developed in a
similar fashion, which is left to future work.

We now return to Example 3 to demonstrate how the
fuzzy clustering algorithm performs for this simulated ex-
ample. Figure 6 displays the scree plot and gap statistic
plot for selecting K and m respectively. The scree plot in-
dicates a decrease in the rate of decline in within-cluster
sum-of-squares after K = 2, which matches our simulation
setting. Using the gap statistic to consider various tuning
parameter values between 1.02 and 7, m = 1.7675 is the
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Result: Fuzzy cluster membership, Û = {ûi,k}N×K , and

features,
λ̂(k)(ωj)

||λ̂(k)||2
,
γ̂
(k)
s (ωj)

||γ̂(k)||2
for k = 1, . . . ,K,

j = 1, . . . , J , s = 1, . . . , S − 1.
Initialize Û by independently drawing each ûi,k from a
standard uniform random variable and dividing by the
sum over k = 1, . . . ,K for each i = 1 . . . , N .

stop ← 0
while stop=0 do

Update cluster centers

λ̂(k)(ωj)

||λ̂(k)||2
←

∑N
i=1 û

m
i,k

λ̂i(ωj)

||λ̂i||2∑N
i=1 û

m
i,k

,

γ̂
(k)
s (ωj)

||γ̂(k)||2
←

∑N
i=1 û

m
i,k

γ̂i,s(ωj)

||γ̂i||2∑N
i=1 û

m
i,k

,

for j = 1, . . . , J , k = 1, . . . ,K, and s = 1, . . . , S − 1
where m is a fuzziness tuning parameter.

Update distances

di,k ←
J∑

j=1

(
λ̂i(ωj)

||λ̂i||2
− λ̂(k)(ωj)

||λ̂(k)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ̂i,s(ωj)

||γ̂i||2
− γ̂

(k)
s (ωj)

||γ̂(k)||2

)2

for i = 1, . . . , N, k = 1, . . . ,K.

Update fuzzy cluster membership

ũi,k =

[
K∑

k′=1

(
di,k
di,k′

)(S−1)−1]−1

,

for i = 1, . . . , N, k = 1, . . . ,K.

if || vec Ũ − vec Û ||1/|| vec Û ||1 < ε where ε > 0 is
small then stop ← 1

else Û ← Ũ

end

return Û , λ̂(k)(ωj)/||λ̂(k)||2, γ̂(k)
s (ωj)/||γ̂(k)||2

Algorithm 4: Fuzzy k-means clustering

smallest m with a gap statistic within one standard devia-
tion of the maximum gap statistic and is used to allow for
some fuzziness in the clustering results. Figure 6 also dis-
plays the membership degrees for the first cluster, ûi,1, for
observations from the first true cluster, second true clus-
ter, and switching group. Observations generated from the
two dominant clusters are correctly clustered together with
membership values close to 0 and 1 while the switching series
have membership values between 0.12 and 0.89, correctly in-
dicating partial membership to both clusters.

A version of the adjusted Rand index for fuzzy clustering
[7] is used to evaluate the effectiveness of the estimated fuzzy
cluster memberships in recovering the true cluster assign-
ments over 100 replications for different fuzziness parame-
ters (m = 1.7675, 1.1) and cluster sizes (Nk = 10, 50, 100

Figure 6. Example 3 Performance: Scree plot and gap statistic
plot for selecting K and m (top), first cluster membership

degree by true membership to cluster 1, 2, and the switching
group (middle), and adjusted Rand index for 100 replicates
varying cluster size (Nk) and fuzziness parameter (m) while

keeping the number of switching series the same (5)
(bottom). This figure appears in color in the electronic version
of this article, and any mention of color refers to that version.

and 5 switching series). As expected, performance improves
as more time series are observed and a smaller fuzziness pa-
rameter is used, which reduces the fuzziness in the cluster
assignments.

4. CLUSTER ANALYSIS OF SLEEP STAGE
TIME SERIES

During a full night of sleep, the body cycles through two
primary sleep stages, rapid eye movement (REM) sleep, in
which dreaming typically occurs, and non-rapid eye move-
ment (NREM) sleep, which consists of four stages represent-
ing light sleep (S1,S2) and deep sleep (S3,S4). These sleep
stages are associated with specific physiological behaviors
that are essential to the rejuvenating properties of sleep,
and disruptions to typical cyclical behavior have been found
to be associated with many sleep disorders [33]. It is of in-
terest to determine if common profiles of sleep stage time
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Figure 7. Scree plot and gap statistic plot for selecting K and r respectively and feature weights for the spectral envelope and
optimal scalings using sparse clustering for the application to sleep stage time series. This figure appears in color in the

electronic version of this article, and any mention of color refers to that version.

series exist within the population of sleep disorder patients
that demonstrate distinct patterns of sleep disruption. The
proposed clustering algorithms can provide tools for char-
acterizing particular patterns indicative of sleep disorder,
which can, in turn, aide in diagnosing sleep disorder and
evaluating treatment efficacy.

