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Density peaks clustering (DPC) is a density-based un-
supervised clustering algorithm with the advantages of fast
clustering capacity for arbitrary shape data and easy imple-
mentation without iteration. However, in practice, a small
amount of label information might be partially available
but not sufficient to be used to generate supervised learn-
ing. Semi-supervised clustering is often adopted to incorpo-
rate such partial information. In this paper, a novel semi-
supervised density peaks clustering algorithm (SS-DPC) is
proposed to extend the classical density peaks clustering
algorithm to the semi-supervised clustering. In contrast to
DPC, SS-DPC uses prior information in the form of class
labels to guide the learning process for improved cluster-
ing. SS-DPC is a semi-supervised clustering that can handle
data with a small number of labels. First, SS-DPC identifies
possible cluster centers based on labeled and unlabeled data
automatically. Then, to incorporate partial information, vir-
tual labels are brought in to integrate the partial informa-
tion with identified centers in a uniform framework. More-
over, labeled data are used to initialize the semi-supervised
clustering process to maintain the correctness of prior in-
formation in the clustering procedure. Subsequently, the
nearest-point-based method is used to detect the labels of
non-center unlabeled data. Finally, a step-by-step mergence
strategy is introduced to generate more reasonable results.
Experiments on eight UCI datasets illustrate that the pro-
posed semi-supervised clustering algorithm yields promising
clustering results.
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1. INTRODUCTION

Clustering is a popular unsupervised learning method
that reveals the underlying structures from the unlabeled
data. It aims to partition the dataset of n points into dif-
ferent groups such that the data in the same groups have
relatively higher similarities than those in different groups
[11]. With the development of big data technology, cluster-
ing has attracted increasing attention and wide applications
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in many fields [6], such in image segmentation [22], commu-
nity detection [30], information retrieval [4], recommenda-
tion systems [37], and bioinformatics [14]. Moreover, vari-
ous methods have been proposed for data clustering, among
which K-means [21], spectral clustering [20], DBSCAN [10],
GMM [3], and hierarchical agglomerative clustering [15], are
the most popular ones.

In practice, some prior knowledge about data labels may
be available. However, this kind of partial information is
often lacking and always insufficient to generate supervised
learning because of its high cost. For example, in disease
diagnosis, the experts often have no time to mark the type
of disease for most patients, so it is common in the obtained
datasets that only a small number of patients are marked
by their disease type. Similarly, in image recognition, it is
difficult and expensive to label the categories for most of the
mass images, so we might only have a few labeled images.
Although the labeled data that can be observed usually is
few, it can provide valuable information, which could be
helpful in clustering the data. To avoid the information of
labeled data wasted, it is necessary to make full use of this
partial information to induction and process the data for
better clustering, which is also the purpose of this study.

Traditional unsupervised clustering, which only uses un-
labeled data for learning, have no way to utilize such par-
tial information. Consequently, semi-supervised clustering,
which uses a small amount of labeled data along with unla-
beled data to aid clustering, is not only a way often to be
considered but also a significant topic in machine learning.
In semi-supervised clustering, partial information is used as
a small amount of supervision knowledge to guide the learn-
ing procedure. Class labels and pairwise constraints (e.g.,
must-link and cannot-link) are two common forms of par-
tial information [16, 12]. Of which, class labels express prior
knowledge with data labels directly, whereas pairwise con-
straints specify whether the two points should or should not
be in the same cluster.

To use partial information for clustering performance im-
provement effectively, many works have focused on extend-
ing traditional unsupervised clustering to account for semi-
supervised clustering. Among these works, most of them in-
corporate the pairwise constraints or prior class labels into
the objective function of the clustering algorithm for im-
proved results. For example, COP-Kmeans [32] incorporates
pairwise constraints into the clustering process of K-means
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to obtain a partition that satisfies all the specified relations
of two points in the dataset. SDEC [25] modifies deep em-
bedded clustering based on a joint objective that considers
unlabeled data and prior information. CPSSAP [34] extends
affinity propagation to semi-supervised clustering, which de-
fines a projection objective function based on pairwise con-
straints to project all the points in a lower-dimensional
space. CCSR [17] develops a regularization framework for
constrained spectral clustering, which adapts spectral em-
bedding to accord with pairwise constraints through opti-
mization. Although these methods have been empirically
proved to be more practical and effective than their un-
supervised baseline counterparts, the optimization of these
models is computationally rather expensive [28].

Rodriguez and Laio [26] proposed density peak clustering
(DPC), which was a density-based clustering algorithm with
the advantages of fast clustering capacity for arbitrary shape
data and easy implementation without the need of iteration
and optimization. By computing local density and pseudo
distance, the algorithm first constructs a decision graph to
identify points of higher densities and pseudo distance man-
ually to serve as cluster centers. Subsequently, non-center
points are assigned to clusters by using a nearest-point
method. The cutoff distance, which is used for local density
estimation, is the only parameter that needs to be specified.
Due to a simple and efficient clustering algorithm, DPC has
attracted considerable attentions and various applications,
such as, DPSCD for social network community detection
[33], combining dynamic time warping and DPC for intra-
dialytic blood pressure pattern recognition [35], DPNN for
intrusion detection [19], and DPC-MD for mixed data [9].
Despite being a promising clustering algorithm for address-
ing unlabeled data, DPC is a kind of unsupervised clustering
method that does not combine the partial information with
unlabeled data to bias the clustering process. For the fast
clustering ability and the widespread use, extending DPC to
a semi-supervised clustering is meaningful for the clustering
community.

In this paper, a semi-supervised DPC algorithm (SS-
DPC) is proposed to incorporate partial information in the
form of class labels into DPC. In comparison with DPC,
SS-DPC is a semi-supervised clustering algorithm that can
handle data with small amount of labels. The algorithm
first identifies cluster centers with labeled and unlabeled
data. Generally, prior labels indicate the classes that we have
known, but they might not reveal all the underlying clusters
because only a small amount of labeled data are available
for semi-supervised clustering. Therefore, identifying possi-
ble new cluster centers is necessary. In this paper, similar to
DPC, SS-DPC identifies cluster centers on the entire data
space. A geometric method is adopted to identify possible
cluster centers automatically to address the shortcoming of
manual selection in DPC. This method tends to detect more
cluster centers to avoid missing centers.

