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Estimation in exponential family regression based
on linked data contaminated by mismatch error∗

Zhenbang Wang, Emanuel Ben-David, and Martin Slawski
†

Identification of matching records in multiple files can
be a challenging and error-prone task. Linkage error can
considerably affect subsequent statistical analysis based on
the resulting linked file. Several recent papers have stud-
ied post-linkage linear regression analysis with the response
variable in one file and the covariates in a second file from
the perspective of the “Broken Sample Problem” and “Per-
muted Data”. In this paper, we present an extension of this
line of research to exponential family response given the as-
sumption of a small to moderate number of mismatches. A
method based on observation-specific offsets to account for
potential mismatches and �1-penalization is proposed, and
its statistical properties are discussed. We also present suf-
ficient conditions for the recovery of the correct correspon-
dence between covariates and responses if the regression pa-
rameter is known. The proposed approach is compared to
established baselines, namely the methods by Lahiri-Larsen
and Chambers, both theoretically and empirically based on
synthetic and real data. The results indicate that substan-
tial improvements over those methods can be achieved even
if only limited information about the linkage process is avail-
able.

AMS 2000 subject classifications: Primary 62F35,
62J07, 62J12, 62D10; secondary 62D99.

Keywords and phrases: Record linkage, Broken sample
problem, Generalized linear models, Penalized estimation,
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1. INTRODUCTION

A tacit assumption in regression is that response-
predictor pairs correspond to the same statistical unit. In
practice, this assumption is often violated at least in part
when different subsets of variables are collected in an asyn-
chronous fashion and are subsequently combined into a sin-
gle data set. Roughly speaking, the latter amounts to merg-
ing multiple data sets given agreement on a set of matching
variables shared across those data sets; Figure 1 serves as
an illustration.

∗The first and the last author are partially supported by NSF award
CRII: CIF: 1849876.
†Corresponding author.

This setting is well-studied in the field of record linkage,
e.g., [1, 2, 3, 4]. A principal reason for its importance is
considerable potential in reducing efforts for data collection
in the situation that a research question of interest can be
answered simply by combining existing databases. In a nut-
shell, probabilistic record linkage is concerned with the iden-
tification of matching records, i.e., pieces of information con-
tained in different data sets belonging to the same statistical
unit, given only approximate identifiers. The uncertainty as-
sociated with those introduces two types of linkage errors,
(i) missed matches and (ii) mismatches. The former refers
to two matching records not being linked, while (ii) refers
to two records erroneously linked in the sense that those
records belong to different statistical units. The present
work is concerned with the consequences of mismatches on
subsequent regression analysis. Since the work of Neter [5]
in 1965, it is well known that mismatches can negatively af-
fect model fit and parameter estimation, specifically bearing
a strong potential for attenuation bias. Following up on [5],
a variety of papers discuss strategies for bias correction in
linear regression with mismatches in the response variable
given specific information about the linkage process, includ-
ing work by Scheuren and Winkler [6, 7], Lahiri and Larsen
[8] and Chambers [9]. Generalizations of this line of research
beyond one-to-one matching and linear models are discussed
in [10] and [11] via estimating equation-based approaches.

A somewhat more direct paradigm for dealing with mis-
matches in the response variable originates in the “Broken
Sample Problem”, a term used in a series of papers by DeG-
root and collaborators, e.g., [12, 13]. In brief, matching pairs
are represented via an unknown permutation (cf. Figure 1);
the latter is typically regarded as a nuisance parameter, but
inference for it might be of interest for the purpose of pin-
pointing and correcting errors in the linkage process. While
this paradigm was widely regarded as infeasible in the record
literature due to the combinatorial nature and the associ-
ated computational challenges, it has recently experienced
a surge of interest, fueled by advances in computing and
an array of engineering and machine learning problems that
can be cast as linear regression with unknown permutation
[14, 15, 16, 17, 18, 19, 20, 21].

In this paper, we adopt the “Broken Sample” formula-
tion for generalized linear regression models with exponen-
tial family response [22] as an alternative to the methods
in Lahiri-Larsen [8, 10] and Chambers [9, 11] to account
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Figure 1. Schematic illustration of the setting studied in this paper. Two files A and B are linked to study how a response
variable contained in one file (here: duration of unemployment in weeks) depends on covariates (here: education level and

previous monthly salary) contained in another file. Linkage based on quasi-identifiers, here given by the triple (Age, Gender,
ZIP), can be error-prone due to ambiguities (highlighted by boxes and grey color, respectively), and bear a potential for

mismatch error affecting post-linkage regression. Matching records are connected by lines.

for potential mismatches in the response variable. The ap-
proach taken herein arises as a natural generalization of
work by Slawski and Ben-David [23] for Gaussian response.
An appealing property of the approach is that no informa-
tion about the linkage process is required, in contrast to
the methods put forth by Lahiri & Larsen and Chambers.
This can be an important advantage if file linkage has been
performed by a third party, and the data analyst is only
provided the linked file, a situation that is not uncommon
in practice given that file linkage is often based on sensitive
personal information such as names or addresses.

In return, the proposed approach requires a limit on the
fraction of mismatches. Empirical studies suggest that the
critical threshold ranges between 20 and 30%, and a signifi-
cant degradation in performance for larger fractions. While
such a limit indicates room for improvement, parameter es-
timation in the setting of arbitrary mismatch contamination
becomes in general infeasible from both computational and
statistical viewpoints [24]. In practice, the underlying frac-
tion of mismatches can be estimated based on the statisti-
cal modeling framework used for record linkage [25], or via
clerical review of a random sample of linked pairs prior to
secondary analysis.

Contributions. In this paper, we study the “Broken Sam-
ple” problem, also known as “Regression with Unknown Per-
mutation” or “Regression with Shuffled Data”, for general-
ized linear models. While the work herein is in the same
spirit as prior work on this subject, the mechanism gener-
ating mismatches is not required to be a permutation; in-
stead, we work with the sample-to-register linkage paradigm
in [11, 26] in which the number of responses (observed sam-
ple) is allowed to be smaller than the number of predictors
(contained in the register). As outlined above, primary in-
terest concerns the regime of “sparsely mismatched” data in
which the fraction of mismatches is subject to specific limits
as elaborated in the sequel. The main technical contribu-

tions herein concern (1) restoration of the correctly match-
ing records (“permutation recovery”) for known regression
parameter, (2) estimation of the regression parameter via
computationally tractable schemes. In combination, (1) and
(2) pave the way for “plug-in” estimation of the (general-
ized) permutation, thereby sidestepping the computational
barriers that are associated with joint estimation. Specifi-
cally, (1) is shown to be reducible to sorting, and recovery
results are derived under certain separability conditions nat-
urally extending those for linear regression [27, 23]; regard-
ing (2), we follow the route taken in [23] in which sparse
mismatch contamination is captured by observation-specific
dummy variables and �1-penalization whose statistical anal-
ysis is based on techniques in [28]. The proposed approach
is compared to the Lahiri-Larsen-type method in [10] theo-
retically as well as empirically by means of simulations and
the bike sharing data from [29].

Related work. There is a rapidly growing body of litera-
ture on regression with unknown permutation, starting from
[14, 30]. The paper [30] presents necessary and sufficient
conditions for permutation recovery for linear models with
Gaussian design. Extensions to multivariate linear models
are considered in [19, 27]. The papers [16, 24] show that
consistent estimation of the regression parameter is impos-
sible without substantial additional assumptions. Tsakiris
and collaborators [20, 21] have studied important theoret-
ical aspects such as well-posedness from an algebraic per-
spective, and have also put forth practical computational
schemes such as a branch-and-bound algorithm (cf. also [31])
and concave maximization [32]. An approximate EM scheme
with a Markov-Chain-Monte-Carlo (MCMC) approximation
of the E-step is discussed in [17, 33]. The latter work in turn
bears a relationship with the Bayesian approach in [34] and
its implementation via Gibbs sampling. Approaches to linear
and multivariate linear regression with sparsely mismatched
data are studied in [18, 23, 35, 36].
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In comparison, relatively few papers have considered re-
gression with permuted data outside the standard linear
model: examples include spherical regression [37], univari-
ate isotonic regression and statistical seriation [38, 39, 40,
41, 42], and binary regression [43].

The method for regression parameter estimation consid-
ered herein has been studied in prior work to deal with
generic contaminations in linear regression [44], logistic re-
gression [45] and other generalized linear models [46]. Unlike
the present paper, none of these works contain a rigorous
statistical analysis.

Lastly, as indicated at the beginning of the introduction,
there is a separate line of research focusing on parameter
estimation under mismatch error in the response given at
least a fair amount of knowledge about the linkage process.
We refer to the surveys [10, 47]. Recovery of the underlying
permutation is not considered in those works.

