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Two-stage multivariate dynamic linear models to
extract environmental and climate signals in
coastal ecosystem data
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In environmental time series the presence of missing data,
desire for multiple modeling structures, non-simultaneous
data streams and computationally costly inference in highly
parameterized model structures bring major challenges. In
this work, we describe how multistage dynamic linear model
(DLM) structures can be used to concomitantly describe
long-term patterns, infer missing data, test predictive re-
lationships, and altogether facilitate model development
where multiple objectives and data streams may exist. We
demonstrate the utility of this modeling approach with long-
term data from Narragansett Bay (NB), Rhode Island, USA
which has undergone major ecological changes including re-
ductions in anthropogenic nutrient pollution. In a first stage,
DLMs were used both to interpolate missing data and de-
scribe changes in both seasonality and long-term trend for
nitrogenous nutrients and size structure of phytoplankton
communities. These models revealed a long-term decline in
large phytoplankton, and intensifying seasonal blooms for
smaller phytoplankton. In a second modeling stage, param-
eters with associated uncertainty from stage 1 were used
as covariates to test how features of the nitrogen series im-
pacted phytoplankton. Conditional on the posterior infer-
ence of predictors modeled in stage 1, the dynamic regression
revealed a newly discovered seasonal dependence of large
phytoplankton on nitrogen sources.

Keywords and phrases: Time Series, Dynamic Linear
Model, Pollution, Oceanography.

1. INTRODUCTION

In long-term environmental monitoring, scientists face a
plethora of challenges which make statistical inference diffi-
cult and the use of a flexible yet strategic framework valu-
able. First, environmental monitoring data are inherently
autocorrelated. While non-time series frameworks are com-
mon in environmental sciences, models which do not con-
sider the autocorrelated structure of time series may have
independence assumptions which are violated. Without ad-
dressing temporal traits, even important diagnostic tools

∗Corresponding author.

like cross-correlation functions may have issues like being
prone to type 1 errors [1]. Such spurious correlation between
series is the result of inflated cross-correlation due to remain-
ing autocorrelation in the series and may result in misinter-
pretation [2]. Second, as with most environmental series,
missing data are common and may occur over prolonged
periods. This amplifies the need for accurate interpolation,
forecasting, and quantification of uncertainty [3, 4, 5, 6, 7].
Frequently, the autocorrelation and missing data are treated
independently, for example, fitting static linear trends, omit-
ting data, or aggregating so as to circumvent direct handling
of missingness or autocorrelation [4, 5, 6, 7]. When time
series methods are employed, concerns for missingness still
remain in the context of model structures which will im-
pact the information loss during forecasting and interpola-
tion [8, 9]. Next, it is often desirable to isolate specific com-
ponents such as seasonality, long-term trend, and the effect
of predictors. This is crucial considering that these features
are not only apparent but also interpretable. For example,
often intra-annual patterns drive the ecological dynamics of
the marine ecosystems [10, 13, 11, 12]. Last, in time series,
temporally constant parameterizations are often assumed,
but it is generally considered that ecological systems with
feed-back mechanisms or tipping points are likely to see ma-
jor changes in temporal patterns at non-linear rates [14]. We
expect that data dependencies may evolve with changes in
ecosystem state, requiring time-varying parameterizations.

State-space models offer the capacity to address these
key features in long-term environmental monitoring data.
In particular, the dynamic linear model (DLM) is a specific
case of state-space models, where Gaussian distributed er-
rors are assumed and there is a long-standing body of work
for inferential algorithms and common structure types (e.g.,
[15, 9]). The general structure of DLMs allows an easy de-
composition into their additive components such as long-
term trend, seasonality, and regressive components. The de-
pendence structure of latent states in a DLM is Markovian,
e.g., the state variable at a generic time t depends only on
the state at time t− 1. The sum of a linear transformation
of the state variables and a random error term specifies the
model for the observed values. This Markovian structure is a
key trait that allows time-specific parameter estimates, that
is, parameters in each of these components can vary with

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


time [9]. This allows scientists to understand time-variation
in ecosystems. Because of these utilities, these models in
general form have been applied to a broad range in topics
including and not limited to marketing [16], finance [17],
and transportation [18]. Despite long-standing use, there
is opportunity to study how specific structures may serve
for long-term environmental monitoring such as in marine
phytoplankton ecology. There is limited but growing litera-
ture on the utility of DLMs in marine phytoplankton ecology
demonstrating that these models may be critical in elucidat-
ing the driving relationships in ecology which are unlikely
to be static in time [19, 20].

While DLM structures can accommodate multivariate se-
ries with diverse component specifications, we suggest that
such single joint specifications may be unideal in many ap-
plied contexts, such as in the case of long-term environmen-
tal monitoring. To begin, in such cases there are often mul-
tiple modeling goals. For example, two common objectives,
particularly for environmental time series, is the need to
accurately describe long-term changes in conjunction with
the need to explore and test predictors of series of inter-
est [3, 4, 5, 6, 7]. Inference could be performed jointly in a
multivariate structure, but this would be at great paramet-
ric cost particularly in the covariance structure. Too many
parameters in a DLM model can result in identifiability is-
sues, high variance in the estimates, and the computational
concern of highly correlated MCMC chain sequences [21, 9].
This could require prohibitively long MCMC simulations to
produce a sufficient effective sample size. Furthermore, it
may become more practical to perform a first inferential
stage as an exploratory measure, or to impute data before
other analyses including exploratory measures as is com-
mon in analysis with missing data. In model development,
where many variations may need to be run, it is also sub-
stantially more computationally efficient to sample from the
posterior inference of other independent model components
rather than to repeatedly make inferences on a highly pa-
rameterized, large joint model. Last, multistage structures
may be practically advantageous if multiple data sources are
not available simultaneously. This may be highly relevant
where data sources have different processing times. Rather
than waiting for all data to perform a full joint inference, it
is possible to make inferences on data sources as they be-
come available. These are practical issues in model develop-
ment which can be accommodated in a multistage modeling
framework. Different stages may hold different purposes, al-
low different rates of data availability, ameliorate computa-
tional costs during development, and yet share information
as opposed to implementing multiple independent models.

