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Quadratic upper bound algorithms for estimation
under Cox model in case-cohort studies
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A case-cohort design is a cost-effective biased-sampling
scheme in large cohort studies. Implementation of parame-
ter estimators for case-cohort data requires numerical ap-
proaches. Using the minorization-maximization principle,
which is a versatile tool for constructing optimization algo-
rithms, we develop two quadratic-upper-bound algorithms
for estimations in the Cox model under case-cohort design.
The proposed algorithms are monotonic and reliably con-
verge to the weighted estimators considered. These algo-
rithms involve the inversion of the derived upper-bound ma-
trix only one time in the whole process, and the upper-bound
matrix is independent of both parameter and weight func-
tions. These features make the proposed algorithms have
simple update and low per-iterative cost, especially to large-
dimensional problems. We conduct simulation studies and
real data examples to illustrate the performance of the pro-
posed algorithms, and compare them to Newton’s method.

Keywords and phrases: Case-cohort design, Minoriza-
tion maximization algorithm, Quadratic upper bounds, Cox
model, Estimating equations.

1. INTRODUCTION

In epidemiologic and biomedical observational studies
that relate disease occurrence to individual exposures, it is
likely to follow up a large number of subjects for a long time
period. Major budgets and costs typically arise from the
assembling of expensive covariates. Therefore, development
of a cost-effective design which can enhance the efficiency
while reducing the cost is always desirable in practice. For
time-to-event data with censoring, case-cohort design is one
of the most widely used biased-sampling schemes. The key
idea of the case-cohort design is to assemble the measure-
ments of expensive exposures only on a subset of the entire
cohort (subcohort) and all the subjects who experience the
event of interest (cases). After the landmark article of Pren-
tice (1986), extensive researches on case-cohort design have
been developed, mainly along two lines, likelihood-based ap-
proaches (Self and Prentice, 1988; Chen and Lo, 1999; Kang
et al., 2018; Liu et al., 2018) and estimating-equation-based
approaches (Kulich and Lin, 2000; Sun et al., 2004; Cai and
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Zeng, 2004, 2007; Kulich and Lin, 2004; Kong et al., 2004; Lu
and Tsiatis, 2006; Breslow and Wellner, 2007; Kang et al.,
2013; Steingrimsson and Strawderman, 2017, etc). Recent
works have interests on case-cohort studies with multivari-
ate failure times (Kang and Cai, 2009; Kang et al., 2013;
Yan et al., 2017; Kim et al, 2018; Maitra et al, 2020).

When statistical methods for parameter estimation are
proposed, the numerical calculation of estimates is often in-
volved, which is important especially in practice. Newton-
Raphson algorithm is one of the most widely used numerical
algorithms, which has many advantages, including quadratic
convergence rate around the maximum point. However,
Newton-Raphson algorithm will also encounter some prob-
lems in actual calculation, especially in large-dimensional or
high-dimensional situations. Calculation of the inverse ma-
trix of the information matrix, which is conducted in each
iterative step, may have high computational cost or even fail,
and the method of Newton is lack of the monotonicity under
some situations. For large-dimensional or high-dimensional
cases, numerous literatures have developed the methods of
variable selection to achieve the purpose of dimension reduc-
tion (Tibshirani, 1996, 1997; Fan and Li, 2001, 2002; Zou,
2006; Huang et al, 2008, 2010, etc). However, most of these
methods require sparsity assumption. Under the cases that
data does not meet the sparsity requirement or the dimen-
sion is still large even after the variables are selected, it is
desirable to develop some new algorithms.

Recently, a minorization-maximization (MM) algorithm
has been applied widely. The MM algorithm is a principle
for creating algorithm rather than a single algorithm, whose
essential idea is to create a surrogate function with compu-
tational superiorities over the objective function in order
to achieve optimization transformation (De Pierro, 1995;
Becker et al., 1997; Lange et al., 2000; Hunter and Lange,
2002, 2004; Lange, 2004, 2010, etc). For survival data from
simple random sampling, Böhning and Linday (1988) de-
veloped a quadratic lower bound algorithm for Cox model.
Ding et al. (2015) developed a modified MM algorithm for
Cox model with parameter constraints. For survival data
from case-cohort design, Deng et al. (2018) studied an MM
algorithm for a constrained estimator of parameter in Cox
model.

In this paper, we develop two new quadratic upper-
bound algorithms for implementation of estimators of re-
gression parameter in Cox model under the case-cohort de-
sign. We first find two global upper-bound matrices on the

https://www.intlpress.com/site/pub/pages/journals/items/sii/_home/_main/index.php


observed information matrix, which is derived from a series
of weighted estimating equations proposed for the parame-
ter inference. In the spirit of the MM principle, we the es-
tablish two quadratic upper-bound (QUB) algorithms based
on these upper-bound matrice and obtain the convergence of
the proposed algorithms. One novelty of our QUB algorithm
is that both the algorithms only need to calculate the inverse
matrix of the corresponding upper-bound matrix one time in
the whole process, instead of calculating the inverse matrix
of the observed information matrix in each iterative step in
Newton-Raphson algorithm. The other novelty is that the
upper-bound matrice used in the proposed algorithms are
independent of both parameter and weight functions, which
makes these QUB algorithms universal for calculation of a
class of weighted estimators regardless of the weight selec-
tions in case-cohort studies, with simple update and low
per-iteration cost. Furthermore, simulation studies and real
data examples suggest that the proposed QUB algorithms
work stably and efficiently. What needs to be pointed out
in particular is that the proposed QUB algorithms perform
well in nonsparse or large-dimensional cases.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce a general weighted estimating equation
approach for parameter inference in the Cox model under
case-cohort design. In Section 3, we propose two quadratic
upper-bound algorithms and obtain some theoretical prop-
erties. In Section 4, we conduct simulation studies to eval-
uate the practical behavior of the proposed algorithms. In
Section 5, we analyze two real data examples from a Wilm
tumor study and a SEER breast cancer study.

2. ESTIMATIONS UNDER CASE-COHORT
DESIGN

Let T̃ be the potential failure time and C be the censoring
time. The observed time is T = min(T̃ , C) and the right

censoring indicator is Δ = I(T̃ ≤ C), where I(·) is the
indicator function. Denote Z to be the p-vector covariates.
It is assumed that T̃ and C are conditionally independent
given Z. The most widely used model for survival data is
the proportional hazards model (Cox, 1972) with the hazard
function:

(1) λ(t|Z) = λ0(t) exp{βTZ},

where λ0(t) is the unspecified baseline hazard function, and
β is the p-vector parameter of primary interest.

Suppose that there are n independent subjects in the un-
derlying population, and (Ti, Δi, Zi), i = 1, · · · , n, are
n independent copies of (T, Δ, Z). Under the case-cohort
design, a subset of size ñ, referred to as the subcohort, is
selected from the full cohort via simple random sampling
without replacement. Let ξi be the subcohort sampling in-
dicator for the ith subject, taking the value 1 or 0, whether
the ith subject is included in the subcohort or not. Assume

P(ξi = 1) = p̃ = ñ/n, which is the probability of being sam-
pled into the subcohort for each subject. Covariate measure-
ments are taken only on the subcohort members and all the
cases outside the subcohort. Thus, the observable informa-
tion under the case-cohort design is (Ti, Δi, ξi, Zi) when
ξi = 1 or Δi = 1, and (Ti, Δi, ξi) when ξi = 0 and Δi = 0.

If the full cohort data were available, the estimation of the
true parameter β0 could be obtained by solving the following
estimating equation,

UF (β)

(2)

=

n∑
i=1

Δi

[
Zi −

∑n
j=1 I(Tj ≥ Ti) exp{βTZj}Zj∑n
j=1 I(Tj ≥ Ti) exp{βTZj}

]
= 0.