1.1 Problem statement

We consider a regression setup in which the response
and the predictor variables are contained in two files Fx =
{xj}Nj=1 ⊂ R

d and Fy = {yi}ni=1 ⊂ R, respectively, n ≤ N .
Record linkage yields a merged file Fx��y = {(x�i , yi)}ni=1

with �i �= �j for i �= j, i.e., resulting from complete and one-
to-one linkage of Fx and Fy. Linkage is typically based on ad-
ditional contextual information (matching variables); how-
ever, we generally assume herein that only the merged file
Fx��y is given and no further information about the linkage
process is available. The case N = n applies to “sample-to-
sample” linkage, with two pieces of information pertaining
to the same set of entities collected via two separate sam-
ples; the case N > n applies to “sample-to-register” link-
age [26], which occurs, e.g., when linking population surveys
conducted on a sample of individuals to an administrative
database (see, e.g., [48] for an example of contemporary in-
terest). Following [9, 11, 10, 26], we assume that each xj

is associated with a corresponding latent response variable
y∗j , 1 ≤ j ≤ N , while yi = y∗π∗(i), 1 ≤ i ≤ n, for a map

π∗ : {1, . . . , n} → {1, . . . , N}. For simplicity, we refer to π∗

as “permutation” even if N > n. The linked pair (x�i , yi)
is called a mismatch if π∗(i) �= �i, 1 ≤ i ≤ n. Without loss
of generality, we assume that �i = i, 1 ≤ i ≤ n, so that
Fx��y = {(xi, yi)}ni=1.

In this paper, we assume that the distribution of y∗j |xj ,
1 ≤ j ≤ N , follows a generalized linear model (GLM) [22],
i.e., the corresponding conditional density is given by

(1) fj(y;ϑj) = exp

{
yϑj − ψ(ϑj)

a(φ)
+ c(y, φ)

}
,

where ϑj and φ are referred to as natural parameter and
scale parameter, respectively, and a(·), ψ(·), and c(·) are all
known functions referred to as scale function, cumulant, and
partition function, respectively; unless stated otherwise, we
assume GLMs with canonical link or canonical parameter-
ization, i.e., ϑj = ηj := x�

j β
∗, 1 ≤ j ≤ N . The {ηj}Nj=1

are referred to as linear predictors based on a regression pa-
rameter β∗ of interest. To simplify notation, the intercept is
typically absorbed into the {xj}Nj=1 even though occasion-

ally we spell out its presence by writing ηj = β∗
0 + x�

j β
∗,

1 ≤ j ≤ N . If {(xj , y
∗
j )}Nj=1 were given, an estimate for

β∗ could be obtained by minimizing the following negative
log-likelihood corresponding to (1):

(2) min
β∈Rd

�∗(β), �∗(β) := −
N∑
j=1

{y∗jx�
j β − ψ(x�

j β)}.

However, inference for β∗ based on the merged file
{(xi, yi)}ni=1 is in general far from straightforward due to
the presence of mismatches. It is well known that the näıve
approach that amounts to substitution of {(xj , y

∗
j )}Nj=1 in

(2) by {(xi, yi)}ni=1 can exhibit massive bias even if the frac-
tion of mismatched pairs is small. A natural alternative is
to consider the joint negative log-likelihood of both β∗ and
the unknown permutation π∗:
(3)

min
β∈Rd, π∈P(n,N)

�(β, π), �(β, π) := −
n∑

i=1

{yix�
π(i)β−ψ(x�

π(i)β)},

where P(n,N) = {π : {1, . . . , N} → {1, . . . , n}},
π is injective; we shall use P(n) as a shorthand for all per-
mutations of {1, . . . , n}. Note that the symbol π refers to
a generic element of P(n,N), whereas π∗ is used for the
underlying parameter.

Recent results on the linear model, which corresponds
to ψ(z) = z2/2, imply that the optimization problem (3)
is intractable [30, 24]. Moreover, putting computational in-
tractability aside, the minimizer of (3) fails to yield consis-
tent estimators of β∗ or π∗ without suitable lower bounds
on ‖β∗‖22/φ2 [30, 24, 23, 16].

An alternative viewpoint is to think of π∗ as a (latent)
random variable depending on contextual information used
for linking Fx and Fy, and to focus on inference for β∗.
At a high level, this is the strategy adopted in [11, 8, 10].
The success of this line of work shows that it is well possi-
ble to obtain accurate estimators of β∗ if, loosely speaking,
the distribution of π∗ is concentrated on a subset of P(n,N)
of manageable size. As elaborated below, the effectiveness of
this approach can be particularly well understood in the sit-
uation that π∗ is known to “block-structured” into a good
number of blocks, where the blocks arise from contextual
information (cf. Figure 1). In the absence of the latter, a
similar reduction can be achieved under the assumption that
mismatches occur sparsely in Fx��y in the sense that π∗(i) �=
i is the exception rather than the rule, that is the fraction
kn/n is “small”, where kn = |{1 ≤ i ≤ n : π∗(i) �= i}| de-
notes the number of mismatches. This assumption is often
justifiable given that record linkage tends to provide largely
accurate albeit not perfect matchings, particularly if rich
contextual information is available when linking Fx and Fy
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even though such information may not be available to the
analyst of Fx��y. At the same time, it is well known that
even small fractions kn/n can significantly disrupt subse-
quent regression [5].

While past work on the subject has predominantly fo-
cused on estimation of the regression parameter, there is a
clear path towards estimating the permutation π∗. In fact,
for any fixed β, the optimization problem in π only, i.e.,

min
π∈P(n,N)

−
n∑

i=1

{yix�
π(i)β − ψ(x�

π(i)β)}

= min
π∈P(n,N)

−
n∑

i=1

{yix�
π(i)β −Ψπ(i)},

Ψ :=
(
ψ(x�

i β)
)N
i=1

,

(4)

is a specific instance of a linear assignment problem (LAP),
a well-studied class that can be solved efficiently by linear
programming as well as tailored algorithms [49].

This observation suggests the estimation of π∗ based on
(4) with β replaced by an estimator of β∗. The accuracy
of this scheme has not been studied for generalized linear
models with the exception of the Gaussian linear model [27,
23]. Below, we present some first insights into this questions
for other selected generalized linear models.

Outline. In §2, we present our approach for estimation of
the regression parameter, and investigate its properties the-
oretically as well as empirically via simulations. Section §3
is devoted to permutation recovery for known regression pa-
rameter, i.e., (4) above with β = β∗. A comparison of the
proposed approach and the methods by Lahiri-Larsen and
Chambers is provided in §4 and §5, which also contains a
case study on real data. We conclude with a summary and
an overview on potential directions of future research in §6.

1.2 Notation

For the convenience of the reader, we here collect essential
notations used in this paper. For a positive integer �, 1� and
I� denote the vector of ones and the identity matrix, respec-
tively, of dimension �. The n-by-d design matrix associated
with covariates {xi}ni=1 contained in the merged file Fx��y

is denoted by X; unless noted otherwise, we assume that X
includes the column for the intercept (i.e., X = [1n X0]).
Likewise, the values for the response in Fx��y are collected
in a vector y = (yi)

n
i=1. The function I(·) represents the in-

dicator function with value one if its argument is true and
zero else. With some abuse of notation, if f is a function
of a single argument and v is a vector of dimension �, we
write f(v) for (f(v1), . . . , f(v�))

�. We let a∨ b = max{a, b}
and a ∧ b = min{a, b}. We make use of the usual Landau
notation in terms of O, o, Ω and Θ. We often use a � b,
b � a, and a 
 b as shortcuts for a = O(b), b = Ω(a) and
a = Θ(b), respectively. Numerical constants are denoted by
C,C ′, C1, c, c1 etc. whose values may change from line to

line. We use the symbols η and μ (with varying subscripts)
to refer to the linear and conditional expectation of the re-
sponse y given covariates x. The associated mappings (the
link function and its inverse) are denoted by g and h, re-
spectively, as depicted in the diagram below.

μ = E[y|x]μ = E[y|x]
η = x�β
η = x�β

h(·) = ψ′(·)

g(·) = h−1(·)

2. ESTIMATION OF THE REGRESSION
PARAMETER

In this section, we formulate our approach for estimating
the regression parameter in GLMs in the presence of mis-
match error, i.e., in the setting outlined in §1.1. A bound
on the �2-estimation error of the proposed approach is pre-
sented subsequently, which is complemented by numerical
results based on simulated data.

2.1 Approach

Defining o∗i = (xπ∗(i) − xi)
�β∗, we have that yi|xi, o

∗
i

follows a GLM with linear predictor ηπ∗(i) = x�
i β

∗ + o∗i ,
1 ≤ i ≤ n. Clearly, π∗(i) = i implies that o∗i = 0 and in
turn ηπ∗(i) = ηi = x�

i β
∗, 1 ≤ i ≤ n. Accordingly, the un-

derlying idea is to a fit a generalized linear model in which
each linear predictor is augmented by an individual “dummy
variable” or “offset” in order to account for potential mis-
matches. Without additional constraints or regularization,
such approach is not meaningful since it is overparameter-
ized and trivially achieves perfect fit. However, in a sparse
mismatch regime with π∗(i) = i holding for all except for
kn indices, the use of sparsity-promoting penalties like the
�1-penalty becomes a natural choice. This gives rise to the
following formulation: for θ ∈ R

d+n, we consider the parti-
tioning θ = [β� ξ�]� with β ∈ R

d and ξ ∈ R
n. We then

consider estimation based on minimizing the penalized neg-
ative log-likelihood given by

�pen(θ) = �(θ) + λ‖ξ‖1,

�(θ) :=
1

n

{
−〈Xβ +

√
nξ,y〉+

n∑
i=1

ψ(x�
i β +

√
nξi)

}
,

(5)

where X is the usual design matrix with rows {x�
i }ni=1, y =

(yi)
n
i=1, and λ ≥ 0 is a tuning parameter whose choice will

be discussed below. In (5), the dummy variables ξ = (ξi)
n
i=1

are in correspondence to the {o∗i }ni=1 above; re-scaling by
n−1/2 is done exclusively to ensure that the �2-norms of the
columns of the augmented design matrix [X

√
nIn] are all

of the order
√
n, which is beneficial to the presentation of

the theoretical analysis of (5) in §2.4 below1.

