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Weakly informative priors and prior-data conflict
checking for likelihood-free inference
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Bayesian likelihood-free inference, which is used to per-
form Bayesian inference when the likelihood is intractable,
enjoys an increasing number of important scientific applica-
tions. However, many aspects of a Bayesian analysis become
more challenging in the likelihood-free setting. One exam-
ple of this is prior-data conflict checking, where the goal
is to assess whether the information in the data and the
prior are inconsistent. Conflicts of this kind are important
to detect, since they may reveal problems in an investiga-
tor’s understanding of what are relevant values of the pa-
rameters, and can result in sensitivity of Bayesian inferences
to the prior. Here we consider methods for prior-data con-
flict checking which are applicable regardless of whether the
likelihood is tractable or not. In constructing our checks,
we consider checking statistics based on prior-to-posterior
Kullback-Leibler divergences. The checks are implemented
using mixture approximations to the posterior distribution
and closed-form approximations to Kullback-Leibler diver-
gences for mixtures, which make Monte Carlo approxima-
tion of reference distributions for calibration computation-
ally feasible. When prior-data conflicts occur, it is useful to
consider weakly informative prior specifications in alterna-
tive analyses as part of a sensitivity analysis. As a main
application of our methodology, we develop a technique for
searching for weakly informative priors in likelihood-free in-
ference, where the notion of a weakly informative prior is
formalized using prior-data conflict checks. The methods are
demonstrated in three examples.
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Keywords and phrases: Approximate Bayesian com-
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1. INTRODUCTION

It is often natural to translate scientific knowledge into an
appropriate statistical model through specification of a gen-
erative process for the data, and this leads to models defined
in terms of a simulation algorithm rather than through an
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explicit mathematical formulation. For these kinds of mod-
els, computation of the likelihood may be intractable, and
then likelihood-free inference methods, which simulate from
the model as a surrogate for likelihood evaluations, can be
used. Perhaps the two most popular Bayesian likelihood-
free inference approaches are approximate Bayesian compu-
tation (ABC) [43, 6, 49] and synthetic likelihood [50, 42],
and the further development of these and other likelihood-
free inference algorithms is an active topic of current re-
search. The purpose of the current paper is to develop some
tools for checking for prior-data conflict which are appli-
cable when the likelihood is intractable. This means devel-
oping checks which can be computed using only simulation
from the model, without requiring evaluation of the likeli-
hood. As a main application of our methodology, a technique
for searching for a weakly informative prior with respect to
an elicited prior is also developed, where the notion of a
weakly informative prior is formalized using prior-data con-
flict checks.

For complex models, a challenging aspect of any Bayesian
analysis is specification of the prior distribution, since an
inadequate elicitation process may result in a prior distri-
bution that is informative in ways that are unintended. If
an informative prior has been used, one approach to guard-
ing against undesirable prior sensitivity is to check for the
existence of prior-data conflicts, which occur when the prior
puts all its mass out in the tails of the likelihood. Prior-
data conflicts are important to detect, since they indicate a
lack of understanding in setting up the model. Furthermore,
prior sensitivity of inferences will increase with the severity
of the conflict [2]. A difficulty with many prior-data conflict
checking methods, however, is that the required computa-
tions are demanding, even when the likelihood is tractable.

It is especially important in the context of Bayesian
likelihood-free inference to develop prior-data conflict check-
ing methods, since alternative techniques for investigating
prior sensitivity or exploring conflicts are usually unavail-
able. For example, objective Bayes methods [7] which spec-
ify a prior as a reference for comparison usually cannot
be implemented, since determining these involves compu-
tations using the likelihood. Here we develop an approach
to prior-data conflict checking which is applicable whether
the likelihood is tractable or not. We consider the con-
flict checks recently suggested in [35], which use prior-to-
posterior divergences as checking statistics. To make compu-
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tations tractable, we use mixture approximations to the pos-
terior distribution, which makes repeated computations of
posterior distributions for different datasets feasible. These
together with closed form approximations of the Kullback-
Leibler divergence for mixtures can be used to calculate tail
probabilities for calibration of the checks in a computation-
ally tractable way.

When prior-data conflicts occur, it can be helpful to con-
sider an alternative analysis using a weakly informative prior
which retains some of the original prior information but re-
solves the conflict, in order to see how this affects conclusions
of interest. [17], inspired by [23], developed a formalization
of the notion of a weakly informative prior relative to a base
prior which uses a prior-data conflict check in the definition.
As a main application of our methodology, we develop con-
venient methods for searching for weakly informative priors
in the sense of [17]. While these weakly informative priors
are a useful tool for exploring prior sensitivity, the goals of
prior-data conflict checking and development of associated
weakly informative priors do not relate solely to Bayesian
sensitivity analysis, for which there is a large existing lit-
erature ([33], [29], [12], [51], [46], among many others). See
[2] for further discussion of the relationship between prior
sensitivity and prior-data conflict.

