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An iterative algorithm with adaptive weights and
sparse Laplacian shrinkage for regression
problems∗

Xingyu Chen and Yuehan Yang
†

This paper considers the regression problem with cor-
relation structures among covariates. We propose an itera-
tive algorithm, named Adaptive Sparse Laplacian Shrinkage
(AdaSLS). This algorithm bases on a graph-constrained reg-
ularization. In each iteration, an adaptive weight is fitted
within the feature space obtained from the previous step.
Under suitable regularity conditions, AdaSLS obtains the
correct feature set and accurate estimation with high prob-
ability. Its bias decay at an exponential rate. Numerical com-
parisons show that AdaSLS improves the accuracy of both
variable selection and estimation. We also apply the pro-
posed algorithm on a gene microarray dataset and a chimeric
protein dataset, obtaining meaningful results.

Keywords and phrases: High-dimensional data, Corre-
lated effects, Laplacian Matrix, Adaptive weight, Iterative
algorithm.

1. INTRODUCTION

With the advent of the data revolution, high-dimensional
and large-sample data are analyzed in many fields, such
as economics, brain science, environmental science, finance,
etc. Numerous studies have focused on high-dimensional
problems, in which the number of variables is much larger
than that of observations. In recent years, the collected data
often contain complicated correlations. The processing of
the correlation structures in high-dimensional data is of sub-
stantial importance.

Among statistical modeling and analysis, the regression
model is a classic model of supervised learning. The model
is easy to explain and is less prone to over-fitting. Shrink-
age estimation with penalty is a common technique in high-
dimensional linear regression models. A great deal of work
has focused on variable selection and estimation of penalized
methods. For example, Hoerl and Kennard [12] proposed
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Ridge Regression. Lasso (Least absolute shrinkage opera-
tor) was proposed by Tibshirani [27]. To improve the bias
of lasso estimation, Fan and Li [7] proposed the smoothly
clipped absolute deviation (SCAD) penalty; Zou [32] pro-
posed the adaptive lasso; and then Zhang [29] proposed the
minimum concave penalty (MCP). Extensions of the penal-
ized methods have enhanced their applicability and offered
theoretical guarantees; for example, see Bühlmann and Van
De Geer [4], Hastie, Tibshirani and Wainwright [11], Fan
et al. [8].

Yet, when dealing with the correlated data, the above
methods do not consider the correlations among predictors,
regarding the predictors as independent of each other. As
Zhang and Huang [30] pointed out, lasso tends to select only
one variable from a group of highly correlated variables. The
other methods mentioned above also have such characteris-
tics. To solve this problem, Zou and Hastie [33] proposed
the elastic net combining l1 and l2 penalty, and then Zou
and Zhang [34] proposed the adaptive elastic net. Bondell
and Reich [2] proposed the OSCAR (Octagonal Shrinkage
and Clustering Algorithm for Regression), and Huang et al.
[14] proposed the Mnet which combines MCP and l2 penalty.
These methods deal with some collinearity and group effects
among predictors. However, there are still gaps, for these
combinations of penalties do not make use of the specific
correlation structure among predictors.

When we study the data with correlated structure, igno-
rance of correlated relationships among predictors may lead
to large estimation error. To address this problem, Li and Li
[17] proposed a network constrained regularization method,
and the variable is the measurement of genomic data on the
genetic network. Li and Li [18] focused on the regression
analysis assuming that the relationship among predictors is
based on an undirected graph and is known. Its penalty is a
combination of the l1 penalty and the Laplacian quadratic
penalty that is associated with the graph. But in practical
problems, the real graph structure of the variables is usually
unknown. Daye and Jeng [6] proposed the weighted fusion
method, combining the l1 penalty and the quadratic form to
integrate the information among related variables for esti-
mation and variable selection. Tutz and Ulbricht [28] studied
a penalized method based on correlation, which can be con-
sidered as a special case of a general quadratic penalty. Pan,

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


Xie and Shen [23] proposed a grouped penalty based on the
lγ norm of γ > 1, which can smooth the regression coefficient
based on the network structure. Huang et al. [13] proposed
the sparse Laplacian shrinkage (SLS) method, which com-
bines the MCP penalty and the Laplace quadratic penalty.

In this paper, we aim to study the data with correlation
structures among predictors. When there are complex cor-
relation structures, it is still challenging to keep an accurate
estimation. We plan to use the iteration to reduce the bias of
estimation, and distinguish the nonzeros from zeros. We pro-
pose an iterative algorithm with adaptive sparse Laplacian
shrinkage for regression problems, named Adaptive sparse
Laplacian shrinkage (AdaSLS). During iterations, AdaSLS
uses the penalty term of the adaptive l1 penalty to ensure
the sparsity of the model and the Laplace quadratic penalty
to enhance the smoothness among coefficients of correlated
predictors. The proposed method constantly updates the
weights in the iteration process, reducing the bias of the es-
timated coefficient caused by mistaken initial weights. The
quadratic form of the Laplace penalty can be associated
with the Laplace matrix of the undirected weighted graph.
Thus, the information of the specific network structure can
be added to construct the model. We also apply AdaSLS to
empirical data with correlated covariates, including a gene
microarray dataset and a chimeric protein dataset. Results
show that the AdaSLS has good performance in both two
datasets.

This paper is organized as follows. Section 2 presents the
method and describes a coordinate descent algorithm for
the method, then discusses the ways to construct the ad-
jacency matrix and the relationship between the proposed
method and other methods. The theoretical properties of
the proposed procedure are shown in Section 3. In Section
4 we show the simulation results. Applications are shown in
Section 5. We conclude in Section 6.