1The requirement that the column norms scale as
√
n is standard in the

analysis of estimators for high-dimensional (generalized) linear models,
cf. [15, §7.1.2].
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Algorithm 1 Block coordinate descent algorithm for (5)

Initialize ξ̂(0) = 0 and β̂(0) as the ordinary GLM estimate based on (X,y).
1. Update for ξ:

ξ̂
(t+1)
i ← I

{
|yi − μ̂

(t)
i |√

n
− λ > 0

}
·

(
(ψ

′
)−1(yi − siλ)− η̂

(t)
i

)
√
n

, si = sign(yi − μ̂
(t)
i )

√
n, 1 ≤ i ≤ n.

2. Update for β :

β̂(t+1) ← β̂(t) + (X�W (t)X)−1X�(y − ψ
′
(Xβ̂(t) +

√
nξ̂(t+1)))

where η̂
(t)
i = x�

i β̂
(t), μ̂

(t)
i = ψ

′
(η̂

(t)
i ), V

(t)
i = ψ

′′
(η̂

(t)
i +

√
nξ̂

(t+1)
i ), 1 ≤ i ≤ n, and W (t) = diag{V (t)

i }ni=1.

Formulations of the form (5) or similar have been consid-
ered in prior work in different contexts. The use of dummy
variables to deal with data contamination in (ordinary) lin-
ear models has been discussed in She & Owen [44], Laska et
al. [50], Nguyen & Tran [51], and more recently in Bhatia et
al. [52]. Extensions to generalized linear models have been
proposed in [45, 46, 53]. Slawski & Ben-David [23] study and
analyze this approach in detail for mismatch contamination
in linear models, and the present paper arises as a direct ex-
tension of their work. It is worth emphasizing that despite
prior work on the formulation (5), the latter has not been
studied specifically for mismatch contamination. Moreover,
none of the earlier works [45, 46, 53] contain a complete
theoretical analysis as provided herein.

We note in passing that (5) can be applied broadly
in situations beyond linkage of Fx and Fy. For example,
rather common situations are (i) a subset of the covari-
ates is contained in the same file in the response, (ii)
file linkage involves more than two files, each containing
different subsets of the covariates and/or the response.
Both (i) and (ii) can be addressed via (5) based on suit-
able choices of the variables {o∗i }ni=1 (cf. supplement for
a detailed discussion (http://intlpress.com/site/pub/files/
supp/sii/2023/0016/0003/SII-2023-0016-0003-s001.pdf)).

2.2 Computation

There are various ways of solving the convex optimization
problem (5). A particularly suitable approach that exploits
structure specific to (5) is block coordinate descent with
blocks formed by β and ξ, respectively. The key observation
is that for any fixed value of β, minimization over ξ can be
performed in closed form via a soft thresholding-type update
[54]. On the other hand, note that for any fixed ξ minimiza-
tion with respect to β amounts to fitting the underlying
GLM with offset

√
nξi for observation i, 1 ≤ i ≤ n. Since

the proposed algorithm is already iterative, alternating be-
tween updates of β and ξ, we only perform a single iteration
of weighted least squares (aka Fisher Scoring) when updat-
ing β; this is equivalent to minimizing the quadratic Tay-
lor approximation of the objective (with ξ treated as fixed)

around the current iterate β̂(t). A schematic description of
the algorithm is provided below.

Given extensive numerical experience, Algorithm 1 con-
verges in practice after few iterations. In order to establish
convergence theoretically, the two updates above would need
to be combined with a suitable mechanism for step size se-
lection [55]. Since the latter is standard in the optimization
literature, we refrain from discussing this aspect in detail to
avoid digressions.

2.3 Incorporating blocking variables

Recall that o∗i = (xπ∗(i) − xi)
�β∗, 1 ≤ i ≤ n. Note that

if N = n so that π∗ is a permutation, it is easy to see
that

∑n
i=1 o

∗
i = 0. As a result, the additional constraint∑n

i=1 ξi = 0 may be added to the optimization problem
(5). This observation can be put to much more use if π∗ is
known to be “block-structured” in the sense that the data
set can be partitioned into disjoint groups G1, . . . , GK ⊂
{1, . . . , n} such that i ∈ Gj for some j ∈ {1, . . . ,K} implies
that π∗(i) ∈ Gj , 1 ≤ i ≤ n; in other words, the permutation
only moves indices within, but not across groups. With the
same reasoning as above, we then have

∑
i∈Gj

o∗i = 0, which

accordingly yields the constraints
∑

i∈Gj
ξi = 0, 1 ≤ j ≤ K,

to be added to (5). Specifically, this yields the optimization
problem

(6) min
θ

�(θ) + λ‖ξ‖1 subject to Cξ = 0,

where C ∈ R
K×n has entries Cji = 1 if i ∈ Gj and zero

otherwise, 1 ≤ j ≤ K, 1 ≤ i ≤ n. In particular, in the
case of singleton groups with Gj = {i} for i ∈ {1, . . . , n},
it immediately follows that ξi = 0 and the corresponding
variable can be eliminated in (6). If K is large, this yields a
substantial number of extra constraints whose integration in
(6) can considerably boost performance relative to the un-
constrained minimizer not taking any advantage of the block
structure of π∗. The latter arises when additional knowledge
about the linkage process is available. More specifically, it
is common that matching records are known to agree on
certain combinations of variables present for the records in
both Fx and Fy (e.g., demographic variables such as gender,
age, and/or race, approximate geographical location based
on ZIP code, approximate time stamps, etc.). Those vari-
ables are typically referred to as blocking variables, and the
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corresponding groups {Gj}Kj=1 are given by subsets of ob-
servations sharing the same values for all blocking variables.

In summary, while the approach (5) works without any
knowledge about the linkage process and the existence of
blocking variables, it is possible to achieve enhancements if
such information is available. This aspect is investigated in
detail in §5.

2.4 Analysis

In the sequel, we derive a non-asymptotic upper bound
on the �2-error ‖θ̂ − θ∗‖2, where θ∗ = [β∗� ξ∗�]� with

ξ∗i = 1√
n
(xπ∗(i) − xi)

�β∗ and θ̂ = [β̂� ξ̂�]� denotes a min-

imizer of �pen in (5). We henceforth drop the dependence
on the number of mismatches k on n and simply write k
instead of kn. Before stating the final result in Theorem 1,
we present and discuss the assumptions underlying that re-
sult. Our analysis generalizes results in [23] concerning the
ordinary linear model.

Assumptions and Conditions.

(A) The rows {xi}ni=1 of X are i.i.d. copies of a random
vector x with the following properties: 1) there exists
a positive definite matrix Σ with uniformly bounded
eigenvalues, i.e., σminId � Σ � σmaxId, such that〈
v,Σ−1/2x

〉
is a sub-Gaussian random variable with

sub-Gaussian norm at most γ for all v ∈ R
d∗, 2) there

exists a constant r > 0 such that P(‖x‖2 ≤ r) = 1.

We note that (A) allows for the inclusion of an intercept
by requiring that the first component of x equals one with
probability one. In addition, the entries of x neither need
to be mean zero nor uncorrelated; with Σ = E[xx�] chosen
as the population second moment matrix, only uniform up-
per and lower bounds for its eigenvalues are required. The
condition that the essential support of x is contained in an
�2-ball of bounded radius is imposed to ensure bounded lin-
ear predictors, as further elaborated below. Note that if x is
sub-Gaussian with unbounded support (e.g., x ∼ N(0, Id)),
the truncation T (x) := xI(‖x‖2 ≤ r) + rx

‖x‖2
I(‖x‖2 > r)

conforms with (A).

(C1) There exist sequences νn, εn = o(1) as n → ∞ such
that ‖∇�(θ∗)‖∞ ≤ νn with probability at least 1− εn.

(C2) There exists a sequence ε′n = o(1) as n → ∞ and
constants R > 0, 0 < λR ≤ ΛR < ∞ such that with
probability at least 1− ε′n

min
1≤i≤n

min
u:‖u‖2≤R

ψ′′
i (θ

∗ + u) ≥ λR,

32

σmin λR
(λ+ νn)

√
d+ k ≤ R, (#)

max
1≤i≤n

max
u:‖u‖2≤R

ψ′′
i (θ

∗ + u) ≤ ΛR.

∗cf., e.g.,[56, §2.5] for a concise discussion of sub-Gaussian random
variables and their properties.

where θ �→ ψi(θ) := ψ(x�
i β +

√
nξi) and ψ′′

i (θ) :=
d2

dz2ψ(z)
∣∣∣
z=x�

i β+
√
nξi

, 1 ≤ i ≤ n.

Condition (C1) holds under assumption (A) with νn =

C
√

log(d+n)
n and εn = c/n if additionally at least one of

the following two properties holds [28]:

(i) ψ′′ is uniformly bounded,

(ii) E[max|u|≤1 ψ
′′(x�β∗ + u)α] ≤ B for some α ≥ 2

and 0 < B < ∞.

In particular, property (i) is satisfied for logistic regression,
while property (ii) is satisfied for Poisson regression if ‖β∗‖2
is uniformly bounded, which together with the bounded-
ness assumption P(‖x‖2 ≤ r) = 1 in (A) implies that
x�
i β

∗+
√
nξ∗i = x�

π∗(i)β
∗, 1 ≤ i ≤ n, are uniformly bounded.