For data from case-cohort studies, since Zi’s are not avail-
able for cohort members outside the case-cohort sample, (2)
cannot be calculated. For the inference of β under the case-
cohort design, we adopt a general weighted estimating equa-
tion,

Uw(β)

(3)

=

n∑
i=1

Δi

[
Zi −

∑n
j=1 wj(Ti)I(Tj ≥ Ti) exp{βTZj}Zj∑n
j=1 wj(Ti)I(Tj ≥ Ti) exp{βTZj}

]
=0,

where wj(t) is a possibly time-varying weight function which
is introduced to “unbias” the biased-sampling nature of
the case-cohort design. For example, motivated by inversely
weighting the incomplete observations (Horvitz and Thomp-
son, 1951; Kalbfleisch and Lawless, 1988), the weight func-
tion can take the time-independent form as,

(4) wi = Δi +
(1−Δi)ξi

p̃
.

In particular, the weight for a case is 1 regardless of their
subcohort membership and for a censored subject in the
subcohort is p̃−1.

We can also consider a time-varying version of weight
function (Barlow, 1994; Borgan et al, 2000; Kulich and Lin,
2004):

(5) wi(t) = Δi +
(1−Δi)ξi

p̂(t)
,

where

p̂(t) =

∑n
i=1(1−Δi)ξiI(Ti ≥ t)∑n
i=1(1−Δi)I(Ti ≥ t)

.

This weight function is defined to be equal to 1 for the cases
and to p̂(t)−1 for the sampled censored subjects, where p̂(t)
is the estimator of the true sampling probability p̃ and de-
notes the number of sampled censored subjects divided by
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the number of censored subjects remaining in the risk set
at time t. These weighted estimating functions have also
been considered in the multivariate failure time context for
case-cohort studies (Kang and Cai, 2009).

Under the case-cohort design, the estimator of β, β̂w is
defined as the solution to Uw(β) = 0. Then, using the simi-
lar arguments in Kang and Cai (2009) for the case of k = 1,

β̂w can be theoretically shown to be consistent and asym-
totically normal.

Since the solution to this series of weighted estimating
equations Uw(β) = 0 has no closed expression, the calcu-

lation of the estimator β̂w requires numerical calculation
methods. The Newton-Raphson algorithm is the most pop-
ular approach to find the solution via the iterations of the
form:

(6) β(m+1) = β(m) +
[
Hw(β

(m))
]−1

Uw(β
(m)),

whereHw(β) = −∇βUw(β) is the observed information ma-
trix and ∇β denotes the partial derivative with respect to
β, and β(m) is the mth iteration of β in the algorithm. How-
ever, several complications can compromise the performance
of Newton-Raphson algorithm in case-cohort studies, espe-
cially in large-dimensional situations: (a) the information
matrix Hw(β) may fail to be computationally invertible;
(b) calculating the information matrix Hw(β) and solving
the linear system Hw(β)x = Uw(β) may be expensive or
time-consuming; and (c) the Newton’s method is lack of the
monotonicity under some situations. Therefore, we are com-
mitted to finding some new algorithms for efficiently solving
such problems.

3. QUB ALGORITHM

To derive new algorithms to solve a class of weighted
estimating equations in case-cohort studies, we apply the
minorization-maximization (MM) principle, which is a prin-
ciple for creating algorithm rather than a single algorithm.
Specifically, we consider the optimization problem max

β∈B
l(β),

where l(β) is the objective function and B is the parametric
space of β. An MM principle involves minorizing l(β) by a
surrogate function Q(β|β(m)) anchored at the current itera-
tion β(m) of a search. The surrogate function should satisfy
the two properties:

l(β(m)) = Q(β(m)|β(m)),

l(β) ≥ Q(β|β(m)), β �= β(m).(7)

Construction of the surrogate function Q(β|β(m)) consti-
tutes the first M-step of an MM algorithm.

In the second M-step of the algorithm, we maximize
the surrogate Q(β|β(m)) instead of l(β). Define β(m+1) =
max
β∈B

Q(β|β(m)). Then this action forces the following ascent

property:

l(β(m+1))

=
[
l(β(m+1))−Q(β(m+1)|β(m))

]
+Q(β(m+1)|β(m))

≥
[
l(β(m))−Q(β(m)|β(m))

]
+Q(β(m)|β(m))

= l(β(m)),

which guarantees that optimizing l(β) is equivalent to iter-
atively maximizing the surrogate Q(β|β(m)).

Back to our problem of solving the weighted estimating
equation in (3), we introduce a “working” likelihood func-
tion as follows:

�w(β)

(8)

=

n∑
i=1

Δi

⎡⎣βTZi − log

n∑
j=1

wj(Ti)I(Tj ≥ Ti) exp{βTZj}

⎤⎦ ,

which satisfies that ∇β�w(β) = Uw(β) for β ∈ B. There-
fore, finding the solution to the equation Uw(β) = 0 can be
transferred to an optimization problem max

β∈B
�w(β). The key

in devising an MM algorithm revolves around how to choose
a good surrogate function, and then transfer the optimiza-
tion of �w(β) to such a surrogate function.

Due to the fact that �w(β) is twice continuously differ-
entiable, we obtain the Taylor expansion of �w(β) around
β(m) to be

�w(β) = �w(β
(m)) + Uw(β

(m))T(β − β(m))

− 1

2
(β − β(m))THw(β̃)(β − β(m)),

where Hw(β) = −∇βUw(β) = −∇2
β�w(β) and β̃ lies in the

line between β and β(m). Inspirited by the idea of quadratic
approximation of Böhning and Linday (1988), we propose a
minorizing function as follows:

Qw(β |β(m)) = �w(β
(m)) + Uw(β

(m))T(β − β(m))(9)

− 1

2
(β − β(m))T B (β − β(m)),

where B is some positive definite matrix not depending on
β and satisfies that

(10) Hw(β) ≤ B,

which means B −Hw(β) is a non-negative definite matrix,
for all β ∈ B. That is, B is a global upper-bound of Hw(β).
It is easy to show that the minorizing function Qw(β |β(m))
satisfies the two properties in (7). By transferring the op-
timization of �w(β) to iteratively maximizing the surrogate
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Qw(β |β(m)), we can find the solution to Uw(β) = 0 via the

new updates:

(11) β(m+1) = β(m) +B−1Uw(β
(m)).

In the spirit of Böhning and Linday (1988), we call the

above algorithm to be the quadratic upper bound (QUB)

algorithm. We first present the convergence of such a QUB

algorithm in the following theorem and give the proof in the

Appendix.

Theorem 1 (Convergence of QUB Algorithm). Let β̂ be

the solution to the weighted equation Uw(β) = 0. Suppose

that β(0) ∈ B and β(m) is the sequence obtained iteratively

by the iterations (11). Under some regularity conditions in

the Appendix, β(m) converges to β̂ as m → ∞.

The proposed QUB algorithm has several advantages: (i)

the proposed algorithm obviates the calculation of the in-

verse matrix of the information matrix which may be com-

putationally singular; (ii) instead of calculating the inverse

matrix of the information matrix in each iterative step, the

algorithm only needs to calculate the inverse matrix of the

upper-bound matrix one time in the whole process; (iii) the

algorithm is monotonic according to the proof of the con-

vergence. Although the QUB algorithm has at best a linear

rate of convergence, its update is very simple and its per-

iteration-cost is relatively low. These can trip the computa-

tional balance in its favor.

Under this idea, the key technique of our proposed algo-

rithm lies in finding the upper-bound matrix B. In the fol-

lowing, we find two global upper bound matrices for Hw(β).

We provide the main results below and give the proofs in

the Appendix.

Theorem 2.

(12) Hw(β) ≤
1

2

n∑
i=1

n∑
j=1

ΔiI(Tj ≥ Ti)Z
⊗2
j

∧
= B1.

where a⊗2 = aa′ for a vector a.

Note that the upper-bound matrix B1 is independent of

not only the parameter β but also the weight function wi(t).

This means that the proposed QUB algorithm can be used

to solve a series of weighted estimating equations under the

case-cohort design regardless of the weight selections.

