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Empirical likelihood-based portmanteau tests for
autoregressive moving average models with
possible infinite variance innovations∗

Xiaohui Liu, Donghui Fan, Xu Zhang
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It is an important task in the literature to check whether
a fitted autoregressive moving average (ARMA) model is
adequate, while the currently used tests may suffer from
the size distortion problem when the underlying autoregres-
sive models have low persistence. To fill this gap, this paper
proposes two empirical likelihood-based portmanteau tests.
The first one is naive but can serve as a benchmark, and the
second is for the case with infinite variance innovations. The
asymptotic distributions under the null hypothesis are de-
rived under mild moment conditions, and their usefulness is
demonstrated by simulation experiments and two real data
examples.
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1. INTRODUCTION

Consider the autoregressive moving average (ARMA)
model with orders p and q, denoted by ARMA(p, q),

Xt = μ+

p∑
i=1

φiXt−i +

q∑
j=1

ψjεt−j + εt,(1)

where (μ, φ1, · · · , φp, ψ1, · · · , ψq) contains unknown param-
eters, and {εt} is a martingale difference series, and this
model has been widely used in many fields such as finance
and economics. It is an important task in time series anal-
ysis to check whether the fitted model is adequate, i.e. the
orders p or/and q may not be correctly specified, and there
is a huge literature for it. The early seminal works include
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the Box-Pierce statistic Qm in [4] and Ljung-Box statistic
Q̃m in [20], and they can be defined as

Qm = nρ̂�ρ̂, and Q̃m = nρ̂�W ρ̂,

where the diagonal matrix W = diag{(n+ 2)/(n− 1), (n+
2)/(n−2), · · · , (n+2)/(n−m)}, ρ̂ := (ρ̂1, ρ̂2, · · · , ρ̂m)�, the
residuals auto-correlation at lag k has the form of

ρ̂k =

n∑
t=k+1

ε̂tε̂t−k/

n∑
t=1

ε̂2t ,

and {ε̂t} are residuals from the fitted ARMA model at (1).
Note that Q̃m is a weighted version of Qm, and it usually

has a better performance especially when the sample size
n is relatively small. Further improvements along this line
include the weighted Ljund-Box test statistic in [11]. All
these test statistics are easily implemented, and hence they
have already been widely applied in practice. However, as
pointed out by [33], the asymptotic properties of these test
statistics are only valid under a strong condition that {εt}
are independent and identically distributed (i.i.d.) random
variables. [33] developed an interesting random weighting
(RW) technique to calculate the critical values of these test
statistics, and hence these easy-to-implemented tests can
be extended to the case that εt’s are uncorrelated, but not
necessarily independent.

In the meanwhile, when autoregressive (AR) models have
low persistence, i.e., AR coefficients are relatively small, the
RW method in [33] still suffers from significant size distor-
tion; see simulation results in Section 3 for details. As a re-
sult, this paper revisits the literature of diagnostic checking
for AMRA models, and a new test statistic is then proposed
by the profile empirical likelihood (EL) method [24, 26].
It can be further shown that, under mild conditions, the
proposed test statistic has the null chi-squared distribution,
which is a desirable property for tests.

On the other hand, financial and economic data usu-
ally exhibit the phenomenon of volatility clustering, which
can be interpreted by the conditional heteroscedasticity. [9]
first suggested an autoregressive conditional heteroskedastic
(ARCH) model for it. Moreover, by noting that the AR pro-
cess usually needs a higher order than the ARMA process
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in the actual modeling, [2] extended the ARCH model to
a more flexible generalized autoregressive conditional het-
eroskedastic (GARCH) model, which not only reduces the
number of parameters but also provides a better fit to the
data; see, e.g., [23], [13], [25], [6], [18], [21], and references
therein. The GARCH model has the form of

εt = ηtσt, σ2
t = ω +

r∑
i=1

aiε
2
t−i +

s∑
j=1

bjσ
2
t−j ,(2)

where {ηt} are i.i.d. random errors with means zero and
variances one, (ω, a1, · · · , ar, b1, · · · , bs) contains unknown
parameters, and ω, ai’s and bj ’s are assumed to be positive.
The GARCH process has the finite variance if

∑r
i=1 ai +∑s

j=1 bj < 1, however, many financial data may exhibit an

infinite variance of {εt}, i.e.
∑r

i=1 ai+
∑s

j=1 bj may be very
close to one.

When εt has an infinite variance, both the RW and EL
test statistics perform poorly in terms of both sizes and
powers since they are only valid for the case with finite vari-
ance innovations. As a result, this paper further proposes a
weighted empirical likelihood (WeL) test statistic to check
the adequacy of the fitted models at (1) with GARCH er-
rors at (2), and the null distribution is also derived with the
innovations being allowed to have infinite variance.

Both EL and WeL are developed based on the empirical
likelihood methods in [26], and the original is attributed to
[24]. Empirical likelihood is a popular nonparametric like-
lihood method and has wide and successful applications in
many fields; see [28], [27] and among others. While it has
attracted less attention in literature of time series. Empiri-
cal likelihood is first introduced by [5] to GARCH models to
build likelihood ratio test statistics, and other applications
include but are limited to constructing confidence intervals
for the tail index and testing for zero median of errors; see
[32], [21], etc. It is noteworthy to point out that the naive
EL test only works for finite variance innovations, while the
proposed WeL method is motivated by the self-weighting
method to modify local quasi-maximum likelihood estima-
tors in [18].

The remainder of the paper is organized as follows. Sec-
tion 2 gives two tests, and their null distributions are also
derived. Sections 3 and 4 provide simulation results and real
analysis, respectively, and a quick summary is given in Sec-
tion 5. The theoretical details are relegated to the Appendix.

2. METHODOLOGY AND MAIN RESULTS

Let γ := (γ1, γ2, · · · , γm)� = (E(εtεt−1), E(εtεt−2), · · · ,
E(εtεt−m)) for some given m ≥ 1, and θ = (μ, φ1, · · · , φp,
ψ1, · · · , ψq)

�. The serial correlation hypotheses can be sum-
marized into

H0 : γ = 0 versus H1 : γ �= 0.(3)

Assume that the observed time series {Xt}nt=1 are gener-
ated from model (1). Note that the definition of γ is related

to the expectation. We propose to test (3) by using the em-
pirical likelihood technique in [26]. We start with the case
that εt has finite variance, and then extend the result to
the weighted empirical likelihood test statistic for infinite
variance innovations.

