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Multiple hypotheses testing on dependent count
data with covariate effects
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Dynamics in the sequence of count data is usually not
only affected by the underlying hidden states to be de-
tected, but also quite likely associated with other static or
dynamically changing covariates. The multiple hypotheses
testing procedure developed here takes these covariates into
consideration by the Poisson regression model. Also, a hid-
den Markov process is applied to model the switches be-
tween the null and non-null states as well as the dependence
across counts. All model parameters are estimated through
Bayesian computation. While a simple distribution is as-
sumed on the null state, the observation distribution under
the non-null state usually requires more flexibility. Here a
mixture of parametric distributions is assumed. The number
of mixture components is decided by model selection crite-
ria, including the Bayesian Information Criterion as well as
marginal likelihood methods. Simulation studies are carried
out to evaluate the performance of the proposed model and
that of the model selection methods. The real data example
shows the application of the proposed model and its infer-
ence goal differs from the previous testing procedures with
no covariate effects considered.

AMS 2000 subject classifications: Primary 62M05,
62F03; secondary 62J12.
Keywords and phrases: Bayesian hierarchical model,
Markov switch regression model, Multiple hypotheses test-
ing, Poisson regression, Sampling-based marginal likelihood.

1. INTRODUCTION

We often need to detect “abnormalities” based on count
data collected sequentially over time, such as the number of
emergency room visits with influenza like symptoms (ILS)
per week or the number of log-ins on a website per hour.
These observed counts contain information on underlying
unobservable states of interest, such as the onset of a flu sea-
son (Sun and Cai, 2009). The dynamics of count data usually
is not only influenced by the underlying hidden states of in-
terest, but also associated with some common covariate fac-
tors. Depending on our goal in testing, it is sometimes neces-
sary to model those covariate effects. For example, checking
the number of emergency room visits alone can help detect
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the onset of a flu season. If the task is to get alarmed for
an “abnormal” season (possible concurrence of multiple res-
piratory diseases) and get prepared for higher demands on
public health resources compared to a normal year, the goal
is then to detect any abnormality beyond the dynamics of a
“normal” flu season.

To accomplish this goal, we develop a multiple hypothe-
ses testing procedure based on a Poisson Markov switching
regression model (PReg-HMM), which can account for co-
variates related to the “normal” dynamics and extract ab-
normalities beyond those factors. The Markov switching re-
gression model has been abounding in modeling time series
data with hidden “regimes”(Goldfeld and Quandt, 1973).
The primary goal in most of the previous studies is to iden-
tify the correct clusters of the hidden states. For example,
Sebastian et al (2019) identified three states of the infectious
disease by a Poisson hidden Markov model and studied its
association with climate risk factors after clustering. More
recently, Xu et al. (2020) studied how baseline subject char-
acteristics and dynamic environmental factors are related
to the disease dynamics using data collected from wearable
device.

The purpose of the proposed PReg-HMM is more like
that of Ihler et al. (2006), where they used the Poisson hid-
den Markov model with covariate effects to detect the pres-
ence of “unusual” events with a binary Markov process. A
similar modeling framework can be applied in testing mul-
tiple dependent hypotheses. Previous studies have devel-
oped optimal and valid multiple testing procedures based
on the hidden Markov model (Sun and Cai, 2009; Wang
et al., 2019). Su and Wang (2020) proposed a Bayesian mul-
tiple hypotheses testing procedure for sequentially depen-
dent count data (PHMM). Here we extended these studies
by incorporating the covariate effects.

All the model parameters and the values of the test statis-
tic are estimated through Bayesian computation. A thresh-
old rejection procedure helps to control the false discovery
rate (FDR) and ensure the test is valid. To allow for flexibil-
ity in the observation distribution under the non-null state,
it is assumed that the distribution can be either a simple
standard distribution or a mixture distribution. An impor-
tant modeling decision to make is then the number of mix-
ture components. A few sampling-based marginal likelihood
methods and the Bayesian Information Criterion (BIC) are
used in selecting the optimal number of mixture compo-
nents.
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The paper is organized as follows. Section 2 describes the
multiple hypotheses testing procedure based on the Poisson
Markov switching regression models. Model estimation and
selection details are described in Section 3. Results from the
simulation studies are shown in Section 4 to demonstrate
the performance of the proposed PReg-HMM with differ-
ent types of covariates and to compare the various model
selection methods. Section 5 shows the application of PReg-
HMM to the people flow count data and compares the re-
sults with those from the PHMM procedure (Su and Wang,
2020). Discussions and conclusions are in Section 6.