The data for this analysis was collected through a study of
various sleep-related disorders [43] and is publicly available
via Physionet [16]. All participants were monitored during
a full night of sleep and their sleep stages were annotated by
experienced technicians every 30 seconds according to well-
established sleep staging criteria [37]. The current analysis
considers sleep stage time series from N = 80 participants:
38 patients with nocturnal frontal lobe epilepsy (NFLE),
18 patients with REM behavior disorder (RBD), 9 patients
with periodic leg movements (PLM), 6 patients with insom-
nia (INS), and 9 control patients that did not present any
neurological disorder. Time series consist of S = 6 sleep
stages (REM, S1, S2, S3, S4, and Wake/Movement) with
Wake/Movement used as the reference category. Examples
are provided in Figure 1.

Since time series can exhibit nonstationary behavior as-
sociated with falling asleep at the beginning of the night
and awakening at the end of the night, clustering was per-
formed on subsets of the full night time series beginning
at the 20th percentile of total sleep time and ending at the
90th percentile of total sleep time for each participant. Since
sleep stage time series can vary in length, we follow [6, 30]
and interpolate periodogram ordinates at the Fourier fre-
quencies associated with the shortest time series in order to
estimate the spectral envelope and optimal scalings. 89.5%
of the power in the spectral envelope is contained in low
frequencies (< 0.1) corresponding to sleep cycles lasting 5
minutes and longer, so only these frequencies are considered
for clustering.

4.1 Sparse K-means clustering

Figure 7 contains the scree and gap statistic plots for
choosing K and r as well as the feature weights determined
by fitting the proposed sparse clustering algorithm to the

Figure 8. Estimated standardized spectral envelope and
optimal scalings for each cluster using sparse clustering for

the application to sleep stage time series. This figure appears
in color in the electronic version of this article, and any

mention of color refers to that version.

data. Figure 8 displays the estimated spectral envelope and

optimal scalings for each cluster. Table 1 illustrates the com-
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Table 1. Cluster composition by sleep disorder for the application to sleep stage time series.

Cluster
Group 1 2 3 4 Total

Control 2 (0.18) 3 (0.25) 1 (0.06) 3 (0.07) 9 (0.11)
Insomnia 2 (0.18) 1 (0.08) 1 (0.06) 2 (0.05) 6 (0.07)
NFLE 4 (0.36) 4 (0.33) 9 (0.56) 21 (0.51) 38 (0.48)
PLM 2 (0.18) 0 (0.00) 1 (0.06) 6 (0.15) 9 (0.11)
RBD 1 (0.09) 4 (0.33) 4 (0.25) 9 (0.22) 18 (0.22)
Total 11 (1.00) 12 (1.00) 16 (1.00) 41 (1.00) 80 (1.00)

position of each cluster according to sleep disorder. While
the clustering algorithm does not take into account sleep
disorder types, it is of interest to see if particular types of
sleep disorders dominate particular clusters. Classifying cat-
egorical time series using the spectral envelope and optimal
scalings is an interesting direction of work with preliminary
results available in [25].

The scree plot indicates a slight decrease in the rate of
decline in within-cluster sum-of-squares after K = 4, so four
clusters are used to characterize the population of sleep dis-
order patients. Using the gap statistic to consider various
tuning parameter values between 1.1 and 60, r = 10 is the
smallest r with a gap statistic within one standard devia-
tion of the maximum gap statistic and is used to determine
feature weights via sparse clustering.

With this choice of r, a larger proportion of the total
weight is assigned to the optimal scalings (97.7%) compared
to the spectral envelope (2.3%), indicating that clusters ex-
hibit more variability between clusters in their traversals
through categories rather than in power across frequencies.
This is expected as sleep disorders tend to disturb typi-
cal sleep cycles rather than fundamentally restructure sleep.
Sleep is dominated by low frequency cycles lasting between
70 to 120 minutes [33]. Disruptions interrupt these domi-
nant cycles, which shifts some power from lower frequen-
cies to higher frequencies, but do not drastically attenu-
ate low frequency power. This is further supported by the
clustering results for which the estimated power in low fre-
quencies (< 0.02), representing cycles lasting 25 minutes or
longer, is dominant across all clusters and increases as the
number of REM-behavior disorder patients, which typically
experience more severe sleep disruption, in the cluster de-
creases (see Figure 8 and Table 1). On the other hand, sleep
disruptions can have a major impact on cyclical traversals
through categories depending on the nature of the disrup-
tion. This can result in significantly different scalings. For
example, disruptions to REM sleep are common in patients
with REM-behavior disorder (RBD) due to dream-enacting
behavior [39], which can cause RBD patients to wake up
abruptly [14]. However, patients with nocturnal frontal lobe
epilepsy (NFLE) tend to experience seizures more often dur-
ing NREM sleep [45] and are less likely to be awakened fol-
lowing a seizure [14]. These two examples illustrate different