2.1 Finite variance innovations

For convenience, define εt(θ) = Xt − μ−
∑p

i=1 φiXt−i −∑q
j=1 ψjεt−j(θ). Note that the least squares (LS) estimator

θ̂ minimizes

n∑
t=1

⎛
⎝Xt − μ−

p∑
i=1

φiXt−i −
q∑

j=1

ψjεt−j(θ)

⎞
⎠2

.

That is, θ̂ is the solution to

n∑
t=1

εt(θ)
∂εt(θ)

∂θ
= 0.(4)

This motivates us to define the empirical likelihood function
for testing H0 as follows:

L(θ,γ) = sup{
∏n

t=m+1(Npt) : pm+1 ≥ 0, · · · , pn ≥ 0,∑n
t=m+1 pt = 1,

∑n
t=m+1 ptZt(θ,γ) = 0},

where N = n − m, and Zt(θ,γ) = (Zt,1(θ,γ)
�,

Zt,p+q+1(θ,γ), · · · , Zt,p+q+m(θ,γ))� with⎧⎨
⎩
Zt,1(θ,γ) = εt(θ)

∂εt(θ)
∂θ ,

Zt,p+q+l(θ,γ) = εt(θ)εt−l(θ)− γl, l = 1, 2, · · · ,m.

Throughout this paper, we compute ∂εt(θ)/∂θ recursively
by

∂εt(θ)

∂θ
= −X̃t −

q∑

j=1

ψj
∂εt−j(θ)

∂θ
, t = 1, 2, · · · , n,

where X̃t = (1, Xt−1, · · · , Xt−p, εt−1(θ), · · · , εt−q(θ))
�.

It follows from the Lagrange multiplier technique that

−2 logL(θ,γ) = −2

n∑
t=m+1

log{1 + λ�Zt(θ,γ)},

where λ = λ(θ,γ) satisfies

n∑
t=m+1

Zt(θ,γ)

1 + λ�Zt(θ,γ)
= 0.

Since we are interested in testing γ, we consider the log-
profile empirical likelihood function as follows

�(γ) = −2 log{sup
θ

L(θ,γ)}.

Denote by Θ the parameters space, which is compact subset
of Rp+q+1. Suppose the following conditions hold, i.e.,
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(C1) The true value, say θ0, of θ is an interior point in Θ,
and for θ ∈ Θ, φ(z) �= 0 and ψ(z) �= 0 when |z| < 1,
and φ(z) = 1 −

∑p
i=1 φiz

i and ψ(z) = 1 +
∑q

j=1 ψjz
j

have no comment root with φp �= 0 or ψq �= 0.
(C2) E(|εt|4+δ) < ∞ for some constant δ > 0.

Based on the above assumptions, we have the following re-
sult.

Theorem 1. Suppose that {εt} is a martingale difference
series, i.e. there is no serial correlation existing in {εt}.
Then, under Conditions (C1)-(C2), we have

�(0)
d−→ χ2

m, as n → ∞,

where ‘
d−→’ denotes the convergence in distribution, and χ2

m

denotes a chi-squared variable with m degrees of freedom.

Based on Theorem 1, we may reject the null hypothesis
H0 if �(0) ≥ χ2

m(1 − a) at the significance level a ∈ (0, 1),
where χ2

m(1− a) denotes the (1− a)-th quantile of the dis-
tribution of χ2

m.

2.2 Infinite variance innovations

The ARMA models are usually used in analyzing the
daily financial series, which may be heavy tailed. To ac-
count for this, we further consider the case in this part that
the errors εt follow the GARCH process at (2) with possible
infinite variance.

Note that the asymptotical validity of the empirical
likelihood-based statistic depends on an assumption that
E(|εt|2+ν) < ∞ for some positive ν > 0, which is too strict.
Hence, we propose to define the profile weighted empirical
likelihood function to account for the infinite variance case
for testing H0 as follows

�̃(γ) = −2 log{sup
θ

L̃(θ,γ)},

where

L̃(θ,γ) = sup
{ ∏n

t=m+1(Npt) : pm+1 ≥ 0, · · · , pn ≥ 0,∑n
t=m+1 pt = 1,

∑n
t=m+1 ptZ̃t(θ,γ) = 0

}
,

Z̃t(θ,γ) = (Z̃t,1(θ,γ)
�, Z̃t,p+q+1(θ,γ), · · · , Z̃t,p+q+m

(θ,γ))� with⎧⎨
⎩
Z̃t,1(θ,γ) = w−2

t−1εt(θ)
∂εt(θ)
∂θ ,

Z̃t,p+q+l(θ,γ) = w−1
t−1w

−1
t−1−lεt(θ)εt−l(θ)− γl,

for l = 1, 2, · · · ,m, and

wt = max{MX ,

t∑
i=0

e− log2(i+1)|Xt−i|}.(5)

In the sequel we take MX to be the 90% sample quantile of
{|Xt|}. A similar strategy can be found in [14].

For �̃(γ), replace Condition (C2) with (C3) and further
assume (C4) as follows:

(C3) E(w−4
t−1ξ

4+δ
ρ,t−1) < ∞ for any ρ ∈ (0, 1), where ξρ,t =

1+
∑∞

i=1 ρ
i|Xt−i| (we suggest to use ρ = 0.95 based on

simulations), wt is stationary and Ft-measurable, and
inft wt > 0. Hereafter, δ is an arbitrary small positive
constant, and Ft denotes the sigma field generated by
{ηs : s ≤ t}, for t = 1, 2, · · · , n.

(C4) ν∗ < 0, where ν∗ is the Lyapunov exponent of the ran-
dom matrix At, and

ν∗ = inf

{
1

n
E(ln ‖A1A2 · · ·An‖max) : n = 1, 2, · · ·

}
,

where ‖A1A2 · · ·An‖max means to maximize the norm
of A1A2 · · ·An, and

At =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ã∗1 b2 . . . bs−1 βs a2 a3 . . . ar
1 0 . . . 0 0 0 0 . . . 0
0 1 . . . 0 0 0 0 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 1 0 0 0 . . . 0
η2t 0 . . . 0 0 0 0 . . . 0
0 0 . . . 0 0 1 0 . . . 0
...