2. THE ADAPTIVE SPARSE LAPLACIAN
SHRINKAGE ESTIMATOR

2.1 Model and method

We consider the linear regression model with n observa-
tions and p predictors:

y = Xβ + ε,

where y = (y1, · · · , yn)T is the vector of n responses;X is the
n × p matrix of predictors; β = (β1, · · · , βp)

T is the vector
of regression coefficients; ε = (ε, · · · , εn)T is the vector of
random errors. We are interested in the analysis of high-
dimensional data with correlation structure. We propose an
iterative loss function that combines the weighted lasso and
the Laplacian penalty. Among, the weight of l1 penalty is
updated constantly. The Laplacian penalty is used to deal
with the correlation structure. The proposed iterative loss

function is as following:

L(β;λ1, λ2) =
1

2n
‖y −Xβ‖22 + λ1

p∑
j=1

wj |βj |

+
1

2
λ2

∑
1≤j<j′≤p

|ajj′ |(βj − sjj′βj′)
2,(1)

where wj is the weight that updates during the coordi-

nate descent process. The first penalty λ1

p∑
i=1

wj |βj | is short
for an iterative term and ensures the sparsity of the esti-
mated model. Specifically, during each iteration of the co-
ordinate descent process, w = (w1, · · · , wp)

′ updates after

β̂ = (β̂1, · · · , β̂p)
′ updates. Until convergence, the weights

use information from the estimated coefficients constantly
to reduce the bias of estimated coefficients that comes from
the bias of weight. More details can be found in the Algo-
rithm.

In the second penalty, ajj′ is a measure of the correlation
between Xj and Xj′ . It describes how related the Xj and
Xj′ are. sjj′ = sign(ajj′) denotes the sign of ajj′ . The second
penalty 1

2λ2

∑
1≤j<j′≤p

|ajj′ |(βj −sjj′βj′)
2 shrinks βj −sjj′βj′

to zero when ajj′ �= 0. The smoothness is affected by the
choice of tuning parameter λ2. Predictors with negative cor-
relations tend to obtain estimates with different signs, and
vice versa. Compared to the ridge penalty that all the pre-
dictors are shrunk in the same level, the information of cor-
relation structure among the predictors is applied in this
function. The second penalty can also be associated with
the Laplace matrix L of the undirected graph and can be
represented by the Laplace matrix L:

βTLβ =
∑

1≤j<j′≤p

|ajj′ |(βj − sjj′βj′)
2, ∀β ∈ R

p.

Based on (1), we then discuss the details of the proposed
algorithm in the following. When estimating βj , other βj′ for

j′ �= j are fixed. At each step, we update β̂j by minimizing

the loss function. After all the entries of β̂ been updated,
each element of the weight w = (w1, · · · , wp)

T are updated

by wj = 1/β̂j or n respectively for β̂j �= 0 or β̂j = 0 for
j ∈ {1, · · · , p}. Repeat the above steps until convergence.
The proposed iterative algorithm is as follows:

Step 1: Given λ1, λ2, adjacency matrix A = (aij)p×p

and calculate lasso solution β[0].
Step 2: For m = 1, . . . , and j ∈ {1, · · · , p}, calculate:

wj =

⎧⎨
⎩

1

β̂
[m−1]
j

β̂
[m−1]
j �= 0

n β̂
[m−1]
j = 0

,

S1j =
1

n

n∑
i=1

xij(yi −
∑
j′ �=j

xij′ β̂
[m−1]
j′ ) + λ2

∑
j′ �=j

ajj′ β̂
[m−1]
j′ ,
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and

S2j =
1

n

n∑
i=1

x2
ij + λ2

∑
j′ �=j

|ajj′ |.

Step 3: Update:

β̂
(m)
j ← S(S1j , λ1wj)

S2j
, j ∈ {1, · · · , p},

where

S(z, γ) = sign(z)(|z| − γ)+ =

⎧⎪⎨
⎪⎩
z − γ z > 0 and |z| > γ

z + γ z < 0 and |z| > γ

0 |z| < γ

.

Step 4: If
∑
j

(β̂
(m+1)
j −β̂

[m]
j )2 < 10−4, the iteration stops,

otherwise it returns to Step 2 and Step 3.

2.2 Construction of adjacency matrix

The adjacency matrix describes the correlation between
variables. We use the following ways to construct the adja-
cency matrix that describes different correlations.

i. The Pearson’s correlation coefficient [24] is a commonly
used measure to describe correlation. It describes the linear
correlation between predictors well. We define the adjacency
matrix according to it as follows:

sjj′ = sign(rjj′) and ajj′ = sjj′I(rjj′ > c),

where rjj′ = X ′
jXj′/‖Xj‖‖Xj′‖ is the Pearson’s correlation

coefficient between jth predictor and j′th predictor, and c is
the threshold value which can be determined by the Fisher
transformation or other information.

According to Mazumder and Hastie [19], when the pop-
ulation covariance matrix is a block diagonal matrix, the
threshold sample covariance is equivalent to the estimated
inverse covariance matrix obtained by the Glasso which
characterizes the relative independence of predictors. That
is, in this case, after standardized, the threshold sample co-
variance or say Pearson’s correlation characterizes the rela-
tive independence of predictors. The threshold value c can
be determined by specifying the sparsity of the matrix.

ii. The distance correlation coefficient [26] describes both
linear and nonlinear association between predictors. This is
in contrast to the above correlation coefficient which can
only detect linear correlation. We define the adjacency ma-
trix:

sjj′ = sign(djj′) and ajj′ = sjj′I(djj′ > c),

where djj′ is the distance correlation coefficient between jth
predictor and j′th predictor and c is the threshold value.

iii. The adjacency matrix is also built using the partial
residual. That is, during iteration, the adjacency matrix is

updated by the last estimate and the partical residual of jth
predictor in the mth iteration is

e
[m]
j = y −

∑
j′ �=j

Xj′ β̂
[m−1]
j′ .