In the next section we give an introduction to some of the
existing literature on Bayesian model checking, and consider
in some detail the proposal of [35] for prior-data conflict
checks based on prior-to-posterior divergences. We also de-
velop an implementation of this procedure for the likelihood-
free case, based on mixture posterior approximations and
closed-form approximations to Kullback-Leibler divergences
for mixtures. Similar approximate checks were considered
in [35] for the case of a tractable likelihood where mixture
variational approximations were used for posterior computa-
tions. Because their variational approximation methods re-
quire evaluations of the likelihood, they do not apply in the
likelihood-free setting. Hence, mixture approximations need
to be obtained in a different way in the case of an intractable
likelihood, and that is achieved here by fitting mixture mod-
els to approximate the joint density of summary statistics
and model parameters. Once the approximation to the joint
density is obtained, approximations to the posterior density
for the parameters given summary statistics can be induced
for different values of the summary statistics at negligible
additional computational cost. This is crucial to the compu-
tational tractability of our approach to searching for weakly
informative priors, which is described in Section 3. Section
4 considers a number of examples and Section 5 gives some
concluding discussion.

2. PRIOR-DATA CONFLICT CHECKING

2.1 Basic ideas of prior-data conflict
checking

Let θ be a parameter, y be data, p(θ) be a prior den-
sity for θ, p(y|θ) be the sampling density for y given θ and

p(θ|y) be the posterior density. In a Bayesian analysis, prior-
data conflict occurs when the prior density puts all its mass
out in the tails of the likelihood, so that the information
in the data about θ and the information in the prior are in
conflict. Various methods have been developed for checking
for prior-data conflict ([36, 32, 18, 26, 16, 41, 35], among
many others). However, many of these methods are difficult
to apply in the case of a model with an intractable likeli-
hood. A prior-data conflict checking method is applicable
with intractable likelihood if the check can be conducted
using only simulation of data from the model, without eval-
uation of the likelihood. One method that can be applied in
a likelihood-free setting is described in [34] who considered a
certain implementation of the approach of [18]. However, the
method of [34] relies on kernel density estimation of a vector
summary statistic, which is difficult when the dimension of
the summary statistic is moderately large. The method of
[18] also lacks a desirable parametrization invariance prop-
erty in the case of a continuous parameter where the check
can depend on the choice of sufficient statistic. Further dis-
cussion of the statistical properties of the checks of [35] and
[18], which are the basis for the likelihood-free versions of
those checks in the present work and in [34] respectively, is
given in [35].

A prior-data conflict check is a special kind of Bayesian
predictive check of the kind used for Bayesian model criti-
cism. See, for example, [25], [5] and [15] for general overviews
of Bayesian model checking. A Bayesian predictive check in-
volves the choice of a statistic and reference distribution.
Write T = T (y) for a scalar statistic, and suppose that we
wish to criticize the model by determining whether the ob-
served value tobs of T is surprising under some reference
distribution m(t). As a measure of surprise, a Bayesian pre-
dictive p-value can be computed as

p = P (T ≥ tobs),(1)

where T ∼ m(t) and it has been assumed above that T is
defined in such a way that a large value indicates a possible
model failure. Note that the purpose of (1) is to locate where
tobs lies with respect to the distribution of T . [18] consider
the question of what are logical requirements on the statis-
tic T and the reference distribution m(t) when the goal is
to check for prior-data conflict. They answer this question
by generalizing a decomposition of the joint model for (y, θ)
due to [11], and consider the terms in the decomposition as
playing different roles in the analysis. For prior-data conflict
checks, T plays the role of summarizing the likelihood, and T
should not depend on aspects of y that are irrelevant to the
likelihood; this means that T should be a function of a min-
imal sufficient statistic. Furthermore, any check based on a
T which is a function of a minimal sufficient statistic should
be invariant to the minimal sufficient statistic chosen. For
detecting an inconsistency between the likelihood and prior,
we want to see whether the observed likelihood (summarized
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by the observed value tobs of T ) is unusual compared to what
is expected under the prior. This means that the reference
distribution m(t) should be the prior predictive distribution
of T , which we write as p(t) =

∫
p(t|θ)p(θ) dθ, where p(t|θ)

denotes the sampling distribution of T given θ.
The prior-data conflict checks considered in [18] are not

invariant to the choice of minimal sufficient statistic, and a
modified version which is invariant but difficult to apply is
discussed in [16]. [18] also consider conditioning on ancillary
statistics, and extensions to separately checking components
of hierarchical priors, but we do not consider this further
here. One way to obtain a statistic that is a function of any
sufficient statistic and invariant to its choice is to consider
some function of the posterior distribution itself. [35] con-
sider an approach of this kind, where the statistic T is a
prior-to-posterior Rényi divergence, and it is a further de-
velopment of this approach that is the focus of the current
work.

2.2 Conflict checks using prior-to-posterior
divergence

The prior-data conflict checks of [35] use a prior-to-
posterior Rényi divergence as the checking statistic. Here
we consider the special case of the Kullback-Leibler diver-
gence, resulting in the checking statistic

G = KL(p(θ|y)||p(θ))
def
=

∫
log

p(θ|y)
p(θ)

p(θ|y) dθ.(2)

To calibrate the observed value of this statistic we use a tail
probability (Bayesian predictive p-value)

pKL = P (G ≥ Gobs),(3)

where G ∼ p(g) with p(g) the prior-predictive density of G,
and Gobs denotes the observed value. It is possible in prin-
ciple to replace the Kullback-Leibler divergence with other
divergences in the check (2), but using the Kullback-Leibler
divergence is convenient computationally here, allowing us
to make use of closed-form approximations for Kullback-
Leibler divergences between Gaussian mixture distributions.
This is described later and allows approximate versions of
the check (2) to be implemented rapidly, which is particu-
larly important in our application to searching for weakly
informative priors.