To incorporate partial information, this paper constructs
a semi-supervised clustering process based on the assump-
tion that prior information is always correct. When two or
more identified centers have the same prior label, the cluster
possibly consists of two or more distinguished sub-clusters.
Therefore, in the semi-supervised clustering construction
stage, virtual labels are brought in to integrate partial in-
formation and identified centers into a uniform framework.
Note that in this study, a virtual label, different from any
prior labels, is used to mark the cluster of a center that has
the identical prior label with other centers or that has not
been labeled previously. Specifically, each identified center
is labeled either by its given label (for the center that con-
tained in the labeled dataset) or by a new virtual label (for
the center that contained in the unlabeled dataset or share
label with other centers). Because all identified centers are
assigned different labels to avoid sharing, SS-DPC can find
new sub-clusters that are not labeled previously.

Moreover, labeled data are used to initialize the semi-
supervised clustering process in SS-DPC. Regardless of the
densities they have, all labeled data are assigned to their
true labels before the clustering procedure to maintain the
correctness of the prior information of labeled data. Subse-
quently, the nearest-point method is used to generate the
labels for the non-center unlabeled points. Finally, based on
the result of the semi-supervised procedure, a step-by-step
mergence strategy is adopted to possibly merge two resulted
clusters to obtain a more reasonable result. To keep the prior
class information, the mergence strategy only merges the
clusters marked by virtual labels with their nearest ones
whenever the distance is small enough.

The main contributions of this study can be summarized
as follows.

• Classical DPC algorithm is first extended to a semi-
supervised clustering with both labeled and unlabeled
data.

• A geometric method is introduced to select the possible
cluster number k automatically.

• Virtual labels are brought in to integrate partial informa-
tion and identified centers into a uniform framework.

• Labeled data are used to initialize the semi-supervised
process.

• A step-by-step mergence strategy is adopted for semi-
supervised clustering result adjustment.

The rest of this paper is organized as follows: Section 2
describes the details of SS-DPC. Section 3 reports the ex-
perimental results on eight UCI datasets. Section 4 draws
the conclusion.

2. METHODOLOGY

In this section, we first provide a brief introduction to the
traditional DPC algorithm. Second, the proposed SS-DPC
algorithm is described in detail.
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2.1 Review of unsupervised density peaks
clustering

The DPC [26] algorithm is proposed on the basis that:
(i) the local densities of the cluster centers are higher than
the points surrounding them, and (ii) the cluster centers
are at a relatively large distance from any points with a
higher local density. This algorithm has been extensively
used in practice because it can detect cluster centers and
recognize non-spherical clusters and spot outliers [8, 18, 29].
This density-distance-base clustering algorithm can be de-
scribed as follows.

Suppose that X = {x1,x2, ...,xn} is the dataset to be
clustered, where n is the number of points in the dataset,
and xi = (xi1, xi2, ..., xip) is the ith point expressed by p
attributes. Then, for any xi ∈ X , the local density ρi is
measured by

(1) ρi =
∑

xj∈X ,i �=j

1(dij−dc<0),

where dij is the distance between xi and xj , and dc is the
cutoff distance to be pre-specify. ρi is defined as the number
of points in the dc-neighborhood of xi. dc is the only pa-
rameter affecting the values of local densities. As suggested
by the authors in reference [26], dc can be selected so that
the average number of neighbors is around 1% to 2% of the
total number of points in the dataset. Therefore, dc is usu-
ally set as the 1% to 2% values of all the distance between
every two points sorted in descending order.

In Equation (1), ρi only describes the number of points
in the dc-neighborhood of xi, which can not measure how
closely these points in dc-neighborhood are around xi. More-
over, for datasets with a small number of points, a reliable
estimate of the local densities is difficult because of the large
statistical errors. So more accurate measures for local den-
sity are significant [26]. Therefore, DPC adopts the Gaussian
kernel function to estimate the local densities, defined as

(2) ρi =
∑

xj∈X ,i �=j

exp

(
−
d2ij
d2c

)
,

where dc is an adjustable parameter which is used to control
the weight degradation rate [8].

The pseudo distance δi is defined as the minimum dis-
tance between xi and any other points with higher densities
than that of xi,

(3) δi = min
ρj>ρi

dij .

Where, if xi has the highest density, δi is defined as the max-
imum distance between xi and the other points in dataset
X . That is, if xi = max(ρ), then δi = maxj(dij), j �= i.

Once the local density ρi and the distance δi are cal-
culated, the cluster centers can be chosen by ρ − δ de-
cision graph or by the criterion γi where γi = ρi ∗ δi,

i = 1, 2, 3, ..., n. The larger the γi, the more likely the xi

is to be the cluster center.

After finding the cluster centers, in decreasing order of
density, each of the remaining data points is assigned point-
by-point to the cluster of its nearest neighbor with a higher
density.

2.2 Our algorithm: SS-DPC

In semi-supervised clustering, a small amount of partial
information is available to help clarify the underlying clus-
tering problem. Given that the partial information in the
form of class labels is always reliable, SS-DPC algorithm
that uses a few number of labeled data to guide cluster-
ing is proposed in this paper. The main algorithm of SS-
DPC includes the identification of cluster centers and near-
est points, construction of semi-supervised clustering, and
mergence of clusters.

2.2.1 Identification of cluster centers and nearest points

Let X = L ∪ U be the dataset to be clustered, where
L = ∪n0

i=1xi is the set of labeled data, whereas U = ∪n1
i=1xi

is the set of unlabeled data, and n0 + n1 = n, n0 � n1. For
∀xi ∈ X , the local density ρi can be calculated by Equa-
tion (1) or (2), and the pseudo distance δi can be calcu-
lated by Equation (3). Meanwhile, according to the proce-
dure of computing δi, each point corresponds to a unique
nearest point with a higher local density than it [36]. Here,
we denote the nearest point of xi by nearesti. That is,
nearesti is the closest point to xi among the points with
higher densities. Particularly, if xi has the highest local
density, nearesti is defined as itself by default [18]. For
i = 1, 2, ..., n, nearesti can be expressed by

(4) nearesti =

{
xi if xj ∈ X , ρi ≥ ρj

xj , j = argmin
j

dij if xj ∈ X , ρi < ρj .