2. POISSON MARKOV SWITCHING
REGRESSION MODEL FOR MULTIPLE

HYPOTHESES TESTING

Assume that there are a total of m hypotheses to be
tested based on the sequentially observed data (X,Z), where
X = (X1, X2, . . . , Xm)′ represents the m observed count
data. Denote Xt as the tth data point, where t labels the
sequence of the data points, such as the time or the or-
dered position in the sequence, t = 1, . . . ,m. At each t, the
observed r covariate factors recorded together with Xt is de-
noted as an (r+1)-dimensional vector zt = {1, zt,1, . . . , zt,r}
with the first element for the intercept term in the regression
model. Then Z = (z′1, z

′
2, . . . , z

′
m)′ is the m× (r+1) covari-

ate matrix with m as the number of the observations and r
as the number of covariates considered. The first column in
Z, 1m, is an m × 1 vector of ones. The goal of hypotheses
testing is to detect “normal” and “abnormal” states based
on the observed data.

2.1 Multiple hypotheses testing and hidden
Markov model

Given the nature of the hypothesis testing problem, it
is natural to assume that the regression model of {Xt}mt=1

on {zt}mt=1 depends on the realizations of a hidden discrete
stochastic process S = {St}mt=0, where St indicates the true
state of the regression model at time t and takes discrete
value in the set {0, 1}. The value 0 indicates the null state
and 1 for the non-null state. Assume this hidden process
{St}mt=0 satisfies the Markov property, which means that
the current state St only depends on the one-period ahead
hidden state St−1 and is independent of all states prior to
time t − 1. The Markov chain starts from its stationary
distribution π = (π0, π1), which specifies the proportions
for null and non-null states. The probability of (S0 = k)
is P (S0 = k) = πk, πk ≥ 0, k = 0, 1. Let A = {ajk} be
the transition matrix of the hidden state process S, where
ajk ≥ 0 and

∑1
k=0 ajk = 1, j, k = {0, 1}. The transition

matrix A represents the transition probability between null
and non-null states and the one-dimensional dependence
structure is written out as P (St = k|St−1 = j,A) = ajk,
j, k = 0, 1. The diagonal element ajj is the persistence
probability and indicates the expected duration of state

j. The observations Xt’s given St’s are independently dis-
tributed. Denote the conditional distribution of the ob-
servations as p(Xt|St = k, zt) = fk(zt), k = 0, 1. Then
F = {f0(zt), f1(zt)} represents the observation distribu-
tions under the null and non-null states derived from the
regression model, where the non-null distribution f1 can be
either a simple standard distribution or a mixture distri-
bution. We denote the parameters in this two-state hidden
Markov model (HMM) as ϑ = (A,π,F).

2.2 Multiple hypotheses testing with Poisson
Markov switching regression models

For dependent count data, we assume a Poisson distri-
bution on f0 and a mixture of Poisson distributions on
f1 with L mixture components (L = 1 if f1 is a single
Poisson distribution). Let the �th state specific coefficients
β� = (β0�, β1, . . . , βr) be an (r+ 1)-dimensional row vector,
where β0� is the intercept corresponding to the null state if
� = 0 and the �th mixture component in the non-null state if
� �= 0. The slope coefficients β1, . . . , βr are the covariate ef-
fects, which are assumed homogeneous across states. Given
the hidden state St, the Poisson mean is expressed by the
covariates zt and the corresponding regression coefficients
through a log-linear regression model.

Specifically, the conditional distribution of Xt under the
null state is [Xt|St = 0, zt] ∼ Poisson(μ0t), where log(μ0t) =
β00+β1zt,1+ . . .+βrzt,r. The conditional distribution of Xt

under the non-null state, when the non-null distribution is
assumed as an L-component mixture distribution, is

[Xt|St = 1, zt] ∼
L∑

�=1

p�Poisson(μ�t),

where p� is the mixture proportion of the �th component,
0 < p� < 1,

∑L
�=1 p� = 1, and log(μ�t) = β0� + β1zt,1 + . . .+

βrzt,r, ∀� ∈ 1, . . . L.
Let H0t and H1t represent the tth pair of the null and

alternative hypotheses on testing the true state St under
which the tth observation Xt was collected. Let β0 be the in-
tercept term in the above log-linear regression model, whose
value is decided by St. Thus, the hypotheses can be writ-
ten out as H0t : β0 = β00 vs H1t : β0 �= β00 or β0 > β00

or β0 < β00, for t = 1, . . . ,m. The goal of testing is to de-
tect the underlying true state under which each of the m
observations is generated. The focus is then on the hidden
state indicators {St}mt=0. Sun and Cai (2009) proposed a lo-
cal index of significance (LIS) as the test statistic in multiple
testing based on HMM. Wang et al. (2019) showed that the
Bayesian hierarchical framework allows easy Bayesian esti-
mates of LIS as the posterior probabilities. Su and Wang
(2020) extended the LIS test procedure to Poisson count
data.