In this paper, we apply such multistage DLMs to study
photosynthetic microscopic organisms called phytoplankton
in a coastal study site. We implement this application with
the intention to highlight a practical approach to environ-
mental time series and demonstrate new ecological insights
through the multistage DLM modeling approach. Multi-
decadal marine monitoring of Narragansett Bay (NB) RI,

USA both represents a wealth of multivariate monitoring
data, and represents many of the aforementioned challenges
in environmental data series. The data is autocorrelated,
has extensive missingness, and dynamic structure that is
expected to require time-varying parameterization in mod-
eling. Scientists are driven both to understand long-term
changes and seasonal patterns as well as a need study the
dependence between series in exploratory analysis and in
targeted regression structures. Further, although the pro-
ceeding analysis centers around a historical segment of pub-
lished data, to scientists, data sources are often processed
at different rates (e.g., batches of chemical analysis vs direct
measurement), providing advantage to analyses that can be
performed in stages as data become available.

The data series used in this analysis also has substan-
tial applied practical significance. While phytoplankton are
small, globally these organisms are highly abundant in the
oceans and therefore responsible for primary production on
the order of 36.5-48.5 Gt C yr−1 [23, 24]. This biological
production is critical for everything from global biogeochem-
ical cycling (e.g., carbon) [25], to the productivity of marine
food webs [26]. And despite the magnitude of this biological
production, it is not impervious to human impact with some
direct forms of disturbance including nutrient pollution (es-
pecially nitrogen) which alters marine ecosystem function
in ways such as excessive production (eutrophication) to
changing the biological community structure [27]. While
some regions are facing increasing eutrophication [28], in
others, government policy has been enacted or proposed to
better regulate nutrient pollution [29]. Most recently in NB,
between 2005 and 2012, the nutrient loading by wastewater
facilities were reduced by 50% through wastewater treat-
ment [29]. Cross-sectional studies have shown this has mea-
surably reduced the standing stock of dissolved inorganic ni-
trogen (DIN) and dissolved inorganic phosphorous (DIP )
in the bay by 50 − 60% [35]. There is concern for how this
could affect phytoplankton communities, including in terms
of cell sizes. These phytoplankton size features are known to
impose a physical constraint on the potential rate of nutrient
supply [30], but ecologically, cell size is also inversely related
to maximum abundance [31], strength of the microbial re-
cycling, and food chain length [32], and positively related to
features including sedimentation rate, and export efficiency
of material to the deep ocean [34].

In this study, we outline how multistage Bayesian DLMs
can be used to meet the above statistical goals of ecologi-
cal time series through the example of the Narragansett Bay
Time Series. In section 2 we cover the basic DLM, introduce
the general multistage structure, useful component speci-
fications, and inference. In section 3 we apply this model
structure to investigate long-term ecologic change in the size
structure of phytoplankton and environmental predictors in
Narragansett Bay from 2003-2019 through a weekly record
of environmental features. In section 4 we describe inference
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on long-term patterns as well as the relationship of the phy-
toplankton community as a function of these environmen-
tal variables. We conclude (5) with scientific interpretation
and discussion of how biological function of marine com-
munities may change over long spans of time, necessitating
flexible time-series models and benefiting from multistage
structures.

2. METHODOLOGY

2.1 Dynamic linear model structure

The standard, multivariate DLM can be represented as
a system of two linear equations: the observation equation,
and the state equation. The state equation is also called the
evolution equation borrowing from terminology of dynamic
equation literature and does not reference biologic defini-
tions. The observation equation represents the (r×1) obser-
vation vector (Yt), t = 1, . . . , T , from an (n×1) unobserved
state (θt), transformed by the (r×n) observation matrix (Ft)
with (r × 1) error (vt). This normally distributed observa-
tional error is considered as coming from a zero mean normal
with (r× r) covariance Vt. The second equation models the
evolution of the latent state θt through time, according to
the (n×n) evolution matrix (Gt) with (n×1) evolution error
wt. This normally distributed evolution error is considered
as coming from a zero mean normal with with (n× n) evo-
lution covariance (Wt). The DLM is defined at time t by
the set {Ft,Gt, θt,Vt,Wt}. In the DLM, it is assumed that
both evolution and observational errors are normally dis-
tributed, and priors for unknown parameters —commonly
P (θ0), P (V0), P (W0) —are designed to suit these assump-
tion.

(1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Yt = Ftθt + vt, vt ∼ Nr(0,Vt)

θt = Gtθt−1 + wt, wt ∼ Nn(0,Wt)

θ0 ∼ P (θ0)

V0 ∼ P (V0)

W0 ∼ P (W0)

Through this general framework a wide choice of model
structures are possible, including popular model structures
such as ARIMA models [9, 33] to static regression in the
case when W is set to 0. While potential component specifi-
cation are expansive, some common components to θ include
parameters for ARIMA class structures, seasonality, trend,
and regression [9, 33]. In applied time series analysis, sev-
eral of these model components and even multiple, indepen-
dent model specifications may be important. For example,
it may be valuable to use models with seasonality and trend
to understand long-term changes in these features. In addi-
tion, regression models may also be desired to understand
the relationship between the series. Ultimately, use of two
or more models may be critical among these applications.
In part, this is because while missingness is easily accommo-
dated in response variables in standard updating algorithms

[15], it does pose an issue in regression models as complete
predictors are required. Therefore, preliminary imputation
and analysis models may be necessary.

We define the general multistage model for stage s =
1, . . . ,S. In the multistage model, the posterior parameters
at stage s = u, are conditional on data and posterior param-
eters of all stages s < u. That is, specification of any given
stage can be described as in equations 1, conditional on
inference from any previous stage. While posteriors param-
eters of s can be marginalized over the posteriors of stages
s < u, in the multistage they are required for inference.
Otherwise, posterior inference could be carried out inde-
pendently in separate models. Practical examples–as will be
demonstrated–will be regression models where parameters
of one model serve as predictors in the next stage.