types of sleep disruptions to different sleep stages that can
cause optimal scalings to take on different values.

Turning to Figure 8 and Table 1, we can investigate clus-
ter profiles to better understand their distinguishing features
and composition by sleep disorder types. According to the
spectral envelope weights (see Figure 7), clusters are more
distinguished in power for two frequency bands: frequencies
less than or equal to 0.0167 (i.e. cycles lasting 30 minutes or
longer) and frequencies between 0.0167 and 0.1 (i.e. cycles
between 5 and 30 minutes). Looking to the cluster spectral
envelopes in Figure 8, relatively less power in the spectral
envelope for one band corresponds to relatively more power
in the other. This means that clusters differ with respect to
how much power in the spectral envelope is shifted from the
low frequency band to the high frequency band due to sleep
disturbances.

Turning to the cluster optimal scalings (Figure 8), the
low frequency band is generally characterized by cycling be-
tween light sleep (S2) and REM sleep (R), which have larger
scalings than other categories. This is expected as the ob-
served time series spend the most time in these stages, with
40.6% and 20.4% of total sleep time on average being spent
in light sleep (S2) and REM sleep (R) respectively. How-
ever, subtle differences exist across clusters. For example,
the third cluster exhibits similar low frequency scalings for
REM sleep (R) and deep sleep (S4). This can be attributed
to more frequent disruptions to REM sleep for series belong-
ing to this cluster, resulting in the lowest amount of time
spent in REM sleep on average for this cluster (18.2%) com-
pared to other clusters (ranging from 19.4% to 22.6%) and
the most time spent on average in Wake/Movement (17.3%)
compared to other clusters (ranging from 9.5% to 15.0%).
This is not completely unexpected since this cluster has the
lowest proportion of healthy controls (6%) and the high-
est proportion of patients with known sleep disorders (94%)
compared to other clusters.

On the other hand, the high frequency band has signifi-
cant differences in scalings across clusters, largely for light
sleep (S2) and deep sleep (S3) categories according to the
feature weights (see Figure 7). For example, the fourth clus-
ter scalings for frequencies between 0.05 and 0.1, represent-
ing cycles lasting between 5 and 10 minutes, are associated
with cycling between light sleep (S2) and either deep sleep
(S3), lighter sleep (S1) or REM sleep (R). This cluster is
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composed largely of NFLE patients (51%) for which noctur-
nal seizures may occur and typically disrupt NREM sleep.
For comparison, the second cluster contains a larger propor-
tion of healthy controls (25%), and scalings over this range
consist of two sub-bands with different behavior. For fre-
quencies between 0.05 and 0.075, representing cycles lasting
between 6.67 and 10 minutes, scalings indicate dominant
cycling between light sleep (S2) and deep sleep (S3). For
frequencies between 0.075 and 0.1, representing cycles last-
ing between 5 and 6.67 minutes, scalings are similar to those
of the fourth cluster and indicate dominant cycling between
light sleep (S2) and either deep sleep (S3), lighter sleep (S1)
or REM sleep (R). This suggests that nocturnal seizures as-
sociated with NFLE can disrupt the typical cycling between
light and deep sleep for frequencies between 0.05 and 0.075.
This is not completely unexpected as nocturnal seizures are
more prevalent during NREM sleep [45], which may inter-
fere with typical cyclical behavior. It is important to note
that the third cluster also contains a large proportion (56%)
of NFLE patients and exhibits different behavior from the
fourth cluster, which is also majority NFLE (51%). This
suggests potential heterogeneity within the population of
NFLE patients and could be due to different seizure types,
partial and generalized, affecting NFLE patients in different
ways during the night [35].