If we are to use the above check in likelihood-free infer-
ence problems, we need to implement it using only simula-
tion from the model, without requiring evaluation of the like-
lihood. Before we describe how this can be done, however,
it is useful to give some context about why likelihood-free
inference is used. The earliest applications of likelihood-free
inference arose in population genetics in the form of ABC al-
gorithms [43], but these and similar methods are now used in
a wide range of problems where the likelihood is intractable

due to complex observation models or difficulty in integrat-
ing out complex latent processes. There are other more spe-
cific motivations in particular applications. For example, in
developing the synthetic likelihood method, [50] considered
time series models for ecological data with chaotic dynamics
and low environmental noise. In these models the likelihood
may be difficult to evaluate using methods relying on state
estimation for state space models – see [20] for further elabo-
ration and Section 4.3 for an example of this kind considered
in [21]. Another motivation for using likelihood-free meth-
ods is to robustify Bayesian analyses with tractable likeli-
hood by basing information only on (possibly complex) sum-
mary statistics. The summary statistic likelihood is often
intractable, but considering an insufficient statistic which
discards information can be useful in the case of misspeci-
fied models – see [30] for a recent discussion of the statisti-
cal motivation here, although the authors focus on applica-
tions to linear models and do not use likelihood-free methods
for computation. [49] is a recent comprehensive overview of
likelihood-free inference methods discussing a wide range of
methods and applications.

To implement a check based on the statistic (2) in the
likelihood-free setting, we make several approximations. The
first is to consider replacing the posterior distribution p(θ|y)
with the posterior distribution given a summary statistic,
say z = z(y) in (2). Most likelihood-free inference methods,
such as ABC and synthetic likelihood, make use of reduced
dimension summary statistics for the data since they use
empirical methods based on simulated data to estimate the
distribution of the summary statistics for likelihood estima-
tion. For example, the ABC approach can be regarded as
estimating the likelihood based on a kernel density estimate
of the summary statistic density, and there is a curse of
dimensionality associated with the use of kernel methods,
so that a low-dimensional summary statistic is desirable.
Ideally the summary statistic is sufficient, so that no infor-
mation about θ is lost, but non-trivial sufficient summary
statistics will not usually be available. See [8] and [40] for
further discussion of the issue of summary statistic choice
in likelihood-free inference.

The dimension reduction achieved by using summary
statistics is useful for implementing our next approximation,
which is to use a mixture model to estimate the posterior dis-
tribution of the parameters given summary statistic values.
Mixture approximations have been used in the ABC con-
text before. For example, [10] consider mixture modelling of
parameter and summary statistics jointly and the induced
conditional distribution for the parameters as a form of non-
linear regression adjustment. [9] consider similar mixture ap-
proximations within sequential Monte Carlo ABC schemes,
and [19] consider an approach to estimating the likelihood
using mixtures of experts and copulas. [22] use mixture of ex-
perts approximations to the posterior distribution directly,
and use their mixture estimates to define discrepancy mea-
sures in distribution space for ABC analyses. [27] have re-
cently considered variational approximation of the posterior
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density using a mixture family in likelihood-free inference
problems. The method considered below is the method con-
sidered in [10]. The great advantage of this approach here
is that it can allow us to produce repeated posterior ap-
proximations for different data at low computational cost,
which is important for approximating the reference distri-
bution of the conflict check in computing (2). This is also
important in the application of our checks to searching for
weakly informative priors in the next section.

The mixture approximations we consider are obtained in
the following way. Write x = (θ, z), and suppose we sample
parameter value and summary statistic pairs xi = (θi, zi),
i = 1, . . . , n, from p(x) = p(θ, z) = p(θ)p(z|θ). The posterior
density of θ given zobs is the conditional density of θ given
z = zobs derived from the joint density p(x) = p(θ, z). We
fit a Gaussian mixture model to xi, i = 1, . . . , n, to obtain a
Gaussian mixture approximation to p(θ, z), which we denote
by p̃(x),

p̃(x) =

J∑
j=1

wjφj(x),(4)

where J is the number of mixture components, wj are non-
negative mixing weights summing to one, and φj(x) =
φ(x;μj ,Σj) denotes a multivariate Gaussian density with
mean vector μj and covariance matrix Σj . For a Gaussian
mixture model, conditional distributions are also Gaussian
mixture models having easily computed closed form expres-
sions. So once the joint density p(x) has been approximated
by p̃(x), we can obtain the conditional density for θ given
z, which we denote by p̃(θ|z). To give an expression for this
we need some further notation. Suppose we partition μj and
Σj in the same way as x = (θ, z) as μj = (μj,θ, μj,z) and

Σj =

[
Σj,θ Σj,θz

Σj,zθ Σj,z

]
.

Then

p̃(θ|z) =
J∑

j=1

wj|zφj|z(θ),(5)

where φj|z(θ) = φ(θ;μj|z,Σj|z), with

μj|z = μj,θ +Σj,θzΣ
−1
j,z (z − μj,z),

Σj|z = Σj,θ − Σj,θzΣ
−1
j,zΣj,zθ,

and

wj|z =
wjφj(z)∑J
l=1 wlφl(z)

,

where φj(z) = φ(z;μj,z,Σj,z).