...
. . .

...
...

...
...

. . .
...

0 0 . . . 0 0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with ã∗1 = a1η
2
t + b1 and ‖At‖ = sup|x|=1 |Atx|. We can

prove the following result.

Theorem 2. Suppose that {ηt} is a sequence of i.i.d. ran-
dom variables with mean zero and variance one, indicating
that there is no serial correlation existing in {εt}. Then,
under Conditions (C1), (C3), and (C4), we have

�̃(0)
d−→ χ2

m, as n → ∞.

Remark 1. Conditions (C1)-(C4) commonly used in the
literature. (C1) and (C4) are assumed to guarantee the sta-
tionarity of {Xt} and {σt}, respectively; see, e.g., [18] and
[21]. (C3) allows the weight to reduce the moment effect of
σt. By [21], we have that the weigh defined in (5) satisfies
Condition (C3). Under (C3), although σt may have infinite
variance, the result of Theorem 2 still holds, fortunately.

Remark 2. By ‘infinite variance’ we mean that E(ε2t |Ft−1)
tends to infinite almost surely as t → ∞, noting that
E(ε2t |Ft−1) = σ2

t , while Theorem 1 depends on Condition
(C2), i.e., E(|εt|4+δ) < ∞ for some constant δ > 0. Here-
after, Ft denotes the sigma field generated by {ηs : s ≤ t}.
Remark 3. Compared with the unweighted empirical likeli-
hood test, which requires at least finite 4th order moment on
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the data process {Xt}, the weighted empirical likelihood test
needs no moment condition on {Xt}, but instead the condi-
tion E(w−4

t−1ξ
4+δ
ρ,t−1) < ∞ to guarantee the chi-squared limit

distribution as indicated in Theorem 2.

Theorem 2 indicates that through controlling the effect
of the error variance, the weighted log-empirical likelihood
ratio still has a standard limit distribution. Based on The-
orem 2, we may similarly reject the null hypothesis H0 if
�̃(0) ≥ χ2

m(1− a) at the significance level a ∈ (0, 1).

3. SIMULATION RESULTS

In this section, we carry out some simulation experiments
to illustrate the finite sample properties of the proposed em-
pirical likelihoods when the variance of εt is finite or infinite.
For the sake of comparison, we also report the result of the
Q̃ statistic in [33].

The simulated data {Xt}nt=1 are generated from:⎧⎨
⎩
Xt = μ+ φXt−1 + ψεt−1 + εt,

εt = ηtσt, σ2
t = ω + aε2t−1 + bσ2

t−1,

where εt follows a GARCH(1,1) process, ηt = ( c√
n
et−1 +

et)/
√
1 + ( c√

n
)2, and {et} is a sequence of i.i.d. random

variables generated from the standard normal distribution.
c is taken from {0, 5, 10, 15} with c = 0 standing for the
validity of H0, while c = 5 or c = 10 or c = 15 represent-
ing that the local alternative hypothesis of H0 holds. We
set φ = 0.3, ψ = 0.4, ω = 0.2, and consider two different
intercepts μ, i.e., 0, 0.5. For the GARCH process of εt, we
choose (a, b) = (0.1, 0.15) to represent the variance of εt
being finite, while (a, b) = (0.33, 0.66) to imply the infinite
variance of εt approximately. Note that when a+ b is close
to 1, we have σ2

t → ∞ as t → ∞.
For simplicity, we by ‘EL’ mean the naive empirical

likelihood method, by ‘WeL’ the weighted empirical likeli-
hood method, and by Q̃ the random weighted bootstrapping
statistic given in [33], respectively. We investigate the per-
formance of Q̃, EL, and WeL in testing whether the residuals
are correlated at lags m = 2 or m = 6. Note that the di-
agonal matrix W ∗ for Q̃ is taken to be the identity matrix
of order m, and the random weights are generated from the
exponential distribution with parameter 1 ensuring that the
weights have means one and variances one. The other set-
tings for the random weighted bootstrap are the same as
those in [33].

Tables 3.1-3.4 report the empirical ratios of rejecting H0

based on 2000 replications at significance levels τ = 0.1 and
0.05. Three sample sizes, i.e., n = 400,800, and 1200, are
considered, and there are four findings. (i) For the case of
(a, b) = (0.1, 0.15), the sizes of both EL and WeL are very
close to the nominal levels, noting that EL is better than
WeL. (ii) For the case of (a, b) = (0.33, 0.66), as expected,

Table 3.1. The finite variance case with (a, b) = (0.1, 0.15),
(φ, ψ) = (0.3, 0.4) and m = 2.

μ n c
τ = 0.1 τ = 0.05

Q̃ EL WeL Q̃ EL WeL

0

400

0 0.017 0.094 0.104 0.006 0.049 0.053
5 0.151 0.227 0.140 0.083 0.141 0.078
10 0.616 0.607 0.314 0.502 0.488 0.213
15 0.954 0.936 0.717 0.930 0.883 0.593

800

0 0.027 0.104 0.108 0.012 0.055 0.057
5 0.134 0.198 0.120 0.083 0.124 0.069
10 0.517 0.541 0.226 0.405 0.408 0.133
15 0.918 0.911 0.532 0.873 0.844 0.398

1200

0 0.028 0.091 0.102 0.013 0.047 0.054
5 0.118 0.177 0.126 0.068 0.101 0.062
10 0.464 0.510 0.219 0.364 0.374 0.135
15 0.883 0.871 0.459 0.812 0.791 0.341

0.5

400

0 0.017 0.103 0.099 0.005 0.052 0.048
5 0.131 0.215 0.126 0.073 0.125 0.072
10 0.597 0.597 0.374 0.496 0.473 0.255
15 0.954 0.936 0.792 0.921 0.877 0.686

800

0 0.027 0.108 0.106 0.013 0.056 0.055
5 0.124 0.202 0.124 0.069 0.121 0.064
10 0.504 0.529 0.270 0.394 0.399 0.183
15 0.902 0.898 0.649 0.849 0.830 0.524

1200

0 0.024 0.092 0.095 0.014 0.047 0.042
5 0.113 0.178 0.111 0.065 0.102 0.053
10 0.465 0.512 0.222 0.358 0.374 0.141
15 0.881 0.875 0.566 0.813 0.790 0.434

WeL performs the best, but is slightly over-sized. Fortu-
nately, its size decreases as n increases. Note that EL is
highly over-sized and its size seems not to be convergent as
the sample size increases. (iii) There is a size distortion for
Q̃ in our reported cases compared to the proposed empirical
likelihood methods. (iv) Both EL and WeL have nontriv-
ial local powers, and their powers increase as the value of c
increases.