In this analysis we exemplify a two-stage extension on
the basic DLM structure that provides a framework for fre-
quent tasks in applied time series analysis. Stage 1 serves
to characterize long-term trend and changing seasonality
as is important—for example —in climate and phenological
studies [3, 4, 5, 6, 7]. Stage 1 also provides imputation for
predictive series with missingness, and inference on features
of interest. Here, for the length r set Y Q = {Y Q

1 , . . . , Y Q
r }

of all variables of interest, a multivariate structure is used
to model Y Q

t , t = 1, . . . , T , and provide long-term descrip-
tion and inference. Given these stage 1 results, in stage 2,
we may perform a regression between any z length sub-
set Y Z , Y Z ⊆ Y Q, of response variables, and posterior
parameters(ΨX

stage1) of x length subset Y X , Y X ⊆ Y Q, of

predictors such that Y X �= Y Z . As is common for regression
models, if the z×w length state vector θZt contains a regres-
sion coefficient βX , then the predictor derived from ΨX

stage1

is contained in the corresponding element FZ
X,t of FZ

t (see
2.2.2). Given the preceding stage 1 inference, this regres-
sor could either be raw data with imputation (Y X

t ), poste-
rior quantity of interest (ΨX

stage1) generally, or any function

thereof (g(ΨX
stage1)). In this way, stage 2 allows hypotheses

tests of associations, which are also common in applied time
series analysis. More formally the structure can be presented
as below:

Stage 1

(2)

{
Y Q
t = FQ

t θQ
t + vQt , vQt ∼ Nr(0,V

Q
t )

θQ
t = GQ

t θ
Q
t−1 + wQ

t , wQ
t ∼ Nn(0,W

Q
t )

Stage 2

(3)

⎧⎪⎨
⎪⎩
Y Z
t = FZ

t θZ
t + vZt , vZt ∼ Nz(0,V

Z
t )

θZ
t = GZ

t θ
Z
t−1 + wZ

t , wZ
t ∼ Nrw(0,W

Z
t ⊗ V Z

t )

FZ
X,t ∼ P (g(ΨX

Stage1))

Ψ0 ∼ ΠK
k=1P (Ψ0,k)

Ψ0 = {θZ0 , θQ0 , V Z
0 , V Q

0 ,WZ
0 ,WQ

0 }
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In this framework, stage 1 and stage 2 can be completed
sequentially. Inference of the stage 1 parameters, ΨQ, is in-
dependent of stage 2 parameters ΨZ . This is because stage
1 parameters (ΨQ) are independent of stage 2 parameters
ΨQ so that P (ΨQ|ΨZ) = P (ΨQ). Developing this depen-
dence structure carries the assumed causal relationship rep-
resented in the regression structure. This feature has practi-
cal value in that it allows posterior inference from the stage
1 descriptive models to better inform stage 2 model specifi-
cation as is commonly done, for example in exploring lags of
interest between series [36]. However, during stage 2 infer-
ence via MCMC algorithms, it is simple to sample the stage
1 model for parameters of interest or missing data, so that
the posterior distribution of stage 2 parameters p(ΨZ |·) are
integrated over uncertainty in the predictor p(ΨX) as can
be seen below:∫

P (ΨZ |ΨX , ·)P (ΨX)dΨX = P (ΨZ |·),

ΨZ = {θZ1:T ,V Z ,WZ
t }

2.2 Model structures

2.2.1 Stage 1 model structures

Stage 1 models (2) provide the opportunity to charac-
terize the long-term patterns of the environmental series
jointly. Through the multivariate structure and inference,
the correlation between series can be leveraged in the infer-
ential algorithm, so that for r series of Y Q

t = (Y Q
1,t, . . . , Y

Q
r,t),

if one series Y Q
i,t, i ⊂ 1, . . . , r, is missing data where another

is not missing, the covariance between the series provides
additional information. To best describe long-term change
and seasonality among all r series, for each series i, θQi,t has
two major components to describe long-term pattern and
seasonal trend. Assuming this specification with n compo-
nents is sufficient for all series, i, the complete latent state
(θQt = (θQ1,t, . . . , θ

Q
r,t))

′ of the full model is rn× 1, the obser-

vation matrix (FQ
t = (FQ

1,t, . . . , F
Q
r,t)) is (r×rn) with (r×1)

error vector (vQt ) with (r×r) covariance V Q
t , (rn×rn) evo-

lution matrix (GQ
t = diag(GQ

1,t, . . . ,G
Q
r,t)) with (rn×1) evo-

lution error wQ
t with (rn× rn) evolution covariance (WQ

t )
In this form, the first component for each series i is a

dynamic intercept θQi,μ,t = μQ
i,t with corresponding compo-

nents in FQ
i,μ,t and GQ

i,μ,t of 1. Thereby, marginally, f(μQ
i,t |

μQ
i,t−1,W

Q
i,μ) ∼ Nrn(μ

Q
i,t−1,W

Q
i,μ), and so (μQ

i,t) has the flex-
ible structure of a random walk process. The second compo-
nent is dynamic seasonality. Seasonal components for each i,
(θQi,S,t = SQ

i,t) may be included by harmonics in Fourier form,
for a parsimonious representation of annual cyclicity [9]. For
example, with weekly resolution data and annual patterns,
cyclicity could be modeled with a period 52.17 function.
While any function of period s can be modeled by s/2 har-
monics, in general a smaller number J is both more inter-
pretable and aids in reducing over-parameterization. Within

θQt , for each frequency, both the harmonic Sj,t and its con-
jugate Sj,t∗ are included, and evolve according to the sub-
component Hj , for Fourier frequencies j = 1, . . . , J of the

evolution matrix GQ
i = diag(1,H1, . . . ,HJ).

(4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FQ
i =

[
1 (1 0) (1 0) · · · (1 0)J

]

GQ
i =

[
1

GQ
s

]

GQ
s =

⎡
⎢⎢⎣
H1

. . .