Algorithm 1 QUB Algorithm for Cox Model under Case-
Cohort Design

Input: β(0), ε > 0.
1: Calculate B1 = 1

2

∑n
i=1

∑n
j=1 ΔiI(Tj ≥ Ti)Z

⊗2
j ;

2: while
∥∥∥β(m+1) − β(m)

∥∥∥ > ε do

3: Suppose the current estimator β(m) with m ≥ 0
Do

4: Calculate Uw(β
(m));

5: Update β(m+1) = β(m) +B−1
1 Uw(β

(m));
end

6: end while
Output: β̂ = β(m+1).

In the process of deriving the upper bound matrix B1, we
find out that the inequality used can be further improved
to capture the invariance of location that the informative
matrix processes and reduce the influence of the choices of
the initial values to Algorithm 1. We provide the improved
upper-bound matrix in the theorem as follows.

Theorem 3.

Hw(β) ≤
1

2

n∑
i=1

Δi

⎡⎣ n∑
j=1

I(Tj ≥ Ti)Z
⊗2
j(13)

− 1

ni

⎧⎨⎩
n∑

j=1

I(Tj ≥ Ti)Zj

⎫⎬⎭
⊗2
⎤⎥⎦ ∧
= B2.

Algorithm 2 QUB Algorithm for Cox Model under Case-
Cohort Design

Input: β(0), ε > 0.
1: Calculate

B2=
1

2

n∑
i=1

Δi

[
n∑

j=1

I(Tj ≥ Ti)Z
⊗2
j − 1

ni

{
n∑

j=1

I(Tj ≥ Ti)Zj

}⊗2]
;

2: while
∥∥∥β(m+1) − β(m)

∥∥∥ > ε do

3: Suppose the current estimator β(m) with m ≥ 0
Do

4: Calculate Uw(β
(m));

5: Update β(m+1) = β(m) +B−1
2 Uw(β

(m));
end

6: end while
Output: β̂ = β(m+1).

The above results suggest that both the upper-bound ma-
trices B1 and B2 can be used to establish the proposed QUB
algorithm. We also compare the convergence rates of the two
corresponding algorithms and show that B2 can further im-
prove the algorithm rate.

Theorem 4. The convergence rate of Algorithm 2 is faster
than that of Algorithm 1.
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4. SIMULATION STUDIES

In this section, we conduct simulation studies to evaluate
the practical behavior of the propose two QUB algorithms
(QUB1 and QUB2) and the Newton-Raphson (NR) Algo-
rithm. We consider two scenarios, two-dimensional data and
large-dimensional data.

4.1 Study I: two-dimensional data

We consider the Cox model with two-dimensional covari-
ates in this scenario:

(14) λ(t|Z1, Z2) = λ0(t) exp {β1Z1 + β2Z2} .

We set β1 = 0 and 0.693, and β2 = 0 and −0.5. Z1 is
generated from a standard normal distribution, and Z2 is
generated from a Bernoulli distribution with success proba-
bility of 0.5. The baseline hazard function λ0(t) is set to be

1. Thus, the failure time T̃ can be generated from an expo-
nential distribution with failure rate exp(β1Z1+β2Z2). The
censoring time C is generated from a uniform distribution
U [0, c] with c being chosen to achieve the desired censor-
ing rate ρ = 80% and 90%. For the case-cohort design, the
full cohort size is set to be N = 1000, and a subcohort of
size ñ = 300 is randomly selected from the cohort with-
out replacement. The subcohort and all the case outside the
subcohort constitute the case-cohort sample.

Under each configuration, we compare the proposed es-
timators, β̂IPW , which is the solution to Uw(β) = 0 using

an inverse-probability weighted function in (4), and β̂TVW ,
which is the solution to Uw(β) = 0 using a time-varying
weighted function in (5), with two competing estimators,

β̂Full, which is the solution to UF (β) = 0 using the full co-

hort sample, and β̂Naive, which is the solution to UF (β) = 0
using a simple random sample from the cohort with the same
size as the case-cohort sample. For the calculation of these
four estimators, we apply the NR, QUB1, QUB2 algorithms.
The estimated biases (Biases) given by the sample means
minus the true values, the sample standard deviations of
the estimates (SDs), the means of the estimated standard
errors (SEs), and the coverage probabilities (CPs) of 95%
nominal confidence intervals are obtained from 1000 inde-
pendently generated data sets. The simulation results are
summarized in Table 1 and Table 2.

Under all the cases considered here, the four estimators
calculated by the three algorithms for both β1 and β2 are
all practically unbiased. The estimated standard errors pro-
vide good estimations for the sample standard deviations.
The confidence intervals attain coverage close to the nomi-
nal 95% level. The proposed estimator under case-cohort de-
sign, β̂IPW and β̂TVW are more efficient than β̂Naive. The
estimated efficiency of β̂IPW relative to β̂Full show that the
proposed estimator of β1 reaches about 55% of the efficiency
of the full-cohort estimator when only about 28% subjects of
the entire cohort are included in the case-cohort design for

ρ = 90%. This supports the notion that the case-cohort de-
sign can be a cost-effective alternative to the simple random
sampling design in large cohort studies.

On the other hand, the estimators calculated by the
QUB1 and QUB2 algorithms show almost identical results
with the NR algorithm, which suggests that the proposed
QUB algorithms can be good alternatives to the NR algo-
rithm in this scenario. The proposed QUB algorithms only
need to calculate the inverse matrix of B1 and B2 one time in
the whole process instead of calculating the inverse matrix
of Hw(β

(m)) in each iterative step. Furthermore, both B1

and B2 are independent of the weight function wi(t), which
makes our proposed algorithms universal for the implemen-
tation of a class of estimators under case-cohort design in
practice.

4.2 Study II: large-dimensional data

In this scenario, we conduct simulation studies to assess
the performance of the proposed QUB1 and QUB2 algo-
rithms in the case of large-dimensional data, comparing with
the NR algorithm. We generate data from the following Cox
model:

(15) λ(t|Z) = λ0(t) exp
{
βTZ

}
,

where β = (β1, ..., βp)
T is a p-dimensional vector. We set

β = (0.5 ·1T
q , 0T

p−q)
T , where 1m and 0m respectively denote

m-dimensional vectors of ones and zeros. Define r = q/p,
which represents the proportion of non-zero components
in β. Z is generated from a p-dimensional multivariate
normal distribution with mean 1T

p and covariance matrix

Σ = (σij)p×p, where σij = 0.5|i−j|, i, j = 1, ..., p. This means
we consider the case that there exists correlation among the
covariates. λ0(t) is set to be 1. T̃ is generated from an expo-

nential distribution with mean
[
exp

{
βTZ

}]−1
. C is gener-

ated from a uniform distribution U [0, c] with c being chosen
to achieve the censoring rate ρ = 80% and 90%. The setup
for the case-cohort design is that N = 1000 and ñ = 200 or
300.

We implement the inverse-probability-weighted estima-
tor β̂IPW by using the QUB1 and QUB2 algorithms and
the competing NR algorithm. For the three considered al-
gorithms, the convergence criteria used is as follow: the al-
gorithms stop if either the normed difference of successive
iterates is less than 10−4, or the number of iterations exceed
3×104. Firstly, we present the simulation results of the para-
metric estimation. We set p = 10 and 20, r = 0.1, ñ = 300
and ρ = 90%. The true value β0 = (0.5 · 1T

0.1p, 0T
0.9p)

T . We
report the results on estimation of the first 5 components of
β in Table 3.