By the Bayesian framework, the LIS test statistics under
PReg-HMM can still be computed as the posterior proba-
bilities of the null states and are defined as LISt = Pϑ(St =
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0|X,Z) by including the covariate effects in estimation. Let
LIS(t) be the ordered tth test statistic in an ascending or-
der and H(0t) be the corresponding null hypothesis. With the
pre-specified FDR at the level α, the PReg-HMM test proce-
dure has the threshold constructed by rejecting hypotheses
H(01), . . . ,H(0k), where

k = max

{
i :

1

i

i∑
t=1

LIS(t) ≤ α

}
.

3. MODEL ESTIMATION AND SELECTION

The Bayesian scheme makes it straightforward to esti-
mate the model parameters ϑ = (A,π,F) as well as the
hidden state indicators and the LIS test statistics. To de-
cide the number of mixture components in f1, the marginal
likelihood method and BIC are used in model selection. As
there is no closed form for the likelihood function, it has
to be evaluated through various sampling methods. We de-
scribed five different methods to obtain the marginal likeli-
hood estimate. The R package HMMtesting has been devel-
oped to include algorithms for PReg-HMM (Wang, 2021).
The HMMtesting package is available on ResearchGate. R
codes used in simulation studies and the data example are
available on Github. A sample R code is also included as the
supplementary material.

3.1 Estimation

To facilitate parameter estimation, two layers of latent
indicators are constructed. Besides the underlying null or
non-null state indicators S = {St}mt=0, the second-layer in-
dicators S∗ = {S∗

t }mt=0 label the structure of the non-null
mixture distribution and take discrete values in the set
{1, 2, . . . , L} given St = 1. Let P (S∗

t = �|St = 1) = p�
for � = 1, . . . , L, where p� is the corresponding propor-
tion for the �th component, 0 < p� < 1 and

∑L
�=1 p� = 1.

The mixture indicator S∗
t = � indicates that Xt belongs to

the �th mixture component in the non-null state. We set
P (S∗

t = 0|St = 0) = 1.
The prior distributions for parameters ϑ = (A,π,F) as

well as the hidden indicators are

aj0 ∼ Beta(ej0, ej1), j = 0, 1,

p(S|A) = p(S0|A)

m∏
t=1

P (St|St−1,A),

S∗
t |p, St = 1 ∼ Multinomial(p), t = 1, . . . ,m,

p ∼ Dirichlet(e1, . . . , eL),

β� ∼ N(r+1)(b0, B0), ∀� ∈ 0, 1, . . . , L,

where the prior hyper-parameters are set as ejj = 2, ejj′ =

1, j, j
′
= 0, 1 and j �= j

′
, el = 4, l = 1, . . . , L, b0 = 0

and B0 = 100Ir+1 as suggested by Frühwirth-Schnatter
(2006). More discussion on the priors of aj0’s can be found
in Frühwirth-Schnatter (2001).

There are two main steps in the Markov chain Monte
Carlo (MCMC) implementation. The first step is to sam-
ple the parameters ϑ conditional on the hidden state indi-
cator S and the mixture indicator S∗. The second step is
to sample S and S∗ conditional on parameters ϑ. The in-
ference for the hidden state indicator S is carried out by
Forward-Filtering-Backward-Sampling (FFBS) (Frühwirth-
Schnatter, 2006). The test statistic Pϑ(St = 0|X,Z) is the
backward smoothed probability. The posterior density of the
stationary probability π0 given S and S∗ is straightforwardly
sampled with the Gibb’s sampling. The conjugate posterior
distributions of the transition matrix elements ajj ’s and the
proportions p of the components in the mixture distribution
under the non-null state are all available in closed forms.