HJ

⎤
⎥⎥⎦

Hj =

[
cos(ωj) sin(ωj)

− sin(ωj) cos(ωj)

]

ωj = 2
πj

s , j = 1, . . . , J

θQi,t =

⎡
⎢⎢⎢⎢⎢⎢⎣

μi

Si,1,t

S∗i,1,t
...Si,J,t

S∗i,J,t

⎤
⎥⎥⎥⎥⎥⎥⎦
θQt =

⎡
⎢⎢⎣
θQ1,t
...

θQr,t

⎤
⎥⎥⎦

2.2.2 Stage 2 modeling structures

In addition to description and data exploration, the stage
1 models also provide opportunity for various imputation
and parameter estimates for use in subsequent modeling
steps. One option for the stage 2 models (3), rather than
to use the observed cases and imputation of missing cases of
predictors such as from the posterior predictive, the predic-
tors may be a function of latent states such as (FX

t θX
t | Y Q

t )
which is designed to represent the latent state of the predic-
tor without observational uncertainty. For multivariate or
even matrix-variate response series, it may also be advanta-
geous for the regression to take the form of a matrix-variate
regression model, that is, Y Z

t = (Y Z
1,t, . . . , Y

Z
z,t) becomes di-

mension (z×p), θZ
t as (z×m), and the evolution covariance

as the Kronecker product of the (m×m)WZ
t and (z×z) V Z

t .
Specifying a matrix-variate state allows the ability to model
correlated evolution among the series as well as the state
variables [37].

For each series l, l ⊂ 1, . . . , z, which take the same compo-
nent form, regression models might be specified with three
major components to the latent state, θZt = (θZ1,t, . . . , θ

Z
z,t).

The first component θZl,μ,t is a dynamic intercept (μZ
l,t) with

corresponding components in FZ
μ,t and GZ

μ,t of 1. Thereby,

marginally, f(μZ
l,t | μZ

l,t−1,W
Z
l,μ) ∼ N (μZ

l,t−1,W
Z
l,μ), and so

422 J. Strock, G. Puggioni, and S. Menden-Deuer



(μZ
l,t) has the flexible structure of a random walk process.

The second component is a regression coefficient (βZ
l,t) on the

appropriate lag k of the predictor X. For example, this lag
may be chosen as the lag with highest cross-correlation be-
tween the predictor series and response. The corresponding
multiplier in FZ

β,t is the predictor Xk, and the correspond-

ing component in GZ
β,t is 1. Thereby marginally, βZ

l,t can
also evolve with the flexibility of a random walk process.
The final component of the model is a Fourier form seasonal
component, with j = 1, that is with period s. To have a flex-
ible yet parsimonious specification, we choose to have some
of the components as constant such as the seasonality, espe-
cially if the predictor is already expected to describe some of
the seasonal signal. To accomplish a static component, the
corresponding elements of W are set to 0. By this struc-
ture, the interpretation of the regressive component, is not
in describing the total variability attributable to the predic-
tor, but rather, the anomaly from the long-term trend and
regular seasonality.

(5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

FZ =
[
1 g(X) 1 0

]

GZ =

⎡
⎢⎣1 1

GZ
s

⎤
⎥⎦

GZ
s = H

H =

[
cos(ωj) sin(ωj)

− sin(ωj) cos(ωj)

]

ωj = 2π
s

θZt =

⎡
⎢⎢⎢⎣
μ1,t · · · μz,t

β1,t · · · βz,t

S1,t · · · Sz,t

S∗1,t · · · S∗z,t

⎤
⎥⎥⎥⎦

2.3 Posterior inference

In the two-stage DLM, for both stage 1 and stage 2 condi-
tional on the posteriors of stage 1, inference can be carried
out via Markov chain Monte Carlo (MCMC), and under
specific semi-conjugate prior specifications described below,
this can occur simply by sampling the conditionally con-
jugate posterior distributions for each unknown parameter.
The following apply for DLMs in general as well as each
stage of the multi-stage model.

2.3.1 Latent state variables, θ1:T

Because of the Markovian structure, solving for the pos-
terior distribution of the latent states, f(θt|D1:T , ·), is a

three step process conditional on the unknown variance
and covariance parameters. In the case of the DLM, in the
Bayesian framework this an iterative algorithm of forecast-
ing, filtering, and smoothing, which has been derived in the
Kalman Filter and Kalman Smoother [15]. Multivariate and
matrix-variate extensions have been developed and detailed
by Wang and West [37]. The Kalman Filter and Smoother
are used to sample the latent state conditional on the ob-
served data and other model parameters in the forward-filter
backward-sampling (FFBS) algorithm [15]. The Kalman
Filter can be derived both by Bayes theorem, and standard
normal theory. From the Bayesian perspective, the deriva-
tion comes about from the one step ahead forecast which
serves as a prior for filtering the next time interval.

2.3.2 Covariance terms V & W

In all models, we assume static observational covari-
ance, consistent with the static Bayesian inference for the
Gaussian distribution. The inverse-Wishart (IW) is semi-
conjugate in the multivariate-Gaussian case [38]. The IW
is also used to specify a static evolution covariance in the
stage 1 models which describe the long-term trends and sea-
sonal structure of the nitrogen and chl. a series. Alternate to
the static covariance, to accommodate time-varying stochas-
ticity in the regression model, Wt may be specified as time-
varying through the use a discount factor. Discount factors
model the loss of information between time steps, whereby
low discount factor levels correspond to more information
lost per step ahead, and higher discount factors represent
greater predictability between time-steps [9]. While an ex-
plicit state-space model could be specified for the covariance
matrix, this can be disadvantageous in terms of both com-
plexity, and non-conjugacy in inference. The discount factor
applies to the one step ahead state covariance matrix Pt,
itself a function of the filtered state covariance at time t−1,
Ct−1.

Wt = (1− δ)/δPt

Pt = GtCt−1G
′

t

When missingness exceeded length 1, that is forecast k
steps ahead needed to be greater than 1, the method of
‘practical discounting’ was used [9] which limits the loss of
information to linear rather than exponential increase dur-
ing missing data periods.