Secondly, in the case of large p, the NR algorithm may
suffer calculational errors from computational singularity of
the observed information matrix Hw(β) and failure of con-
vergence. Meanwhile, the proposed QUB1 and QUB2 algo-
rithms may encounter calculational errors caused by com-
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Table 1. Simulation results on estimation of β1 and β2

̂β1
̂β2

(β1, β2) ρ Method Algorithm Bias SD SE CP Bias SD SE CP

(0.693,−0.5) 80% ̂βFull NR −0.0000 0.0758 0.0747 0.947 −0.0000 0.1436 0.1457 0.953
QUB1 0.0075 0.0724 0.0746 0.965 0.0551 0.1355 0.1439 0.947
QUB2 0.0181 0.0719 0.0747 0.965 0.0163 0.1402 0.1449 0.958

̂βNaive NR 0.0015 0.1149 0.1136 0.947 0.0012 0.2257 0.2209 0.948
QUB1 0.0022 0.1134 0.1134 0.955 0.0750 0.1802 0.2188 0.964
QUB2 0.0135 0.1170 0.1137 0.944 0.0112 0.2167 0.2207 0.958

̂βIPW NR 0.0093 0.1017 0.0962 0.926 −0.0088 0.1986 0.1886 0.935
QUB1 0.0139 0.1041 0.0962 0.920 0.0353 0.1865 0.1880 0.946
QUB2 0.0184 0.1044 0.0964 0.916 0.0097 0.1969 0.1886 0.943

̂βTV W NR 0.0050 0.1070 0.1071 0.939 0.0075 0.1903 0.1946 0.949
QUB1 0.0111 0.1114 0.0986 0.910 0.0331 0.1812 0.1724 0.918
QUB2 0.0114 0.1119 0.0960 0.914 0.0130 0.1892 0.1831 0.929

90% ̂βFull NR 0.0000 0.1057 0.1032 0.940 0.0000 0.2064 0.2074 0.948
QUB1 0.0089 0.1002 0.1034 0.946 0.0500 0.1886 0.2050 0.970
QUB2 0.0180 0.0992 0.1035 0.949 0.0109 0.1965 0.2066 0.962

̂βNaive NR 0.0134 0.1721 0.1720 0.948 −0.0163 0.3549 0.3483 0.954
QUB1 0.0033 0.1730 0.1703 0.941 0.0876 0.2641 0.3414 0.979
QUB2 0.0079 0.1719 0.1713 0.945 0.0012 0.3332 0.3471 0.965

̂βIPW NR 0.0189 0.1265 0.1263 0.941 −0.0090 0.2479 0.2464 0.954
QUB1 0.0098 0.1284 0.1253 0.941 0.0224 0.2300 0.2444 0.971
QUB2 0.0132 0.1274 0.1256 0.942 0.0017 0.2374 0.2453 0.965

̂βTV W NR 0.0099 0.1323 0.1326 0.929 −0.0127 0.2511 0.2521 0.937
QUB1 0.0149 0.1337 0.1280 0.929 0.0314 0.2307 0.2288 0.944
QUB2 0.0150 0.1401 0.1261 0.922 0.0097 0.2511 0.2414 0.938

(0.693, 0) 80% ̂βFull NR 0.0000 0.0757 0.0751 0.952 −0.0000 0.1423 0.1436 0.956
QUB1 0.0268 0.0755 0.0749 0.930 −0.0015 0.1201 0.1430 0.980
QUB2 0.0314 0.0750 0.0749 0.926 0.0043 0.1389 0.1432 0.954

̂βNaive NR 0.0047 0.1156 0.1148 0.947 −0.0019 0.2239 0.2193 0.960
QUB1 0.0142 0.1132 0.1149 0.949 −0.0032 0.2093 0.2185 0.953
QUB2 0.0183 0.1129 0.1150 0.947 −0.0010 0.2232 0.2187 0.944

̂βIPW NR 0.0072 0.0981 0.0973 0.953 0.0003 0.1902 0.1872 0.954
QUB1 0.0186 0.0978 0.0973 0.946 0.0048 0.1859 0.1873 0.945
QUB2 0.0227 0.0979 0.0974 0.942 0.0007 0.1974 0.1876 0.941

̂βTV W NR 0.0056 0.1092 0.1053 0.940 0.0041 0.1847 0.1896 0.951
QUB1 0.0106 0.1090 0.0993 0.915 0.0194 0.1789 0.1689 0.918
QUB2 0.0156 0.1074 0.0966 0.915 0.0215 0.1861 0.1801 0.924

90% ̂βFull NR −0.0000 0.1048 0.1021 0.946 −0.0000 0.2035 0.2004 0.951
QUB1 0.0240 0.1035 0.1021 0.943 0.0053 0.1705 0.1996 0.974
QUB2 0.0293 0.1028 0.1022 0.942 0.0083 0.1933 0.2000 0.959

̂βNaive NR 0.0101 0.1251 0.1251 0.944 0.0019 0.2422 0.2391 0.947
QUB1 0.0093 0.1741 0.1696 0.943 −0.0124 0.3069 0.3323 0.974
QUB2 0.0128 0.1735 0.1699 0.947 −0.0138 0.3321 0.3336 0.959

̂βIPW NR 0.0189 0.1265 0.1263 0.941 −0.0090 0.2479 0.2464 0.954
QUB1 0.0167 0.1301 0.1247 0.943 −0.0018 0.2278 0.2391 0.957
QUB2 0.0204 0.1297 0.1249 0.942 −0.0042 0.2386 0.2394 0.954

̂βTV W NR 0.0044 0.1282 0.1314 0.934 0.0030 0.2342 0.2437 0.942
QUB1 0.0110 0.1318 0.1260 0.938 0.0066 0.2306 0.2237 0.935
QUB2 0.0169 0.1332 0.1249 0.923 0.0016 0.2332 0.2350 0.952
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Table 2. Simulation results on estimation of β1 and β2

̂β1
̂β2

(β1, β2) ρ Method Algorithm Bias SD SE CP Bias SD SE CP

(0,−0.5) 80% ̂βFull NR −0.0011 0.0726 0.0713 0.947 −0.0028 0.1411 0.1461 0.956
QUB1 0.0100 0.0727 0.0713 0.946 0.0500 0.1370 0.1443 0.946
QUB2 0.0219 0.0725 0.0713 0.931 0.0124 0.1428 0.1453 0.955

̂βNaive NR 0.0010 0.1122 0.1082 0.942 −0.0030 0.2210 0.2220 0.952
QUB1 0.0114 0.1108 0.1075 0.944 0.0768 0.1831 0.2202 0.960
QUB2 0.0089 0.1114 0.1076 0.947 −0.0035 0.2296 0.2224 0.944

̂βIPW NR −0.0005 0.0921 0.0916 0.955 −0.0055 0.1839 0.1830 0.954
QUB1 0.0023 0.0953 0.0910 0.942 0.0222 0.1686 0.1826 0.969
QUB2 0.0069 0.0953 0.0911 0.945 −0.0022 0.1783 0.1830 0.957

̂βTV W NR −0.0036 0.0935 0.0932 0.935 −0.0014 0.1931 0.1901 0.932
QUB1 0.0068 0.0937 0.0890 0.939 0.0330 0.1829 0.1672 0.912
QUB2 0.0084 0.0931 0.0870 0.935 −0.0095 0.1827 0.1786 0.948

90% ̂βFull NR −0.0000 0.1027 0.1001 0.937 −0.0000 0.2032 0.2072 0.958
QUB1 0.0127 0.1039 0.1004 0.937 0.0618 0.1846 0.2044 0.964
QUB2 0.0233 0.1041 0.1004 0.933 0.0161 0.2053 0.2064 0.955

̂βNaive NR −0.0011 0.1750 0.1639 0.934 −0.0100 0.3503 0.3468 0.957
QUB1 0.0039 0.1657 0.1643 0.930 0.0812 0.2910 0.3409 0.974
QUB2 0.0057 0.1676 0.1648 0.931 −0.0108 0.3585 0.3474 0.953

̂βIPW NR 0.0051 0.1171 0.1167 0.957 −0.0074 0.2314 0.2361 0.960
QUB1 0.0026 0.1168 0.1167 0.942 0.0161 0.2396 0.2356 0.947
QUB2 0.0072 0.1166 0.1168 0.945 −0.0051 0.2488 0.2363 0.938

̂βTV W NR 0.0040 0.1209 0.1193 0.933 −0.0024 0.2405 0.2414 0.932
QUB1 −0.0003 0.1163 0.1153 0.942 0.0220 0.2260 0.2194 0.937
QUB2 0.0071 0.1163 0.1140 0.947 −0.0058 0.2300 0.2315 0.946