The posterior distributions for the �th state specific re-
gression coefficients are

p(β0|XS=0,Z,S) ∝ p(XS=0|Z,S,β0)p(β0),

p(β�|XS∗=�|S=1,Z,S,S
∗) ∝ p(XS∗=�|S=1|Z,S,S∗,β�)p(β�),

for � = 0, 1, . . . , L, which do not have closed-forms. A normal
approximation of the posterior distribution was discussed by
El-Sayyad (1973) and Chan and Vasconcelos (2009). How-
ever, it requires large Poisson means and does not provide a
good approximation under count sparsity. Thus, we employ
the Metropolis-Hastings algorithm as well as the adaptive
rejection sampling in β�’s sampling.

3.2 Model selection

Below are five sampling-based estimation methods to ob-
tain marginal likelihood estimates. The performance of each
method is examined and compared in simulation studies
(Section 4).

The importance sampling method (IS) is obtained
through

p̂IS(X|Z,ML) =
1

J

J∑
j=1

p(X|Z, ϑ(j)
L )p(ϑ

(j)
L )

q(ϑ
(j)
L )

,

where ϑ
(j)
L is the jth sample from the prior p(ϑL), j =

1, . . . , J . The importance density is

q(ϑ
(j)
L ) =

1

I

I∑
i=1

p(A(j)|S(j,i))p(p|S∗(j,i))p(β
(j)
0 |S(j,i),X,Z)

·
L∑

�=1

p(β
(j)
� |S∗(j,i),X,Z),

(1)

where j stands for the jth sample from a total of J MCMC
samplings and i stands for the ith sample from a total of I
samplings. The I samplings is a subset of randomly selected
samples from the J MCMC samplings. The choice of I is
based on the number of the total MCMC samplings J and
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the number of the hidden Markov states. We choose I = 200
for a two-state PReg-HMM with J = 2000 after 3000 burn-
ins.

The reciprocal importance sampling (RI) is

p̂RI(X|Z,ML) =

{
1

D

D∑
d=1

q(ϑ
(d)
L )

p(X|Z, ϑ(d)
L )p(ϑ

(d)
L )

}−1

,

where ϑ
(d)
L is the dth posterior sample from a total of D

MCMC samplings and q(ϑ
(d)
L ) is the importance density for

the model as in (1).
The harmonic mean estimator (HM) by Newton and

Raftery (1994) is

p̂HM (X|Z,ML) =

{
1

D

D∑
d=1

1

p(X|Z, ϑ(d)
L )

}−1

,

where again ϑ
(d)
L is the dth posterior sample from the D

MCMC samplings and p(X|Z, ϑ(d)
L ) is the mixture likelihood

evaluated at the dth sampling. While the computation for
the HM estimator is convenient and faster, its performance
is shown to be less accurate compared with IS and RI meth-
ods.

The modified harmonic mean estimator (HM2) is ob-
tained through

p̂HM2(X|Z,ML) =

{
1

D

D∑
d=1

1

p(X|Z, S̃
(d)

)

}−1

,

where S̃
(d)

is the dth posterior sample of the indicators
(S,S∗) from a total of D posterior samplings.

The Bridge Sampling (BS) (Meng and Wong (1996)) is
specified as

p̂BS,t(X|Z,ML)

=
DIS

−1 ∑DIS

dIS=1 α(ϑ̃
(dIS)
L )p∗(ϑ̃

(dIS)
L |X,Z,ML)

D−1
RI

∑DRI

dRI=1 α(ϑ
(dRI)
L )q(ϑ

(dRI)
L )

with

α(ϑ̃
(dIS)
L ) =

[
q(ϑ̃

(dIS)
L )DIS +

p∗(ϑ̃
(dIS)
L |X,Z,ML)

p̂BS,t−1
DRI

]−1

,

α(ϑ
(dRI)
L ) =

[
q(ϑ

(dRI)
L )DIS +

p∗(ϑ
(dRI)
L |X,Z,ML)

p̂BS,t−1
DRI

]−1

,

and

p∗(ϑL|X,Z,ML) = p(X|Z, ϑL)p(ϑL),

where ϑ̃
(dIS)
L is the dthIS sample from the prior p(ϑL) with

dIS = 1, . . . , DIS and ϑ
(dRI)
L is the dthRI sample from the

posterior p(ϑL|X,Z,ML) with dRI = 1, . . . , DRI . The IS

estimator p̂IS(X|Z,ML) is set as the start value of BS sam-
pling.