It is noted that WeL suffers from a loss of power ow-
ing to the usage of the weighting technique compared to
EL. Both EL and WeL are sightly over-sized for the finite
variance case when m = 6, which indicates that the empiri-
cal likelihood-based testing methods, i.e., EL and WeL, are
affected by the dimension of the auxiliary vectors. Similar
phenomena have been observed in the literature. In practice,
one may increase the precision of the chi-square approxima-
tion through adding proper pseudo-observations; see, e.g.,
[7] and [19] for details.

4. TWO APPLICATIONS

In this section, we conduct two real analyses based on
modelling the monthly exchange rate on the stock market
and the daily PM2.5 data in different cities by using the
ARMA model discussed in this paper.
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Table 3.2. The finite variance case with (a, b) = (0.1, 0.15),
(φ, ψ) = (0.3, 0.4) and m = 6.

μ n c
τ = 0.1 τ = 0.05

Q̃ EL WeL Q̃ EL WeL

0

400

0 0.000 0.104 0.128 0.000 0.054 0.073
5 0.000 0.184 0.178 0.000 0.115 0.106
10 0.004 0.484 0.329 0.001 0.351 0.220
15 0.033 0.855 0.617 0.007 0.766 0.489

800

0 0.000 0.110 0.127 0.000 0.054 0.069
5 0.000 0.170 0.144 0.000 0.095 0.091
10 0.002 0.418 0.261 0.000 0.288 0.171
15 0.029 0.793 0.519 0.005 0.691 0.388

1200

0 0.000 0.097 0.107 0.000 0.049 0.058
5 0.002 0.140 0.135 0.000 0.070 0.071
10 0.003 0.364 0.234 0.001 0.244 0.138
15 0.021 0.742 0.486 0.003 0.624 0.353

0.5

400

0 0.000 0.125 0.139 0.000 0.073 0.081
5 0.000 0.177 0.177 0.000 0.109 0.110
10 0.004 0.468 0.378 0.001 0.349 0.253
15 0.032 0.845 0.691 0.007 0.763 0.566

800

0 0.000 0.117 0.126 0.000 0.061 0.065
5 0.000 0.164 0.156 0.000 0.091 0.088
10 0.002 0.412 0.290 0.000 0.286 0.190
15 0.029 0.790 0.603 0.005 0.687 0.472

1200

0 0.000 0.096 0.107 0.000 0.050 0.055
5 0.001 0.138 0.137 0.000 0.071 0.070
10 0.003 0.364 0.273 0.001 0.241 0.178
15 0.020 0.747 0.558 0.003 0.622 0.430

4.1 The exchange rate on the stock market

We first collected the monthly exchange rate of eight
countries including emerging and developed countries. The
currencies of emerging countries that we use are: Indian
rupee (INR), Malaysian ringgit (MYR), South Korea Won
(KRW) and Thai baht (THB); the currencies in developed
countries include: Canadian dollar (CAD), British sterling
(GBP), Euro (EUR) and Japanese yen (JPY). The stock
indices are: S&P/TSX (Canada), DAX (Germany), Nifty
50 (India), Nikkei 225 (Japan), FTSE KLCI (Malaysia),
KOSPI Composite Index (South Korea), SET 50 (Thailand)
and FTSE 100 (UK). All data are downloaded from invest-
ing.com and Yahoo Finance. We then transform all data by
using log( Pt

Pt−1
), where Pt is the exchange rate at time t, so

Xt represent the exchange rate return in our model.
The time spans of the data sets of these eight countries

are summarized in Table 4.1. We check the ARCH effect
of these data by using the Lagrange multiplier procedure
suggested in [9], and found that the p-values are 0.0013,
0.0000, 0.0000, 0.0004, 0.027, 0.0000, 0.0249, 0.0117 for the
monthly exchange rates of India, Malaysia, Korea, Thailand,
Canada, UK, Germany, Japan, respectively. This shows the
rationality of fitting these data by using the GARCH-type
errors.

To ensure that we use the proper test, it is important
to check if there is any heavy tail in residuals. In fact, as

Table 3.3. The infinite variance case with
(a, b) = (0.33, 0.66), (φ, ψ) = (0.3, 0.4) and m = 2.

μ n c
τ = 0.1 τ = 0.05

Q̃ EL WeL Q̃ EL WeL

0

400

0 0.012 0.211 0.106 0.006 0.148 0.057
5 0.075 0.299 0.141 0.035 0.213 0.077
10 0.295 0.471 0.335 0.206 0.359 0.233
15 0.583 0.658 0.633 0.479 0.522 0.544

800

0 0.020 0.294 0.114 0.013 0.234 0.064
5 0.059 0.354 0.138 0.033 0.268 0.077
10 0.201 0.487 0.257 0.133 0.385 0.185
15 0.445 0.596 0.518 0.343 0.493 0.394

1200

0 0.014 0.360 0.115 0.003 0.292 0.066
5 0.043 0.401 0.144 0.020 0.325 0.080
10 0.141 0.477 0.257 0.084 0.389 0.181
15 0.328 0.588 0.487 0.234 0.480 0.377

0.5

400

0 0.021 0.217 0.110 0.010 0.148 0.064
5 0.069 0.283 0.149 0.039 0.213 0.082
10 0.290 0.478 0.351 0.192 0.371 0.246
15 0.591 0.660 0.632 0.478 0.557 0.540

800

0 0.016 0.298 0.111 0.009 0.229 0.064
5 0.057 0.352 0.130 0.028 0.287 0.081
10 0.201 0.465 0.285 0.133 0.369 0.187
15 0.454 0.599 0.540 0.354 0.484 0.424

1200

0 0.014 0.363 0.107 0.003 0.299 0.062
5 0.043 0.400 0.141 0.021 0.325 0.081
10 0.141 0.487 0.265 0.084 0.399 0.191
15 0.328 0.601 0.485 0.233 0.496 0.378

pointed out in [16], the heavy-tail feature is of key inter-
est to risk managers, financial regulators, financial stabil-
ity analysts, and policy makers. Several recent studies have
suggested that many financial variables may be driven by
infinite-variance innovations. For example, studies by [22],
[3], [17], [1], [10], [16] provide evidence for infinite variance
behavior in exchange rate return. We show their QQ-plots in
Figure 1 with the standard normal distribution being com-
pared. It seems that the distributions of these monthly data
likely do not have infinite variances.