Boundedness of the {xi}ni=1 and of β∗ is also needed for
(C2) to hold since ψ′′ can generally only be lower and upper
bounded on a compact interval; as a result, similar bound-
edness assumptions are commonly imposed in the literature
(e.g., [57, Definition 8.1], [58, Example 1]).

Note that in (C2), a valid radius R needs to satisfy the
condition (#) for the error bound in Theorem 1 below not
to be vacuous. With the choice λ 
 νn as indicated by that
theorem, and the scaling νn �

√
log(d+ n)/n as discussed

above, (#) is of the form

(7)
C ′

σminλR

√
log{d+ n}(d+ k)

n
≤ R,

which translates to a condition on the sample size of the
form n ≥ CR σ2

min log{d+n} (d+k), where CR is a constant
depending on R. In turn, the latter condition restricts the
number of mismatches k to be at most of the order n/ logn.
The left hand side of (7) coincides with the bound on the �2-
estimation error stated in the theorem below, which asserts

consistent estimation given log{d+n} (d+k)
n → 0 and νn, λ

scaling as discussed above.

Theorem 1. Suppose that assumption (A) and conditions

(C1), (C2) hold. Consider any minimizer of θ̂ of �pen in
with λ = λn chosen such that 2νn ≤ λ ≤ Cνn for some
C > 0. Then there exists constants C ′ > 0, c ∈ (0, 1), so

that if n ≥ C ′ σmax

σmin
·
(

ΛR

λR

)2 {
(d + k) log

(
n

d+k

)
∨ logn

}
, it

holds that

‖θ̂− θ∗‖2 ≤ inf

{
0 < r ≤ R : r >

32

σmin λR
(λ+ νn)

√
d+ k

}
with probability at least 1− εn − ε′n − 2/n.

In addition to the condition on the sample size implied by
(7), the above statement involves a second condition on n
which is slightly less stringent in terms of the required ratio
n/(d + k), but additionally involves a dependency on the
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condition number of Σ and the Hessian of ψ in a neighbor-
hood around the true parameter, none of which, however,
entails any additional requirements beyond (A), (C1), and
(C2).

Theorem 1 qualitatively aligns with earlier results in [23]
concerning the linear model. While the latter is covered by
the analysis above, the underlying assumptions and condi-
tions can be considerably relaxed or simplified in this case.

2.5 Simulations

We here present selected simulation results that are in-
tended to corroborate and complement the analyis of the
previous section; additional simulation results can be found
in the supplement [59]. Data is generated according to model
(1) with n = 1000, d = 50, and the entries of β∗ are drawn
i.i.d. from the N(0, 1)-distribution, and subsequently nor-
malized so that the �2-norm equals a specific value (see be-
low). The entries of the design matrix are drawn from the
uniform distribution on the interval [−

√
3,
√
3]2. The follow-

ing distributions for the response are considered.

• Poisson: intercept β∗
0 = 2, ‖β∗‖2 = 2,

• Binomial : the number of Bernoulli trials per observa-
tion is fixed as m = 25, β∗

0 = 2, and ‖β∗‖2 = 4; the case
of binary response (m = 1) is discussed in a dedicated
paragraph.

• Gamma: the shape parameter is fixed as ν = 50 (or
equivalently, the dispersion parameter φ is set to 1/ν),
β∗
0 = 8 and ‖β∗‖2 = 2.

We do not present results on Gaussian response, and instead
refer to [23].

The map π∗ is drawn uniformly at random from the set
of permutations on {1, . . . , n} that move exactly k indices,
where k/n ∈ {0.05, 0.1, . . . , 0.4}3.

In alignment with Theorem 1, the regularization parame-

ter λ is chosen as λ = C ·σy ·
√

log(n+d)
n , where C is referred

to as “tuning constant” and σy is a calibration factor de-
pending on the distribution of the response. The calibration
factor is chosen as an approximation of the expected stan-
dard deviation of the response variables {yi}ni=1, where the
expectation is taken with respect to the random predictors4.
The use of σy is motivated by results on linear regression in
[23] and an analysis of the �2-estimation error for ξ∗ if β∗

were known (omitted for space reasons). In practice, σy can

2For space reasons, we here only present results for this specific class
of random designs. Additional simulation results contained in the sup-
plement show that the outcome is similar for a wide range of random
designs.
3This can be achieved by first selecting a random subset of size k, and
then generating a random permutation of that subset (if the resulting
permutation happens to have a fixed point, it is rejected and drawn
again).
4This expectation is evaluated using numerical integration, approxi-
mating the linear predictor by a N(β∗

0 , ‖β∗‖22)-random variable justi-
fied by the central limit theorem.

be approximated by taking the average of the variance func-
tion of the corresponding GLM evaluated at the {yi}ni=1; in
order to enable Figure 2 that is specifically dedicated to the
selection of λ, the factor σy is fixed so that it does not vary
across different randomly generated data sets.

For each triplet (β∗
0 , ‖β∗‖2, k/n), 100 independent repli-

cations are considered. The following approaches are com-
pared.
“naive”. Plain GLM estimation based on {(xi, yi})ni=1 with-
out adjustment for mismatches. Note that the fitted val-
ues of this approach coincide with those of the proposed
approach (see below) if λ ∈ (λmax,∞), where λmax =

‖∇ξ�(θ̂
naive)‖∞ and θ̂naive = ((β̂naive)� 0�

n )
� with β̂naive

denoting the plain GLM estimate; this is an immediate con-
sequence of the KKT conditions of (5).
oracle. Plain GLM estimation based on the mismatch-free
data {(xi, y

∗
i )}ni=1.

“proposed”. θ̂(λ) = (β̂� ξ̂�)� is estimated according to
Algorithm 1 with λ chosen as explained above. The tun-
ing constant C is varied over a logarithmically spaced grid.
When presenting the results in Figure 3, we display the ora-
cle selection of λ = λ(C) minimizing ‖θ̂(λ)− θ∗‖2 as well as
the range of a quantity of interest for C ∈ [CLower, CUpper],
where CLower and CUpper are fixed numbers. The resulting
upper and lower bounds over this range are complemented
by confidence bars with height 5× standard error. Figure
2 displays explicitly how the (normalized) estimation error

‖θ̂ − θ∗‖2/‖θ̂naive − θ∗‖2 depends on the choice of C; the

division by ‖θ̂naive − θ∗‖2 with θ̂naive defined under “naive”
makes the results interpretable across different settings.
Lahiri-Larsen (LL) and Chambers’ (C) method. These are
well-established baselines for the given problem; a detailed
discussion and comparison is postponed to §4. Both methods
are provided with the correctly specified expected permuta-

tion matrix Q = E[Π∗] = (1 − k/n)In + k/n
n−11n, where 1n

denotes an n-by-n matrix of ones. For Poisson regression,
in about 30% of the cases, the two estimators could not be
obtained since roots of the underlying estimating equations
could not be found (this issue is not unexpected, and elab-
orated on in the supplement); these problematic instances
are excluded when reporting results. For binary response
(cf. Figure 4), the same issue persists in the vast majority
of instances, and we hence refrain from a comparison alto-
gether.

The above four approaches are evaluated in terms of
their �2-estimation error for the regression parameter, i.e.,
‖βest−β∗‖2, and the deviance (Kullback-Leibler divergence)
between μ∗ = E[y∗|x] and μest =

(
h(x�

i β
est)

)n
i=1

, where we
recall that h(·) denotes the response function in GLMs. The
notation βest represents a placeholder for any of the three
estimators introduced above. The results shown in Figures
2, 3 and 4 are averages over the 100 replications obtained
for each setting.

Figure 2 confirms that as the tuning constant C increases,
the error ratio approaches one as expected since θ̂ → θ̂naive
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Figure 2. Estimation error ratios ‖θ̂ − θ∗‖2/‖θ̂naive − θ∗‖2 in dependence of the tuning constant C appearing in the tuning
parameter λ.

Figure 3. Average estimation errors ‖βest − β∗‖2. The lower and upper boundary of the shaded area show the minimum and
maximum error over all choices of the tuning constant C ∈ [0.1, 2], and the corresponding dashed lines represent ±5 ×

standard error.

Figure 4. Average deviances between μ∗ and μest for Bernoulli response. The lower and upper boundary of the shaded area
show the minimum and maximum error over all choices of the tuning constant C ∈ [0.5, 2], and the corresponding dashed

lines represent ±5 × standard error.

as C grows. Second, we note that the error ratio increases
sharply beyond one as C → 0; this corresponds to a regime
of overfitting. Note that as C → 0 the proposed approach ef-
fectively yields an over-parameterized model achieving per-
fect fit on a given data set. This in agreement with Theorem
1 which requires a lower bound on λ for its results to hold.

Figure 2 indicates that C ∈ [0.2, 1] typically yields satisfac-
tory results independent of the specific setting or the specific
distribution of the response variable.

Average estimation errors for the regression parameter
are shown in Figure 3. Shaded areas are used to represent
the error range for the proposed approach in dependence of
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the tuning constant C: the upper and lower margins of the
shaded areas represent the maximum and minimum error
over C ∈ [0.1, 2], while the dashed lines outside the shaded
areas indicate ±5 × standard error. Overall, Figure 3 shows
that the proposed estimator can achieve substantial im-
provements over the naive estimator in a variety of settings.
The extent of the improvement generally increases with the
fraction of mismatches and the signal level as measured by
‖β∗‖2. The Lahiri-Larsen (LL) and Chambers’ methods (C)
mostly improve over the naive estimator as well, with a per-
formance that often still falls within the error range (grey
region) of the proposed method even though the latter has
a visible edge over these two baselines when evaluating the
entirety of simulation settings (cf. supplement), particularly
with a (near) optimal selection of the tuning parameter.