The conditional density (5) is an approximation to the
posterior density of θ given z, and is easily computable
for any summary statistic value z. This is important since
Monte Carlo approximation of the tail probability (3) in-
volves approximating the posterior density repeatedly for
different data. To approximate (3) using Monte Carlo, we
generate summary statistic values z(1), . . . , z(R) from the
prior predictive for z, then compute the approximate pos-
terior densities p̃(θ|zobs) and p̃(θ|z(r)), r = 1, . . . , R, where
zobs is the observed value for z. If we were able to compute
the prior-to-posterior Kullback-Leibler divergences for our
approximations, we would then compute the proportion of
the simulated summary statistics for which the divergence
was larger than that for the observed summary statistic as
in (3).

To overcome the difficulty of computing the prior-to-
posterior Kullback-Leibler divergence, we exploit the fact
that our posterior approximations are Gaussian mixtures,
and assume that the prior can be approximated as a Gaus-
sian mixture also. We write p̃(θ) for the mixture approxi-
mation to the prior. If the prior is Gaussian or a Gaussian
mixture, then p̃(θ) = p(θ), but if it is not we might simulate
samples from the prior and then fit a mixture model as de-
scribed to obtain p̃(θ). A closed-form approximation for the
Kullback-Leibler divergence between two mixture models,
due to Hershey and Olsen [28, Section 7], is then used as in
[35]. For this consider two mixture densities f(θ) and g(θ),

f(θ) =

Jf∑
j=1

wf,jφf,j(θ), g(θ) =

Jg∑
j=1

wg,jφg,j(θ),

where Jf and Jg are the number of mixture components
for f and g respectively, wf,j , j = 1, . . . , Jf and wg,j , j =
1, . . . , Jg are non-negative mixing weights for the respective
densities summing to one, and φf,j(θ) = φ(θ;μf,j ,Σf,j) and
φg,j(θ) = φ(θ;μg,j ,Σg,j) are respective multivariate nor-
mal component densities. Then approximate the Kullback-
Leibler divergence KL(g(θ)||f(θ)) by

K̃L(g(θ)||f(θ))

=

Jg∑
j=1

wg,j log

∑Jg

k=1 wg,k exp(−KL(φg,j ||φg,k)∑Jf

l=1 wf,l exp(−KL(φg,j ||φf,l))
,(6)

where the Kullback-Leibler divergences on the right-hand
side in the above expression are between multivariate normal
components densities, for which there is an exact closed-
form expression.

Combining our normal mixture approximations to the
prior and posterior and the approximation (6), an approx-
imate version of the prior-to-posterior Kullback-Leibler di-
vergence statistic (2) for z is then given by

G̃ = G̃(z) = K̃L(p̃(θ|z)||p̃(θ)).(7)
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Algorithm 1 Computation of prior-data conflict check

Inputs:

• Prior distribution p(θ), model p(z|θ) for summary statistics
z, observed summary statistic value zobs.

• Training sample size n for fitting mixture approximation,
number of replicates R for Monte Carlo approximation of
p-value.

Output:

• Tail probability p̃KL given in (8).

Initialization:

• Simulate xi = (θi, zi) ∼ p(x), i = 1, . . . , n, and obtain a
Gaussian mixture model approximation p̃(x) of p(x).

• If the prior p(θ) is not Gaussian or a Gaussian mixture,
obtain a Gaussian mixture approximation p̃(θ) of p(θ) by
fitting to the samples θi, i = 1, . . . , n.

Computation of tail probability p̃KL:

1. For r = 1, . . . , R,

• Simulate z(r) from the prior predictive distribution
p(z) for z.

• Compute the posterior approximation p̃(θ|z(r)) using
(5).

• Compute G̃(r) = K̃L(p̃(θ|z(r))||p̃(θ)) using (6).

2. Compute p̃(θ|zobs) using (5), G̃obs = K̃L(p̃(θ|zobs)||p̃(θ)) us-
ing (6) and then

p̃KL =
1

R

R∑
r=1

I(G̃(r) ≥ G̃obs).

Then our prior-data conflict checks for likelihood-free infer-
ence approximates (3) by

p̃KL =
1

R

R∑
r=1

I(G̃(r) ≥ G̃obs),(8)

where G̃(r) = G̃(z(r)), r = 1, . . . , R are values of G̃ for in-
dependent simulations z(r), r = 1, . . . , R, from the prior
predictive distribution of z, G̃obs = G̃(zobs) is the value of

G̃ for the observed summary statistic value zobs, and I(·)
denotes the indicator function. The computations required
for our conflict check are summarized in Algorithm 1.

A similar approximate implementation of the conflict
check based on prior-to-posterior divergences was considered
in [35]. In that case, however, the likelihood was tractable
and the mixture posterior approximations were obtained by
learning variational approximations independently for each
simulated prior predictive dataset in the Monte Carlo ap-
proximation of the tail probability (3). Here our mixture
approximations are obtained in quite a different way, and
furthermore they are extremely fast to compute for every

new dataset once the mixture approximation to the joint
distribution of (θ, z) has been obtained. This is important
in the application we discuss next, which is searching for
weakly informative prior distributions, an application which
was not considered in the work of [35].

3. WEAKLY INFORMATIVE PRIORS

3.1 Weakly informative priors from
prior-data conflict checks

Weakly informative priors were first considered by [23],
conceived as prior distributions which put some prior infor-
mation into an analysis, but less than the analyst actually
possesses. [17] gave a precise definition of a weakly informa-
tive prior with respect to a base prior used for an analysis in
terms of prior-data conflict checks. We discuss this definition
now.