Then, the points with relatively high ρ values and high
δ values are remarkable choice for the cluster centers. As
mentioned in Section 2.1, the centers can be identified by the
ρ− δ decision graph or by the criterion γ = ρ ∗ δ. However,
it still has drawbacks that the cluster centers need to be
selected manually or the number of cluster centers needs to
be pre-defined. To address this problem, we propose that
the possible cluster number k is selected automatically by

(5) k = sup{i : γ(i) − γ(i+1) > ε, i = 1, 2, ..., n},

where γorder = {γ(1), ...., γ(n)} is the γ values sorted in de-
scending order, and Xorder = {x(1), ...,x(n)} is the corre-
sponding sample dataset. Inspired by the fact that the γ
values on γ descending graph declines sharply and then re-
mains roughly stable (as the example shown in Figure 1(b)),
this study introduces a geometric method to select the pa-
rameter ε adaptively. This method selects ε such that the
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Algorithm 1 Identification of cluster centers and nearest points

Input:
X = L ∪ U : L is labeled dataset, U is unlabeled dataset;
dc: the cutoff distance.
Output:
Possible cluster center set: C = {c1, c2, ..., ck};
Nearest points set: nearest = {nearest1,nearest2, ....,nearestn}.

Algorithm

1: For ∀xi ∈ X , calculate ρi according to Equation (1) or (2);
2: For ∀xi ∈ X , calculate δi according to Equation (3);
3: For ∀xi ∈ X , calculate the criterion γi = ρi ∗ δi;
4: For ∀xi ∈ X , calculate nearesti according to Equation (4), obtaining the nearest points set nearest;
5: Sorted γ values in descending order, obtaining γorder = {γ(1), γ(2), ..., γ(n)} and Xorder = {x(1),x(2)...,x(n)};
6: Calculate the line lmax−min : (γ(1) − γ(n))x+ (n− 1)y + (γ(n) − nγ(1)) = 0;
7: Calculate distance from point (i, γ(i)) to lmax−min to obtain dγ = {dγ(1), ..., d

γ
(n)};

8: Set ε = γ(l) − γ(l+1), where l = argmax
i

dγ(i);

9: Determine the number of clusters k = l, and select the top k points in Xorder as the possible cluster centers, C = {x(1), ...,x(k)}.

value of the difference between γ(k) and γ(k+1) can be re-
garded as 0. That is, after selecting k using Equation (5),
the differences between the adjacent γ values that corre-
spond to non-center points must very close to 0.

Suppose that Δ(i) = γ(i) − γ(i+1), γ(i) ∈ γorder,
then ∃ γ(l) ∈ γorder, s.t., the values of series
{Δ(l),Δ(l+1), ...,Δ(n−1)} are roughly stable, whereas the
values of series {Δ(1),Δ(2), ...,Δ(l−1)} are changeable. γ(l)
is the right value to distinguish relatively higher γ values
and lower γ values. Furthermore, the possible centers cor-
responds to the points that have relatively higher γ values.
Therefore, Δ(l) is the optimal value for ε. Accordingly, we
can determine the cluster number k = l and the center set
as C = {x(1), ...,x(l)}. Consequently, the key issue is how to
determine γ(l).

To this end, we first calculate the distance from each γ to
the line lmax−min that passes through min(γ) and max(γ),
and then select the one that has a maximum distance to
lmax−min as the optimal choice for γ(l). Figure 1(a) shows
an artificial dataset with 5% of data labeled. Figure 1(b)
plots the γ values sorted in descending order, as well as the
line lmax−min passing through (1, γ(1)) and (n, γ(n)). The
red solid point in Figure 1(c) marks the one in γ(order) that
has the maximum distance to lmax−min, which is the γ(l)
we expect to find. Therefore, the first l points in Xorder are
collected to serve as the possible cluster centers, as shown
by the red points in Figure 1(d). In fact, ε can be selected to
obtain more clusters that can be corrected by the following
cluster mergence strategy.

Algorithm 1 summarizes the details of cluster centers and
the nearest point identification process in this paper.

2.2.2 Construction of semi-supervised clustering

Generally, the partial information of data labels is bene-
ficial to the whole clustering result, and the prior labels are
always considered correct. In the semi-supervised clustering

stage, virtual labels are brought in to integrate identified
centers and partial information into a uniform framework.
Labeled data are used to initialize the clustering process,
and the labels of labeled data are kept unchanged in the
label assignment process. Each labeled data is used as a
supervisor to guide the label assigning of non-center unla-
beled data with lower densities than it, thereby ensuring the
effective spreading of prior information.

Firstly, the labeled data are assigned to their true labels
regardless of their densities. Then, on the basis of the prin-
ciple that no centers share the same prior labels, SS-DPC
assigns labels to the centers according to the following rules.
Let C = {c1, ..., ck} be the set of identified cluster centers,
lprior is the set of prior labels,

• The identified centers that belong to labeled dataset and
not share labels with other ones keep their prior labels.
That is,

(6)
ci ∈ L, ∀cj ∈ L, label(ci) �= label(cj)

⇒ keep ci the prior label.

• If more than one identified centers have the same prior la-
bel, then only one of them keeps the prior label, whereas
the others are assigned to different virtual labels. That
is,

(7)

ci ∈ L, ∃cj ∈ L, s.t. label(ci) = label(cj)

⇒
{

keep ci the prior label
remark cj with a virtual label.

In clustering, each identified center represents a possi-
ble cluster. Two or more centers with the same prior
label mean the cluster may consist of two or more sub-
clusters. In this case, virtual labels are adopted to dis-
tinguish the centers of identical prior labels, thereby
marking the possible new sub-clusters splitting from
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Figure 1. Example of the proposed semi-supervised clustering algorithm (SS-DPC) on artificial dataset.

prior observed clusters. Here, we use V prior to collect
these virtual labels. Obviously, for each virtual label i in
V prior, there exists a corresponding prior label in lprior
which is the true label of cluster i, denoted by prior(i).
To ensuring the correctness of prior information, clus-
ters marked by virtual labels coming from V prior are
merged only with their corresponding prior ones in the
following cluster merging stage.

• The identified centers that belong to the unlabeled
dataset are assigned to different virtual labels directly.
That is,

(8) ci ∈ U ⇒ assign ci a virtual label.

In this case, virtual labels are adopted to label the cen-
ters of no prior labels, thereby marking the possible
new clusters that have not been prior observed. Here,
we use V new to collect these virtual labels.

In this way, SS-DPC integrates the partial information and
identified centers as well as assigns each center a unique
label.