We fit the real data by using auto.arima.R contained in
the R package ‘forecast’, and then test the possibility of ex-
isting serial correlation in the estimated residuals. All results
of Q̃, EL and WeL are summarized in Table 4.1. The setting
for Q̃ is the same as that in the simulations. From these re-
sults, we can see that the results of Q̃ indicate that no serial
correlation exists in the residuals. It is not surprise by not-
ing that Q̃ suffers from the undersized issue. On the other
hand, both EL and WeL suggest rejecting some of the null
hypotheses when m = 2, and EL suggests rejecting most of
them when m = 6. Considering the good finite performance
of EL as indicated in simulations, we may conclude that the
results fitted by auto.arima.R sound good. Note that based
on the testing results of Q̃, it seems difficult to obtain such
a conclusion.
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Table 3.4. The infinite variance case with
(a, b) = (0.33, 0.66), (φ, ψ) = (0.3, 0.4) and m = 6.

μ n c
τ = 0.1 τ = 0.05

Q̃ EL WeL Q̃ EL WeL

0

400

0 0.000 0.202 0.136 0.000 0.133 0.079
5 0.000 0.291 0.185 0.000 0.209 0.111
10 0.000 0.436 0.374 0.000 0.338 0.261
15 0.003 0.608 0.560 0.000 0.504 0.471

800

0 0.000 0.255 0.127 0.000 0.183 0.074
5 0.000 0.314 0.181 0.000 0.232 0.111
10 0.000 0.436 0.338 0.000 0.345 0.238
15 0.003 0.556 0.559 0.000 0.472 0.453

1200

0 0.000 0.292 0.122 0.000 0.223 0.073
5 0.000 0.346 0.188 0.000 0.262 0.115
10 0.001 0.416 0.323 0.000 0.330 0.235
15 0.001 0.513 0.522 0.000 0.422 0.402

0.5

400

0 0.000 0.204 0.130 0.000 0.136 0.077
5 0.000 0.278 0.196 0.000 0.200 0.112
10 0.000 0.436 0.383 0.000 0.326 0.281
15 0.003 0.604 0.565 0.000 0.495 0.491

800

0 0.000 0.262 0.120 0.000 0.188 0.069
5 0.000 0.312 0.174 0.000 0.233 0.110
10 0.000 0.432 0.330 0.000 0.345 0.231
15 0.003 0.550 0.531 0.000 0.469 0.428

1200

0 0.000 0.312 0.115 0.000 0.238 0.066
5 0.000 0.352 0.190 0.000 0.268 0.124
10 0.000 0.426 0.331 0.000 0.337 0.236
15 0.000 0.525 0.514 0.000 0.425 0.405

4.2 The PM2.5 in different cities

In our second application, we consider testing the possi-
bility of existing serial correlation in residuals when using
the ARMA model to fit the daily PM2.5 data. The PM2.5
data are taken from http://www.weather.com.cn/. Many re-
searchers considered fitting these data by using the ARMA
model; see, e.g., [8, 29, 31]. Some of them found that there
may exist ARCH effect in the PM2.5 data [30]. Motivated by
this, we also fit these datasets by using the ARMA-GARCH
models based on auto.arima.R and then test the possibility
of existing serial correlation in the estimated residuals.

Since they are daily data, most of the related QQ-plots
deviate from the diagonal line y = x, implying that their
variances may possibly be quite large. Here, we do not
present the QQ-plots for all these datasets in order to save
space; see Figure 2 for details. The values of p, q are selected
automatically by auto.arima.R. We then test H0 with three
methods mentioned above. Their results are summarized in
Table 4.2 for m = 2. From these results, it is easy to check
that the Q̃ statistic rarely rejects the null hypothesis, while
the EL rejects the null hypothesis for almost all datasets.
Compared to Q̃ and EL, WeL appears to have a relatively
reasonable rejection, considering that Q̃ and EL suffer from
a significant size distortion problem as indicated in the sim-
ulations.

Figure 1. QQ-plots for residuals of the monthly exchange rate
data from eight countries.

Note that the true conditional variances of the daily
datasets may possibly tend to infinite, whereas when the
true variance tends to infinite, the method in auto.arima.R
performs poorly in selecting the order of p, q owning to its
lack of consideration of the effect of infinite variance [15].
In this sense, it is reasonable to consider that some of the
residuals fitted by auto.arima.R may show serial correlation
because auto.arima.R may select wrong p or/and p in some
situations. It seems that this can not be reflected by the Q̃
and EL tests.

5. CONCLUDING DISCUSSIONS

In this paper, we considered the issue of diagnostic check-
ing of AMAR models with a GARCH error by using the
empirical likelihood. It turns out that the proposed log-
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Table 4.1. The p-values of different tests with the monthly the stock market data, where EL(2) stands for the EL method
with m = 2, and EL(6) is for the EL method with m = 6.