4.2 Fuzzy K-means clustering

When clusters exhibit fairly similar behavior, which
seems to be a reasonable assumption for this application,
fuzzy clustering has been shown to have better adaptivity
in singling out cluster structures [31]. Figure 9 displays the
results of applying the proposed fuzzy clustering algorithm
with K = 4 clusters to the sleep stage time series data de-
scribed above. Using the gap statistic to consider various
tuning parameter values between 1.02 and 10, m = 1.39 is
the smallest m with a gap statistic within one standard de-
viation of the maximum gap statistic and is used to allow
for some fuzziness in the clustering results. Figure 9 also dis-
plays the membership degrees for each of the four clusters,
ûi,k, by sleep disorder type. Many membership degrees can
be observed between 0.25 and 0.75, indicating partial mem-
bership to multiple clusters and supporting the notion that
fuzzy clustering may be applicable for this dataset. The esti-
mated spectral envelope and optimal scalings for each clus-
ter exhibit many of the same characteristics already noted
in the previous section and are thus omitted.

5. CONCLUSION

This article presents a novel approach to clustering and
feature selection for categorical time series via interpretable
frequency-domain features. The proposed distance measure
based on the spectral envelope and optimal scalings is shown
to provide consistent clustering, and four algorithms are pre-
sented that tackle common challenges arising in practice,

Figure 9. Gap statistic plot for selecting m and cluster
membership degree by sleep disorder type for fuzzy clustering

on the application to sleep stage time series. This figure
appears in color in the electronic version of this article, and

any mention of color refers to that version.

namely identifying important features and possible fuzziness
in the clustering partition. All R code needed to reproduce
the simulation and application results contained herein are
available at the following GitHub repository https://github.
com/sbruce23/envclust.

However, the proposed methods are not without limita-
tions. First, these methods assume time series are stationary.
However, in some applications, time series could be nonsta-
tionary, which would require time-varying extensions of the
spectral envelope and optimal scalings for proper charac-
terization. Incorporating nonstationarity may also further
improve clustering accuracy. Second, the proposed methods
assume time series within clusters share common cyclical
patterns. However, extra variability may be present in some
applications [22]. A topic of future research would be to in-
corporate within-group variability into the clustering frame-
work. Finally, hierarchical clustering methods [10] could be
developed to supplement the partitional clustering methods
proposed in this work.
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APPENDIX A. PROOFS

A.1 Preliminaries

To prove Theorem 1, the following lemmas are used.

Lemma 1. Under Assumptions 1 and 2 and assume that
h(ω)re has distinct eigenvalues. Let λ(ω) and γ(ω) be the
largest eigenvalue and corresponding eigenvector of h(ω)re.
If BT → ∞ and T → ∞ with BTT

−1 → 0, then,

λ̂(ω)− λ(ω) = O(BTT
−1),

γ̂(ω)− γ(ω) = O(BTT
−1).

Lemma 1 follows directly from [4, Theorems 9.4.1, 9.4.3].

Lemma 2. Under Assumptions 1 and 2 and assume that
h(ω)re has distinct eigenvalues. Let λ(ω) and γ(ω) be the
largest eigenvalue and corresponding eigenvector of h(ω)re

for ω ∈ (−1/2, 1/2]. If BT → ∞ and T → ∞ with BTT
−1 →

0, then,

||λ̂||2 − ||λ||2 = O(B
1/2
T T−1/2),

||γ̂||2 − ||γ||2 = O(B
1/2
T T−1/2).

Proof. Using of the result from Lemma 1, we have

||λ̂||2

=

√√√√T−1

J∑
j=1

|λ̂(ωj)|2

=

√√√√T−1

J∑
j=1

|λ(ωj) +O(BTT−1)|2

≤

√√√√T−1

J∑
j=1

|λ(ωj)|2 +O(B
1/2
T T−1/2)

→

√∫ 1/2

0

|λ(ω)|2dω+O(B
1/2
T T−1/2)

= ||λ||2 +O(B
1/2
T T−1/2).

Proof for ||γ̂||2 follows similar steps and is thus omitted.

Lemma 3. Under Assumptions 1 and 2 and assume that
h(ω)re has distinct eigenvalues. Let λ(ω) and γ(ω) be the
largest eigenvalue and corresponding eigenvector of h(ω)re

for ω ∈ (−1/2, 1/2]. If BT → ∞ and T → ∞ with BTT
−1 →

0, then,

λ̂(ω)

||λ̂||2
− λ(ω)

||λ||2
= O(B

1/2
T T−1/2),

γ̂s(ω)

||γ̂s||2
− γs(ω)

||γ||2
= O(B

1/2
T T−1/2).