The jth partial residual can be regard as the dependent
variable vector corrected for all independent variables except
the jth independent variables [16]. According to the partial
residual, we define the adjacency matrix in themth iteration
as follows:

s
[m]
jj′ = sign(R

[m]
jj′ ) and a

[m]
jj′ = s

[m]
jj′ I(R

[m]
jj′ > c)

where c is the threshold value, and

R
[m]
jj′ = (e

′ [m]
j e

[m]
j′ )/(‖e[m]

j ‖‖e[m]
j′ ‖)

is the Pearson’s correlation coefficient between the partial
residual of the jth predictor and that of the j′th predictor.

2.3 Comparison

The proposed procedure is related to but different from
the adaptive lasso and the SLS method. The adaptive lasso,
for example, leads to an unbiased estimation by introducing
the adaptive weights, and thus enjoys the oracle properties.
The adaptive weights, on the other hand, are given at the
beginning, and if the initial weights do not accurately char-
acterize the model, the estimate will have a substantial bias.
The SLS employs the MCP penalty as well as the graph
Laplace matrix. This procedure enjoys the oracle proper-
ties and deals with the data with correlation structure well.
However, it only uses the Pearson correlation coefficient to
construct the adjacency matrix, which reflects the linear cor-
relation between predictors, regardless of the nonlinear or
other correlation. The AdaSLS has three advantages:

• Different from the adaptive lasso, the proposed method
updates the weights constantly throughout iterations
based on the coordinate descent process. This strategy
reduces the bias caused by the initial weights.

• We consider three types of measures for calculating the
correlations between predictors, e.g., Pearson’s correla-
tion, distance correlation, and partial residual during
iterations, offering additional options for constructing
the adjacency matrix. We further discuss that how the
threshold sample covariance captures the relative inde-
pendence of predictors well when the covariance matrix
is a block diagonal matrix.

• We provide theoretical guarantees on both the error
bound of the estimate and its sign consistency. Com-
pared to [13], we further provide the upper bound of
l2-norm error.

These advantages help enhance the performance of AdaSLS
when dealing with the regression problem with correlation
structures. Simulation studies and applications show that
the proposed method estimates coefficients with small error
and low variance and performs well in variable selection.
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3. THEORETICAL RESULTS

In this section, we study the theoretical properties of the
proposed iterative function with the following dimensional-
ity: p = O(en

c1
) and q = O(nc2) where 0 < c1 + c2 < 1.

Specifically, we consider the q-sparse model that only q co-
variates are relevant to the model and q is much smaller than
both p and n. In the meantime, denote S = {j : βj �= 0},
thus, |S| = q. Its estimated value is Ŝ = {j : β̂j �= 0}. We
can write X and β in the partitioned form β = (βT

S , β
T

Sc)T,
X = (XS , XSc), respectively. Without loss of generality,
suppose the covariates are centered and normalized, i.e.,∑n

i=1 x
2
ij/n = 1 for j = 1, . . . , p and the error vector ε are

independently distributed from N(0, σ2). We have the fol-
lowing assumption:

Condition 1. Assume X satisfies the Restricted Eigenvalue
(RE) condition: there exists positive constants κ, κ0 that

vTXTXv/n � κ‖v‖22, for all v ∈ G(S),

where G(S) := {v ∈ Rp : ‖vSc‖1 � κ0‖vS‖1}.
Condition 1 requires a restriction of XTX/n to the

columns in S is invertible. This assumption is widely used
to bound the l2-error between estimates and coefficients
[20, 21]. Besides, we need the approval that the proposed
estimator satisfies the requirement of Condition 1, i.e., set
n1/2(β̂ − β) ∈ G(S). This result has been proved for the
lasso estimator [4]. Compared to the lasso, we require an-
other bound for the Laplace matrix L:

βTLβ − β̂TLβ̂ = βTLβ − (β̂ − β + β)TL(β̂ − β + β)

= −(β̂ − β)TL(β̂ − β)− 2βTL(β̂ − β)

< 2‖βTL‖∞‖β̂ − β‖1 � λ1/λ2 · ‖β̂ − β‖1.

Combining above upper bound and Lemma 6.3 of Bühlmann
and Van De Geer [4], we conclude n1/2(β̂ − β) ∈ G(S) for
Condition 1 with the same convergence rate, and have the
following result:

Theorem 1. Suppose Condition 1 holds. If
λ1 =4σ

√
log p/n and λ2Λmax(L)‖β‖2 � √

qλ1. Then
there exists a positive constant K that the following holds
with probability at least 1− o(exp(nc1)):

‖β̂ − β‖2 � K

√
q log p

n
.

For the sign consistency of the proposed estimation, we
require the another condition:

Condition 2. There exists a positive constant η > 0 such
that ∥∥(CSc + λ2LSc

)(
CS + λ2LS

)−1[
γS +

λ2

λ1
LSβS

]
− λ2

λ1
LScβS‖∞ < 1− η,(2)

where LS and LSc denote the matrices with rows and
columns of L indexed by S × S and Sc × S, respectively.

Condition 2 is quite similar to the irrepresentable condi-
tion for the lasso [31] and elastic irrepresentable condition
for the elastic net [15]. When L = I, the above condition
equals the elastic irrepresentable condition; when λ2 = 0,
the above condition equals the irrepresentable condition.
There exists λ2 and L that Condition 2 holds but the irrep-
resentable condition or the elastic irrepresentable condition
cannot. It indicates that Condition 2 is weaker than the both
conditions, and thus the proposed method performs better
than many other l1-based methods. The following Theorem
shows that with high probability the proposed method is
equal in sign with the true model.