Country Time Q̃(2) Q̃(6) EL(2) EL(6) WeL(2) WeL(6)

India 1996.01− 2020.04 0.8111 0.7866 0.0759∗ 0.3718 0.5537 0.0014∗∗∗

Malaysia 2002.07− 2020.04 0.8080 0.8312 0.0008∗∗∗ 0.0000∗∗∗ 0.8823 0.1495
Korea 1997.08− 2020.04 0.5966 0.7337 0.0813∗ 0.0000∗∗∗ 0.5556 0.0191∗∗

Thailand 2003.10− 2020.04 0.7602 0.7953 0.3750 0.0681∗ 1.0000 0.2412
Canada 1990.02− 2020.04 0.7660 0.6682 0.1523 0.0227∗∗ 0.3697 0.3164

UK 2001.03− 2020.04 0.4467 0.5571 0.2771 0.0140∗∗ 0.6344 0.0812∗

Germany 1990.02− 2020.04 0.6805 0.6517 0.6493 0.0378∗∗ 0.4956 0.1433
Japan 1995.02− 2020.04 0.3849 0.7115 0.0003∗∗∗ 0.0002∗∗∗ 0.7796 0.1050

Significance levels: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

Figure 2. QQ-plots for residuals of the daily PM2.5 data of
eight cities.

empirical likelihood functions converge to a standard chi-

Table 4.2. The p-values of different tests with the daily
PM2.5 data with m = 2.

Cities Time Q̃ EL WeL

Chongqing 2013.10− 2021.04 0.1474 0.0016∗∗∗ 0.8223
Xiamen 2013.10− 2021.04 0.4860 0.0000∗∗∗ 0.0492∗∗

Suzhou 2015.01− 2021.04 0.8091 0.0000∗∗∗ 0.9975
Liuan 2015.01− 2021.04 0.3916 0.0000∗∗∗ 0.7435

Maanshan 2014.01− 2021.04 0.4934 0.0000∗∗∗ 0.8317
Tongling 2015.01− 2021.04 0.1402 0.0000∗∗∗ 0.9623

Hangzhou 2013.10− 2021.04 0.0490∗ 0.0005∗∗∗ 0.0000∗∗∗

Anyang 2014.01− 2021.04 0.3370 0.0000∗∗∗ 0.9008
Hebi 2015.01− 2021.04 0.3070 0.0000∗∗∗ 0.8794

Jiaozuo 2014.01− 2021.04 0.5782 0.0000∗∗∗ 0.9810
Baoshan 2015.01− 2021.04 0.8771 0.0000∗∗∗ 0.4814
Ningbo 2013.10− 2021.04 0.2391 0.0000∗∗∗ 0.0000∗∗∗

Shaoxing 2013.10− 2021.04 0.1159 0.0584∗ 0.9701
Taizhou 2013.10− 2021.04 0.1032 0.0001∗∗∗ 0.0000∗∗∗

Wenzhou 2013.10− 2021.04 0.1422 0.0000∗∗∗ 0.0000∗∗∗

Yiwu 2014.01− 2021.04 0.2324 0.0000∗∗∗ 0.0000∗∗∗

Zhoushan 2013.10− 2021.04 0.5299 0.0000∗∗∗ 0.0118∗∗

Fuyang 2014.01− 2021.04 0.0825∗ 0.0000∗∗∗ 0.9168
Aba 2015.01− 2021.04 0.3172 0.8954 0.0000∗∗∗

Chengdu 2013.10− 2021.04 0.9655 0.0000∗∗∗ 0.0000∗∗∗

Significance levels: ∗p < 0.1,∗∗ p < 0.05,∗∗∗ p < 0.01.

squared distribution asymptotically. Since the empirical
likelihood function does not involve the estimation of un-
known variance, the new statistics do not need to estimate
the GARCH parameters. We also compare the new method
with the Q̃ statistic discussed in [33]. It turns out the em-
pirical likelihood-based methods perform better than Q̃ es-
pecially when the model has low persistence, and are both
computationally easy. Note that since a weighted technique
is employed to reduce the moment effect of σt, the weighted
empirical likelihood statistic suffers a little power loss when
the underlying model variance is finite.

APPENDIX: PROOFS OF THE MAIN
RESULTS

In this appendix, we provide the detailed proofs for the
main results. Since the proof of Theorem 1 is like that of
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Theorem 2. We only prove Theorem 2. Without confusion,
denote θ0 as the true value of θ, and Ft as the sigma field
generated by {ηs : s ≤ t}, and let

Z̃t(θ, 0) :=

(
Z̃t,1(θ, 0)

Z̃t,2(θ, 0)

)
,

where Z̃t,1(θ, 0) = w−2
t−1εt(θ)∂εt(θ)/∂θ, and Z̃t,2(θ, 0) =

(w−1
t−1w

−1
t−2εt(θ)εt−1(θ), · · · , w−1

t−1w
−1
t−m−1εt(θ)εt−m(θ))�,

for t = m+ 1, 2, · · · , n.
The following lemmas are useful in proving Theorem 2.

Lemma 1. Suppose the same conditions of Theorem 2
holds. Then, there exist a constant ρ ∈ (0, 1), a constant
C > 0, and a neighborhood Θ0 such that

supθ∈Θ0
|εt(θ)| ≤ Cξρ,t−1, supθ∈Θ0

∥∥∥∂εt(θ)
∂θ

∥∥∥ ≤ Cξρ,t−1,

and

supθ∈Θ0

∥∥∥∂2εt(θ)
∂θ∂θ�

∥∥∥ ≤ Cξρ,t−1,

where ξρ,t−1 is defined in Condition (C3), and ‖A‖2 =
trace(A�A) for a given matrix A.

Proof. This lemma is adopted from [18]. We omit the de-
tails.

Lemma 2. Let B0 = {θ : ‖θ−θ0‖ ≤ C√
n
} for some positive

C. Then, under the same conditions of Theorem 2, as n →
∞, we have uniformly for θ ∈ B0 that:

(i). max
m+1≤t≤n

supθ∈B0
‖Z̃t(θ, 0)‖ = op(

√
n);

(ii). 1
N

∑n
t=m+1 Z̃t(θ, 0) =

1
n

∑n
t=m+1 Z̃t(θ0, 0) +Op(

1√
n
);

(iii). 1
N

∑n
t=m+1 Z̃t(θ, 0)Z̃t(θ, 0)

� = Σ̃ + op(1), where Σ̃ =

E(Z̃1(θ0, 0)Z̃1(θ0, 0)
�).

Proof. We first prove Part (i). Note that

‖Z̃t(θ, 0)‖ ≤ ‖Z̃t,1(θ, 0)‖+
m∑
l=1

|Z̃t,p+q+l(θ, 0)|.