Let pB(θ) denote the elicited informative prior (called the
baseline prior) used in the analysis. Let pW (θ) denote some
alternative prior. Suppose that M is a minimal sufficient
statistic. Write pB(m) and pW (m) for the prior predictive
densities for M for the priors pB(θ) and pW (θ) respectively.
[18] consider using the prior predictive density ordinate for
M as the statistic for a prior-data conflict check, and this
is also used in the work of [17]. So if the prior pj(θ) is used
for the analysis, j = B,W then a tail probability for the
prior-data conflict check is computed as

pj = P (pj(M) ≤ pj(mobs)), M ∼ pj(m),

where mobs is the observed value for M , as this determines
whether or not mobs lies in a region with low probability
with respect to pj(m). The definition of a weakly informative
prior with respect to the base prior given in [17] is based
on the idea that for data simulated under the base prior,
there should be a reduction in the proportion of prior-data
conflicts when the data are analyzed under the alternative
prior rather than the base prior.

Suppose a conflict occurs if a p-value for a prior-data
conflict check is less than α for some cutoff α. Let xα be the
α-quantile of the random variable PB(M

′), M ′ ∼ pB(m),
where

PB(M
′) = P (pB(M) ≤ pB(M

′)) M ∼ pB(m).

The distribution of PB(M
′) is that of the conflict p-value

that is obtained when pB(θ) is used in the analysis, and
the data are simulated under the prior predictive for pB(θ).
If M is continuous then PB(M

′) will be uniform on [0, 1].
Next, consider the random variable PW (M ′), M ′ ∼ PB(M),
where

PW (M ′) = P (pW (M) ≤ pW (M ′)) M ∼ pW (m).

The distribution of PW (M ′) is that of a conflict p-value for
data generated under the prior predictive for pB(θ), when
the analysis is done using pW (θ).
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We say the prior pW (θ) is weakly informative with respect
to pB(θ) at level α if

P (PW (M ′) ≤ xα) < α,

which says that prior-data conflicts happen less often when
the data are analyzed using pW (θ) rather than pB(θ), but
the data are generated under pB(θ). Instead of choosing a
fixed level α one can also consider other stronger notions of
uniform weak informativity – see [17] for details. [17] define
the degree of weak informativity of pW (θ) relative to pB(θ)
at level α to be

Wα = 1− P (PW (M ′) ≤ xα)

xα
,(9)

which is the proportion of prior-data conflicts avoided by us-
ing pW (θ) as the prior for the analysis, with data generated
under pB(θ). The degree of weak informativity of one prior
with respect to another defined by (9) can be compared for
different choices of the alternative prior, which do not need
to belong to the same parametric family.

3.2 Weakly informative priors based on
conflict checks

In the formulation of weakly informative priors used in
[17], the prior-data conflict check based on the prior predic-
tive density ordinate for a minimal sufficient statistic can be
replaced by some other prior-data conflict check. We con-
sider this now for our prior-to-posterior divergence conflict
checks. Let us consider a family of priors p(θ|γ) for search-
ing for a weakly informative prior, where γ is an expansion
parameter. We will assume the prior expansion will be cho-
sen so that p(θ) corresponds to a prior within this family for
some value γ(0) so that p(θ) = p(θ|γ(0)) say, although this is
not essential. Dealing with a baseline prior that does not be-
long to the family p(θ|γ) does not involve any alteration to
the procedure we suggest below. In the case where the base-
line prior is elicited, it seems natural that the family p(θ|γ)
should be an expansion of the baseline prior, since we want
to retain some of the information in the original prior. We
can also consider choosing a weakly informative prior from
a family that is a union of two different parametric families.

Write G̃(z, γ) for the statistic G̃ at (7) when the prior
used for the analysis is p(θ|γ). We have previously discussed

in Section 2.2 how to compute G̃(z, γ(0)) for abitrary ob-
served summary statistics z by fitting a mixture model to
simulated data xi = (θi, zi) ∼ p(θ|γ0)p(z|θ), i = 1, . . . , n.

We now wish to approximate G̃(z, γ) for both arbitrary z
and γ. We will accomplish this by expanding the original
statistical model hierarchically to include γ as a parameter,
giving the model p(γ)p(θ|γ)p(z|γ), where p(γ) is a pseudo-
prior for γ. We call p(γ) a pseudo-prior, since we employ it
for purely computational reasons to enable us to approxi-
mate conditional posterior densities p(θ|z, γ). Proceeding in

a similar way to Section 2.2, we can simulate data

xi = (γi, θi, zi) ∼ p(γ)p(θ|γ)p(z|θ),

i = 1, . . . , n, fit a Gaussian mixture model to these data,
and then use the conditional distribution of θ given z, γ in
the mixture as an estimated posterior distribution given z, γ
and hence compute G̃(z, γ).

The prior p(θ|γ) will be said to be weakly informative at
level α relative to p(θ) for the approximate divergence check
(8) if the random variable Pγ(z

′), z′ ∼
∫
p(θ)p(z|θ)dθ, where

Pγ(z
′) = P (G̃(z, γ) ≥ G̃(z′, γ)), z ∼

∫
p(θ|γ)p(z|θ) dθ,

satisfies

P (Pγ(z
′) ≤ xα) < α,

where xα is the α-quantile of Pγ(0) . To approximate the dis-
tribution of Pγ(z

′), we need to simulate values for z′ ∼∫
p(θ)p(z|θ) dθ, and then for each of these simulations we

must approximate the p-value (8) using Algorithm 1 to get
a Monte Carlo empirical distribution approximating the dis-
tribution of Pγ(z

′).
The degree of weak informativity of p(θ|γ) at level α with

respect to p(θ) = p(θ|γ(0)) for the approximate divergence
check (8) is, similar to before, defined to be

Wα(γ) = 1− P (Pγ(z
′) ≤ xα)

xα
.