Rt = Gk−1Ct+1G
′k−1, k > 1,

To avoid mixing issues that come with highly parameter-
ized models [21], instead of specifying a prior and sampling
discount factors (e.g., [39]), models with fixed discount fac-
tors were run in parallel and compared as is relatively com-
mon practice [40].
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Figure 1. Dependence structure between components of the
stage 1 and stage 2 model for the Narragansett Bay

ecological model. A bivariate model was run for small and
large chl. a as well as nitrate + nitrite to describe long-term

patterns among all series. Examination of prewhitened
cross-correlations between the imputed series after stage 1 led
to the use of DIN as a predictor in stage 2 to explore the
influence of nitrogen on size structure of phytoplankton.

Stage 2 used latent levels (F1:T θNH4,1:T , F1:T θNO3,2,1:T ) of
ammonia and nitrate + nitrite.

3. APPLICATION TO NARRAGANSETT
BAY DATA

We applied this two-stage DLM with data from Nar-
ragansett Bay ecosystem in Rhode Island, USA. Chloro-
phyll <20 μm (small chl. a), chlorophyll >20 μm (large
chl. a) and associated measurements of nitrate and nitrite
(NO−

2 + NO−
3 ), and ammonia (NH+

4 ) were all obtained
from the University of Rhode Island Long-Term Plankton
Time Series of Narragansett Bay from January 2003 to
March 2019 at weekly resolution from the publicly avail-
able dataset (https://web.uri.edu/gso/research/plankton/
data/). An additional six months of data (September 2019 to
March 2020) were used to evaluate out-of-sample accuracy.
Dissolved inorganic nitrogen (DIN), a frequently limiting
nutrient for growth in marine environments is represented
here as the sum of nitrate + nitrite and ammonia. Among all
series, it is expected that after natural log-transformation
the assumption of Gaussian distributed errors, and linear
associations are reasonably appropriate, thus conforming to
the distributional and structural assumptions of the DLM
case of state space models.

In stage 1, following the structure outlined above (eqns.
2, 4), bivariate models were run for log small chl. a, log
large chl. a, and another for log ammonia and log nitrate
+ nitrite (table 1). To accommodate the complexity of the
seasonal signal, 6 different seasonal harmonics are used be-
ginning with that of the longest possible period, s=52.14
weeks. For the DIN and chl. a series, j = (1, . . . , 5) to

accommodate a more complex seasonal cycle. With suffi-
ciently long data series, weakly informative priors could be
specified in all cases. For the covariance matrices V Q and
WQ were modeled as time invariant and given priors with
weakly informative, respectively IW(aQv = 2, bQv = 0.1∗I2),
IW(aQW = 2, bQW = 0.1 ∗ I2), where I2 is the identify ma-

trix with rank 2. θQ0 was given a N (mQ
0 ,C

Q
0 ) prior, where

mQ
0,μ = ȳ, mQ

0,−μ = 0, and CQ
0 = I2. Because θQt ,V

Q,and

WQ are conditionally conjugate, Gibbs sampling from the
FFBS, IW distribution of V Q, and IW distribution of WQ

leads to a sample of the full joint posterior.

Stage 1

Y Q
t = FQθQ

t + vQt , vQt ∼ N2(0,V
Q)

θQt = GQθQ
t−1 + wQ

t , wQ
t ∼ N22(0,W

Q)

θQ
0 ∼ N22(m

Q
0 ,C

Q
0 )

V Q
0 ∼ IW(aQv , b

Q
v )

WQ
0 ∼ IW(aQw , b

Q
w)

Stage 2

Y Z
t = FZ

t θZ
t + vZt , vZt ∼ N2(0,V

Z)

θZ
t = GZθZ

t−1 + wZ
t , wZ

t ∼ N8(0,W
Z
t ⊗ V Z)

FZ
X,t ∼ P (g(FX

t θXt ))

θZ
0 ∼ N8(m

Z
0 ,C

Z
0 )

V Z
0 ∼ IW(aZv , b

Z
v )

WZ
t =

1− δ

δ
Pt

PZ
t = GZCZ

t−1G
′Z

Rt = GZ,k−1CZ
t+1G

′Z,k−1, k > 1

After stage 1, the relationship between each chl. a frac-
tion and DIN was explored through their cross-correlations
to inform the structure of stage 2 (eqns. 3, 5). That is, the
features of X and function g(X) were identified to specify
the regression component of the observation matrix (FZ

X,t).

Weakly informative priors were specified in all cases. V Z

was modeled as time invariant and given a prior with weakly
informative, IW(2, 0.1 ∗ I2), where I2 is the identify matrix
with rank 2. θZ

0 was given a N (mZ
0 ,C

Z
0 ) prior, where where

mZ
0,μ = ȳ, mZ

0,−μ = 0, and CZ
0 = Ip. For the case of dis-

count factors, for WZ , discrete discount factors (0.8, 0.85,
0.9, 0.95, 0.99, 0.999) were tested in parallel model runs.
Because θZ

t and V Z are conditionally conjugate and WZ
t

specified by δ, updating WZ
t , and Gibbs sampling from the

FFBS and IW distribution of V Z . Given stage 2 inference is
conditional on stage 1 posterior quantities θX1:T , these were
sampled from the posterior MCMC samples of the stage
1 model so as to integrate over uncertainty. The complete
model followed the structures outlined in methodology.
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Table 1. Models run in stage 1 and stage 2 two of this project, with general specifications.