Proof. Using of the result from Lemmas 1 and 2, we have

λ̂(ω)

||λ̂||2
=

λ(ω) +O(BTT
−1)

||λ||2 +O(B
1/2
T T−1/2)

=
[λ(ω) +O(BTT

−1)]/||λ||2
[||λ||2 +O(B

1/2
T T−1/2)]/||λ||2

=
λ(ω)/||λ||2 +O(BTT

−1)

1 +O(B
1/2
T T−1/2)

= [λ(ω)/||λ||2 +O(BTT
−1)][1 +O(B

1/2
T T−1/2)]

=
λ(ω)

||λ||2
+O(B

1/2
T T−1/2).

Since |B1/2
T T−1/2| < 1 for suitable BT (e.g. BT =

�T 1/2	). Proof for γ̂s(ω)/||γ̂||2 follows similar steps and is
thus omitted.

A.2 Proof of Theorem 1

Now that the asymptotic behavior of the standardized
estimates of the spectral envelope and optimal scalings has
been determined, the proof of this theorem uses Lemmas 1–
3 and follows similar steps to those in the proofs of [25,
Theorems 1–3].

Proof. Let λ̂(ωj)/||λ̂||2 and γ̂s(ωj)/||γ̂||2 where ωj = j/T
for j = 1, . . . , J, J = �(T − 1)/2	, and s = 1, . . . , S − 1
be the standardized estimates of the spectral envelope and
optimal scalings respectively for time series Xt. Without
loss of generality, assume Xt belongs to the first cluster
with standardized spectral envelope and optimal scalings

features λ(1)(ωj)/||λ(1)||2 and γ
(1)
s (ωj)/||γ(1)||2 respectively.

Consider the distance measure

d2k

=

J∑
j=1

(
λ̂(ωj)

||λ̂||2
− λ(k)(ωj)

||λ(k)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ̂s(ωj)

||γ̂||2
− γ

(k)
s (ωj)

||γ(k)||2

)2

for k = 1, . . . ,K where K = the number of clusters and K is
fixed. Consider the difference in the distance to the first clus-
ter and the distance to a different cluster k′ ∈ {2, . . . ,K}.
It can be shown that

d21 − d2k′

= −2

J∑
j=1

(
λ̂(ωj)

||λ̂||2
− λ(1)(ωj)

||λ(1)||2

)(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)

−2

J∑
j=1

S−1∑
s=1

(
γ̂s(ωj)

||γ̂||2
− γ

(1)
s (ωj)

||γ(1)||2

)(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)

−
J∑

j=1

(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)2

Adaptive clustering and feature selection for categorical time series 333



−
J∑

j=1

S−1∑
s=1

(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)2

.

Using Chebyshev’s inequality,

P (d21 − d2k′ > 0)

≤E

⎧⎨⎩
⎡⎣−2 J∑

j=1

(
λ̂(ωj)

||λ̂||2
− λ(1)(ωj)

||λ(1)||2

)(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)

−2
J∑

j=1

S−1∑
s=1

(
γ̂s(ωj)

||γ̂||2
− γ

(1)
s (ωj)

||γ(1)||2

)(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)⎤⎦2
⎫⎪⎬⎪⎭

×

⎧⎨⎩
J∑

j=1

(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)2
⎫⎬⎭

−2

.

Using Lemma 3,

E

⎧⎨⎩
⎡⎣−2

J∑
j=1

(
λ̂(ωj)

||λ̂||2
− λ(1)(ωj)

||λ(1)||2

)(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)

−2
J∑

j=1

S−1∑
s=1

(
γ̂s(ωj)

||γ̂||2
− γ

(1)
s (ωj)

||γ(1)||2

)(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)⎤⎦2
⎫⎪⎬⎪⎭

= O(BTT ).

Assuming well-separated cluster features (Assumption 3),⎧⎨⎩
J∑

j=1

(
λ(1)(ωj)

||λ(1)||2
− λ(k′)(ωj)

||λ(k′)||2

)2

+

J∑
j=1

S−1∑
s=1

(
γ
(1)
s (ωj)

||γ(1)||2
− γ

(k′)
s (ωj)

||γ(k′)||2

)2
⎫⎬⎭

−2

is of the order T−2 and thus P (d21 > d2k′) = O(BTT
−1) for

k′ ∈ {2, . . . ,K}.

A.3 Proof of Corollary 1

Proof. Weights belong to the closed interval [0, 1]. Since
some weights can be exactly zero, Assumption 4 is needed
to ensure cluster features are well-separated for the subset
of components that have non-zero weights. Then, by follow-
ing the steps of the proof for Theorem 1 and replacing the
uniformly-weighted distance measure (3) with the weighted
distance measure (6), we have the result.
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