(0, 0) 80% ̂βFull NR −0.0016 0.0720 0.0714 0.948 −0.0005 0.1392 0.1429 0.953
QUB1 0.0244 0.0728 0.0714 0.931 0.0027 0.1276 0.1425 0.969
QUB2 0.0294 0.0725 0.0715 0.926 0.0025 0.1426 0.1426 0.950

̂βNaive NR 0.0028 0.1112 0.1083 0.939 0.0043 0.2145 0.2177 0.955
QUB1 0.0057 0.1096 0.1082 0.940 0.0058 0.2053 0.2168 0.962
QUB2 0.0099 0.1094 0.1081 0.942 0.0050 0.2172 0.2170 0.952

̂βIPW NR 0.0034 0.0905 0.0909 0.953 0.0055 0.1824 0.1805 0.952
QUB1 0.0073 0.0883 0.0909 0.957 0.0075 0.1759 0.1806 0.957
QUB2 0.0106 0.0884 0.0909 0.953 0.0077 0.1850 0.1806 0.950

̂βTV W NR 0.0062 0.0914 0.0931 0.938 −0.0094 0.1804 0.1824 0.942
QUB1 0.0077 0.0899 0.0885 0.950 −0.0041 0.1638 0.1619 0.930
QUB2 0.0095 0.0895 0.0870 0.941 0.0029 0.1706 0.1728 0.942

90% ̂βFull NR 0.0017 0.1021 0.1014 0.945 0.0018 0.2078 0.2040 0.953
QUB1 0.0258 0.1062 0.1015 0.930 0.0078 0.1867 0.2038 0.966
QUB2 0.0321 0.1060 0.1015 0.928 0.0081 0.2062 0.2041 0.954

̂βNaive NR 0.0011 0.1744 0.1668 0.941 −0.0089 0.3483 0.3424 0.960
QUB1 0.0010 0.1658 0.1663 0.956 −0.0025 0.3177 0.3409 0.972
QUB2 0.0065 0.1664 0.1664 0.955 −0.0030 0.3451 0.3421 0.957

̂βIPW NR −0.0051 0.1196 0.1168 0.941 0.0022 0.2452 0.2339 0.949
QUB1 0.0032 0.1150 0.1174 0.959 −0.0097 0.2235 0.2331 0.956
QUB2 0.0068 0.1148 0.1174 0.960 −0.0105 0.2330 0.2333 0.944

̂βTV W NR 0.0002 0.1154 0.1200 0.947 −0.0019 0.2333 0.2377 0.944
QUB1 0.0036 0.1204 0.1156 0.935 0.0036 0.2173 0.2185 0.945
QUB2 0.0063 0.1239 0.1135 0.918 −0.0008 0.2313 0.2284 0.943
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Table 3. Simulation results on the estimation of the first 5 components of parameter

QUB1 QUB2

p True value Bias SD SE CP Bias SD SE CP

10 0.5 ̂β1 0.0146 0.1549 0.1459 0.941 0.0147 0.1549 0.1459 0.941

0 ̂β2 0.0068 0.1665 0.1616 0.941 0.0068 0.1665 0.1616 0.941

0 ̂β3 −0.0086 0.1611 0.1607 0.949 −0.0086 0.1611 0.1607 0.949

0 ̂β4 0.0125 0.1643 0.1609 0.945 0.0125 0.1643 0.1609 0.944

0 ̂β5 −0.0065 0.1668 0.1606 0.939 −0.0065 0.1668 0.1606 0.939

20 0.5 ̂β1 0.0484 0.1564 0.1543 0.930 0.0484 0.1564 0.1543 0.930

0.5 ̂β2 0.0481 0.1802 0.1720 0.929 0.0482 0.1802 0.1720 0.929

0 ̂β3 −0.0027 0.1836 0.1712 0.927 −0.0027 0.1836 0.1712 0.927

0 ̂β4 0.0040 0.1763 0.1702 0.943 0.0040 0.1763 0.1702 0.943

0 ̂β5 0.0048 0.1803 0.1717 0.934 0.0048 0.1803 0.1717 0.934

NOTE: ñ = 300, ρ = 90%, r = 0.1, β0 = (0.5 · 1T
0.1p, 0T

0.9p)
T .

Figure 1. Calculational errors for three algorithms against
dimension p.

putational non-convergence. We record the number of cal-

culational errors for each algorithm and present the results

in Figure 1 and 2. In Figure 1, we set the data dimension p

to be 10, 20, ..., 90 and fix the proportion of non-zero com-

ponents in parameter to be 0.1 (r = 0.1). In Figure 2, we

set p = 50 and 70, respectively, and vary r from 0.2 to 0.8.

The results suggest that the proposed QUB1 and QUB2

algorithms are more stable and efficient than the NR algo-

rithm in large p case. As can be seen from Figure 1, the

number of calculation errors for the NR algorithm raises as

the dimension p increases, sharply when p is larger than 60.

For example, when ñ = 300, ρ = 90%, r = 0.1 and p = 90,

the rate of calculation errors for the NR algorithm is around

0.984. Meanwhile, the proposed two QUB algorithms per-

form very well. Figure 2 suggests that the numbers of cal-

culation errors for all three algorithms increase as the pro-

portion of non-zero components in parameter r increases.

However, the proposed QUB algorithms work much better

than the NR algorithm, even in non-sparsity cases.

Figure 2. Calculational errors for three algorithms against
non-zero proportion r.

5. REAL DATA ANALYSIS

5.1 Wilms tumor study

The National Wilms Tumor Study Group (NWTSG) has
conducted a Wilms tumor study to assess the association
between the tumor histology and time-to-relapse of 4028
children diagnosed with Wilms tumor, a rare kidney cancer
in young children (Beckwith and Palmer, 1978). The most

466 J. Ding et al.



Table 4. Demographics and characteristics of the Wilms tumor data

Subcohort Case Case-Cohort Sample
Histology type (%)

0 = Favorable histology 66.32 (590/668) 66.02 (377/571) 78.77 (909/1154)
1 = Unfavourable histology 11.68 (78/668) 33.98 (194/571) 21.23 (245/1154)

Disease stage (%)
1 = Stage I 39.97 (267/668) 20.49 (117/571) 31.37 (362/1154)
2 = Stage II 25.00 (167/668) 29.07 (166/571) 26.95 (311/1154)
3 = Stage III 24.70 (165/668) 30.65 (175/571) 27.12 (313/1154)
4 = Stage IV 10.33 (69/668) 19.79 (113/571) 14.56 (168/1154)

Age at diagnosis (mean ± sd)
44.02± 32.53 51.83± 37.55 47.31± 34.75

Table 5. Results for analysis of the Wilms tumor study data

Type Stage Age
Algorithm Est. SE p-value Est. SE p-value Est. SE p-value
NR 1.3336 0.1301 < 0.0001∗ 0.3438 0.0537 < 0.0001∗ 0.1093 0.0541 0.0435∗

QUB1 1.1235 0.1332 < 0.0001∗ 0.2712 0.0525 < 0.0001∗ 0.1290 0.0516 0.0124∗

QUB2 1.3242 0.1306 < 0.0001∗ 0.3556 0.0538 < 0.0001∗ 0.1256 0.0539 0.0197∗

NOTE: Significant effect at 5% level.

important predictor, patients’ histological type, was initially
diagnosed by a local pathologist at the time of treatment and
then by an experienced pathologist in the NWTSG Pathol-
ogy Center. The latter assessment was much more accurate,
however, quite expensive and time-consuming at the same
time. Hence an example of case-cohort design was proposed
by Breslow and Chatterjee (1999) for the study. Specifically,
a subcohort of size 668 was randomly selected from the full
cohort. The subcohort and the children who experienced re-
lapse or death but were not included in the subcohort consti-
tuted the case-cohort sample. For illustration, we apply the
proposed methods to analyze such a case-cohort example.