Stage Model Response Variables Components V Specification W Specification

1
1 ammonia, nitrate + nitrite

Dynamic, Intercept μ
Static, IW prior Static IW prior

Dynamic, Season (Si), i=1,. . . ,5

2 Small Chl. a, Large Chl. a
Dynamic, Intercept μ

Static, IW prior Static IW prior
Dynamic, Season (Si), i=1,. . . ,5

2 3 Small Chl. a, Large Chl. a
Dynamic, Intercept μ

Static IW prior
Dynamic,

Dynamic, Regression on DIN Fixed Discount Factor
Static, Season (Si), i=1,. . . ,5

Posterior samples of unknown variance, covariance, and
latent states were all iteratively sampled via Markov chain
Monte Carlo simulations. As many models were being run,
simulation length was 10,000 iterations with a burn-in pe-
riod of 2,000 to reach a minimum of 1,000 effective samples
according to Gelman et al. [21], where W is the within se-
quence variance, and B is the between sequence variance for
n samples and m MCMC chains of the parameter φ.

n̂eff =
mn

1± 2ΣT
t=1ρ̂t

ρ̂t = 1− Vt

2 ˆvar

Vt =
1

m(n− t)
Σn

j=1(φj,i − φi−t,j)
2

ˆvar(φ|y) = n− 1

n
W +

1

n
B

The fixed discount factors are commonly chosen with
mean one-step-ahead forecast error [40, 41]. RMSFE was
calculated for each MCMC iteration from the one step ahead
mean forecast. As this was accomplished for each MCMC it-
eration of each model, Monte Carlo sampling of the RMSFE
distribution of each model was used to calculate, for each
pair (i, j) of models P (RMSFEi < RMSFEj). RMSFE
can be defined as described below, allowing comparison of
the distribution of RMSFE among models.

RMSFE =

√
Σn

t=1(yt − Ft−1θt−1,i)2

n

One-step-ahead RMSFE was also analyzed out of sample
for the final six months (Sept. 2019-March 2020), and com-
pared between the stage 1 DLM approach taken here and a
standard ARIMA model fit using AIC for model selection.

To test some of the long-term changes in mean levels,
we use Monte-Carlo method whereby the dynamic intercept
pre-remediation (before 2005) and post-remediation (after
2012) are sampled from the posterior distribution and com-
pared. In this way, the Bayesian framework provides a simple
method of hypothesis testing any model parameter.

P (A > B) =
Σrδa>b

r

Figure 2. Decomposition of the DIN series DLM
(2003–2019), fit with the stage 1 model structure. a. the
dynamic intercept, b. the seasonal trend, c. the posterior

predicted mean with the true data (red). The median (black),
80% (dark grey shading), and 95% (light grey shading)
pointwise credible intervals are shown. Blue dotted lines
denote the beginning and end years of policy mandated

nutrient remediation.

In addition to these quantities, hereafter in results, we
report mean and the 95% CI of the posterior distributions
of interest.

4. RESULTS

4.1 Stage 1 inference

For ammonia and nitrate + nitrite although long-term
monotonic changes were hypothesized for the dynamic in-
tercept, the actual patterns from 2003–2019 were more com-
plex, with multiyear patterns not following clear monotonic
changes expected with the policy mandates for reduction in
wastewater levels by 50% between 2005–2012 (fig. 2). Fur-
ther, while the seasonal cycle is quite variable year to year,
there are now clear trends in the features of this annual cycle
such as levels at the annual maxima (fig. 2). Both series of
N species show a high correlation of (0.50±0.074), with over-
all higher variability in the nitrate + nitrite (0.94±0.14), as
compared to ammonia (0.74±0.10).
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Figure 3. Decomposition of the small and large chl. a DLM (2003–2019), fit with the stage 1 model structure. a,d. the
dynamic intercept, b,e. the seasonal trend, c,f. the posterior predicted mean (blue) with the true data (red). For the dynamic

intercept and the season, the median (black), 80% (dark grey shading), and 95% (light grey shading) pointwise credible
intervals are shown. Blue dotted lines denote the beginning and end years of policy mandated nutrient remediation.

Decomposition of the small chl. a series show variable
levels in the dynamic intercept over the observation period,
with an increase from pre-remediation (0.59±0.44) to post-
remediation (0.91±0.66), comparing the posterior distribu-
tions from these two periods through Monte Carlo simula-
tion, however, this is not a significant increase with posterior
probability of post-remediation higher than pre-remediation
equal to 0.15 (fig. 3). The seasonal signal shows clear an-
nual periodicity, with some complex features likely due to
bloom events. Overall, the amplitude of the seasonal signal
increases with time, particularly in the years after 2012.

Decomposition of the large chl. a series show variable
levels in the dynamic intercept over the observation period,
with a marked decline beginning in 2008 (fig. 3). While
there is a slight uptick 2017-2019, the intercept of this pe-
riod is still below that of the 2003–2008 period before de-
clining levels. Comparing the posterior distribution of the
intercepts from pre-remediation (0.78±0.52) to after 2012
(0.31±76), the posterior probability that the later period is
lower is equal to 0.989. The seasonal signal shows no clear
pattern, with some complex features likely due to bloom
events. Overall, the amplitude of the seasonal signal is vari-
able in time, with lowest seasonal signals represented during
the period when the intercept was also at its lowest. Beyond
mean levels, the observational matrix of the bivariate DLM
for chl. a shows several features. The large chl. a series shows

Table 2. Mean one-step-ahead RMSFE calculated for ARIMA
and first stage DLM models in 6-months of data September

2019-March 2020.

Data Series ARIMA Fit ARIMA Stage 1 DLM
p d q RMSFE RMSFE

Ammonia 5 0 0 1.4 0.57
Nitrate + Nitrite 3 0 0 1.2 0.57
Large Chl. a 4 1 0 1.3 0.82
Small Chl. a 2 0 0 1.1 0.76

inherently higher variability (1.1±0.04) than the small chl.
a series (0.3±0.14).

The cross-correlations between the imputed DIN series
and each chl. a series were examined. Imputation of the
DIN series used the posterior mean when data were misss-
ing. This was done to characterize the relationship between
the series across time lags. These cross-correlations helped
inform the significantly associated lags, and the strength of
association between the series.