Theorem 2. Suppose Condition 2 holds. If λ1 =
4σ

√
log p/n, λ2Λmax(L)‖β‖2 � √

qλ1 and minj∈S |βj | �
8σΛ−1

min(CS)
√
q log p/n. We have with probability at least

1− o(exp(−nc1)) that

sign(β̂) = sign(β).

4. SIMULATIONS

In this part, we conduct simulation experiments to test
the performance of the proposed method in two aspects:
estimation accuracy and variable selection. We compare the
proposed method with the elastic net [33], MCP [29] and
SLS [14]. The R glmnet package [9] is used to run the elastic
net, and the results of MCP and SLS are based on the R
ncvreg package [3]. We simulate 100 times for each setting.

We set the sample size as 200, the number of predictors
as 400. The simulation is based on the following linear re-
gression model:

y = Xβ + ε,

where ε ∼ N(0, I). The predictors are divided into 80
groups, each group has 5 predictors. Among the four hun-
dred predictors, only the first ten predictors have non-zero
coefficients. We consider the following three scenarios on dif-
ferent non-zero coefficient settings, i.e., Scenario 1: all the
non-zero coefficients are set to be 5; Scenario 2: the first five
non-zero coefficients are 5 and the next five are -5; and Sce-
nario 3: the first five non-zero coefficients are 3 and the next
five are 5. We consider two kinds of covariance matrices of
X:

Example 1: For the first two groups, predictors within-
group are correlated: correlations equal 0.9, i.e., Exam-
ple 1(a) and 0.9|i−j|, i.e., Example 1(b). There is no
correlation between the two groups, and the rest pre-
dictors are independent too.
Example 2: For each group, predictors within-group
are correlated: correlations equal 0.9, i.e., Example 2(a)
and 0.9|i−j|, i.e., Example 2(b). Predictors in different
groups are independent.
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We use the following four ways to construct the adjacency
matrices. Let ajj′ be the element of the adjacency matrix in
the jth row and j′th column, where j, j′ = 1, . . . , p:

AdaSLS.1: ajj′ = I(rjj′ > c), where c = 0.7, and
rjj′ = cor(Xj , Xj′) denotes the Pearson’s correlation
coefficient between the jth predictor and the j′th pre-
dictor.
AdaSLS.2: ajj′ = I(djj′ > c), where c = 0.7, and djj′

denotes the distance correlation coefficient between the
jth predictor and the j′th predictor.
AdaSLS.3: ajj′ = I(Sjj′ > c) and S = Cov(x) =
(Sjj′ , 1 ≤ j, j′ ≤ p) denotes the sample covariance ma-
trix and c is computed by the covariance matrix.
AdaSLS.4: Use the correlation of the partial residual to
construct the adjacency matrix and update the adja-
cency matrix constantly in iterations.

According to our numerical experience, estimation results do
not differ much over a range of threshold value c, i.e., val-
ued in [0.3, 0.8], under these scenarios. Thus, we fix c = 0.7
in AdaSLS.1 and AdaSLS.2. We choose the parameters λ1

and λ2 by 5-fold cross-validation: set the range of λ1 and
λ2 respectively and then choose the optimal (λ∗

1, λ
∗
2) with

minimum prediction error. We compare both the estimation
and selection performances of each method. The mean and
standard deviation of results are reported in Table 1-3. The
l1-error and l2-error of the estimating coefficients, the num-
ber of nonzero estimating coefficients (NZ), the true positive
rate (TPR), and false positive rate (FPR) of variable selec-
tion are respectively defined as:

l1-error =

p∑
j=1

|βj − β̂j |, l2-error =
( p∑

j=1

(βj − β̂j)
2
)1/2

,

NZ = |j ∈ {1, 2, · · · , p} : β̂j �= 0|,

TPR =
|j ∈ {1, 2, · · · , p} : β̂j �= 0 and βj �= 0|

|j ∈ {1, 2, · · · , p} : βj �= 0| ,

FPR =
|j ∈ {1, 2, · · · , p} : β̂j �= 0 and βj = 0|

|j ∈ {1, 2, · · · , p} : βj = 0| .

Table 1 shows the comparison between four versions of
AdaSLS and Elastic Net, MCP, and SLS in each example
under Scenario 1. As one can see, AdaSLS performs well
in both estimation and selection. All four versions, AdaSLS
estimates the parameters accurately with lower error and
lower standard deviation. They select the models with all
the true positives and no false positives. In contrast, MCP
misses lots of true positives; elastic net and SLS both iden-
tify all true positives. However, the compared methods al-
ways pick up some false positives. When the coefficients have
different signs, as shown in Table 2, AdaSLS performs well.
All four versions of AdaSLS obtain lower estimation error.
AdaSLS.2 and AdaSLS.4 have the best performance in vari-
able selection. Their adjacency matrices are constructed by

the distance correlation of the predictors and the correla-
tion of the partial residual. Both kinds of AdaSLS identify
all true positives and false positives. Under Scenario 3, the
signal-to-noise becomes smaller, from 5 to 3. As one can see
in Table 3, AdaSLS still has a good performance in both
estimation and selection for four kinds of methods.