Finally, similarly to DPC, SS-DPC determines the
label of each non-center unlabeled data according to
its corresponded nearest point. Let ρU

order = {ρ(1) ≥
ρ(2) ≥ ... ≥ ρ(n1)} be the ρ values of un-
labeled data sorted in descending order, Uorder =
{x(1),x(2), ...,x(n1)} be the corresponding points of ρU

order

with the corresponding nearest points nearestUorder =
{nearest(1),nearest(2), ...,nearest(n1)}, where n1 is the

number of unlabeled data. Each non-center unlabeled data
is assigned the same label as its nearest point. That is,

(9)
x(i) ∈ Uorder,x(i) /∈ C
⇒ label(x(i)) = label(nearest(i)).

Thus, a density peaks based semi-supervised clustering
process is constructed by using labeled and unlabeled data.
In this way, the labels of all the unlabeled data can be ini-
tially assigned successfully. Once an unlabeled data belongs
to the center set or two or more centers possess the same
prior label, a new cluster may appear.

Figure 1 shows an example of an artificial dataset that
illustrates how the proposed algorithm works. Figure 1(a)
shows the artificial data with 5% of data labeled, num-
bers 1 and 2 indicate the prior classes of labeled data. Fig-
ure 1(d) presents the possible centers identified by Algo-
rithm 1, which are marked by • in red. In Figure 1(d),
the points marked by 1, 3, and 12 are identified centers,
whereas they are all prior labeled by 1 in Figure 1(a). These
three identified centers share the same prior label, so in the
semi-supervised clustering construction stage, only the cen-
ter marked by 1 keeps the prior label, and the two other
labels are re-labeled by new virtual labels 3 and 12. Besides,
as shown in Figure 1(d), the identified centers that are not
previously labeled are assigned with different virtual labels,
and the non-center labeled data keeps their prior class labels
unchanged. Subsequently, by assigning each unlabeled point
to its nearest point, the artificial data may be separated into
several small sub-clusters.
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2.2.3 Mergence of clusters

Based on Section 2.2.2, the new labels may appear, and
the new clusters may divide an essentially huge cluster into
several small clusters. Thus combining the clusters further is
necessary. To this end, this study merges the clusters step-
by-step according to the following strategy:

• Two clusters with the minimum distance are merged in
each mergence. Let Cm is the set of points that belong
to the cluster m, then, Ci and Cj are the clusters to be
merged in the current mergence, if

(10) (i, j) = argmin
i,j

dist(Ci, Cj).

• Two clusters with different prior labels cannot be merged
into one cluster, and only the cluster with a virtual la-
bel can be possibly merged with its nearest one. Specif-
ically, let Ci and Cj are two pre-merged clusters, then

i ∈ lprior, j ∈ lprior ⇒ not merge Ci and Cj ;(11)

i ∈ V new, j ∈ V new ⇒ merge Ci and Cj ;(12)

i ∈ V new, j ∈ V prior ⇒ merge Ci to Cj ;(13)

i ∈ V new, j ∈ lprior ⇒ merge Ci to Cj ;(14)

i ∈ V prior, j ∈ V prior

⇒
{
merge Ci and Cj prior(i) = prior(j),

not merge otherwise;

(15)

i ∈ V prior, j ∈ lprior

⇒
{
merge Ci to Cj if prior(i) = j,

not merge otherwise.

(16)

• The procedure stops when no cluster can be merged.

This strategy guarantees that the prior class information
is unchanged throughout the mergence process while main-
taining the correctness of prior information about data la-
bels.

For mergence purposes, the distance between any two
clusters is calculated. However, the noise points with rela-
tively lower density in each pre-merged cluster may affect
distance. To address this problem, we first calculate each
point the density in the pre-merged cluster it belongs to,
according to Gaussian kernel function,

(17) ρCm

i =
∑

xi,xj∈Cm,j �=i

exp

(
−

d2ij
2σ2

)
, m = 1, 2, ..., k.

Then, for each pre-merged cluster, the points whose density
is lower than a threshold ρthre are recognized as noises. By
removing these noise points, only the points whose density
is higher than ρthre are kept for distance measurement. In
SS-DPC, the distance of two clusters is measured in terms
of three methods [27]: min, max, and average, which are

defined as follows,

min(Ci, Cj) = min
xi∈Ci,xj∈Cj

dij ,(18)

max(Ci, Cj) = max
xi∈Ci,xj∈Cj

dij ,(19)

average(Ci, Cj) =
1

|Ci| |Cj |
∑

xi∈Ci,xj∈Cj

dij ,(20)

where Ci is the set of points that belong to the ith cluster
and |Ci| is the number of points in the ith cluster.

Figures 1(e) and 1(f) illustrate the mergence results of
the artificial data. The data are categorized into two (Fig-
ure 1(e)) or three clusters (Figure 1(f)) depending mainly
on the sparsity of the data in the rectangular box. The more
sparse the data in the rectangular box is, the more likely the
cluster is divided into two subgroups and vice versa. Further-
more, these two possible results are reasonable in practice.
For example, suppose that cluster 1 and cluster 2 represent
disease A and disease B, respectively, and disease A can
been further divided into two subtypes. Then, the cluster-
ing results in Figure 1(f) are beneficial to further research
on disease A, whereas the integration of the two subtypes
shown in Figure 1(e) is also reasonable. Thus, alternative
results are provided to be analyzed.

To sum up, SS-DPC iteratively merges the two closest
ones among the current pre-merged clusters together until
the mergence conflicts with the prior class labels. To main-
tain the correctness of partial information, SS-DPC never
merges two clusters of different prior labels throughout the
merging processes. Consequently, the merging rule is dis-
cussed in the case that at least one of the two pre-merged
clusters is marked by a virtual label. Each virtual label con-
tained in Vprior is returned back to its corresponding true
prior one in each mergence and the cluster marked by such
a virtual label is merged only with the one that has the
same prior label. This is natural because these virtual la-
bels are raised by distinguishing the centers of identical prior
labels. Besides, the cluster marked by a virtual label con-
tained in Vnew is merged directly to its nearest one because
these virtual labels have no corresponding prior labels. From
the step-by-step mergence strategy, it can be seen that each
mergence in fact corresponds to a possible partition result
that has the cluster numbers of no less than the prior class
numbers. Hence, SS-DPC comes to an alternative clustering
result and it is easy to obtain a required clustering result,
especially in the case that all the underlying clusters are
observed or the number of clusters is estimated.