4.2 Stage 2 inference

After examining the prewhitened cross-correlation be-
tween the series to reduce spurious cross–correlations [22]
and testing preliminary model structures, it was decided to
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Figure 4. The dynamic regression coefficient, βDIN
t , for both the a. Small chl. a series b. Large chl. a series. c. Posterior

distribution of the dynamic regression coefficient, βDIN
t , on DIN for the large chl. a, plotted by week on the x–axis, and by

year as denoted by color shading. The median (black), 80% (dark grey shading), and 95% (light grey shading) are shown.

use dissolved inorganic nitrogen (DIN , ammonia + nitrate
+ nitrite as a predictor at lag 0, which showed the strongest
cross-correlation to both chl. a series. Using DIN instead of
the ammonia and nitrate + nitrite series as separate predic-
tors statistically avoided multicollinearity issues considering
the two series are correlated. Too many parameters in the
DLM model, where each variable is also ‘flexible’ in time
can result in identifiability issues, high variance in the esti-
mates, and a more minor but computation concern of highly
correlated MCMC chain sequences [21, 9], which hypothet-
ically could require prohibitively long MCMC simulations
to produce a sufficient effective sample size. Combined with
scientific studies in Narragansett Bay that have shown no
preference to N species by size fraction [42] it was decided
DIN was an appropriate predictor for both chl. a series.
With this structure, the Ft,Xt of the stage 2 model is speci-
fied in this model as follows:

FZ
X,t P (log(DINt) | Y X

1:T ) =

log(exp(FX
1:T θ

X
NH4,1:T ) + exp(FX

1:T θ
X
NO3,2,1:T ))

θXNH4,1:T | Y X
1:T ∼∫

P (θXNH4,1:T | Y X
1:T , ·)P (·|Y X

1:T )d·

θXNO3,2,1:T | Y X
1:T ∼∫

P (θXNO3,2,1:T | Y X
1:T,N , ·)P (· | Y X

1:T,N )d·

For the bivariate regression model, the use of a single
discount factor for μ and β was considered as was a sepa-

Table 3. Type 1 RMSFE calculated for each model with
fixed, equal discount factors for μ and β. Each cell is the

probability that the RMSFE of the row index exceeds that of
the column index.

0.8 0.85 0.9 0.95 0.99 0.999

0.8 <0.001 0.664 0.512 0.148 0.016 0.008
0.85 0.336 <0.001 0.32 0.04 <0.001 <0.001
0.9 0.488 0.68 <0.001 0.064 <0.001 <0.001
0.95 0.852 0.96 0.936 <0.001 0.004 <0.001
0.99 0.984 >0.999 >0.999 0.996 <0.001 0.008
0.999 0.992 >0.999 >0.999 >0.999 0.992 <0.001

rate discount factor for μ and β. With two discount factors,
RMSFE suggested more flexible models, particularly for δμ,
with δμ tending toward the lowest levels provided. In this
case, δμ= 0.80, δβ=0.90 was suggested. Considering the low
discount factor set selected in this case, with potentially too
much adaptability from the selection of separate discount
factors, the subset of models with identical discount factors
was considered. In this case, the optimal model according
to RMSFE was with δμ,β=0.85 (fig. 4, table 3). While
this still suggests a highly flexible model, and relatively low
signal in the data, it does still make apparent some of the
meaningful dynamics in relation to each chl. a series and the
DIN series.

For the small chl. a series, for the pre-remediation to the
post-remediation period, there was no major change in the
regression coefficient (fig. 4 a.). Considering the pointwise
credible interval for the small chl. a series, the regression
coefficient was also not significantly different from 0. For
the large chl. a series, for the pre-remediation period to the
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post-remediation period, the posterior probability the re-
gression coefficient had increased was equal to 0.484. (fig. 4
b.). Considering the pointwise credible interval for the large
chl. a series, the regression coefficient was periodically sig-
nificantly different from 0. Graphical representation on the
annual scale suggested this coefficient takes an annual cy-
cle (fig. 4 c.). Aggregating the mean coefficient across all
years and comparing across the annual cycle, the strongest
associations occur in the winter, suggesting the large phyto-
plankton are seasonally tied to the ambient nutrient signal
(fig. 4 c.). evolution covariance showed that there is a sea-
sonal pattern to the evolution rate in the state components.
The observational error, which also serves to represent cross-
series-covariance shows similar results as in stage 1, where
the larger size fraction of chl. a is more variable than the
smaller size fraction, with a positive covariance between the
series. The mean of residuals was not significantly different
from 0 and the ACF of the residuals showed there was no
significant temporal structure left in the data. According to
Ljung box in ACF, residuals are practically indistinguish-
able from white noise.

5. DISCUSSION

While Rhode Island state law mandated the reduction
of 50% from wastewater effluent into the bay during the
period of 2005–2012 [43, 44], the stage 1 inference of long-
term trend in multiple nitrogen species combined show that
at this observation station, net changes in the ambient DIN
signal and its constituents were not apparent. Notably, this
does not mean that reduction in nutrient pollution did not
take place and was not effective. Cross–sectional studies
with spatial resolution showed net decline in nutrient levels
at more northern locations closer to point sources of nutri-
ent influx [35], and others have suggested that other sources
like marine sediments may also be a major N source, which
would potentially stabilize ambient levels [45]. Nevertheless,
instead of a clear monotonic drawdown in nutrients, apply-
ing a flexible stage 1 structure to describe changing trend
and seasonality showed there is multiyear variability appar-
ent both in seasonal cycle and mean levels.

The DLM of the chl. a series shows a net change in the
size structure of phytoplankton in Narragansett Bay, with
phytoplankton >20 μm 0.47 μgL−1 lower and phytoplank-
ton <20 μm 0.32 μgL−1 higher across the nutrient remedia-
tion period (2005–2012). Comparison of the dynamic inter-
cepts shows net ecosystem shift toward smaller organisms
which could have potentially rippling effects through food
webs [46]. Again, graphical representation of the posterior
of μ emphasizes that the dynamic intercept is valuable in
capturing non-linear trends with multiyear variability. Fur-
ther, in addition to changes in mean level represented by the
dynamic intercept, the dynamic seasonal components show
an increase in the intensity of the seasonal cycle of phyto-
plankton >20 μm following the end of nutrient reduction.

This equates to higher summer maxima and lower winter
minima for the small phytoplankton fraction.