It seems reasonable to try to choose a prior p(θ|γ) weakly
informative compared to p(θ) by choosing γ such that

Wα(γ) > δ,(10)

which would ensure that the proportion of conflicts is re-
duced by δ when data is simulated under the base prior
and the analysis is done under the alternative prior. The
constant δ needs to be chosen and choosing δ = 0.5 would
require reducing the proportion of conflicts by half, for ex-
ample. If it is not possible to find any prior satisfying (10)
we can look at maximizing Wα(γ). Later we consider check-
ing the criterion (10) at a finite number of candidate values
for γ chosen as a maximin latin hypercube design covering
some rectangular search region.

4. EXAMPLES

4.1 Logistic regression example

We consider a logistic regression model as a first il-
lustration of our methodology. Although the likelihood is
tractable, we consider this example since weakly informative
priors have been developed for this model in the literature,
and it is interesting to compare the priors obtained using our
approach with those in previous work. We develop a weakly
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Figure 1. Degree of weak informativity for conflict check for logistic regression example with 14 mixture components (left)
and 10 mixture components (right). The 14 component model was chosen by BIC.

informative prior in the context of a design from a real data
set. [44] considered a bioassay experiment in which 5 animals
at each of 4 dose levels were exposed to a toxin. For the pur-
poses of considering weakly informative prior specification
below we consider a hypothetical increase in the number of
animals at each dose to 20. This is to make the continuity
assumption involved in a joint modelling of data and param-
eters as a Gaussian mixture more reasonable. At each dose,
the number of deaths was recorded. Writing yi for the num-
ber of deaths at dose di, the model is yi ∼ Binomial(20, pi),
logit(pi) = θ1 + θ2di, where the dose values have been log
transformed, centred and scaled similar to [24].

Consider a prior distribution for θ = (θ1, θ2)
� of the form

p(θ|γ) = p(θ1|γ1)p(θ2|γ2) where p(θj |γj) = φ(θj ; 0, γ
2
j ), j =

1, 2 with φ(x;μ, σ2) denoting the normal density with mean
μ and variance σ2. We use the base prior γ(0) = (1, 1). Next
consider a uniform grid of 50 equally spaced values for γ1 on
the range [0.5, 10] and of 100 equally spaced values for γ2 on
the range [0.5, 20]. From these we can form a corresponding
two-dimensional grid on [0.5, 10] × [0.5, 20]. For each γ on
the two-dimensional grid, we estimate the degree of weak
informativity of p(θ|γ) with respect to the base prior at level
0.05.

Making the baseline variance parameters either larger or
smaller can resolve a conflict in some instances. To get some
intuition for this, consider the simple case of a logistic re-
gression without covariates, logit(pi) = θ1, with a normal
prior N(0, γ2

1) on θ1. As γ1 → ∞, most prior mass is on
large values of |θ1|, which corresponds to probabilities close
to zero or one. On the other hand, choosing γ1 → 0 gives a
prior on the probability concentrated around 0.5. So we can
see that choosing γ1 either very large or close to zero results
in a highly informative prior, and so a choice of the prior
variance parameter that avoids these extremes is necessary

for a weakly informative choice. See [1] for some related dis-
cussion. For computing the approximate tail probabilities
p̃KL at (8), we used R = 1000 prior predictive simulations.
The mixture approximation to the joint distribution was
trained using the R package mclust [48] based on 100,000
simulations from the model, and a uniform distribution on
[0.5, 10]× [0.5, 20] was assumed for a pseudo-prior distribu-
tion for γ in the mixture modelling. The number of clusters
was chosen using the default method implemented by the
mclustBIC function in mclust, searching up to a maximum
of 15 clusters and considering 14 different possible choices
for the mixture component covariance structure. In our later
examples we use a similar approach to choosing the number
of components. The final model chose by BIC contained 14
mixture components here.

Figure 1 plots W0.05(γ), for the mixture model chosen
by BIC as well as a mixture model with 10 components
to explore sensitivity of estimates of weak informativity to
the number of mixture components used. Little sensitivity
is observed, particularly in the region where the degree of
weak informativity is large, if a sufficiently large number of
mixture components is chosen. Figures 2 and 4 in [34] and
[17] respectively are qualitatively similar to Figure 1, al-
though the definition of a weakly informative prior depends
on the prior-data conflict check used, and our check is dif-
ferent to that used by these authors. From Figure 1 we see
that making the variance parameters γ1 and γ2 somewhat
larger than their baseline values leads to a weakly informa-
tive prior. However, if these parameters are made too large
this does not lead to a weakly informative prior, consistent
with the intuition obtained from the case discussed above
of a logistic regression with an intercept only. In situations
where γ is higher-dimensional, it is not possible to evaluate
the degree of weak informativity on a grid. In these cases
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we generate a certain number of values according to a min-
imax latin hypercube or some other space-filling design [47]
to cover the search space for γ, and evaluate the degree
of weak informativity on the design points. Generating 100
minimax latin hypercube design points in this example on
[0.5, 10]× [0.5, 10] and choosing the value for γ maximizing
the degree of weak informativity with respect to γ1 and γ2
gave a value γ = (2.6, 2.5).