It is worth noting that the mergence strategy of SS-DPC
is restricted to stop when only the clusters of prior labels
remain. This leads to an issue of lacking stop conditions to
explore new possible clusters, especially in the case that only
partial underlying clusters are observed and the number of
clusters is difficult to estimate. A possible method for this
issue is to set a distance threshold among clusters as another
stop condition of mergence process. Once a proper distance
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Algorithm 2 Semi-supervised density peak clustering algorithm (SS-DPC)

Input:
X = L ∪ U : L = ∪n0

i=1xi is labeled dataset, U = ∪n1
i=1xi is unlabeled dataset, n0 + n1 = n;

labelL: the labels of labeled data; dc: the cutoff distance;
lprior: the set of prior labels; V prior = NULL; V new = NULL
Output: The label vector: labelSC .

Algorithm
Step1: Identification of cluster centers and nearest points

1: Identify the possible cluster centers C and the nearest points nearest according to Algorithm 1;

Step2: Construction of semi-supervised clustering

1: Initialize the label vector labelSC by labelL;
2: Assign labels to centers C = {c1, c2, ..., ck};

If ci ∈ U , assign ci a new virtual label, update V new;
If ci ∈ L and ∀j �= i, cj ∈ L, label(cj) �= label(ci), keeps ci the prior label;
If ci ∈ L and ∃j �= i, cj ∈ L, label(cj) = label(ci), keeps ci the prior label and assign cj a new virtual label, update V prior.

3: Update the labeled dataset L ← L ∪ C, n0 = |L|;
4: Update the unlabeled dataset U ← X − L, n1 = |U|;
5: Update the label vector labelSC ;
6: Calculate ρi for ∀xi ∈ U according to Equation (2), obtaining ρU = {ρ1, ..., ρn1};
7: Sort ρU in descending order to yield ρU

order, Uorder, and nearestUorder;
8: For each x(i) ∈ Uorder, assign x(i) a same label as nearest(i);
9: Update the label vector labelSC ;

Step3: Mergence of clusters

Repeat until only clusters with prior labels are keep

1: For ∀xi ∈ Cm, calculate ρCm
i by Equation (17)

If ρCm
i < ρthre, remove xi from Cm, and update Cm ← Cm\xi;

2: Calculate distance between two clusters by Equation (18), (19) or (20);
3: Ci and Cj are two clusters to be merged, if (i, j) = argmin

i,j
dist(Ci, Cj);

4: Merge Ci and Cj according to the following criteria:
If i ∈ lprior, j ∈ lprior, not merge Ci and Cj ;
If i ∈ V new, j ∈ V new, merge Ci and Cj , update Ci ← Ci ∪ Cj ;
If i ∈ V new, j ∈ V prior, merge Ci to Cj , update Cj ← Cj ∪ Ci;
If i ∈ V new, j ∈ lprior, merge Ci to Cj , update Cj ← Cj ∪ Ci;
If i ∈ V prior, j ∈ V prior and prior(i) = prior(j), merge Ci and Cj , update Ci ← Ci ∪ Cj ;
If i ∈ V prior, j ∈ V prior and prior(i) �= prior(j), not merge Ci and Cj ;
If i ∈ V prior, j ∈ lprior and prior(i) = j, merge Ci to Cj , update Cj ← Cj ∪ Ci;
If i ∈ V prior, j ∈ lprior and prior(i) �= j, not merge Ci and Cj .

5: Update the label vector labelSC ;

return labelSC ;

threshold is found, SS-DPC can yield possible partition re-
sults without estimating the number of clusters. But this
may raise another problem that how to find an optimal dis-
tance threshold. This may be another concern for further
work and would not be discussed in this paper.

The implementation details of the proposed SS-DPC is
summarized in Algorithm 2.

3. EXPERIMENTS

In this section, we conduct several experiments to ver-
ify the performance of the proposed SS-DPC (Algorithm 2)
based on the dataset from UCI repository. SS-DPC is com-

pared with the other semi-supervised and unsupervised clus-
tering algorithms. The experiments are implemented with
R.

3.1 Data sets

In this paper, eight commonly used UCI datasets are uti-
lized to carry out the experiments for clustering performance
testing. These benchmark datasets include Iris, Sonar, Iono-
sphere, Parkinsons, Letter Recognition, Image Segmenta-
tion, Libras Movement, and Vehicle Silhouettes. They can be
obtained from the UCI Machine Learning Repository, avail-
able on http://archive.ics.uci.edu/ml. As listed in Table 1,
these datasets have various sizes, dimensions, densities, and
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Table 1. The details of eight UCI datasets

Dataset No. of Instances No. of Attributes No. of Classes Class distribution (%)

Letter Recognition∗ 500 16 5 20 in each
Iris 150 4 3 33.3 in each
Ionosphere 351 34 2 35.9/64.1
Image Segmentation 210 19 7 14.3 in each
Libras Movement 360 90 15 6.7 in each
Parkinsons 195 22 2 24.6/75.4
Sonar 208 60 2 53.4/46.6
Vehicle Silhouettes 846 18 4 25.8/25.1/25.7/23.5

∗ The dataset used in this paper is the subset of the original Letter Recognition dataset, obtained by selecting the first 100 samples from
letters “A”, “B”, “C”, “D”, “E”, respectively.

number of clusters, and are introduced as follows.

• Iris: The Iris dataset, which consists of 150 instances with
4 attributes, is a popular dataset for clustering analysis
in the literatures. The dataset is categorized into three
classes of the same sizes, and each class refers to a type
of iris plant.

• Sonar: The Sonar dataset is formed by 208 sonar signal
records with 60 attributes distributed in 2 classes of
sizes 111 and 97. Each record corresponds to a sonar
signal bounced off a metal cylinder or bounced off a
roughly cylindrical rock.

• Ionosphere: The Ionosphere dataset contains 351 radar
returns from the ionosphere with 34 attributes. These
radar returns belong to 2 classes of sizes 126 and 225,
where the classes represent the “Good” and “Bad”
radar returns, respectively.

• Parkinsons: The Parkinsons dataset is composed of 195
voice recordings with 22 attributes, where each recoding
describes a biomedical voice measurement from people
with Parkinson’s disease or healthy. The dataset con-
tains 2 classes of sizes 48 and 147.