Besides the marginal likelihood methods, we also imple-
ment BIC. It is defined as BICL = −2 log p(X|Z, ϑ̂L,ML)+

dL log(m), where ϑ̂L represents the estimation on the model
parameter (A,π,F) in model ML and dL is the number of
distinct parameters in ϑL. The smaller the BICL, the better
the model fits.

4. SIMULATION STUDY

Here the proposed Poisson Markov switching regression
model (PReg-HMM) is compared with the Poisson hidden
Markov model (PHMM) (Su and Wang, 2020) for their per-
formance in multiple testing on dependent count data under
different scenarios. In each scenario, a total of 100 data sets
with m = 3000 observations are generated. In all the sim-
ulation studies, the pre-specified FDR is set at α = 0.10.
The initial stationary distribution π0 = (0, 1). The transi-
tion matrix A is with a00 = 0.95, a01 = 0.05, a10 = 0.2
and a11 = 0.8. The values of state specific regression coeffi-
cients β� are described later in each case. For each data set,
both PReg-HMM and PHMM are fitted and the results are
compared.

To compare the performance in hypotheses testing, three
metrics are examined, including the false discovery rate
(FDR), the false negative rate (FNR), and the average true
positives (ATP). As defined in Sun and Cai (2009), an FDR
procedure is valid if it controls FDR at a pre-specified level
α (here α = 0.1), and optimal if it has the smallest FNR
among all the FDR procedures at a level α. ATP is an addi-
tional metric for efficiency among the valid FDR procedures.
The higher ATP, the more efficient the procedure.

Estimation is carried out using R software version 4.0.2.
on Owens of the Ohio Supercomputer Center (Ohio Super-
computer Center, 1987) and the cluster through the Cincin-
nati Children’s Hospital Medical Center. To ensure conver-
gence, a total of 5000 samplings are run with 3000 burn-
ins for each of the PReg-HMM and PHMM models. The
Geweke statistics are examined for all the parameters in
ϑ = (A,π,F).

4.1 Case 1: PReg-HMM L = 2

In this case, observations are generated from a PReg-
HMM with L = 2 and two covariates (z1t and z2t), where
z1t is sampled from a standard normal distribution and z2t is
from a Bernoulli distribution with the probability of success
equal to 0.5. Observations under the null state are sampled
from f0t as Poisson(exp(0.5−0.25z1t+z2t)) and those under
the non-null state are sampled from f1t as a two-component
Poisson mixture 0.6 · Poisson(exp(1− 0.25z1t + z2t)) + 0.4 ·
Poisson(exp(β02 − 0.25z1t + z2t)). To examine the perfor-
mance under varying levels of signal strength, the intercept
term β02 increases from 1.5 to 3 by 0.25 in the simulation.
A total of 700 data sets are generated.
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Figure 1. Comparison of FDR, FNR and ATP under PHMM and PReg-HMM. The distribution under the null state is
f0t ∼ Poisson(exp(0.5− 0.25z1t + z2t)) and the distribution under the non-null state is

f1t ∼ 0.6 · Poisson(exp(1− 0.25z1t + z2t)) + 0.4 · Poisson(exp(β02 − 0.25z1t + z2t)) with β02 varying from 1.5 to 3 by 0.25.

Table 1. Model Comparison (Case 1: PReg-HMM L = 2): the count (percentage) of a given model being selected as the best
in the 700 simulated data sets

PHMM

Method L = 1 L = 2 L = 3 L = 4 L = 5 PReg-HMM L = 2

log pBS(X|ML) − 156(22%) 249(36%) 209(30%) 86(12%) 700(100%)
log pIS(X|ML) − 142(20%) 246(35%) 214(31%) 98(14%) 700(100%)
log pRI(X|ML) − 174(25%) 242(35%) 216(31%) 68(10%) 697(99.6%)
log pHM (X|ML) − 46(7%) 243(35%) 249(36%) 162(23%) 697(99.6%)
log pHM2(X|ML) − 10(1%) 64(9%) 197(28%) 429(61%) 697(99.6%)

BICL 235(34%). 351(50%) 36(5%) 62(9%) 16(2%) 700(100%)

Figure 1 shows the proposed PReg-HMM controls FDR
reasonably around the given level 0.1 for all β02 values, while
all the PHMM models do not perform well. The PHMMs
with L ≥ 2 can not control FDR and thus are not valid
FDR procedures. The PHMM with L = 1 has the highest
FNR and the lowest ATP, while it either has FDR out of
control under weak signals or be conservative in FDR under
stronger signals.