Binary response. We now address the case of binary logis-
tic regression. Note that this case behaves differently from
the three distributions for the response considered above,
including binomial response with a significant number of tri-
als: it is clear that a massive number of samples is required
in order to estimate β∗ accurately from binary response if
‖β∗‖2 is large; at the same time, if ‖β∗‖2 is small, the sep-
aration between the two classes corresponding to the two
values of the response variable is weak and thus the inherent
noise is scarcely distinguishable from mismatch error in the
response variable, which amounts to what has been exten-
sively studied in the machine learning literature under the
terms “label noise” (e.g., [60]). For this reason, we adopt the
simulation setup above with sufficiently strong signal, i.e.,
‖β∗‖2 ∈ {4, 6, 8} while β∗

0 = 2, but the three competitors
are evaluated in terms of the deviance between μ∗ and μest

rather than in terms of the estimation error for the regres-
sion parameter. Figure 4 shows that the proposed approach
achieves improvements over the naive estimator, but the im-
provements are less pronounced than for the three other set-
tings. The observed moderate improvement is in alignment
with what is reported in the paper [45] that studies the em-
pirical performance of the proposed estimator exclusively in
the setting of binary response with noisy labels.

3. PERMUTATION RECOVERY

In this section, we study the maximum likelihood (ML)
estimator π̂ of π∗ for known β∗ (4). While the assumption of
known β∗ may appear limiting, the results of this section can
still be useful from at least two considerations: first, it is not
unreasonable to expect that they continue to be valid if β∗

is replaced by an accurate estimator; second, they provide
some insights into what is at best achievable in practice.
The first result states that ML estimation of π∗ for known
β∗ is computationally tractable as already indicated in the
introduction of this paper.

Proposition 1. Consider ML estimation of π∗, i.e., opti-
mization problem (4) for β = β∗.

(a) We have

min
π∈P(n,N)

−
n∑

i=1

{yix�
π(i)β

∗ − ψ(x�
π(i)β

∗)}

= min
Π∈B(n,N)

tr(C�Π) = min
Π∈P(n,N)

tr(C�Π),

where B(n,N) and P(n,N) denote the sets of binary and
non-negative n-by-N matrices, respectively, with unit row
sums and column sums bounded by one, and the entries
of the matrix C = (Cij) are given by Cij = −yix

�
j β

∗ +

ψ(x�
j β

∗), 1 ≤ i ≤ n, 1 ≤ j ≤ N .
(b) In particular, if n = N ,

min
π∈P(n)

−
n∑

i=1

{yix�
π(i)β

∗ − ψ(x�
π(i)β

∗)}

= min
π∈P(n)

−
n∑

i=1

yix
�
π(i)β + c = −

n∑
i=1

y(i)(x
�β∗)(i) + c,

(8)

where c =
∑n

i=1 ψ(x
�
i β

∗) and the subscript (i) refers to the
i-th order statistic, i.e., for v = (vi)

n
i=1, v(1) ≤ . . . ≤ v(n).

Proposition 1 (a) states that the MLE π̂ of π∗ can be ob-
tained by a solving a linear assignment problem, a specific
linear program (cf., e.g., [49]). Part (b) on the case n = N
states that π̂ is given by the permutation that pairs the cor-
responding order statistics of {x�

i β
∗}ni=1 and {yi}ni=1. For

later reference, we note that the conclusion of part (b) with
regard to the form of π̂ continues to hold if the link function
is not the canonical link. This is an immediate consequence
of the fact that π̂ is invariant under monotonically increasing
transformations of {x�

i β
∗}ni=1. The proof of Proposition 1

follows from existing results on linear assignment problems
[49] and is omitted.

For the remainder of this section, we suppose that N = n
and present sufficient conditions for specific GLMs under
which π̂ achieves perfect recovery in the sense of {π̂ = π∗}5.
We refrain from presenting a unified analysis applicable to
an entire class of GLMs for two reasons: first, sharper results
can be obtained from case-specific analysis; second, permu-
tation recovery turns out to be entirely or at least largely
infeasible for a variety of GLMs, e.g., i) binomial response
with a small number of trials due to excessive ties among the
{yi}ni=1, ii) exponential response with canonical (i.e., recip-
rocal) link since in this case recovery fails for a wide range
of random designs (cf. Theorem 3 below).

3.1 Recovery results

We start the presentation of our results by conditioning
on the predictors {xi}ni=1, and hence for fixed conditional
expectations of the responses. The extension to random pre-
dictors is considered subsequently.

5The assumption N = n is not believed to be essential, and we ex-
pect that similar results can be established for the general case at the
expense of a considerably more complex exposition.
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In this subsection, it is appropriate to distinguish between
random variables {Yi}ni=1 and their realizations {yi}ni=1. We
let μi = E[Yi|xπ∗(i)] = h(x�

π∗(i)β
∗), 1 ≤ i ≤ n, where h

denotes the inverse link function of the underlying GLM.
Unless stated otherwise, h refers to the canonical link.

Theorem 2. Suppose without loss generality that μ1 ≤
μ2 ≤ · · · ≤ μn, and consider the MLE π̂ given by the min-
imizer of (8). For any δ > 0, we have P(π̂ �= π∗|X) < δ
if

(a) Yi ∼ N(μi, σ
2), 1 ≤ i ≤ n :

min
1≤i≤n−1

(μi+1 − μi) > 2σ
√

log n−1
δ ,

(b) Yi ∼ Poisson(μi), 1 ≤ i ≤ n :

min
1≤i≤n−1

(
√
μi+1 −

√
μi) >

√
log n−1

δ ,

(c) Yi ∼ Gamma(ν, μi), 1 ≤ i ≤ n :

min
1≤i≤n−1

μi+1

μi
> 4

(
n−1
δ

)1/ν
.

Part (a) already appears in similar form in [23]. Part (b)
can be linked to (a) by noting that the standard deviation
of a Poisson random variable with mean μ equals

√
μ. Sub-

stituting σ in (a) by
√
μ
i
and dividing both sides by this

quantity then approximately yields (b). Part (c) can be un-
derstood according to a similar heuristic: observing that the
standard deviation of Yi ∼ Gamma(ν, μi) is given by μi/

√
ν,

1 ≤ i ≤ n, substituting σ in (a) by μi yields a requirement
on the ratio μi+1/μi. Note that for ν 
 logn, the ratios
need to exceed a constant factor C > 1, which still requires
μn/μ1 = Cn−1. For the exponential distribution, ν = 1, and
there is thus little hope that (c) can be satisfied in practice
even for small n.

Building on Theorem 2, we next consider random predic-
tors {xi}ni=1, thereby providing specific examples of designs
in which the recovery conditions are satisfied with high prob-
ability.

Theorem 3. Consider the MLE π̂ given by the minimizer
of (8). Suppose that the {xi}ni=1 are i.i.d. random vectors
with independent, unit variance entries whose densities are
bounded by M < ∞ almost everywhere. For any δ > 0, we
have P(π̂ �= π∗) < δ if

(a) Yi ∼ N(μi, σ
2), 1 ≤ i ≤ n :

‖β∗‖22 > 8σ2M2n2(n−1)2

δ2 log
(

n(n−1)
δ

)
,

(b) Yi ∼ Poisson(μi), 1 ≤ i ≤ n :

‖β∗‖22 > 16M2n2(n−1)2

δ2 log
(

n(n−1)
δ

)
,

and β∗
0/‖β∗‖2 is such that

supu:‖u‖2=1 P
(
min1≤i≤n 〈u,xi〉 ≤ − β∗

0

‖β∗‖2

)
< δ/2,

(c) Yi ∼ Gamma(ν, μi), μi = exp(ηi), 1 ≤ i ≤ n :

‖β∗‖22 > M2n2(n−1)2

2ν2δ2

(
log 4

(
n(n−1)

δ

)1/ν
)2

.

Part (a) appears in similar form for isotropic Gaussian
{xi}ni=1 in [23]. The statement here extends that result to

a much broader class of designs, without imposing any con-
dition on the tails of the distribution of the {xi}ni=1. Part
(b) for the Poisson distribution involves an extra condition
compared to (a) which in essence requires a lower bound on
β∗
0/‖β∗‖2 to ensure that all of the {μi}ni=1 are sufficiently

bounded away from one with high probability. For example,
if the entries of the {xi}ni=1 are i.i.d. and symmetric around
zero, and β∗ = (1, . . . , 1)�, say, the resulting linear predictor
will assume negative values with probability 1/2 which then
translate to expectations between zero and one via the in-
verse link function (exponential). According to Theorem 2,
we need the spacing between the {μi}ni=1 to be at least pro-
portional to the corresponding standard deviations, which
is violated in the range [0, 1] since the standard deviations
are given by {√μi}ni=1. Depending on the distribution of
the {xi}ni=1, the condition on β∗

0/‖β∗‖2 can be made ex-

plicit: in the simplest case with {xi}ni=1
i.i.d.∼ N(0, Id), we

have {〈xi, u〉}ni=1
i.i.d.∼ N(0, 1) for any unit vector u, and it is

then not hard to show that the extra condition in (b) holds
if β∗

0/‖β∗‖2 ≥
√
2 logn +

√
log(2n/δ). Regarding part (c),

let us emphasize that the result here concerns the log-link
rather than the canonical (reciprocal) link. A recovery re-
sult for the latter appears out of reach since the use of the
reciprocal link would lead to a clustering of the {μi}ni=1 in
[0, 1] independent of β∗

0 for many common choices for the
distribution of the {xi}ni=1.