• Libras Movement: The Libras Movement dataset contains
360 instances with 90 attributes. These instances are
labeled as 15 classes of the same size, and each class
refers to a hand movement type in Libras.

• Letter Recognition: The original Letter Recognition
dataset consists of 20000 instances with 16 attributes.
Each instance is converted from a character image that
describes one of the 26 capital letters in the English al-
phabet. In this paper, we choose respectively the first
100 samples of five letters, “A”, “B”, “C”, “D”, “E”,
for experiments.

• Image Segmentation: The Image Segmentation dataset is
composed of 210 instances with 19 attributes and con-
tains 7 classes of the same size. The instances are taken
randomly from a database of seven outdoor images,
including the brickface, sky, foliage, cement, window,
path, and grass. The images are hand-segmented to cre-
ate a classification for every pixel.

• Vehicle Silhouettes: The Vehicle Silhouettes dataset con-
sists of 846 instances with 18 attributes distributed in

4 classes of different sizes. The attributes are extracted
from the silhouettes of four vehicles: a double-decker
bus, Chevrolet van, Saab 9000, and an Opel Manta 400.

All the datasets are preprocessed by the min-max nor-
malization in advance. For each original dataset, min-max
normalization transforms the value of each attribute into
[0,1].

3.2 Algorithms for comparison

SS-DPC proposed a semi-supervised clustering that com-
bines labeled and unlabeled data. To verify the effec-
tiveness of SS-DPC in partial information incorporation,
two unsupervised clustering algorithms (DPC [26] and K-
means [21]) and four semi-supervised clustering algorithms
(Constrained-Kmeans [1], CCLS [13], MPCK-Mean [2], and
LCVQE [24]) are used for the comparison. The referred al-
gorithms are introduced as follows.

• DPC [26]: As mentioned in Section 2.1, DPC is a
density-based unsupervised clustering algorithm with
fast search, based on which the SS-DPC in this paper
is proposed.

• K-means [21]: K-means is a classical partition-based un-
supervised clustering algorithm.

• Constrained-KMeans [1]: A semi-supervised variant of K-
means using labeled data for seeding. Specifically, the
labeled data are adopted to initialize K-means, and the
cluster labels of the labeled data are not re-computed
in the whole algorithm.

• CCLS [13]: Constrained clustering by local search (CCLS)
is a pairwise constraint-based semi-supervised cluster-
ing algorithm that combines Tabu search, a variation
of the local search algorithm, to minimize the objective
function for clustering.

• MPCK-Means [2]: Metric pairwise constrained K-Means
(MPCK-Means) is a hybrid semi-supervised clustering
algorithm that integrates the use of constraints and
metric learning.

• LCVQE [24]: Linear-time constrained vector quantization
error (LCVQE) algorithm is a pairwise constraint-based
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semi-supervised clustering that minimizes a target func-
tion composed of the vector quantization error as well
as a penalty for violated constraints.

3.3 Evaluation metrics

To evaluate the performance of the proposed
semi-supervised clustering algorithm, three common
clustering evaluation metrics: Clustering Accuracy
(ACC) [8], Rand Index (RI) [5, 7], and
Normalized Mutual Information (NMI) [38], are
used to compare the generated class labels with respect to
the true labels.

Let Y = {y1, y2, ..., yK} and C = {c1, c2, ..., cK′} be the
true and predicted labels of the dataset X with n points,
respectively. K and K ′ are the number of clusters in Y
and C, respectively; nij is the number of common points
of cluster yi and cj ; ny

i is the number of data points in
cluster yi; and nc

j is the number of data points in cluster cj .
Then, the three cluster evaluation methods can be defined
as follows.

• Clustering Accuracy(ACC)

(21) ACC =

n∑
i=1

δ(yi,map(ci))/n,

where map(·) maps each predicted cluster label into a true
label by the Hungarian algorithm [23], and this mapping is
optimal. δ(yi, ci) = 1 if yi = ci. The higher the value of ACC
is, the better the clustering performance will be.

• Rand Index(RI)

(22) RI =
#correct decision

#total decision
=

a + b

n(n− 1)/2
,

where # means “the number of”. The number of total de-
cision means that every partition has C2

n pairwise decisions.
a denotes the number of decisions that the pairwise points
xi and xj are assigned to the same cluster in Y and C, and
b is the number of consistence decisions that the two points
belongs to different clusters in Y are also partitioned into
the different clusters inC, then a+b is the number of correct
decision. The value of RI is between 0 and 1, the greater RI
value means the better performance of cluster algorithm.

• Normalized Mutual Information(NMI)

(23) NMI =

∑K
i=1

∑K′

j=1 nijlog
n·nij

ny
i ·nc

j√∑K
i=1 n

y
i log

ny
i

n

∑K′

j=1 n
c
j log

nc
j

n

,

where it is easy to know that the value of NMI ranges from
0 to 1, and NMI = 1 means the two partitions of data set X
are identical. Also, the higher the NMI value is, the closer
the clustering result to the true cluster distribution is.

3.4 Experimental setting

In the experimental stage, the original dataset X is ran-
domly divided into two parts: labeled dataset L and unla-
beled dataset U . Given that semi-supervised clustering fo-
cuses only on the datasets with few labels, this paper de-
signs the percentage of labeled data in each dataset varying
from 0 to 30% with an increasing step size of 2.5%. Where
0 corresponds to the particular unsupervised case. The la-
beled dataset L consists of the points selected randomly
from each class in proportion. For a fixed percentage of la-
beled data, each clustering procedure is implemented on 20
sampled datasets of differently labeled data to obtain a more
stable average result. The three evaluation metrics, namely,
NMI, RI, and ACC, are calculated only based on the unla-
beled data without considering the labeled data. Note that
DPC and K-mean are unsupervised algorithms, so their re-
sults begin with labeling 0% of data and then do not change
as the percentage of labeled data increases.