We consider three potential confounders. The first one is
the histology type (Type), which is divided into two cate-
gories: “Unfavourable histology” (Type =1) if patient’s tu-
mor is composed of one of the rare cell types; “Favourable
histology” (Type = 0), otherwise. The second one is the
stage of the disease (Stage), which is classified as, only in the
kidney and resected (Stage =1), spread but resected (Stage
=2), residual in the abdomen or lymph nodes (Stage=3),
metastatic to the liver or lung (Stage =4). We consider the
age at diagnosis (Age) as the third one, which is recorded
in months, and has been scaled. Table 4 provides the de-
mographic characteristics for all the covariates considered
here.

We use the following model to fit the case-cohort data:

(16) λ(t|Z) = λ0(t) exp{β1Type + β2Stage + β3Age}.

In order to calculate the inverse-probability-weighted esti-
mates of the regression coefficients, the proposed QUB nu-
merical algorithms are applied and a comparison with the
NR algorithm is conducted. The results are summarized in
Table 5. Overall, the results from the three algorithms are
consistent. Those suggest that patients with unfavorable his-
tology type of tumor tend to have a higher risk by about

3.8 times than those with favorable type. As expected, pa-
tients with higher stage of disease or older age of diagnosis
are more likely to relapse or die. Unsurprisingly, the pro-
posed QUB algorithms are good alternatives to the NR al-
gorithm in practice. Furthermore, we find out that the pro-
posed QUB algorithms are less sensitive to the choice of
initial values of parameters than the NR algorithm in this
example.

5.2 SEER breast cancer study

The Surveillance, Epidemiology and End Results (SEER)
Program provides information on cancer statistics in an ef-
fort to reduce the cancer burden among the U.S. population.
The registries routinely collect data on patient demograph-
ics, primary tumor site, tumor morphology and stage at di-
agnosis, etc., on various types of cancer. Breast cancer has
become which is one of the most common malignant tumors
in the world. We obtained a dataset of 124785 female pa-
tients of breast cancer from the SEER database.

Demographic variables in the dataset include the age at
diagnosis (Age), which is classified into 17 groups by ev-
ery 5 years old divided into one group, starting from the
age of five. The race of patient (Race), which is classified
as black, white and the others. Tumor morphological vari-
able include the type of histology (Grade), which is classifies
as four types: well differentiated, moderately differentiated,
poorly differentiated, and undifferentiated anaplastic. Stage
at diagnosis is described by three variables according to the
TNM Classification, which is proposed by American Joint
Committee on Cancer (AJCC, 7th edition). The T category
describes the primary tumor, T0 indicates that there is no
evidence of the primary tumor, T1–T4 indicates the extent
of the primary tumor, including the subcategories T1a, T1b,
T1c, T1mic, T1NOS, T4a, T4b, T4c, and T4d, Tis indicates
the tumors diagnosed as in situ during a clinical workup,
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and TX indicates that there is no information available to
determine T. The N category describes the regional lymph
node metastasis, N0 indicates that there is no typical evi-
dence of metastatic activity, including the subcategories N0,
N0(i+), N0(i-), N0(mol+), and N0(mol-) according to the
findings for isolated tumor cells, N1–N3 indicates the extent
of the regional lymph node metastasis, including the subcat-
egories N1a, N1b, N1c, N1mi, N1NOS, N2a, N2b, N2NOS,
N3a, N3b, N3c, and N3NOS, and NX indicates that there
is no information available to determine N. The M category
describes the distant metastasis, M0 (M=0) indicates that
there is no evidence of metastasis at distant sites on clini-
cal evaluation and M1 (M=1) indicates that there is clinical
evidence or histologic confirmation of distant metastasis.

The outcome of interest is the survival months, which is
subject to censoring, and the vital status is recorded as of

the study cutoff, when the individual is censored, vital sta-
tus is recorded as “Alive”, otherwise vital status is recorded
as “Dead”. The censoring rate is about 84.4%. We focus on
evaluating the effects of the above confounders on the sur-
vival time of breast cancer patients. To illustrate the case-
cohrt design, we artificially select a subcohort of size 50000
from the full cohort through random sampling. The sub-
cohort and all the patients who died during the trial and
are not included in the subcohort consist of the case-cohort
sample.

By introducing some dummy variables for the categorical
variables, we fit the case-cohort data by Cox model (1) with
p = 37. The results of the IPW method and summarized
in Table 6. Overall, the results from QUB1 and QUB2 al-
gorithms under case-cohort design are both consistent with
those using the full cohort sample. Most of the covariates

Table 6. Results for analysis of the SEER breast cancer study data

Full cohort Case-cohort design

QUB1 QUB2 QUB1 QUB2

Est. SE p-value Est. SE p-value Est. SE p-value Est. SE p-value

Age 0.7024 0.0088 < 0.0001∗ 0.7026 0.0088 < 0.0001∗ 0.3961 0.0136 < 0.0001∗ 0.3943 0.0136 < 0.0001∗

Grade 0.3332 0.0110 < 0.0001∗ 0.3338 0.0110 < 0.0001∗ 0.3272 0.0191 < 0.0001∗ 0.3224 0.0192 < 0.0001∗

Black 0.5247 0.0328 < 0.0001∗ 0.5264 0.0329 < 0.0001∗ 0.5222 0.0616 < 0.0001∗ 0.5129 0.0623 < 0.0001∗

White 0.2124 0.0275 < 0.0001∗ 0.2136 0.0275 < 0.0001∗ 0.1689 0.0449 0.0002∗ 0.1583 0.0455 0.0005∗

Tis −0.6784 0.1853 0.0003∗ −0.6774 0.1858 0.0003∗ −0.9431 0.3372 0.0052∗ −0.9623 0.3372 0.0043∗

T0 −0.7007 0.2277 0.0021∗ −0.6950 0.2278 0.0023∗ −0.6078 0.3879 0.1172 −0.6363 0.3924 0.1049
T1a −1.2821 0.0573 < 0.0001∗ −1.2772 0.0574 < 0.0001∗ −1.2227 0.4290 0.0044∗ −1.2481 0.4318 0.0039∗

T1b −1.1125 0.0445 < 0.0001∗ −1.1078 0.0447 < 0.0001∗ −1.0965 0.1607 < 0.0001∗ −1.1213 0.1591 < 0.0001∗

T1c −0.8579 0.0400 < 0.0001∗ −0.8534 0.0402 < 0.0001∗ −0.8527 0.1599 < 0.0001∗ −0.8763 0.1583 < 0.0001∗

T1mic −1.3178 0.1061 < 0.0001∗ −1.3130 0.1061 < 0.0001∗ −1.2392 0.2030 < 0.0001∗ −1.2638 0.2019 < 0.0001∗

T1NOS −0.9499 0.2064 < 0.0001∗ −0.9466 0.2066 < 0.0001∗ −1.1405 0.4014 0.0045∗ −1.1651 0.4020 0.0038∗

T2 −0.4342 0.0383 < 0.0001∗ −0.4298 0.0385 < 0.0001∗ −0.3932 0.1604 0.0142∗ −0.4155 0.1588 0.0089∗

T3 −0.1187 0.0422 0.0049∗ −0.1142 0.0424 0.0070∗ −0.0944 0.1626 0.5617 −0.1162 0.1610 0.4704
T4a 0.0848 0.0613 0.1671 0.0865 0.0616 0.1603 0.0663 0.2888 0.8185 0.0436 0.2868 0.8792
T4b 0.0872 0.0447 0.0513 0.0921 0.0449 0.0402∗ 0.1111 0.1724 0.5191 0.0907 0.1709 0.5957
T4c 0.1805 0.1080 0.0947 0.1838 0.1081 0.0892 0.2286 0.2489 0.3584 0.2095 0.2476 0.3974
T4d 0.1472 0.0555 0.0081∗ 0.1528 0.0556 0.0060∗ 0.1667 0.1707 0.3289 0.1465 0.1692 0.3865
T4NOS −0.0918 0.1260 0.4664 −0.0914 0.1265 0.4700 −0.1979 0.3161 0.5314 −0.2181 0.3161 0.4902
N0 −0.8055 0.0426 < 0.0001∗ −0.7938 0.0430 < 0.0001∗ −0.8107 0.1440 < 0.0001∗ −0.8585 0.1441 < 0.0001∗