Incorporating blocking variables. Following up on the
discussion in §2.3, it is worth pointing out that permutation
recovery based on (8) decouples across blocks, and hence
can be performed in a block-by-block fashion. The recovery
conditions in Theorems 2 and 3 can be applied for each block
in that n gets replaced by the number of elements belonging
to the respective block, and are thus easier to satisfy. For
example, if nj = n/K, j = 1, . . . ,K, and δ = δ0/K for
a given failure probability δ0, it is easy to check that all
terms involving n − 1 get replaced by n/K − 1. This yield
substantial benefits particularly if n/K = O(1), i.e., in the
case of many small blocks.

Mismatch recovery. Note that (8) does not take advan-
tage of a sparse mismatch regime if the latter is known to
hold. Unfortunately, it turns out that replacing the mini-
mum in (8) by the minimum over all permutations moving
at most k indices gives rise to a considerably harder op-
timization problem unlike the simple solution via sorting
obtained in the absence of such constraint. In spite of this,
there is a natural workaround involving two steps: 1. iden-
tify the set of mismatches S∗ = {i : π∗(i) �= i}, 2. solve
the minimization problem in (8) restricted to the observa-
tions in S∗. With step 2. set and analyzed according to the
preceding theorems, it remains to consider step 1., which
we refer to as “mismatch recovery”. We suggest to address
this task by assessing the fit of each yi to its counterpart
μi = h(x�

i β
∗). Conditional on π∗(i) = i, the distribution of
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Figure 5. Hamming distance between π̂(β∗) and π∗ (on a log10(·+ ε) scale with ε = 0.001), averaged over 1000 replications.
Different curves correspond to different random design.

the yi is known, and we may thus evaluate

p∗i =

{
Pπ∗(i)=i(Yi ≥ yi) if yi ≥ μi

Pπ∗(i)=i(Yi ≤ yi) if yi ≤ μi, i = 1, . . . , n,

where the probability is with respect to the underlying ran-
dom variables {Yi}ni=1 conditional on π∗

i (i) = i, 1 ≤ i ≤ n.
Note that similar to the notion of p-value, small p∗i can be
considered as evidence against π∗

i (i) = i, 1 ≤ i ≤ n. Accord-
ingly, we may estimate S∗ as the set of indices corresponding
to the k smallest values among the {p∗i }ni=1; alternatively, if
k is unknown, we may estimate S∗ by {i : p∗i ≤ τ} for a
threshold τ ∈ (0, 1).

As an illustration, let us consider linear regression with
Gaussian errors. Observe that if π∗(i) = i, 1 ≤ i ≤ n, we
have for all t > 0

P
(
yi − x�

i β
∗ > σt

)
= P

(
yi − x�

i β
∗ < σt

)
= 1− Φ(t),

where Φ denotes the CDF of an N(0, 1)-random variable,
hence p∗i = 1 − Φ(|yi − x�

i β
∗|/σ), 1 ≤ i ≤ n. In order to

fix τ , a natural options is to require that
∑n

i=1 p
∗
i ≤ δ for

δ ∈ (0, 1) and thus p∗i ≤ δ/n, 1 ≤ i ≤ n. Using the standard
Gaussian tail bound 1− Φ(t) ≤ exp(−t2/2) for t > 0 yields
that p∗i ≤ δ/n once |yi − x�

i β
∗| > σ

√
2 log(n/δ), 1 ≤ i ≤ n.

Accordingly, in order for mismatches i with π∗(i) �= i
to be detectable, it is required that |(xπ∗(i) − xi)

�β∗| =

|μπ∗(i) − μi| ≥ 2σ
√
2 log(n/δ), which is almost identical to

the requirement in Theorem 2 (a). We conclude that mis-

match recovery, i.e., the estimation of S∗, and permutation
recovery obey similar regimes.

3.2 Simulation

We complement Theorems 2 and 3 with simulation re-
sults. The entries of the design matrix are sampled i.i.d. from
three unit-variance distributions: (i) standard Normal, (ii)
the uniform distribution on [−

√
3,
√
3], and (iii) (rescaled)

t-distribution with five degrees of freedom, and responses
are subsequently generated according to model (1) based on
the Normal distribution with identity link, and the Poisson
and Gamma distribution with log-link. The regression pa-
rameter β∗ is drawn uniformly at random from spheres in
dimension d of varying radii ‖β∗‖2. The intercept is taken
as β∗

0 = c · ‖β∗‖2 with c ∈ {0.5, 5}. The sample size is
fixed as n = 200. For each configuration consisting of the
distribution of the design matrix, the radius ‖β∗‖2, and
the value of β∗

0 , 1000 replications are performed. In each
replication, we evaluate the normalized Hamming distance
n−1

∑n
i=1 I(i �= π̂(i)), where π̂ is the minimizer of (8).

In light of Theorem 3, permutation recovery can be
achieved if and only if ‖β∗‖2 is large enough, and specifically
for Poisson case, if in addition β∗

0/‖β∗‖2 exceeds a certain
threshold. Figure 5 confirms this qualitatively. In particular,
we observe that the ratio β∗

0/‖β∗‖2 is crucial in the Poisson
case unlike the other cases. Furthermore, we note that the
distribution of the design does not have a significant impact
on the results: all three random design can achieve (at least
approximate) permutation recovery given sufficient signal as
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quantified by ‖β∗‖2. Finally, note that for the Gamma dis-
tribution, recovery results improve as the shape parameter
ν increases.

4. COMPARISON TO THE LAHIRI-LARSEN
& CHAMBERS METHODS

In this section, as a follow-up to the simulation study in
§2.5, we aim to provide a short comparison of the proposed
method and an established method whose prototype was
proposed in [8] and later extended to a wider class of regres-
sion models including generalized linear models [10], and will
hence be referred to as the Lahiri-Larsen (LL) method. A
closely related approach is due to Chambers [9, 26, 11]. The
former turns out to be somewhat easier to analyze in the
block-structured permutation setting outlined in §2.3 that
will also be adopted in the sequel. The ultimate goal of our
discussion is to delineate scenarios in which the proposed es-
timator tends to be superior and inferior, respectively, rela-
tive to the LL method. Both methods differ noticeably with
regard to the assumptions on π∗ and the required amount
of knowledge about the linkage process, and the regimes of
interest differ accordingly.

In a nutshell, the LL method assumes that y = Π∗y∗

with y∗
j |xj , 1 ≤ j ≤ N , following a GLM as specified in

§1.1 and Π∗ being a generalized random permutation matrix
associated with the map π∗ : {1, . . . , N} → {1, . . . , n} whose
(i, j)-th entry equals one if π∗(i) = j and zero otherwise,
1 ≤ i ≤ n, 1 ≤ j ≤ N . The LL method further assumes
that Π∗ is conditionally independent of y∗ given {xj}Nj=1

and that the corresponding conditional expectation of Π∗

is given by Q ∈ R
n×N . Let XN denote the design matrix

associated with the full set of covariates {xi}Ni=1
6. Equipped

with the above assumptions, it is readily shown that

X�
NQ�(y −Qμ∗(β)) = 0 ⇔

X�
NQ�(Π∗y∗ −Qμ∗(β)) = 0,

μ∗(β) :=
(
ψ′(x�

j β)
)N
j=1

(9)

is an unbiased estimating equation in the sense that

EΠ∗,y∗ [X�
NQ�(Π∗y∗ −Qμ∗(β∗))]

= Ey∗ [X�
NQ�Q(y∗ − μ(β∗))] = 0.

The estimator is particularly easy to understand in the set-
ting in which π∗ is a block-structured permutation (N = n)
as discussed in §2.3 and the additional assumption that
for each block Gj , the corresponding permutation is cho-
sen uniformly at random. Without loss of generality, let
Π∗ = bdiag(Π∗

1, . . . ,Π
∗
K) be the block diagonal matrix asso-

ciated with π∗. It then follows that

(10) Q = bdiag(1n1 , . . . ,1nK
),

6Relevant to the sample-to-register linkage setting only, cf. §1.1. Note
that XN = X if N = n.

where for any integer m, the symbol 1m denotes an m-by-m
matrix of ones, multiplied by 1/m. Since each matrix block
matrix is a projection (averaging operator), Q = Q� = Q2

is a projection as well. Note that even if the block-wise per-
mutations are not chosen uniformly at random, we may still
use (10) for Q in (9) to obtain an unbiased estimating equa-
tion since Q�Π∗ = Q for any permutation matrix Π∗ block-
structured as Q. Letting β̂LL denote a solution of this es-
timating equation, asymptotic theory implies that β̂LL is a
consistent estimator of β∗ with asymptotic covariance ma-
trix

(11) Ey[JΓ(β
∗)]−1 Covy(Γ(β

∗)) Ey[JΓ(β
∗)�]−1,

where Γ : Rd → R
d denotes the function defining the esti-

mating equation, and JΓ denotes the Jacobian of Γ. Straight-
forward calculations (cf. supplement for a derivation) yield
that

Ey[JΓ(β
∗)] = X�QV(β∗)X, Covy(Γ(β

∗))

= X�QV(β∗)QX,(12)

where V(β∗) is a diagonal matrix whose diagonal entries are
given by the variances of y∗i given by ψ′′(x�

i β
∗), 1 ≤ i ≤ n.