4.2 Multivariate g-and-k example

The g-and-k distribution [45] is defined through its quan-
tile function,

Q(p;A,B, g, k)

= A+B

(
1 + c

1− exp(−gz(p))

1 + exp(−gz(p))

)
(1 + z(p)2)kz(p),

p ∈ (0, 1)

where z(p) = Φ−1(p) with Φ(·) the standard normal distrib-
uton function, and A, B, g and k are location, scale, skew-
ness and kurtosis parameters, with B > 0. The constant c is
conventionally fixed at 0.8, which results in the constraint
k > −0.5. The closed form quantile function makes simula-
tion from the distribution easy using the inversion method
by computing Q(U ;A,B, g, k) for U ∼ U [0, 1]. This makes
likelihood-free inference methods attractive [3]. Although it
is possible to calculate the density function numerically with
sufficient computational effort [39], an additional motiva-
tion for using likelihood-free methods in this example is to
robustify a Bayesian analysis to outliers. The octile-based
summary statistics described below allow a robust Bayesian
analysis where inference is insensitive to extreme outliers,
and the summary statistic likelihood is intractable, leading
to an interest in likelihood-free inference methods.

We consider here the multivariate g-and-k model de-
scribed in [14]. Their model uses a univarviate g-and-k dis-
tribution for each marginal, and a Gaussian copula with a
correlation matrix C for the dependence structure. Precisely,
let yi, i = 1, . . . , n, be the data, where yi = (yi1, . . . , yiJ)

�.
The values yij , i = 1, . . . , n, are iid and follow a univariate
g-and-k distribution with parameters θj = (Aj , Bj , gj , kj).
We write the density of yij as f(yij ; θj), with corresponding
distribution function F (yij ; θj). Define θ = (θ�1 , . . . , θ

�
J , C),

and then the joint density of yi is

f(yi; θ) = |C|−1/2 exp

(
−1

2
η�i (I − C−1)ηi

) J∏
j=1

f(yij ; θj),

where ηi = (ηi1, . . . , ηiJ)
�, with ηij = Φ−1(F (yij ; θj)).

If Z = (Z1, . . . , ZJ) ∼ N(0, C), and we compute
(F−1(Φ(Z1); θ1), . . . , F

−1(Φ(ZJ ); θJ)
�, then this produces

a simulation from the model.
For a multivariate dataset of exchange rate returns dis-

cussed in [14], [31] consider prior densities for the θj that

are independent for j = 1, . . . , J , with θj uniform on
[−0.1, 0.1] × [0, 0.05] × [−1, 1] × [−0.2, 0.5]. For the copula
correlation matrix C, we follow [37] and consider a normal
prior on a spherical parametrization of the elements of C [38]
to make the parameters unconstrained. This is explained
further below. We will consider a multivariate model with
J = 3 components, and the unconstrained parameters for
this model will be denoted by w = (w1, w2, w3). In a spher-
ical parametrization the parameters w determine the corre-
lation matrix C through its lower-triangular Cholesky factor
L, C = LL�, by

L =

⎡
⎣ 1 0 0

cos γ1 sin γ1 0
cos γ2 sin γ2 cos γ3 sin γ2 sin γ3

⎤
⎦ ,

where γj = π/(1 + exp(−wj)), j = 1, 2, 3. [37] considered
a prior on w which is multivariate normal, N(0, (1.75)2I3),
where Iq denotes the identity matrix of dimension q. Al-
though a uniform prior on the correlation matrix could be
considered, when J is large it is preferable in many applica-
tions to use a prior that shrinks towards independence.

The transformation to make the parametrization of the
correlation matrix unconstrained makes valid prior specifi-
cation easy in the mathematical sense. However, the trans-
formed parameters are not easy to relate to prior knowledge
we would typically have, regarding the correlation param-
eters directly. This increases the possibility of specifying a
prior distribution that is informative in ways that are not
intended. For a base prior in this example we will consider
a multivariate normal distribution N(0, (0.5)2I3), which is
more informative than the prior used in [37], and then search
for a weakly informative prior relative to this base prior.
In searching for a weakly informative prior, we consider
prior distributions of the form N(0, γ2I3), where the pa-
rameter γ lies in the range [0.5, 5]. For summary statistics,
we use the same summary statistics as in [37]. These are
robust estimates of location, scale, skewness and kurtosis
based on octiles considered in [14] for each marginal (4 sum-
mary statisics for each component), and rank correlations
for all pairs of components (3 summary statistics). There
are 15 summary statistics in total. Since we are interested
in weakly informative priors for the correlation parameters,
we consider conflict checks based on the prior-to-posterior
divergence for w, and we assume that all the information
in the summary statistics about w is contained in the 3
rank correlation summary statistics summarizing the depen-
dence structure. For approximating our Kullback-Leibler di-
vergence statistics it is then only necessary to consider ap-
proximating the joint distribution of (γ, w, S(w)), where we
assume a pseudo-prior for γ that is uniform on [0.5, 5] and
S(w) denotes the three-dimensional vector of the pairwise
rank correlations. We use 100,000 simulations of γ, w and
S(w) from the model to train the mixture model, and for ap-
proximating tail probabilities p̃KL at (8), we used R = 1000
prior predictive simulations.
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Figure 2. Degree of weak informativity for conflict check for
multivariate g-and-k example.