By the proof of (i) in Lemma 2 of [21],

max
m+1≤t≤n

sup
θ∈B0

‖Z̃t,1(θ, 0)‖ = op(
√
n),

For Z̃t,p+q+l(θ, 0), l ∈ {1, 2, · · · ,m}, note that

sup
θ∈B0

|Z̃t,p+q+l(θ, 0)| = sup
θ∈B0

|w−1
t−1εt(θ)w

−1
t−1−lεt−l(θ)|

≤ C2 w−1
t−1ξρ,t−1︸ ︷︷ ︸
Ut−1

w−1
t−1−lξρ,t−1−l︸ ︷︷ ︸

Ut−1−l

,

by following Lemma 1. For any ε > 0, by the Markov in-
equality and Cauchy-Schwarz inequality, it follows

P

(
max

m+1≤t≤n
Ut−1Ut−1−l ≥

√
nε

)

≤
n∑

t=m+1

P
(
Ut−1Ut−1−l ≥

√
nε

)

≤ 1

n
√
n
δ/2

ε2+δ/2

n∑
t=m+1

E
(
U

2+δ/2
t−1 U

2+δ/2
t−1−l

)

≤ 1
√
n
δ/2

ε2+δ/2

{
1

n

n∑
t=m+1

√
E

(
U4+δ
t−1 )

)
E

(
U4+δ
t−1−l

)}
→ 0,

as n → ∞, based on Condition (C3). This implies (i).

For (ii), since the proof of

1

N

n∑
t=m+1

Z̃t,1(θ, 0) =
1

N

n∑
t=m+1

Z̃t,1(θ0, 0) +Op(
1√
n
)

can be found in Lemma 2 of [21], we only need to show

1

N

n∑
t=m+1

Z̃t,2(θ, 0) =
1

N

n∑
t=m+1

Z̃t,2(θ0, 0) +Op(
1√
n
).

Note that

|w−1
t−1εt(θ)w

−1
t−1−lεt−l(θ)− w−1

t−1εt(θ0)w
−1
t−1−lεt−l(θ0)|

≤ |w−1
t−1(εt(θ)− εt(θ0))w

−1
t−1−lεt−l(θ)|︸ ︷︷ ︸

Vt,1

− |w−1
t−1εt(θ0)w

−1
t−1−l(εt−l(θ)− εt−l(θ0))|︸ ︷︷ ︸

Vt,2

.

A simple derivation leads to that

sup
θ∈B0

Vt,1

≤ sup
θ∈B0

{
|w−1

t−1w
−1
t−1−lεt−l(θ)|

∥∥∥∥∂εt−l(θ
∗)

∂θ

∥∥∥∥ ‖θ − θ0‖
}

≤ C2C0√
n

w−1
t−1w

−1
t−1−lξρ,t−1ξρ,t−1−l,

where θ∗ lies between θ and θ0. This implies as n → ∞ that

1

N

n∑
t=m+1

sup
θ∈B0

Vt,1 = Op

(
1√
n

)
,

under Condition (C3). Similarly, we can show

1

N

n∑
t=m+1

sup
θ∈B0

Vt,2 = Op

(
1√
n

)
, as n → ∞.

Hence, (ii) follows.

The proof of (iii) follows as similar fashion to that of (ii).
We omit the details.
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Lemma 3. Under the same conditions of Theorem 2, we
have, as n → ∞,

1√
N

n∑
t=m+1

Z̃t(θ0, 0)
d−→ N(0, Σ̃), and

1

N

n∑
t=m+1

Z̃t(θ0, 0)Z̃
�
t (θ0, 0)

p−→ Σ̃.

Proof. It follows from the first part of Lemma 3 in [21]
that 1√

N

∑n
t=m+1 Z̃t,1(θ0, 0) is asymptotically normally dis-

tributed. Then, it suffices to show that, as n → ∞,

1

N

n∑
t=m+1

E(Z̃t,1(θ0, 0)w
−1
t−1w

−1
t−1−lεt(θ0)εt−l(θ0)|Ft−1)(6)

p−→ lim
t→∞

E

(
σ2
t

∂εt(θ0)

∂θ
w−3

t−1w
−1
t−1−lεt−l(θ0)

)
,

for l = 1, 2, · · · ,m, and

1√
N

n∑
t=m+1

Z̃t,2(θ0, 0)(7)

d−→ N(0, E(Z̃1,2(θ0, 0)Z̃1,2(θ0, 0)
�)).

Note that

E(Z̃t,1(θ0, 0)w
−1
t−1w

−1
t−1−lεt(θ0)εt−l(θ0)|Ft−1)

= E(ε2t (θ0)
∂εt(θ0)

∂θ
w−3

t−1w
−1
t−1−lεt−l(θ0)|Ft−1)

= σ2
t

∂εt(θ0)

∂θ
w−3

t−1w
−1
t−1−lεt−l(θ0).

We obtain (6) under Conditions (C1) and (C3) based on
the weak law of large numbers for a martingale difference
series given in [12] and the stationarity of {σ2

t }, {Xt}, and
{wt}.

For (7), let Wt = a�Z̃t,2(θ0, 0) with a being an any given
m-dimensional nonzero vector. Then, it is easy to check that
E(Wt|Ft−1) = 0, for any t = 1, 2, · · · , n. That is, {Wt} is a
martingale difference sequence.

Next, note that

1

N

n∑
t=m+1

E(W 2
t |Ft−1)(8)

= a� 1

N

n∑
t=m+1

E
(
Z̃t,2(θ0, 0)Z̃t,2(θ0, 0)

�|Ft−1

)
a.

For any 1 ≤ i, j ≤ m, since by Condition (C3) and the
Cauchy-Schwarz inequality,∣∣∣∣∣ 1N

n∑
t=m+1

w−2
t−1ε

2
t (θ0)w

−1
t−1−iεt−i(θ0)w

−1
t−1−jεt−j(θ0)

∣∣∣∣∣

≤ 1

N

n∑
t=m+1

(1

2
w−4

t−1ε
4
t (θ0) +

1

4
w−4

t−1−iε
4
t−i(θ0) +

1

4
w−4

t−1−jε
4
t−j(θ0)

)
≤ 1

N

n∑
t=m+1

(1

2
w−4

t−1ξ
4
ρ,t−1 +

1

4
w−4

t−1−iξ
4
ρ,t−1−i

1

4
w−4

t−1−jξ
4
ρ,t−1−j

)
p−→ lim

t→∞
E(w−4

t−1ξ
4
ρ,t−1),

as n → ∞, where ‘
p−→’ denotes the convergence in prob-

ability. Then, we may conclude that (8) converges by the
dominated convergence theorem and the weak law of large
numbers for a martingale difference series given in [12].