Note that for the inverse in (11) to exist, it is necessary that
the rank of the first matrix in (12) is at least d, which is
generally the case implied by the condition K ≥ d.

In the sequel, we shall argue that for a wide range of ran-
dom designs, the entries of (11) are of the order OP(K

−1),

i.e., the estimator β̂LL converges asymptotically at the same
rate, and that rate will be recovered exactly for linear re-
gression with Gaussian errors.

For this purpose, observe first that the rows of QX are
given by nj replications of xj = 1

nj

∑
i∈Gj

xi, 1 ≤ j ≤ K.

Accordingly, we have

Covy(Γ(β
∗)) =

K∑
j=1

∑
i∈Gj

ψ′′(x�
i β

∗)xjx
�
j ,

which scales as OP(K) for a wide range of random designs

that satisfy (i) xj = OP(n
−1/2
j ), 1 ≤ j ≤ K, and (ii)

ψ′′(x�
i β

∗) = OP(1), 1 ≤ i ≤ n. With a similar reasoning,
one also obtains Ey[JΓ(β

∗)] = OP(K) and thus in combina-
tion OP(K

−1) for the asymptotic covariance (11).
For linear regression with Gaussian errors, the same or-

der additionally holds in a non-asymptotic fashion. Note
that in this case, the underlying estimation equation has the
closed form solution β̂LL = (X�QX)−1X�Qy and hence

Cov(β̂LL) = φ2(X�QX)−1 = φ2
(∑K

j=1 njxjx
�
j

)−1

. The

same expression is obtained from (11) and (12) by using
V(β∗) = φ2Id and the fact that Q = Q2.

While the above discussion does not provide a compre-
hensive analysis of the estimator β̂LL given the focus on
a specific choice of Q in the setting of a block-structured
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permutation, we feel that this very choice is presumably
among the most relevant in practice. In their landmark pa-
per [8], Lahiri and Larsen consider the entries of Q being
taken as the probability that observation i in file Fx and ob-
servation j in File Fy are a match, 1 ≤ i, j ≤ n, computed
from the Fellegi-Sunter model [2] given a set of comparison
variables. However, it is generally not guaranteed that this
choice is misspecified. In addition, the LL method only as-
serts unbiasedness when averaging over random Π∗, whereas
in practice, the data analyst has to deal with a merged data
set arising from a single realization of Π∗. Choosing Q ac-
cording to (10) based on a uniform-at-random model within
blocks avoids these issues, producing an unbiased estimator
from the comparison of blocking variables only.

In light of the above findings and discussions, we summa-
rize advantages and disadvantages of the estimator β̂LL in
relation to the estimator (5) proposed herein.

Advantages.

• The estimator β̂LL does not rely on sparsely occuring
mismatches with k/n being bounded by a (small) con-

stant. In fact, β̂LL can tolerate a fraction of mismatches
close to one, and is still guaranteed to be unbiased.

• The improvement of β̂LL over the naive estimator is less
tied to the “signal strength” in terms of ‖β∗‖2.

• Asymptotic confidence intervals can be obtained from
the expression for the asymptotic covariance (11).

• The approach is free of tuning parameters.

Disadvantages.

• The approach can suffer from a high variance, and is
generally not guaranteed to be consistent as the sam-
ple size n grows. Instead, consistency requires that the
number of blocks K → ∞. Even if the latter holds true,
the asymptotic rate of convergence OP(K

−1) is subop-
timal unless n/K = O(1).

• In view of the previous bullet, β̂LL hinges on the avail-
ability of additional information that gives rise to a
sufficiently fine block partitioning (i.e., consisting of a
good number of blocks).

• The approach does not account for potential errors in
variables used to generate the block partitioning (cf.,
e.g., [61]).

• The estimation equation (9) is not guaranteed to have
a unique root, and thus practical algorithms for its so-
lution such as Newton’s method may deliver roots that
are not consistent. In some situations, no roots may
exist (cf. supplement).

Chambers’ method. For the sake of completeness, we present
a brief account of the approach due to Chambers in relation
to the LL method. Chambers’ method is based on the esti-
mating equation

(13) X�(y −Qμ∗(β)) = 0,

which differs from the LL estimation equation (9) only in
that QX is replaced by X. Estimation equation (13) is un-
biased, but the resulting estimator tends to converge at a
slower rate than the LL estimator in the block setting dis-
cussed above. Using similar arguments as before (cf. supple-
ment), it can be shown that the asymptotic covariance of
the Chambers estimator is given by

(X�Q�V(β∗)X)−1 × (EΠ∗ [X�Π∗V(β∗)Π∗�X] +Ξ)×

× (X�V(β∗)QX)−1,

(14)

for some positive semidefinite matrix Ξ, and all other quan-
tities are as above. The slower rate of convergence results
from the middle matrix. For any permutation matrix Π∗, we
have

(X�Π∗V(β∗)Π∗�X) =

n∑
i=1

xπ∗(i)ψ
′′(x�

i β
∗)x�

π∗(i) = OP(n)

for typical random designs. The two outer matrices in (14)
are the same as in the expression for the asymptotic covari-
ance of the LL method as provided in (11) and (12). Using
the results for the LL method above then yields that alto-
gether (14) scales as OP(n/K

2), which is generally slower
than the rate OP(K

−1) of the LL method.
Finally, Chambers [9] (cf. also [26]) discusses an improve-

ment of the LL method to improve its statistical efficiency
based on the observation that

Cov(y) = Cov(Π∗y∗)

= EΠ∗ [Cov(Π∗y∗|Π∗)] + CovΠ∗(E[Π∗y∗|Π∗])

= Cov(y∗) + CovΠ∗(Π∗μ∗(β∗)),

which suggests that the second term on the right hand side,
which varies across different blocks, should be integrated
into the estimating equations to weigh blocks according to
their variance contribution (in the case of linear regression,
this amounts to a specific generalized least squares fit). How-
ever, even if Cov(y) were known, the above improvement can
apparently not achieve a faster rate than OP(K

−1).

5. CASE STUDY

We consider the bike sharing data available on the UCI
machine learning repository [29]. The data set contains sea-
sonal and weather information along with daily counts of
rental bikes used between 2011 and 2012 in Washington,
DC. The objective is to predict the number of ride-sharing
bikes used during any given day (variable count) based on
the categorical predictor variables season (spring, summer,
fall, winter), year (2011 or 2012), weathersit (describ-
ing the weather situation on a given day in four categories
from good to highly inclement weather), weekday (Monday
through Sunday, numbered 0 to 6) and workingday (binary
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Figure 6. Scatterplots of the response variable before and after linkage for selected permutations.

variable indicating whether a given day is a working day as
opposed to a holiday or Saturday/Sunday), as well as the
three continuous predictor variables atemp (feeled tempera-
ture), hum (a humidity index) and wind (windspeed).

Overall, the data set consists of 731 instances (days). We
apply a square root transformation to the response variable
count. The transformed response variable is treated as if it
followed a Poisson GLM with log-link, which can formally
be regarded as a quasi-likelihood approach. The use of the
transformation yields substantial improvement in terms of
model fit compared to a Poisson model in which the raw
counts are used as the response variable.

In order to further improve the fit of the model, we delete
observations satisfying one of the following criteria: (1) days
affected by an extreme weather condition (e.g., blizzard,
hurricane or windstorm), (2) national holidays (including
Thanksgiving and Christmas), (3) especially hot days with
temperatures exceeding 31.8 degrees Celsius. The resulting
thinned data set includes 692 instances that are used to fit
the following (Poisson-like) regression model:

log(
√
count) = β∗

0 +
∑4

j=2 β
∗
sj · I(season = j) + β∗

y · year
+ β∗

wor · workingday+ β∗
a · atemp+ β∗

hum · hum+ β∗
wi · wind

+ β∗
y*a · (yr ∗ atemp) + β∗

we · I(weekday ∈ {4, 5, 6})
+

∑4
j=2 β

∗
weaj · I(weathersit = j)

+
∑4

j=2 β
∗
sj∗a ·

(
I(season = j) ∗ atemp

)

(15)

In total, the linear predictor consists of 17 terms apart from
the intercept including interaction term between season and
atemp and between year and atemp.

In order to mimic mismatch error introduced by record
linkage, the response variable (count) is put into a sepa-
rate file that additionally contains varying combinations of
variables that are used for record linkage (see below for a
list of those combinations). One-to-one linkage is enforced by
breaking ties between potentially matching records given the
variables used for matching uniformly at random; in order to
account for that randomness, we consider 100 independent
replications, and the results reported subsequently represent

Table 1. List of matching variables provided to the data
analyst (the combination of five being the full list), the
resulting number of blocks K and the symbols for the
associated constraint matrices C used for the proposed

estimator “ProposedC” in its constrained form (6) as well as
the symbols for the associated matrices Q used for the

methods of Lahiri-Larsen and Chambers.

matching variables known K (6) (10)

month, holiday, weekday
workingday, temp

535 C1 Q1

month, temp 167 C2 Q2

temp 34 C3 Q3

averages over those replications unless noted otherwise. Put
differently, the underlying random permutations Π∗ are of
the block form Π∗ = bdiag(Π∗

1, . . . ,Π
∗
K), where K denotes

the number of unique combinations of values assumed for
the matching variables. The average fraction of mismatches
k/n obtained in this way approximately equals 0.23. Figure
6 illustrates the discrepancy between actual response and re-
sponse after linkage based on the following combination of
matching variables: month, holiday, weekday, workingday,
temp7. In practice, the combination of variables used for
matching may not be (fully) disclosed to the data analyst
that operates on the merged data. Therefore, in addition to
the case in which the matching variables are fully known, we
also consider cases in which only one or two of the matching
variables out of five overall are known (cf. Table 1). Note
that here, none of the matching variables contain any sen-
sitive information; the omission of subsets is intended to
demonstrate the impact of less knowledge about the linkage
process at a conceptual level.