In SS-DPC, the cutoff distance dc must be selected for
local density estimation. This paper sets dc for each dataset
as 0.5%, 1%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 4.5%, 5%, 10%,
15%, 20%, 25% and 30% of all the distance between every
two points sorted in descending order. Moreover, dc with the
highest NMI, RI and ACC values in each experiment is cho-
sen to be the optimal one. Also, the selection of dc for DPC is
the same as that in SS-DPC. The threshold parameter ρthre
mentioned in Section 2.2.3 is set as mean(ρCm)− 2sd(ρCm)
for each pre-merged cluster Cm adaptively, and the band-
width parameter of Equation (17) is set as σ = 1/

√
2 for

each dataset.
SS-DPC provides optional results in the clusters merg-

ing step, and users can take a particular one according to
requirements. The mergence strategy, which is set to not
merge two clusters with different prior labels and only merge
two clusters with at least one virtual label, remains the clus-
ters with prior labels. That is, the number of clusters is no
less than the prior class number after mergence. Further-
more, the new clusters that appeared in the mergence stage
refer to the possible partition result rather than a wrong
one. Therefore, for convenient comparison, the datasets with
the known classes are used in our experiments, and the vir-
tual labels raised by splitting clusters are merged back to
the true one when evaluating the clustering performance.
Meanwhile, two datasets, namely, Image Segmentation and
Vehicle Silhouettes, are used to compare the results on the
estimated number of clusters.

Furthermore, the pairwise constraints, including must-
link and cannot-link constraints in the compared algorithms,
are derived from the labeled dataset, in which must-link
constraints consist of the pairs of points in the same clusters,
whereas cannot-link constraints consist of the pairs of points
that belong to the different ones.

The proposed semi-supervised clustering algorithm using
Equations (18), (19), and (20) to measure the distance be-
tween two clusters in the mergence stage are denoted as
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Figure 2. Evaluations on Iris with true class numbers (k=3).

Figure 3. Evaluations on Image Segmentation with true class numbers (k=7).

Figure 4. Evaluations on Sonar with true class numbers (k=2).

SS-DPC min, SS-DPC max, and SS-DPC average, respec-
tively.

3.5 Results analysis

Figures 2 - 9 illustrate the experiment results of SS-DPC
and the compared algorithms on the eight UCI datasets un-
der the true class numbers. The results are compared in
terms of evaluation metrics NMI, ACC, and RI over dif-
ferent percentages of labeled data. It can be observed from
those figures that SS-DPC often achieve better clustering
performance than the compared algorithms. Specifically, all
the three SS-DPC-based algorithms outperform other ones

on Iris, Sonar, Ionosphere, and Vehicle Silhouettes all the
time as the labeled data increases. SS-DPC min performs
best on Letter Recognition according to NMI, ACC, and RI.
SS-DPC average and SS-DPC min perform best on Parkin-
son’s and Image Segmentation, respectively, according to
NMI. The success of SS-DPC on these datasets also demon-
strates that SS-DPC keeps the advantages of DPC of detect-
ing clusters of various sizes, arbitrary shapes, and varying
densities.

Compared with DPC, SS-DPC has the ability to make
use of partial information for better data partition results.
This is illustrated by the gap between the plotted results of
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Figure 5. Evaluations on Ionosphere with true class numbers (k=2).

Figure 6. Evaluations on Letter Recognition with true class numbers (k=5).

Figure 7. Evaluations on Parkinsons with true class numbers (k=2).

Figure 8. Evaluations on Vehicle Silhouettes with true class numbers (k=4).
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Figure 9. Evaluations on Libras Movement with true class numbers (k=15).

Table 2. Clustering results comparison between SS-DPC and DPC on Vehicle Silhouettes dataset. The value in parentheses
indicates the improvement percentage of SS-DPC over DPC.

Labeled data Metrics DPC SS-DPC ave SS-DPC max SS-DPC min

5%
ACC 0.4492 0.4826(7.44%) 0.4880(8.64%) 0.5260(17.10%)
NMI 0.1960 0.2277(16.17%) 0.2253(14.95%) 0.2388(21.84%)
RI 0.6164 0.6574(6.65%) 0.6634(7.62%) 0.6915(12.18%)

10%
ACC 0.4492 0.5302(18.03%) 0.5266(17.23%) 0.5685(26.56%)
NMI 0.1960 0.2636(34.49%) 0.2547(29.95%) 0.2814(43.57%)
RI 0.6164 0.6853(11.18%) 0.6835(10.89%) 0.7181(16.50%)

15%
ACC 0.4492 0.5515(22.77%) 0.5478(21.95%) 0.5866(30.59%)
NMI 0.1960 0.2739(39.74%) 0.2699 (37.70%) 0.2943(50.15%)
RI 0.6164 0.6986(13.34%) 0.6977(13.19%) 0.7254(17.68%)

20%
ACC 0.4492 0.5719(27.32%) 0.5733(27.63%) 0.6068(35.08%)
NMI 0.1960 0.2934(49.69%) 0.2879(46.89%) 0.3275(67.09%)
RI 0.6164 0.7135(15.75%) 0.7135 (15.75%) 0.7391(19.91%)

25%
ACC 0.4492 0.6020(34.02%) 0.6006(33.70%) 0.6199 (38.00%)
NMI 0.1960 0.3202(63.37%) 0.3181(62.30%) 0.3477(77.40%)
RI 0.6164 0.7333(18.96%) 0.7328(18.88%) 0.7495(21.59%)

30%
ACC 0.4492 0.6111(36.04%) 0.6073(35.20%) 0.6274(39.67%)
NMI 0.1960 0.3443(75.66%) 0.3352(71.02%) 0.3602(83.78%)
RI 0.6164 0.7418(20.34%) 0.7373(19.61%) 0.7524(22.06%)

SS-DPC and DPC for five datasets (Iris, Sonar, Ionosphere,
Letter RecognitionIris, Vehicle Silhouettes). On Parkinson,
evaluated by ACC and RI, though SS-DPC average and SS-
DPC min perform slightly worse than DPC when the per-
centage of labeled data is 2.5%, their performance improves
as the percentage of labeled data increases and then are sig-
nificantly better than that of DPC when the percentage is
no less than 7.5%. Meanwhile, on Image Segmentation and
Libras Movement when respectively labeling no less than
10% and 7.5% of data, SS-DPC min shows similar results.
These results also prove that SS-DPC can effectively incor-
porate the partial information to improve the performance
of DPC.