Furthermore, similar to the proof of (8), we can show
that

1

N

n∑
t=m+1

E(W 2
t I(|Wt| ≥

√
nε)|Ft−1)

p−→ 0, as n → ∞,

for any positive ε > 0. Finally, we complete the proof of
this lemma by using the central limit theorem of martingale
differences [12]. This proves the first part.

The second part follows a similar fashion. We omit the
details.

Proof of Theorem 2. Based on Lemmas 2-3, the following
proof is similar to that of Theorem 1 in [21].

Put θ = θ0 +
u√
n
for some (p+ q+1)-dimensional vector

u. Define

h(θ,λ) =
1

N

N∑
t=m+1

Z̃t(θ, 0)

1 + λ�Z̃t(θ, 0)
,

where λ is the solution to h(θ,λ) = 0 for given λ.
Write θ = ρv with ‖v‖ = 1. Note that

0 = ‖h(θ,λ)‖ ≥ |v�h(θ,λ)| =
∣∣∣∣∣ 1N

N∑
t=m+1

v�Z̃t(θ, 0)

1 + ρv�Z̃t(θ, 0)

∣∣∣∣∣ .
Then, by a standard proof as that in [24] we can show that
λ = Op(

1√
N
), and

λ = T−1
n (θ, 0)

(
1

N

N∑
t=m+1

Z̃t(θ, 0)

)
+ op

(
1√
N

)
,

uniformly for θ ∈ B0 based on Lemma 2, where Tn(θ, 0) =
1
N

∑N
t=m+1 Z̃t(θ, 0)Z̃

�
t (θ, 0). Using this, we can further de-

rive by the Taylor expansion and Lemma 2 that

−2 log(L̃(θ, 0))

= 2 log(1 + λ�Z̃t(θ, 0))
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= 2λ�(
N∑

t=m+1

Z̃t(θ, 0))−Nλ�Tn(θ, 0)λ

+
2

3!

N∑
t=m+1

1

(1 + ξ∗t )
2
(λ�Z̃t(θ, 0))

3

= Sn(θ, 0)
�T−1

n (θ, 0)Sn(θ, 0) + op(1)

= Sn(θ, 0)
�Σ̃−1Sn(θ, 0) + op(1),

uniformly for θ ∈ B0, where |ξ∗t | < |λ�Z̃t(θ, 0)|, Sn(θ, 0) =
1√
N

∑N
t=m+1 Z̃t(θ, 0). Note that∣∣∣∣∣

N∑
t=m+1

1

(1 + ξ∗t )
2
(λ�Z̃t(θ, 0))

3

∣∣∣∣∣
≤ C

N∑
t=m+1

‖λ‖3‖Z̃t(θ, 0)‖3 = op(1),

uniformly for θ ∈ B0 based on Lemma 2 as n → ∞.
Furthermore, since θ0 ∈ B0, we have as n → ∞

−2 log(L̃(θ0, 0)) = Sn(θ0, 0)
�Σ̃−1Sn(θ0, 0) + op(1).

That is,

−2 log(L̃(θ, 0)) + 2 log(L̃(θ0, 0))(9)

= Sn(θ, 0)
�Σ̃−1Sn(θ, 0)−

Sn(θ0, 0)
�Σ̃−1Sn(θ0, 0) + op(1).

Note that for given θ, by the Taylor expansion and Lem-
mas 1-2, we have

Sn(θ)− Sn(θ0)

=
1√
N

N∑
t=m+1

(
Z̃t,1(θ, 0)− Z̃t,1(θ0, 0)

Z̃t,2(θ, 0)− Z̃t,2(θ0, 0)

)

=

(
1

N

N∑
t=m+1

(
∂(Z̃t,1(θ0,0))

∂θ�
∂(Z̃t,2(θ0,0))

∂θ�

))
√
N(θ − θ0) + op(1)

= E

(
∂(Z̃t,1(θ0,0))

∂θ�
∂(Z̃t,2(θ0,0))

∂θ�

)
√
N(θ − θ0) + op(1)

:= Γ̃
√
N(θ − θ0) + op(1),

as n → ∞. Hence, the minimizer, say θ̂, of −2 log(L̃(θ, 0))
with respect to θ satisfies that

0 =
−2∂ log(L̃(θ̂, 0))

∂θ

= 2Γ̃Σ̃−1Γ̃�√N(θ̂ − θ0) + 2Γ̃Σ̃−1Sn(θ0) + op(1).

For given θ, let � =
√
N‖θ− θ0‖, and v = θ−θ0

‖θ−θ0‖ . Then, it

is easy to check that∥∥∥∥∥−2∂ log(L̃(θ, 0))

∂θ

∥∥∥∥∥

≥
∣∣∣∣∣v�−2∂ log(L̃(θ, 0))

∂θ

∣∣∣∣∣
≥ 2�v�Γ̃Σ̃−1Γ̃�v − 2|v�Γ̃Σ̃−1Sn(θ0)|+ op(1)
p−→ ∞, as � → ∞,

by noting that v�Γ̃Σ̃−1Γ̃�v = Op(1) and |v�Γ̃Σ̃−1Sn(θ0)|
= Op(1) as n → ∞. This shows θ̂ ∈ B0. Further combining
with (9), we obtain

√
N(θ̂ − θ0) = −(Γ̃Σ̃−1Γ̃�)−1(Γ̃Σ̃−1Sn(θ0)) + op(1),

as n → ∞.
Finally, as in [26], we show that

inf
{
−2 log(L̃(θ, 0))

}
= −2 log(L̃(θ̂, 0))

= S�
n (θ0)(Σ̃− Γ̃�(Γ̃Σ̃−1Γ̃)−1Γ̃)Sn(θ0) + op(1)

d−→ χ2
m,

as n → ∞. This completes the proof of this theorem.

Received 29 November 2021
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