Figure 2 plots the degree of weak informativity of the
prior for different γ with respect to the base prior with
γ = 0.5. Values of γ in the range 1 to 2 here are max-
imally weakly informative with respect to the base prior.
For the base prior and a weakly informative prior with
γ = 1, we simulated 1000 draws, and transformed these
draws to the corresponding correlations C12, C13 and C23.
The result is shown in Figure 3. For the weakly informa-
tive prior, the implied marginal priors on the correlations
are closer to uniform. However, it is clear that the marginal
prior distribution on the correlations depends on the or-
dering of the components, due to the way that the uncon-
strained parameters are defined using a Cholesky decompo-
sition.

4.3 Simple recruitment, boom and bust
model

[20] discusses the motivation for likelihood-free inference
methods as an alternative to state space methods for like-
lihood estimation in time series models with complex non-
linear dynamics and chaotic behaviour, with likelihood-free
methods sometimes being preferable when there is low pro-
cess noise or model misspecification. Our next example con-
siders an ecological time series model representing the fluc-
tuation of the population size of a certain group over time,
considered in [21] and [4], who both find that more flexible
methods than the synthetic likelihood method of [50] and
able to deal with non-Gaussian distributions of summary
statistics are needed.

Let Nt, t = 0, 1, . . . represent population sizes at discrete
integer times t. GivenNt and the parameters θ = (r, κ, α, β),
the conditional distribution of Nt+1 is

Nt+1 ∼

⎧⎨
⎩
Poisson(Nt(1 + r)) + εt if Nt ≤ κ

Binom(Nt, α) + εt if Nt > κ

where εt ∼ Poisson (β). In this model r is a growth pa-
rameter, κ is a threshold where exceedance of the thresh-
old leads to a crash, α is a survival probability controlling
the speed of the crash and β is the mean for a recruitment
process. We consider a time series of length 250, and in
simulating from the model we use 50 burn-in values after
initializing the process at the integer part of the thresh-
old κ.

[4] considered a prior uniform on [0, 1]× [10, 80]× [0, 1]×
[0, 1]. We change the U [0, 1] prior for r to a Beta(5, 5) prior
to obtain the base prior for constructing a weakly informa-
tive alternative. The summary statistics z are constructed
following [4]. For a time series x of length T , define dif-
ferences and ratios dx = {xi − xi−1; i = 2, . . . , T} and
rx = {xi/xi−1; i = 2, . . . , T}, respectively. We use the sam-
ple mean, variance, skewness and kurtosis of x, dx and rx
as the summary statistics, so that z is 12-dimensional. To
search for a weakly informative prior, consider prior distri-
butions for r of the form r ∼ Beta(γ, γ), so that the mean
is fixed at 0.5 but the variance changes with γ.

We use 100,000 simulations from the joint distribution of
γ, r and z to train the mixture model, where a pseudo-prior
uniform on [0.2, 9] was considered for γ. For approximating
tail probabilities we used R = 1000 prior predictive simu-
lations. Figure 4 plots the degree of weak informativity of
the prior for different γ with respect to the base prior with
γ = 5.

We choose here a value of γ = 0.2 as a weakly informative
choice. To show that using a weakly informative prior can
make a difference for Bayesian inference, Figure 5 shows,
for a simulated time series, the estimated univariate poste-
rior densities for the two prior distributions, while Figure
6 shows estimated bivariate posterior densities. The simu-
lated time series is of length 250 with true parameter values
r = 0.4, κ = 50, α = 0.09 and β = 0.05 and the poste-
rior density estimation was done using an ABC method.
The ABC analysis was based on 500,000 samples from the
prior and a neural network regression adjustment using the
abc function in the abc R package [13] with a tolerance of
0.05 and other algorithmic settings at default values. Given
the complex interactions between the parameters, chang-
ing the marginal prior on r affects posterior inference not
just for r but also for the other parameters, particularly κ
and α.
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Figure 3. Prior distribution on correlations for original (γ = 0.5, blue) and weakly informative prior (γ = 1, red) for
multivariate g-and-k example.

Figure 4. Degree of weak informativity for conflict check for boom and bust example.
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Figure 5. Estimated univariate posterior marginal densities for boom and bust example.

Figure 6. Estimated bivariate posterior marginal densities for boom and bust example. The top and bottom rows shows
estimates for the baseline and weakly informative priors respectively.
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5. DISCUSSION

Informative priors are often needed in typical applications
of likelihood-free inference. The complex models for which
likelihood-free inference methods are useful often contain
weakly identified parameters where the regularization pro-
vided by an informative prior is valuable. Some likelihood-
free algorithms require a proper prior, and the computa-
tional efficiency of such algorithms may depend on how in-
formative the prior is, which creates the temptation to spec-
ify priors for computational convenience. It seems important
then to develop new tools for assessing the sensitivity of
Bayesian inferences to the prior in the likelihood-free setting.
We have developed here methods for checking for prior-data
conflict, as well as methods for specifying weakly informa-
tive priors relative to the prior used in the analysis which
are useful for sensitivity analyses and for revealing possible
deficiencies in prior elicitation and model understanding.

Our approach to making the computations tractable in
our conflict checks and in searching for weakly informative
priors uses Gaussian mixture approximations to posterior
distributions and this may be rather crude, particularly with
high-dimenisonal parameters or summary statistics. While
rough calculations may be good enough for diagnostics and
exploring alternative prior specifications, an interesting di-
rection for future work is to investigate better approaches
to the likelihood-free inference while still allowing the re-
peated calculation of posterior densities for different data
that is necessary here.
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