Table 1 shows the counts and percentages of a given
model being selected as the best by a specific model selection
criterion. There are a total of 700 simulated data sets for the
7 values of the intercept (β02). Both the marginal likelihood
method (all five sampling-based estimates) and BIC choose
PReg-HMM with L = 2 as the best model almost 100% of
the time, when comparing between PReg-HMM and PH-
MMs (L = 1 to L = 5). For comparison among PHMMs
with different L’s, the HM2 method chooses PHMM with
L = 5 as the best model with a probability of 61%. The BS,
IS, RI and HM methods choose randomly from PHMMs

with L = 2 to L = 5. The BIC criterion chooses PHMM
with L = 2 as the best model with a probability of 50%.
However, as shown in Figure 1, neither PHMM L = 5 nor
L = 2 provides a valid testing procedure when ignoring the
covariate effect. PReg-HMM with L = 2 is the best model
with the lowest FNR, the highest ATP, and the FDR un-
der control. Extensive simulations have been carried out on
cases with data sets generated from PReg-HMMs L = 1
and L = 3 and different types of covariates. The results are
similar and details are not reported here.

4.2 Case 2: PHMM L = 1

PHMM (Su and Wang, 2020) is a special case of the pro-
posed PReg-HMM. Here we show that the proposed PReg-
HMM model can provide similar inference as the PHMM
model when data are actually generated under the simpler
PHMM model.

In the simulation, observations under the null state are
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Figure 2. Comparison of FDR, FNR and ATP under PHMM and PReg-HMM test procedures. The distribution under the null
state f0 is Poisson(2) and the distribution under the non-null state f1 is Poisson(μ1) with μ1 varying from 5 to 20 by 2.5.

Table 2. Model Comparison (Case 2: PHMM L = 1): the count (percentage) of a given model being selected as the best in
the 700 simulated data sets

PHMM

Method L = 1 L = 2 L = 3 L = 4 L = 5 PReg-HMM L = 1

log pBS(X|ML). 682 (97%) - - - - 700 (100%)
log pIS(X|ML) 504 (72%) 1 (0.15%) 10 (1%). 47 (7%) 131 (19%) 511 (73%)
log pRI(X|ML) 663 (95%) 2 (0.29%) - - - 698 (99.7%)
log pHM (X|ML) 373 (53%) 271 (39%) 86 (12%) 15 (2%) 6 (1%) 322 (46%)
log pHM2(X|ML) 454 (65%) 233 (33%) 7 (2%) 4 (0.57%) 1 (0.15%) 414 (59%)

BICL 404 (58%) 164 (23%) 70 (10%) 49 (7%) 47 (7%) 370 (53%)

sampled from f0 as Poisson(2) and the non-null state obser-
vations are sampled from a single Poisson distribution f1 as
Poisson(μ1) with μ1 varying from 5 to 20 by 2.5. Under this
setup, the true parameter values in a PReg-HMM model are
approximately 0.7 for β00 under the null state and in the
range of 1.6 ∼ 3 under the non-null state for β01, respec-
tively. The true underlying model is PHMM L = 1 and thus
there is no covariate effect. When fitting the PReg-HMM, a
randomly generated binary covariate z1t ∼ Bernoulli (0.5)
is included in the regression model part. The true values for
the regression coefficient β1 is 0.

Figure 2 compares results in multiple testing. Among PH-
MMs (L = 1 to 5), PHMM with L = 1 controls FDR around
the given level 0.1. There is no benefit over-fitting PHMMs
with L ≥ 2, which leads to higher FDR and no improvement
in FNR or ATP. The proposed PReg-HMM with L = 1 has
almost identical performance as the true model PHMM with
L = 1 in terms of FDR, FNR and ATP.

The model comparison results are shown in Table 2.
When comparing among all 6 models (PHMMs with L =

1, . . . , 5 and PReg-HMM with L = 1), all sampling-based
marginal likelihood estimates and BIC choose the true
model PHMM with L = 1 as the best model with the high-
est probabilities (53 ∼ 97%). Between PHMMs (L = 2 to 5)
and PReg-HMM (L = 1), PReg-HMM has been selected as
the best model with the highest probabilities (46− 100%).