Beyond state features, covariance of the DLM is inter-
pretable and useful for understanding the variability in the
environmental series. The DLM showed that the chl. a >20
μm are inherently more variable, with an observational vari-
ance of 1.05±0.06 as compared to small chl. a (0.31±0.02).
This suggests that larger plankton in the bay are potentially
much patchier, and inherently more stochastic in their pop-
ulation dynamics. This result aligns with hypotheses about
bloom dynamics and predator control on growth. For ex-
ample, smaller phytoplankton are more tightly coupled to
predator control, and this results in more stable populations
as compared to larger phytoplankton [47]. The higher vari-
ance of the phytoplankton >20 μm, suggests this may be
true locally in some of the fine scale dynamics in the stand-
ing stock.

Altogether, stage 1 in the model provided several useful
utilities. It provided a description of long-term and seasonal
trend that was easily extractable from the stage 1 model
structure. It provided an imputed data set for exploratory
data analysis, that helped develop the second stage regres-
sion structure including through the calculation of cross-
correlation and checks on linearity assumptions. This ul-
timately helped us select DIN as a regressor as opposed
to the individual nitrogen species. It also aided computa-
tionally with the development of the regression model. It
was not necessary to simultaneously model the regressors.
Rather, the posterior quantities of the stage 1 could be sam-
pled directly.

Ultimately, in the second stage of the model, model se-
lection tended toward low discount factors for μ and β, sug-
gesting not only dynamic levels of each series over time, but
also that the association with DIN is variable. As indicated
graphically by the 95% CI, for most of the series the small
phytoplankton are not significantly associated with DIN
signal. This suggests, both that phytoplankton <20 μm are
relatively invariant to ambient DIN signals and that DIN
levels are not shaped by the phytoplankton <20 μm com-
munity in NB. Considering that after the nutrient reduction
period, phytoplankton <20 μm are on average dominant in
the phytoplankton community, it is thus surprising that they
are still non-significantly related to the DIN signal.

Stage 2 inference showed that, in contrast to the phyto-
plankton <20 μm, phytoplankton >20 μm are often signifi-
cantly tied to the DIN signal. The negative coefficient has
an important scientific interpretation: N is typically the lim-
iting nutrient for phytoplankton growth, including in Nar-
ragansett Bay [54]. The negative relationship suggests that
the ambient nitrogen levels decline as the nutrient feeds large
phytoplankton growth. Nevertheless, as expected, the rela-
tionship between phytoplankton >20 μm and DIN is non-
static and exhibits evidence of annual cyclicity. In general,
the regression coefficient is largest in magnitude and has the
largest effect in winter periods. The lowest effect is in the
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summer. This suggests that the larger phytoplankton and
DIN levels are more closely tied in the colder month pe-
riods when blooms are known to occur. There is no clear
long-term shift in the regression coefficient for the chl. a
>20 μm series. This suggests that for the phytoplankton
>20 μm, dependence on DIN has not shifted after nutri-
ent reductions, and further that the potential role of larger
phytoplankton as biogeochemical engineers has not been im-
pacted despite the apparent declines in the representation
of this size class.

In this analysis we address several of the challenges in
long-term environmental monitoring but also the impor-
tance and potential of state-space models for such series. In
application on data from long-term series in Narragansett
Bay, USA, variability from weeks to years in this marine
ecosystem made the flexible structure of the DLM necessary
for inference. Further, our two-stage modeling strategy fit
several needs and showed several practically beneficial prop-
erties. First, stage 1 allowed characterization of seasonal and
long-term change in the data, which poses a major challenge
to environmental scientists. With inference into periods of
missing data, it allowed further exploratory analysis into op-
timal model structures for stage 2, and provided completed
data series. In the stage 2 dynamic regression models, it
also allowed working with the latent levels of the predictors,
which do not carry observational uncertainty. Last, in com-
putation, the MCMC inference could be carried out indepen-
dently for stage 1 and 2, meaning practically, the posteriors
from stage 1 could be sampled in stage 2. This means the in-
ference on missing data does not need to be repeated in the
regression analysis. Beyond the importance of two stages, we
found that to accommodate the flexibility necessary to fit
the data and prevent over-parameterization, practical dis-
count methods were critical for the evolution covariance
matrix. Using a single discount factor for all dynamic com-
ponents at fixed levels circumvented over-parameterization
issues and mixing issues in the MCMC algorithm respec-
tively, while allowing a time-varying covariance structure,
necessary in these highly stochastic environmental series.

While the multistage DLM offers several practical advan-
tages, there are some situations where its adoption would
not be ideal. First, when the goal is to empirically investi-
gate the correlation structure of a multivariate time series,
by splitting the inference into different stages, information
may be lost as compared to a joint multivariate approach.
For joint inference on multiple series, in a standard multi-
variate DLM, the covariance between each series and be-
tween every state variable of every series would be explic-
itly modeled [15, 9, 37]. This means that any individual
series, regardless of the specific components in its specifi-
cation would gain from the information carried by all other
series at each time step. This differs from our use of the mul-
tistage DLM where specific posterior parameters are passed
to subsequent modeling stages. The second major consid-
eration for multistage DLMs is the causal relationship be-
tween parameters in each stage of the study system. In the

multistage approach, inference of stage 1 parameters is inde-
pendent of data and parameters from stage 2. For instance,
in the Narragansett Bay application discussed here, it was
known scientifically that nutrients impact the phytoplank-
ton abundance and therefore, the stage 2 regression might
logically depend on stage 1 posterior parameters, but not
the other way around. Together, these two points should
be considered when deciding between a joint multivariate
approach as opposed to a multistage structure.

Nevertheless, the two-stage implementation of DLMs
used in this paper provided an important framework to
make inferences from noisy, incomplete time-series, charac-
terized by non-monotonic changes in both biology and chem-
istry, and changing temporal characteristics and dependen-
cies. While this application of DLMs has important impli-
cations for the Narragansett Bay system, it may also serve
as evidence for the value of DLMs and more general state-
space models in long-term monitoring and environmental
fields, where similar data structures and features might be
expected in other data sets. Altogether, the multistage DLM
structure provided a framework where modeling had several
goals, substantial missing data, and disparate data streams.
We hope this paper provides a multistep strategy and frame-
work that might aid model development with analysis of
other data series where one or more of these conditions may
be met.
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