To further show the performance in estimating non-zero
coefficients, Figure 1 compares the l1 estimation error of
β : |βj − β̂j | for βj �= 0 (j = 1, · · · , 10) under three scenarios
and two examples. The results for example (b) are similar as
those for example (a) and thus omitted. Since the errors of
MCP are much higher than the other methods, we compare
the performance of the elastic net, SLS, and AdaSLS.1-.4.
The red line denotes the mean l1 error of the elastic net and
its 25%−75% interval. The orange line denotes the mean l1
error of the SLS and its 25% − 75% interval. The rest line
denotes the mean l1 error of AdaSLS.1-.4., respectively. As
one can see from Figure 1, the l1 error of the elastic net and
the SLS are always larger than those of AdaSLS. Results
of AdaSLS.1-.4. are similar, and all are better than those
of the SLS and elastic net. The mean value of AdaSLS is
about 0.01, and the range of 25% − 75% is about 0.003 −
0.02 under Scenario 1 and 2. Under Scenario 3 which is a
smaller signal-to-noise case, the estimation error become a
little larger, the mean value of AdaSLS is between 0.01 and
0.02, and the range of 25%−75% is about 0.006−0.03 (The
above intervals are not shown in the figures.). Those results
indicate that AdaSLS performs much better in estimating
non-zero coefficients.

5. EMPIRICAL ANALYSIS

In this section, we apply the proposed method to two
datasets: gene expression data and protein data. The gene
expression data is a rat eye gene microarray and used to find
the gene expressions that are related to the gene expression
of the TRIM32 gene. The protein data contains the ther-
mostability of proteins and some structural features of the
P450 proteins. The AdaSLS method performs well in both
two datasets.

5.1 Gene microarray dataset

Firstly, we apply the proposed method to a gene expres-
sion problem. In this part, we apply the proposed method to
a rat eye gene microarray dataset. The data is from the GEO
database1 and is provided by Scheetz et al. [25]. This data is
commonly used in mammalian eye gene expression and re-
lated diseases studies, and is also used as an empirical part
of some research for gene microarray data. SR/JrHsd (a kind
of salt-resistant rat) males were crossed with SHRSP (Spon-
taneous Hypertensive Rat-Stroke Prone strain) females to
generate F1 and F2 generation animals [25]. 120 12-week-
old male F2 offspring were selected as samples and there are

1Gene Expression Omnibus, www.ncbi.nlm.nih.govgeo, (accession no.
GSE5680)
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Table 1. Performance comparison in each example under Scenario 1.

Example Method l1-error l2-error NZ TPR FPR

Example 1(a) Elastic net 1.756(0.440) 0.674(0.164) 10.570(1.157) 1 0.001(0.003)
MCP 53.034(6.902) 17.241(2.091) 4.840(0.788) 0.454(0.072) 0.001(0.002)
SLS 0.321(0.345) 0.107(0.070) 12.83(5.965) 1 0.007 (0.015)

AdaSLS.1 0.146(0.081) 0.051(0.027) 10 1 0
AdaSLS.2 0.137(0.079) 0.047(0.027) 10 1 0
AdaSLS.3 0.138(0.079) 0.048(0.026) 10 1 0
AdaSLS.4 0.136(0.066) 0.049(0.022) 10 1 0

Example 1(b) Elastic net 1.850(0.533) 0.701(0.189) 10.720(1.102) 1 0.002(0.003)
MCP 45.480(7.347) 15.325(2.338) 5.450(0.770) 0.538(0.079) 0.0002(0.001)
SLS 0.321(0.391) 0.107(0.088) 12.42(5.819) 1 0.006 (0.015)

AdaSLS.1 0.128(0.053) 0.047(0.018) 10 1 0
AdaSLS.2 0.134(0.049) 0.051(0.017) 10 1 0
AdaSLS.3 0.126(0.061) 0.046(0.021) 10 1 0
AdaSLS.4 0.161(0.051) 0.061(0.019) 10 1 0

Example 2(a) Elastic net 1.757(0.439) 0.681(0.166) 10.320(0.649) 1 0.001(0.002)
MCP 54.438(6.019) 17.661(1.822) 4.670(0.766) 0.440(0.062) 0.001(0.001)
SLS 0.293(0.077) 0.113(0.027) 10.35(1.149) 1 0.001 (0.003)

AdaSLS.1 0.122(0.071) 0.044(0.024) 10 1 0
AdaSLS.2 0.119(0.064) 0.043(0.023) 10 1 0
AdaSLS.3 0.175(0.080) 0.063(0.027) 10 1 0
AdaSLS.4 0.137(0.079) 0.048(0.027) 10 1 0

Example 2(b) Elastic net 1.801(0.534) 0.689(0.197) 10.460(0.797) 1 0.001(0.002)
MCP 45.834(6.844) 15.457(2.242) 5.420(0.727) 0.535(0.072) 0.0002(0.001)
SLS 0.290(0.101) 0.111(0.033) 10.46(1.772) 1 0.007 (0.015)

AdaSLS.1 0.141(0.066) 0.051(0.022) 10 1 0
AdaSLS.2 0.151(0.073) 0.056(0.025) 10 1 0
AdaSLS.3 0.188(0.073) 0.069(0.025) 10 1 0
AdaSLS.4 0.162(0.060) 0.062(0.022) 10 1 0

Table 2. Performance comparison in each example under Scenario 2.