5. PEOPLE FLOW DATA EXAMPLE

The people flow data set contains 3-month records of peo-
ple flowing in and out of the Calit2 institute building at
the University of California, Irvine (Dua (2017), https://
archive.ics.uci.edu/ml/index.php). The data were collected
between July 25th, 2005 and November 5th, 2005 with half
hour count aggregates. The sensor at the main entrance of
the building was used to collect the data. There are a to-
tal of 5,040 recorded counts with the minimum 0 and the
maximum 114. The PHMM model was applied to detect
the active periods of the building (Su and Wang, 2020).
The analysis, which provided good results when comparing
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Figure 3. (a) Raw counts of people flowing in and out every 30-minute interval (b) the day of the week and the count (c) the
time of the day and the count. There are a total of 5,040 observations.

with an event log file, was able to detect the period with
high people flow. However, the people flow naturally fluctu-
ates due to factors such as the time of the day and the day
of the week. The PHMM model cannot distinguish natural
dynamics of the day from the “abnormally” high flow peri-
ods due to factors other than the natural fluctuations. Here
we showcase that the regression model structure in PReg-
HMM can achieve the inference goal to detect abnormalities
beyond the natural dynamics.

Two factors are added to the Poisson regression model
for the observed counts. One is the day of the week. If the
observation is recorded on a weekend day (Sunday or Satur-
day), the covariate “weekend” is set to 1, and it is set to 0
otherwise. The other factor is the time of day. There are four
levels in the time of day, including “morning” (8:00 AM to
12:00 PM), “afternoon” (12:00 PM to 5:00 PM), “evening”
(5:00 PM to 10:00 PM) and “night” (10:00 PM to 8:00 AM).
The night is set as the reference level, and three binary co-

variates are included for the other three levels.
Figure 3 Panel (a) shows the raw counts of people flow-

ing in and out every 30-minute interval during the recorded
period. Panels (b) and (c) shows the boxplots of the counts
versus the the day of the week and the time of the day lev-
els. Clearly, the weekdays usually have higher people flow
than weekends. During the day, the afternoon has the high-
est flow on average, followed by the morning. The evening
usually has a lower flow but with quite some outlying pe-
riods with high counts. The quietest time is the night. The
goal is to examine “abnormally” active periods in the build-
ing, given the natural fluctuations due to the time of the
day and the day of the week effects.

Model comparison results are shown in Table 3. Compar-
ing among PReg-HMMs with L = 1 to 7, all five sampling-
based marginal likelihood estimates and BIC choose PReg-
HMM L = 6 as the best model. The last column in Table 3
is for PHMM with L = 5, which is the best model selected
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Table 3. Model Comparison: People Flow Data Example

PReg-HMM

Method L = 1 L = 2 L = 3 L = 4 L = 5 L = 6 L = 7 PHMM L = 5

log pBS(X|ML) -13715 -12668 -11367 -11208 -11185 -11159 -11160 -12109
log pIS(X|ML) -13715 -12667 -11366 -11206 -11185 -11158 -11159 -12109
log pRI(X|ML) -13714 -12669 -11365 -11206 -11184 -11158 -11158 -12115
log pHM (X|ML) -13678 -12625 -11311 -11145 -11119 -11077 -11070 -12023
log pHM2(X|ML) -12417 -10881 -9300 -8884 -8779 -8704 -8680 -9553

BICL 27992 26027 23368 23080 23070 23021 23026 24881

among PHMMs (Su and Wang, 2020). PReg-HMMs with
L ≥ 3 are considered better than PHMM with L = 5, as the
marginal likelihood estimates are larger and the BIC values
are smaller.

Under the selected PReg-HMM L = 6, the estimated null
state intercept is around −1.21 with the posterior standard
deviation (SD) as 0.06. The six estimated non-null state
intercepts are 0.29 (SD = 0.07), 0.79 (SD = 0.07), 1.21
(SD = 0.07), 1.64 (SD = 0.07), 2.40 (SD = 0.06), and 3.73
(SD = 0.12), respectively. The corresponding proportions in
the non-null state are 0.30 (SD = 0.03), 0.42 (SD = 0.03),
0.20 (SD = 0.03), 0.06 (SD = 0.01), 0.02 (SD = 0.003),
0.005 (SD = 0.002), respectively. The estimate on the week-
end effect shows that the log of expected counts for week-
ends decreases by 2.29 (SD = 0.06) compared to weekdays.
Comparing the time of day effect with night as the reference
level, the log of expected counts for morning, afternoon and
evening increases by 2.11 (SD = 0.06), 2.37 (SD = 0.06)
and 1.81 (SD = 0.06), respectively. The estimated null state
proportion π0 is round 0.48 (SD = 0.02) with the transi-
tion matrix as a00 = 0.88 (SD = 0.008) and a11 = 0.89
(SD = 0.007).