N0(i-) −1.3129 0.0471 < 0.0001∗ −1.3012 0.0475 < 0.0001∗ −1.3190 0.1205 < 0.0001∗ −1.3669 0.1207 < 0.0001∗

N0(i+) −1.2190 0.0773 < 0.0001∗ −1.2073 0.0775 < 0.0001∗ −1.2082 0.1719 < 0.0001∗ −1.2562 0.1720 < 0.0001∗

N0(mol-) −0.8045 0.1986 0.0001∗ −0.7943 0.1988 0.0001∗ −0.9814 0.5219 0.0600 −1.0307 0.5210 0.0479∗

N0(mol+) −11.1182 0.0427 < 0.0001∗ −11.1063 0.0430 < 0.0001∗ −10.9142 0.6931 < 0.0001∗ −10.9634 0.6926 < 0.0001∗

N1 −0.3600 0.0443 < 0.0001∗ −0.3484 0.0446 < 0.0001∗ −0.3938 0.1071 0.0002∗ −0.4389 0.1068 < 0.0001∗

N1a −0.9284 0.0468 < 0.0001∗ −0.9166 0.0472 < 0.0001∗ −0.9065 0.1372 < 0.0001∗ −0.9539 0.1370 < 0.0001∗

N1b −0.5293 0.3422 0.1219 −0.5195 0.3427 0.1296 −0.7948 0.6536 0.2240 −0.8403 0.6557 0.2000
N1c −0.8228 0.3583 0.0217∗ −0.8117 0.3583 0.0235∗ −0.7771 0.9956 0.4351 −0.8257 0.9996 0.4088
N1mi −1.0847 0.0592 < 0.0001∗ −1.0731 0.0595 < 0.0001∗ −1.0877 0.1400 < 0.0001∗ −1.1357 0.1400 < 0.0001∗

N1NOS −0.7027 0.0834 < 0.0001∗ −0.6904 0.0835 < 0.0001∗ −0.6430 0.1537 < 0.0001∗ −0.6903 0.1534 < 0.0001∗

N2a −0.4462 0.0479 < 0.0001∗ −0.4351 0.0482 < 0.0001∗ −0.4657 0.1272 0.0003∗ −0.5118 0.1270 0.0001∗

N2b −0.6811 0.1570 < 0.0001∗ −0.6689 0.1569 < 0.0001∗ −0.7195 0.2809 0.0104∗ −0.7635 0.2809 0.0066∗

N2NOS −0.4449 0.0849 < 0.0001∗ −0.4328 0.0850 < 0.0001∗ −0.4274 0.1701 0.0120∗ −0.4724 0.1702 0.0055∗

N3a −0.2235 0.0523 < 0.0001∗ −0.2117 0.0526 0.0001∗ −0.2496 0.1240 0.0440∗ −0.2945 0.1237 0.0173∗

N3b −0.5772 0.0818 < 0.0001∗ −0.5642 0.0818 < 0.0001∗ −0.4828 0.1487 0.0012∗ −0.5263 0.1482 0.0004∗

N3c −0.0568 0.0712 0.4248 −0.0473 0.0715 0.5076 −0.1815 0.1351 0.1791 −0.2230 0.1346 0.0977∗

N3NOS −0.4423 0.1347 0.0010∗ −0.4276 0.1343 0.0015∗ −0.3699 0.2537 0.1448 −0.4139 0.2543 0.1036
M 1.3663 0.0243 < 0.0001∗ 1.3669 0.0243 < 0.0001∗ 1.3049 0.0635 < 0.0001∗ 1.2997 0.0640 < 0.0001∗

NOTE: ∗ Significant effect at 5% level. Race of “others”, “TX”, and “NX” are the reference groups.
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have significant effects on the survival months. Unsurpris-
ingly, patients with worse histology type or older age at
diagnosis have a higher risk of death. Black women have
a higher risk than the white women and the other races.
As for the TNM staging, those with no information avail-
able to determine T or N are most likely to die. The wider
extent of the primary tumor or regional lymph node metas-
tasis results in higher risk. Patients with presence of distant
metastasis are more likely to die than those with absence of
distant metastasis.

We can see that the proposed QUB algorithms work very
well in the large-dimensional and nonsparse case. We also
tried to use the Newton-Raphson algorithm but it didn’t
work. This suggests that the proposed QUB algorithms are
superior over the Newton-Raphson algorithm when data di-
mension is large.

6. CONCLUSIONS

The case-cohort design is widely used as a cost-effective
biased sampling mechanism in large cohort studies. In prac-
tice, the inference of parameter requires numerical calcu-
lation methods in case-cohort studies. We propose new
quadratic-upper-bound (QUB) algorithms by using an MM
principle for estimations in the Cox model under case-cohort
design. The proposed QUB algorithms have several com-
putational superiorities to the Newton-Raphson algorithm.
Such algorithms are universal for a class of weighted esti-
mators widely used in case-cohort studies because they are
independent of choices of weight functions. The QUB algo-
rithms are monotonic according to the proof of convergence
and have simple update and low per-iterative cost by only
calculating the inversion of upper-bound matrix one time
in the whole process. Simulation studies suggest that the
proposed QUB algorithms perform stable and efficient, es-
pecially in the situations that covariate dimension is large
and data are non-sparse. Two real data examples from a
Wilm tumor study and a SEER breast cancer study demon-
strates the application of the proposed algorithms in prac-
tice. The results suggest that the proposed QUB algorithms
can perform very well and stably in practice, especially in
the large-dimensional and nonsparse cases.

It is important to theoretically study the effect of the
subcohort size on the efficiency of the proposed method.
When the budget is given, the searching of the optimal size
of subcohort to maximize the efficiency of the proposed es-
timator under the case-cohort design is an interesting but
also challenging work in the future. Here we build the nu-
merical algorithms for a series of weighted estimators for
case-cohort data. Future studies will extend to the devel-
opment on algorithms for some likelihood-based estimators.
The case-cohort design is particularly useful when the event
rate is low. Studies on numerical algorithms for survival data
with a low or medium censoring rate under a generalized
case-cohort design (Cai and Zeng, 2007) and a failure time

outcome-dependent sampling design (Ding et al., 2014; Yu

et al., 2016) are interesting issues in the future.

In addition to the proposed calculation algorithm, the

calculation speed is also crucial in practice. How to improve

the efficiency of program execution while maintaining the

simplicity of writing programs has become an important

concern. Rcpp is an R package which enables us to write

R extensions with C ++ (Eddelbuettel and Francois, 2011;

Eddelbuettel and Sanderson, 2014). Rcpp is a brand new

computing environment with large-scale integration of ex-

isting libraries. In the future, we consider to write the pro-

gram via Rcpp for the proposed QUB algorithm. By recon-

structing existing functions in R using C++ and developing

new functions for efficient numerical experiments, we are ex-

pected to improve the efficiency of R program execution and

greatly increase the speed of the proposed algorithm.

ACKNOWLEDGEMENTS

This research is supported in part by the National Natu-

ral Science Foundation of China (11671310 to J.D., 11471252

to Y.F.).

APPENDIX: PROOFS OF THEOREMS

Asymptotic properties of β̂ is established by Lin et al.

(2000) in order to make statistical inferences later. Before

we present the result of asymptotic properties, some nota-

tions need to be defined first. Let β0 represent the true value

of β and denote τ to be the time when the study stops or dis-

continues. Then bring in an at-risk process Yi(t) = I(Ti ≥ t)

and a counting process Ni(t) = ΔiI(Ti ≤ t). Define Mi(t) =

Ni(t) −
∫ t

0
Yi(s)λ0(s) exp

{
βT
0 Zi

}
ds. Set a⊗0 = 1, a⊗1 = a

and a⊗2 = aaT while a is a column vector. For d = 0, 1, 2,

define S
(d)
w (β, t) = n−1

∑n
i=1 ωiYi(t) exp

{
βTZi

}
Z⊗d

i .