Example Method l1-error l2-error NZ TPR FPR

Example 1(a) Elastic net 1.723(0.388) 0.659(0.164) 10.21(0.518) 1 0.001(0.001)
MCP 53.636(6.001) 17.447(2.091) 4.67(0.766) 0.448(0.062) 0.0005(0.001)
SLS 0.224(0.059) 0.084(0.116) 10.25(1.104) 1 0.001 (0.003)

AdaSLS.1 0.142(0.057) 0.052(0.019) 10 1 0
AdaSLS.2 0.137(0.059) 0.050(0.020) 10 1 0
AdaSLS.3 0.129(0.055) 0.046(0.019) 10 1 0
AdaSLS.4 0.142(0.057) 0.052(0.020) 10 1 0

Example 1(b) Elastic net 1.780(0.508) 0.683(0.174) 10.38(0.962) 1 0.001(0.002)
MCP 53.536(6.081) 17.674(1.843) 4.69(0.748) 0.439(0.063) 0.001(0.001)
SLS 0.355(0.111) 0.136(0.042) 10.29(0.743) 1 0.001 (0.002)

AdaSLS.1 0.170(0.190) 0.062(0.056) 10.05(0.5) 1 0.0001(0.001)
AdaSLS.2 0.171(0.062) 0.065(0.022) 10 1 0
AdaSLS.3 0.152(0.061) 0.057(0.020) 10 1 0
AdaSLS.4 0.126(0.068) 0.045(0.022) 10 1 0

Example 2(a) Elastic net 1.791(0.440) 0.683(0.159) 10.2(0.603) 1 0.001(0.002)
MCP 53.763(6.189) 17.468(1.865) 4.68(0.737) 0.447(0.064) 0.001(0.001)
SLS 0.224(0.263) 0.087(0.074) 11.87(4.334) 1 0.005 (0.011)

AdaSLS.1 0.136(0.072) 0.048(0.025) 10 1 0
AdaSLS.2 0.144(0.081) 0.050(0.028) 10 1 0
AdaSLS.3 0.154(0.078) 0.055(0.027) 10 1 0
AdaSLS.4 0.129(0.053) 0.048(0.019) 10 1 0

Example 2(b) Elastic net 1.694(0.445) 0.657(0.163) 10.3(0.674) 1 0.001(0.002)
MCP 53.854(6.389) 17.493(1.939) 4.65(0.743) 0.447(0.069) 0.00005(0.001)
SLS 0.422(0.269) 0.147(0.070) 12.42(1.772) 1 0.006 (0.012)

AdaSLS.1 0.210(0.509) 0.073(0.168) 10.093(0.914) 1 0.0002(0.002)
AdaSLS.2 0.130(0.058) 0.046(0.020) 10 1 0
AdaSLS.3 0.217(0.460) 0.078(0.142) 10.082(0.812) 1 0.0002(0.002)
AdaSLS.4 0.160(0.069) 0.056(0.024) 10 1 0
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Table 3. Performance comparison in each example under Scenario 3.

Example Method l1-error l2-error NZ TPR FPR

Example 1(a) Elastic net 1.787(0.482) 0.678(0.176) 10.91(0.518) 1 0.002(0.004)
MCP 45.040(6.370) 15.162(2.117) 5.49(0.659) 0.542(0.068) 0.0002(0.001)
SLS 0.231(0.059) 0.089(0.018) 10.20(1.104) 1 0.0005 (0.001)

AdaSLS.1 0.138(0.075) 0.046(0.023) 10 1 0
AdaSLS.2 0.113(0.063) 0.041(0.022) 10 1 0
AdaSLS.3 0.138(0.073) 0.046(0.022) 10 1 0
AdaSLS.4 0.133(0.078) 0.044(0.024) 10 1 0

Example 1(b) Elastic net 1.911(0.494) 0.726(0.178) 10.89(1.034) 1 0.002(0.003)
MCP 45.277(6.452) 15.255(2.11) 5.49(0.689) 0.541(0.068) 0.0002(0.001)
SLS 0.343(0.336) 0.114(0.087) 13.39(5.682) 1 0.001 (0.015)

AdaSLS.1 0.180(0.384) 0.065(0.123) 10.17(1.340) 1 0.0004(0.003)
AdaSLS.2 0.132(0.063) 0.046(0.020) 10 1 0
AdaSLS.3 0.179(0.382) 0.065(0.123) 10.18(1.343) 1 0.0005(0.003)
AdaSLS.4 0.142(0.066) 0.050(0.030) 10 1 0

Example 2(a) Elastic net 1.848(0.566) 0.695(0.203) 10.81(1.161) 1 0.002(0.003)
MCP 45.854(7.224) 15.397(2.398) 5.40(0.710) 0.447(0.064) 0.0002(0.001)
SLS 0.356(0.269) 0.129(0.076) 12.3(4.140) 1 0.005 (0.011)

AdaSLS.1 0.103(0.046) 0.040(0.019) 10 1 0
AdaSLS.2 0.252(1.14) 0.078(0.023) 10.128(1.186) 1 0.0003(0.003)
AdaSLS.3 0.126(0.063) 0.046(0.025) 10 1 0
AdaSLS.4 0.206(0.083) 0.069(0.029) 10 1 0

Example 2(b) Elastic net 1.764(0.417) 0.663(0.155) 10.91(1.296) 1 0.002(0.003)
MCP 46.080(6.389) 15.472(2.430) 5.41(0.753) 0.532(0.080) 0.00002(0.001)
SLS 0.376(0.380) 0.124(0.089) 14.6(7.531) 1 0.011 (0.019)

AdaSLS.1 0.171(0.063) 0.064(0.022) 10 1 0
AdaSLS.2 0.332(0.90) 0.109(0.241) 10.2(1.078) 1 0.001(0.002)
AdaSLS.3 0.159(0.088) 0.053(0.027) 10 1 0
AdaSLS.4 0.226(0.097) 0.075(0.029) 10 1 0

more than 31000 different probes in the RNA from the eyes
of these F2 animals.