To further compare the improvement of SS-DPC over
DPC, we take the Vehicle Silhouettes dataset for example
and list the detailed comparison in Table 2. As shown in

Table 2, the ACC, NMI, and RI values of DPC are 0.4492,
0.1960, and 0.6164, respectively. For SS-DPC min, these val-
ues, respectively, are 0.5260, 0.2388, and 0.6915 when la-
beling 5% of data, improving the performance by 17.10%,
21.84%, and 12.18% compared to DPC. And these values,
respectively, reach 0.5866, 0.2943, and 0.7254 when label-
ing 15% of data, improving the performance by 30.59%,
50.15%, and 17.68%. Whereas, these values, respectively,
reach 0.6274, 0.3602, and 0.7524 when labeling 30% of data,
improving the performance by 39.67%, 83.78%, and 22.06%.
These results again demonstrate that SS-DPC can dramat-
ically improve the performance of DPC by leveraging the
partial information.

Compared with the referred semi-supervised algorithms,
SS-DPC is more sensitive to the amount of supervision in-
formation in the form of class labels. With the increas-
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Figure 10. Evaluations on Image Segmentation with estimated number of clusters (k=8).

Figure 11. Evaluations on Vehicle Silhouettes with estimated number of clusters (k=6).

ing percentage of labeled data, the performance of SS-
DPC improves notably than the other algorithms. Espe-
cially, a small amount of labeled data for SS-DPC may bring
more attractive clustering results. As shown in Figure 7(a)
for Parkinsons, when labeling 2.5% of data, Constrained-
Kmeans, LCVQE, and SS-DP average yield nearly the same
NMI values, all slightly higher than that of SS-DP min.
Given that the percentage of labeled data vary from 5%
to 30%, the NMI values of SS-DP average and SS-DP min
improve rapidly and are significantly higher than that of the
other compared algorithms. By contrast, the NMI results of
Constrained-Kmeans, CCLS, and LCVQE show no remark-
able changes. The results on Vehicle Silhouettes also confirm
that SS-DPC is more powerful in partial information incor-
poration compared with the competitors.

Three versions of SS-DPC, that is, SS-DPC average, SS-
DPC max and SS-DPC min, are provided in this paper. Ex-
perimental results on eight UCI datasets demonstrate that
different methods used to measure the distance between two
clusters in the merging stage might lead to different SS-DPC
results. Evaluated by NMI, ACC, and RI, SS-DPC min per-
forms the best on Letter Recognition, and SS-DPC average
ranks second, both superior to SS-DPC max. But on Iris,
the three SS-DPC-based algorithms achieve almost the same
results. Moreover, on Vehicle Silhouettes, SS-DPC max and
SS-DPC average show almost the same performance, worse
than SS-DPC min. Whereas on Ionosphere, SS-DPC min
and SS-DPC max yield nearly identical results, superior to
SS-DPC average.

Considering the fact that the number of clusters is usually
unknown in reality, two datasets, Image segmentation and

Vehicle Silhouettes, are used to conduct the experiments on
the estimated number of clusters for comparison (Figures 10
and 11, respectively). The number of clusters are estimated
by Gap statistic [31], which is implemented with R pack-
age “factoextra”. Figures 10 and 11 confirm that SS-DPC
can incorporate the partial information effectively and yield
better clustering results based on the estimated number of
clusters.

Though showing excellent performance on most of the
eight UCI datasets, it is worth noting that the proposed al-
gorithm SS-DPC is not always successful over all the 12 per-
centages for some datasets, such as Libras Movement, Image
Segmentation and Parkinsons. Firstly, on Libras Movement,
both SS-DPC and DPC show worse performance than the
compared algorithms. This is because Libras is a relatively
high dimension (90) dataset with small samples (360). In
this case, a reliable estimation of local densities is difficult,
thereby leading to poor capacity in underlying data struc-
ture identification. Secondly, on these three datasets, the
performance of SS-DPC is worse than DPC when the per-
centage of labeled data is relatively lower. The reason for
this refers to two aspects. On the one hand, it is difficult to
properly merge identified clusters in boundary region with
the expected one, especially when the boundary of clusters
is not clear. Specifically, the centers identification method
of SS-DPC has advantages of detecting more cluster centers
to avoid missing centers but brings another problem that a
small dense region appeared in the cluster boundary may be
recognized as a new cluster. In this case, the performance
of SS-DPC is affected by the merging result of this kind of
clusters. On the other hand, when the percentage of labeled
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data is relatively lower, almost non of partial information is
provided to aid the clustering of these datasets. Specifically,
both Libras Movement (24 samples in each class) and Image
Segmentation (30 samples in each class) consist of clusters
of small size. Parkinsons is an imbalanced dataset with two
classes of size 48 and 147, where one of them has a small
number of samples. When the percentage of labeled data is
smaller, such as 2.5%, 5%, there are only one or two labeled
data in these small size classes. In this case, the partial in-
formation is too limited to improve the clustering, so the
performance of SS-DPC depends on the merging results of
the identified clusters in the boundary region, but it is not
easy. Overall, it is these two aspects that cause the worse
performance of SS-DPC than DPC on small percentages.
However, it is also observed that the performance of SS-
DPC on these datasets enhances and then exceeds DPC as
well as the other competitors as the percentage of labeled
data raising. Then, it can be concluded that SS-DPC in-
deed can effectively incorporate the partial information to
improve the performance and more partial information con-
tributes to better clustering performance.

4. CONCLUSION

In this paper, a semi-supervised clustering algorithm
called SS-DPC is proposed to extend classical DPC to semi-
supervised clustering. Different from DPC, the proposed SS-
DPC can make use of a small amount of labeled data to
improve the clustering performance. As a semi-supervised
version of DPC, SS-DPC is a density-based clustering al-
gorithm and has the capacity to detect clusters of various
sizes, arbitrary shapes and varying densities. The proposed
algorithm consists of three main steps. First, the number of
clusters is automatically selected on the whole data space,
and the nearest point for each data is calculated on the basis
of DPC. Second, the labeled dataset is expanded by identi-
fied centers first, and then the nearest points are used to as-
sign unique labels to their corresponding unlabeled data. Fi-
nally, two clusters with at least one virtual label are merged
into one if their distance is small enough. Experiments on
eight UCI datasets illustrate the success of SS-DPC in par-
tial information incorporation and DPC performance im-
provement.

In future research, an interesting work on SS-DPC is to
explore more reliable density estimation methods for high-
dimension data to improve the clustering performance. An-
other work is to explore optimal stop conditions for mer-
gence strategy to enhance the ability of SS-DPC in finding
new clusters.
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