Results. In order to assess the performance of the proposed
approach and the baseline competitors discussed in §4, es-
timation of the regression parameters of model (15) is per-
formed based on the merged file contaminated by mismatch
error. The resulting parameter estimates are then used to

7temp denotes the temperature in degree Celsius on a given day
(integer-valued).
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evaluate the deviance on the file {(xi, y
∗
i )}ni=1 containing

predictors and response in their correct correspondence, i.e.,

2
n∑

i=1

[
y∗i log

(
y∗i
μest
i

)
− (y∗i − μest

i )

]
,

where μtest
i = exp(βest

0 + x�
i β

est),

(16)

where βest is a placeholder for the estimates based on
the merged file {(xi, yi)}ni=1 delivered by i) the proposed
method, ii) the methods of Lahiri-Larsen (LL) and Cham-
bers, and (iii) the naive estimator without any adjustment
for mismatches. Both i) and ii) are evaluated for full and only
partial knowledge of the matching variables. The ultimate
reference for the quantity (16) is obtained by substituting

βest = β̂oracle, where the oracle refers to the estimator based
on the file {(xi, y

∗
i )}ni=1 without any mismatched pairs. The

quantity (16) is hence intended to measure the drop in model
fit that is induced by parameter estimates in the presence
of mismatch error.

Specific figures regarding (16) are presented in Table 2.
Note that in case that all matching variables are known
to the data analyst, the performance of the LL estima-
tor is rather close to the oracle and better than that of
the proposed estimator (6) in its constrained form (265.46
vs. 269.92 with a standard error of 0.21). However, as less
information about matching variables is available, the pro-
posed estimator performs on par (2nd column) respectively
dramatically better (3rd column) than the LL estimator; in
the latter case, the performance of the LL estimator is even
considerably worse than that of the naive estimator. This is
somewhat in alignment with what is predicted in §4: as the
number of blocks K drops, so does the performance of the
LL estimator. By contrast, the proposed estimator achieves
a solid improvement over the naive estimator even in the
complete absence of information about the matching vari-
ables used. The Chambers estimator performs weaker than
the proposed and the LL estimator if the full set of match-
ing variables is provided; in the two other cases with less
information, we experience numerical difficulties (hence the
value NA): Newton iterations used to obtain a root of the
estimating equations (13) converge to far suboptimal points
leading to a deviance exceeding that of the intercept-only
model.

Regarding the selection of the tuning parameter λ for
the proposed approach, we create a separate validation set
free of mismatches whose size is 20% of the total number of
samples, and select λ so as to minimize the counterpart to
(16) on the validation set. Note that the existence of such
a validation set is reasonably realistic, at least if sufficient
information about matching variables is provided and at
least some of the resulting combinations are unique, i.e.,
they yield singleton blocks for which mismatches can be
ruled out. The corresponding results based on this data-
driven selection of λ are labelled “Proposed(λ)” in Table
2, to be distinguished from “Proposed(oracle)” in which λ

Table 2. Deviances (16) for several competitors as described
in the text, averaged over 100 random block-structured

permutations (the corresponding standard errors are given in
parentheses8). “Proposed(oracle)” and “Proposed(oracle)C”
refer to the choice of λ that directly minimizes (16), while
“Proposed(λ)” and “Proposed(λ)C” refer to the choice of λ
based on a validation set; the superscript C indicates the use

of constraints (6) with C ∈ {Cj}3j=1.

(Q1,C1) (Q2,C2) (Q3,C3)

Oracle 263.40

Lahiri-Larsen 265.46 274.88 436.68

Chambers 272.70(0.40) NA NA

Proposed(Oracle) 282.63(0.39)

ProposedC(Oracle) 269.92(0.21) 275.00(0.29) 278.34(0.32)

Proposed(λ) 285.04(0.48)

ProposedC(λ) 270.98(0.36) 276.29(0.36) 281.74(0.52)

Naive 316.86(1.07)

Intercept only 2540.44

is optimized to minimize the performance measure (16) di-
rectly. We note that the performance of “Proposed(λ)” is
only slightly inferior to that of “Proposed(oracle)”.
Permutation Recovery. In this paragraph, we describe how
the proposed approach can be leveraged to reduce mis-
match error in the response variable contained in the
merged file. We henceforth suppose that the data analyst
is equipped with full knowledge of the matching variables
month, holiday, weekday, workingday, temp used during
the creation of the merged file. For ease of presentation, we
here confine ourselves to two specific random permutations
Πmin and Πmax out of the ensemble {Π(1), . . . ,Π(100)} that
were generated, defined by

Πmin = min
1≤i≤N

‖Π(i)y∗−y∗‖2, Πmax = max
1≤i≤N

‖Π(i)y∗−y∗‖2,

representing a best and a worst case scenario, respectively.
Given (X,Πminy

∗) and (X,Πmaxy
∗), we compute the pro-

posed estimator with constraint matrix C = C1 (cf. Table

2 top) and use the resulting solution β̂ in place of β∗ in
the optimization problem defining the maximum likelihood
estimator for the unknown permutation (8). The resulting
optimization problem is given by

(17) min
Π∈P(G)

−〈Πy,Xβ̂〉,

where y = Πminy
∗ and y = Πmaxy

∗, respectively, and P(G)
denotes the set of all block-wise permutation matrices in-
duced by the resulting index subsets G = {Gj}Kj=1,K = 535,
corresponding to identical values for the matching variables.
Note that the minimizer of (17) can be obtained by pairing
the order statistics of the linear predictor and the response
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Figure 7. Left/Middle: Fitted values based on mismatch-free data (X,y∗) vs. fitted values based on the merged data (X,y)

[left] and corrected data (X, Π̂y) [middle], with Π̂ denoting the minimizer of (17); “fitted values” here refer to ordinary
(Quasi-) GLM estimation based on the data given in parentheses. Right: Q-Q plots of the absolute differences between the
true responses and their fitted values based on the oracle estimator vs. the absolute mismatch errors in the merged file

{|y∗i − yi|}ni=1 [dots] and their counterparts after correction based on (17) [triangles].

within each of the sets {Gj}Kj=1. While permutation recov-

ery, i.e., {Π̂ = Πmin} and {Π̂ = Πmax}, respectively, where
Π̂ denotes the minimizer of (17) turns out to be out of reach
here, a substantial reduction in mismatch error is achieved,
i.e., Π̂y is visibly closer to y∗ than y as shown in Figure
7. The corrected response Π̂y can be used to refit the re-
gression model. Figure 7 indicates that the resulting fitted
values exhibit a much better agreement with the fitted val-
ues obtained from a mismatch-free data set.

6. CONCLUSION

In this paper, we have presented a method based on �1-
penalization to account for mismatch error in the response
in linked files, and have highlighted its benefits compared to
established methods for this scenario. We have also explored
how to directly reduce mismatch error by estimating the
underlying permutation associated with the true correspon-
dence between predictor-response pairs. The proposed ap-
proach is computationally appealing, supported by theoret-
ical guarantees, and bears considerable potential regarding

8The oracle estimators and the Lahiri-Larsen method do not differ
across permutations by construction, hence no standard error is re-
ported.

the adjustment for mismatch error in post-linkage analysis.
At the same time, the approach presented herein prompts
several directions of future research. Concerning the esti-
mation of the regression parameter, procedures for a data-
driven choice of the tuning parameter, such as with the help
of a hold-out set (possibly also contaminated by mismatch
error) as considered in the case study herein, merit further
investigation. In a next step, it also appears worthwhile ex-
ploring the use of observation-specific penalization factors
{λi}ni=1 instead of a single global value λ that could prove
particularly beneficial in Poisson and Gamma regression in
light of heteroscedasticity. Moreover, it is of great practical
relevance to be able to conduct statistical inference for the
regression parameter (confidence intervals and tests of lin-
ear hypotheses). A promising approach with regard to this
aspect is the use of techniques developed for constructing
confidence intervals in lasso regression, e.g., [62, 63, 64].

Concerning estimation of the permutation, we have fo-
cused on exact permutation recovery and on approximate
recovery with small Hamming distance. The results are cou-
pled to stringent conditions, which are often not met in prac-
tice. Nevertheless, the results presented in the case study of
the previous section indicate that approximate permutation

394 Z Wang, E Ben-David, and M Slawski



recovery can be achieved with respect to alternative met-
rics like the �2-distance between the true response y∗ and
the estimator Π̂y, and elaborating the corresponding theory
constitutes a further promising direction.

SUPPLEMENT

Online supplement (http://intlpress.com/site/pub/files/
supp/sii/2023/0016/0003/SII-2023-0016-0003-s001.pdf) is
organized as follows. Sections A through D contain complete
proofs of the results stated in the paper. Sections E through
G contain complementary technical discussions. Section H
contains additional simulation results and figures comple-
menting those in §2.5.
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