PReg-HMM with L = 6 detects 2,740 events, which is
more than 2,088 detected by PHMM with L = 5. A closer
look into the testing results from PReg-HMM and PHMM
helps show different perspectives in the questions being ad-
dressed by these two procedures. Table 4 shows the covariate
information for those observations where testing decisions
from PReg-HMM and PHMM differ. As shown in Figure 3,
even an “abnormally” high people flow on a weekend may
be far lower than that on an average weekday. Furthermore,
the posterior estimates on the regression coefficients con-
firm that people flow is low on average during weekends
and at the night. Since PHMM does not account for the co-
variate effect, these periods are highly likely be claimed as
inactive periods. On the other hand, PReg-HMM aims at
detecting active periods while accounting for usually higher
people flow during weekdays and mornings and afternoons.
As shown in Table 4, all the time intervals (291) which are
claimed as non-null under PHMM but null under PReg-
HMM are from weekdays and mostly from mornings and

Table 4. People flow data: difference in hypotheses testing
results on null (Smodel

t = 0) and non-null (Smodel
t = 1) states

by PHMM (L = 5) and PReg-HMM (L = 6)

SPHMM
t = 1 & SPHMM

t = 0 &

SPReg-HMM
t = 0 SPReg-HMM

t = 1
weekday weekend weekday weekend

morning 102 0 0 144
afternoon 2 0 0 184
evening 186 0 0 41
night 1 0 252 324

evenings. None is from the weekends and only 1 is from the
nights during the weekdays. On the other hand, among the
954 time intervals which are claimed as non-null by PReg-
HMM but null by PHMM, 702 are from weekends with al-
most a half from the night time of the weekends. The remain-
ing 252 intervals are all from the night period on weekdays.

In practice, which procedure is appropriate would depend
on the inference goal. Particularly, it relies on the definition
of “abnormal” events to detect. For the people flow example,
PHMM detects active periods with high people flow regard-
less of the day of the week or the time of the day, while
PReg-HMM detects relatively active periods, by controlling
the day of the week and the time of the day effects.

6. DISCUSSION

When the inference goal is on detecting abnormal events
beyond natural fluctuations, hypotheses testing can achieve
better performance by taking into consideration of rele-
vant covariate effects. One of our simulation studies with
one binary covariate (not shown here) shows that under
strong non-null signals, it is possible for the PHMM with
a large number of mixture components performs similarly
as a PReg-HMM. However, it is challenging for PHMM to
achieve similar performance when PReg-HMM is the true
model with more complicated covariate structure (such as
the case shown in Section 4.1).

416 W. Z. Su and X. Wang



The PReg-HMM model presented here assumes that the
covariates have homogeneous effects across states. Thus, the
regression models under the null and non-null states only dif-
fer in the intercept terms. It is likely that both the intercepts
and the covariate effects are state-specific. Further flexibil-
ity can be achieved by allowing β0,β1, . . . ,βr to vary across
both between the states and among the mixtures and thus
the regression model has heterogeneous covariate effects un-
der different states. In both homogeneous and heterogeneous
cases, the detection of the null and non-null states is about
testing the hypotheses on a regression coefficient, which is
now related either to the intercept terms or to a regres-
sion coefficients of a covariate. When the covariate effects
are homogeneous across states, they are not of interest in
hypotheses testing itself directly. However, if the covariate
effects are not considered, the changes in those covariates
may be mistakenly included in modeling the hidden states
of interest. On the other hand, when the covariate effects are
heterogeneous and change across states, the regression coef-
ficients are more directly related to the hypotheses testing
problem. In many cases, hypotheses testing is directly on
the effect switching across states of a given covariate. Under
the Bayesian hierarchical model framework, it is straight-
forward to extend the current testing model to include het-
erogeneous covariate effects. A couple of simulation exam-
ples are included in R package HMMtesting (Wang, 2021).
In practice, when assuming heterogeneous covariate effects,
the testing procedure requires a pre-specified order on one
or several regression coefficients.
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Frühwirth-Schnatter S (2001) Markov chain Monte Carlo esti-
mation of classical and dynamic switching and mixture models”.

Journal of the American Statistical Association 96(453): 194–209.
MR1952732
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