The TRIM32 gene causes Bardet-Biedl syndrome [5],
which is a genetically heterogeneous disease of multiple or-
gan systems including the retina. We plan to identify the
genes that are associated with TRIM32 gene expression and
have the greatest changes in gene expression across samples.
Since the number of genes associated with TRIM32 is ex-
pected to be small, and we are mainly interested in the genes
whose expression values varied greatly in the samples, the
data is preprocessed as follows. We calculate the variance
of gene expression and select the top 1000 genes with the
largest variance, then centralize the TRIM32 gene expres-
sion and standardize other gene expressions.

We analyze the data by SLS and the proposed procedure.
We use different measures to construct the adjacency ma-
trix, leading to different gene identifications. As expected,
the list of genes identified by AdaSLS is shorter than that
of SLS, which makes a leaner model. As we don’t know the
real model as we do in simulation studies, we can’t evaluate
the true positives and false positives of variable selection.
We evaluate the performance through the following mea-
sure. The data are divided randomly into 5 subsets of the
same size. One of the subsets is chosen as the test data and
the rest is used to select parameters by cross-validation and
estimate models. Then we use the estimated model to pre-
dict the test data. Repeat for all subsets as the test data

Table 4. Result of Empirical Analysis

Method Number of selected genes Prediction errors

SLS 25 2.488
AdaSLS.1 18 2.348
AdaSLS.3 17 2.462
AdaSLS.4 21 2.466

and calculate the prediction error. The sum of squared pre-
dictions’ error is also shown in Table 4. As we can see from
the result, AdaSLS has a smaller prediction error.

5.2 Chimeric protein dataset

In this part, we apply the proposed method to the pro-
tein data. The data is provided by the Romero Lab at UW-
Madison2. It includes the thermostability and structural fea-
tures of chimeric P450 proteins with eight block chimeras.
Protein analysis is an analytical technique commonly used
in biochemistry. The cytochrome P450 proteins are a kind
of widely used biological catalysts. It is widely used in phar-
maceutical products and other useful compounds for the
production of synthetic since it can catalyze many reactions
[10]. The thermostability of proteins is of great industrial
importance because of their ability to withstand difficult in-
dustrial process conditions [22]. The structure features are

2Data is in https://github.com/RomeroLab/seq-fcn-data/tree/master/
P450 chimeras.
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Figure 1. The l1 estimation error of β: |βj − β̂j | for βj �= 0 where j = 1, . . . , 10.

simulated via RosettaCommons [1]. The Rosetta biomolec-
ular modeling suite modeled 3-D structures of the chimeric
enzymes and then estimated the structural properties of
each protein [1]. What we are interested in is how the struc-
tural properties of proteins relate to the thermostability of
proteins. There are 988 chimeric P450 proteins 50 structure
features in the feature data while the thermostability data
only includes 242 chimeric P450 proteins. So we match the
feature data into the thermostability data by the sequence
information of these proteins as the pre-processing. Then we

standardized the thermostability and feature data.
Similar to the previous analysis, five subsets are gener-

ated. The prediction error of each subset is derived from
the model trained by the remaining subsets and the per-
formance is evaluated by the prediction error. The mean
of squared prediction errors are SLS:23.44, AdaSLS.1:22.63,
AdaSLS.2:21.83, AdaSLS.3:22.27, and AdaSLS.4:22.58. The
mean of squared error of AdaSLS is smaller than those of
other methods.
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6. SUMMARY

In this paper, we consider the problem of estimating the
high-dimensional data with correlation structures. To over-
come the difficulties in estimation accuracy, we propose the
AdaSLS algorithm (Adaptive sparse Laplacian shrinkage)
for the variable selection and estimation in the sparse re-
gression models with correlation structure. This algorithm
contains two penalties: an adaptive weighted l1 penalty and
the Laplace quadratic penalty. The weighted l1 penalty term
is similar to that in adaptive lasso, but the weight is updated
constantly during the iteration process. In this way, we ef-
fectively reduce the estimation bias. The Laplace quadratic
penalty contains the information of the network structure
of the related predictors in the model and enhances the
smoothness among coefficients of correlated predictors. Fur-
thermore, different measures are used to construct the adja-
cency matrix, including the Pearson correlation coefficient,
the distance correlation coefficient, and the partial resid-
ual. We show that under regular conditions, the proposed
method achieves sign consistency and the error bound. We
evaluated the method with simulations and two datasets
in empirical analysis. Simulations show that the AdaSLS
demonstrates the best performance in both estimation and
selection. It estimates the model accurately with low error
and low standard deviation.

AdaSLS has good performance in correlated data which
often appears in reality, e.g., gene data analysis, medical
data analysis, and financial data. As we analyzed in the
empirical study, gene expressions that are associated with
a biological trait are sparse and always highly correlated,
in the meantime, the number of samples is usually much
smaller than the number of variables since samples are not
easy to get. Similarly, in medical data analysis, it is also not
easy to obtain samples for people who may not be willing
to be studied as a sample and each sample requires a cer-
tain amount of examination costs. There are usually various
variables that are related to each sample. We have shown
that the proposed method obtained a sparser model with
smaller prediction error, obtaining meaningful results. The
study of our method is of practical significance to deal with
this kind of data in reality.
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APPENDIX

Proof of Theorem 1. Note that

L(β;λ1, λ2) =
1

2n
‖y −Xβ‖22 + λ1

p∑
j=1

wj |βj |+
1

2
λ2β

TLβ,

Set u = β̂ − β and F (u) = L(β̂;λ1, λ2) − L(β;λ1, λ2). By

the definition of β̂, we have F (u) � 0 and let

F (u) = V1 + V2 + V3,

that

V1 =
1

2n
(‖y −Xβ̂‖22 − ‖y −Xβ‖22),

V2 = λ1

p∑
j=1

wj |β̂j | − λ1

p∑
j=1

wj |βj |,

V3 =
1

2
(λ2β̂

TLβ̂ − λ2β
TLβ).

Denote C = XTX/n, W = XTε/
√
n. We have

V1 =
1

2
uTCu− uTW/

√
n

Denote uS , βS and uSc , βSc as the partition of u and β
indexed by the set S and Sc. We have

V1 =
1

2
uTCu− uT

SWS/
√
n− uT

ScWSc/
√
n,

V2 � −λ1

∑
j∈S

wj |uj |+ λ1

∑
j∈Sc

wj |uj |,

and

V3 =
λ2

2

{
(β̂ − β)TL(β̂ − β) + 2β̂TLβ − 2βTLβ

}
,

=
λ2

2
{uTLu+ 2uTLβ},

� λ2

2
Λmin(L)‖u‖22 − λ2Λmax(L)

∣∣uT

SβS

∣∣.
Given wj , j = 1, . . . , p and conditional on {‖W‖∞ �
K0

√
nλ1} with a positive constant K0, we have

uT

ScWSc/
√
n � ‖uSc‖1‖W‖∞/

√
n � λ1

∑
j∈Sc

wj |uj |,

uT

SWS/
√
n � ‖uS‖2‖WS‖2/

√
n � λ1

√
q‖uS‖2,

and

λ1

∑
j∈S

wj |uj | � λ1
√
q‖u‖2.

For λ2Λmax(L)‖β‖2 � √
qλ1, we have∣∣λ2Λmax(L)u

T

SβS

∣∣ � λ2Λmax(L)‖u‖2‖β‖2 � √
qλ1‖u‖2.

Combining with RE condition, F (u) thus becomes:

F (u) � 1

2
κ‖u‖22 − uT

SWS/
√
n− λ1

∑
j∈S

wj |uj |

+
λ2

2
Λmin(L)(‖u‖22 − 2|uT

SβS |)
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� ‖u‖2
{1

2

(
κ+ λ2Λmin(L)

)
‖u‖2 − 3

√
qλ1

}
� 0.

Then by λ1 = 4σ
√
log p/n, we have conditional on

{‖W‖∞ � K
√
nλ1} that

‖β̂ − β‖2 = ‖u‖2 � 6
√
qλ1

κ+ λ2Λmin(L)
= K

√
q log p/n,

where K is a positive constant. We use the tail probability
bound of Gaussian distribution for {‖W‖∞ � K

√
nλ1}:

P (‖W‖∞ > K0

√
nλ1) � P (‖XTε/

√
n‖∞ > 4K0σ

√
log p)

� p exp(−2K0σ
2 log p

σ2
) = o(e−nc1

).

Proof of Theorem 2. By Karush-Kuhn-Tucker conditions, β̂
is optimal if and only if

XTXβ̂

n
− XTy

n
+ λ2Lβ̂ + λ1γ = 0,(3)

γj ∈
{

{sign(β̂j)}, β̂j �= 0,
[−1, 1], otherwise.

To prove sign(β̂) = sign(β) with high probability is suffices

to prove β̂Sc = 0 and |uS | = |β̂S −βS | < |βS |. Following the
same notation above, i.e., C = XTX/n, W = XTε/

√
n, fur-

ther, we set CS = XT

SXS/n and CSc = XT

ScXS/n. Combine
with (3), we need to have

XTXβ̂

n
− XTy

n
+ λ2Lβ̂

= (CS + λ2LS)β̂S − CSβS −WS/
√
n

= (CS + λ2LS)uS + λ2LSβS −WS/
√
n = −λ1γS(4)

and ∣∣(CSc + λ2LSc)β̂S −XT

ScXSβS −XT

Scε
∣∣

=
∣∣(CSc + λ2LSc))uS + λ2LSβS −WS/

√
n
∣∣ � |λ1|.(5)

By |uS | < |βS |, it becomes to prove the following inequality,

(CS + λ2LS)
−1WS �

√
n|βS |

−
√
n(CS + λ2LS)

−1
(
λ1γS + λ2LSβS

)
.

For j ∈ S, with λ1 = 4σ
√

log p/n and λ2Λmax(L)‖β‖2 �√
qλ1, we have∣∣(CS + λ2LS)

−1
(
λ1γS + λ2LSβS

)∣∣
j

� 2Λ−1
min(CS)

√
qλ1 � 8σΛ−1

min(CS)
√
q log p/n.

Then by minj∈S |βj | � 8σΛ−1
min(CS)

√
q log p/n and the tail

probability bound of Gaussian distribution that:

P
(
(CS + λ2LS)

−1WS �
√
n|βS |−

√
n(CS + λ2LS)

−1
(
λ1γS + λ2LSβS

))
� 1− P (‖WS‖∞ > Mσ

√
q log p)

� 1− q exp(−Mσ2q log p

2σ2
)

� 1− o(e−nc1
).

Considers the inequality (5), combines with (4), we have

∣∣CSc

(
CS + λ2LS

)−1
WS/

√
n−WSc/

√
n
∣∣

� λ1

(
1−

∣∣(CSc + λ2LSc

)(
CS + λ2LS

)−1[
γS +

λ2

λ1
LSβS

]
− λ2

λ1
LScβS

∣∣).
By Condition 2, above inequality can be written as

∣∣CSc

(
CS + λ2LS

)−1
WS −WSc

∣∣ � √
nλ1η.

Again, by the tail probability bound of Gaussian distribu-
tion, we have

P
(∣∣CSc

(
CS + λ2LS

)−1
WS −WSc

∣∣ � √
nλ1η

)
� 1− o(e−nc1

).
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