After all the definitions above, the following regularity

conditions can be given as premises in this paper.

(C1) The space of parameter B is compact and convex as

well.

(C2) The space of covariate, Z, is compact.

(C3) p̃ = ñ/n → p as N → ∞ for some p ∈ (0, 1).

(C4)
∫ τ

0
λ0(t)dt < ∞.

(C5) P(Y1(t) = 1, for any t ∈ [0, τ ]) > 0.

(C6) For d = 0, 1, 2,

sup
β∈B, t∈[0,τ ]

∥∥∥S(d)
w (β, t)− s(d)(β, t)

∥∥∥ P−−→ 0, as n → ∞,

where ‖·‖ represents Euclidean norm, s(d)(β, t) =

E
[
Y1(t) exp

{
βTZ1

}
Z⊗d

1

]
, and s(d)(β, t) is both abso-

lutely and uniformly continuous of β on B in t ∈ [0, τ ].
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(C7) The following matrix Σ(β0) is finite and positive def-
inite,

Σ(β0) =

∫ τ

0

[
s(2)(β0, t)

s(0)(β0, t)
−
{
s(1)(β0, t)

s(0)(β0, t)

}⊗2
]

·s(0)(β0, t)λ0(t)dt.

The asymptotic properties of the proposed β̂ can be de-
rived by similar arguments in Kang and Cai (2009). We
summarize these properties in the following lemma.

Lemma 1. Under regularity conditions (C1)–(C7), as n →
∞, β̂ converges in probability to β0, i.e., and

√
n(β̂−β0)

d−−→ Np(0,Σ
−1(β0) {Σ1(β0)+Σ2(β0)}Σ−1(β0)),

where

Σ1(β0) = E
[
G1(β0)

⊗2
]
,

Σ2(β0) =
1− p

p
E
[
(1−Δ1)G1(β0)

⊗2
]
,

and

G1(β0) =

∫ τ

0

[
Z1 −

s(1)(β0, t)

s(0)(β0, t)

]
dM1(t).

Proof of Theorem 1: For the weighted quadratic approxi-
mation function Qw(β|β(m)) in (9), note that

Qw(β
(m+1)|β(m))− �w(β

(m))

=Uw(β
(m))T

{
β(m+1) − β(m)

}
− 1

2

{
β(m+1) − β(m)

}T

B
{
β(m+1) − β(m)

}
,

where β(m+1) = β(m) + B−1∇β�w(β
(m)) in (11). Let x =

Uw(β
(m)). Therefore, we have

Qw(β
(m+1)|β(m))− �w(β

(m))

=xTB−1x− 1

2

{
B−1x

}T
B
{
B−1x

}
=xTB−1x− 1

2
xTB−1x =

1

2
xTB−1x.

Since B is a positive matrix, hTB−1h > 0, for any h �= 0.
Thus, Qw(β

(m+1)|β(m))−�w(β
(m)) = 1

2x
TB−1x ≥ 0, which

means Qw(β
(m+1)|β(m)) ≥ �w(β

(m)).
Notice that �w(β

(m+1)) ≥ Qw(β
(m+1)|β(m)) for the rea-

son that Hw(β) ≤ B in (10). Then, we can easily obtain the
ascent property that �w(β

(m+1)) ≥ �w(β
(m)). On the other

hand, the working likelihood function �w(β) is also bounded
above, illustrating that there exists a supremum of �w(β).
Due to the fact that the parameter space B is compact and
convex, the supremum can be obtained at the point of β̂,
which means that �w(β

(m)) ≤ �w(β̂) for all m. According to
monotone bounded theorem, we can learn that the sequence

{
�w(β

(m))
}
is convergent to �w(β̂) monotonically, which is

equivalent to the fact that the sequence
{
β(m)

}
converges

to β̂.

Proof of Theorem 2: Define Ri := {j|Tj ≥ Ti} as the risk
set of Ti. We consider a more general situation where the
weights change over time (Kang and Cai, 2009). The Hessian
matrix of working likelihood function �w(β) can be obtained
as follows:

Hw(β) =
n∑

i=1

Δi

[∑
j∈Ri

wj(Ti) exp
{
βTZj

}
ZjZ

T
j∑

j∈Ri
wj(Ti) exp {βTZj}

−
{∑

j∈Ri
wj(Ti) exp

{
βTZj

}
Zj∑

j∈Ri
wj(Ti) exp {βTZj}

}⊗2
⎤⎦ .(A.1)

Define

(A.2) pkiw (Ti) =
wk(Ti) exp

{
βTZk

}∑
j∈Ri

wj(Ti) exp {βTZj}
, k ∈ Ri.

For convenience, let pkiw = pkiw (Ti). Thus, Hw(β) can be
rewritten as
(A.3)

Hw(β) =

n∑
i=1

Δi

⎡⎢⎣∑
j∈Ri

ZjZj
Tpjiw −

⎧⎨⎩∑
j∈Ri

Zjp
ji
w

⎫⎬⎭
⊗2
⎤⎥⎦ .

Let Mi =
∑

j∈Ri
ZjZj

Tpjiw −
{∑

j∈Ri
Zjp

ji
w

}⊗2

. Conse-

quently, for any x �= 0, we have

xTMix =
∑
j∈Ri

{
xTZj

}2
pjiw −

⎡⎣∑
j∈Ri

xTZjp
ji
w

⎤⎦2

.(A.4)

Consider Y as a discrete random variable, with support set{
Yj |Yj = xTZj , j ∈ Ri

}
and the value Yj is taken on with

the probability pjiw . Therefore, we have

xTMix =
∑
j∈Ri

{
Yj

2pjiw
}
−

⎡⎣∑
j∈Ri

Yjp
ji
w

⎤⎦2

= E(Y 2)− [E(Y )]
2
.(A.5)

Obviously, the formula in equation (A.5) is the variance
of the random variable Y . Let min(i) and max(i) represent
minimum and maximum value of Yj . Easily note that this
varience of Y can be maximized when the min(i) and max(i)

are both taken on with the probability 1/2. So equation
(A.5) can be dominated by:

xTMix ≤
min2

(i) +max2
(i)

2
−
[
min(i) +max(i)

2

]2
≤

min2
(i) +max2

(i)

2
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≤
∑

j∈Ri
Y 2
i

2
=

∑
j∈Ri

xTZjZ
T
j x

2
.

Hence, Mi ≤
∑

j∈Ri
ZjZ

T
j /2 and we can deduce that

Hw(β) =
∑
i∈Ri

ΔiMi ≤
∑
i∈Ri

Δi

∑
j∈Ri

ZjZ
T
j /2.

Proof of Theorem 3: Set p a n-dimensional vector and de-
fine D(p) as a diagonal matrix with matrix size n where the
ith value pi of the vector p is located in (i, i) of D(p). Due
to equation (A.4), this quadratic form can be rewritten as
follows:

xTMix =
∑
j∈Ri

{
xTZj

}2
pjiw −

⎡⎣∑
j∈Ri

xTZjp
ji
w

⎤⎦2

=
{
ZTx

}T
D(p(i)w )

{
ZTx

}
−
{
ZTx

}T
p(i)w

[{
ZTx

}T
p(i)w

]T
=
{
ZTx

}T [
D(p(i)w )− p(i)w

(
p(i)w

)T] {
ZTx

}
,(A.6)

where p
(i)
w =

(
p1iw , p2iw , · · · , pnii

w

)T
,Z = (Z1,Z2, · · · ,Zni).

ni is the number of the risk set of Zi.
For convenience, let ν = ZTx and W (p) = D(p) − ppT,

which is a function of the probability vector p. Then we can
obtain a concise form of equation (A.6):

xTMix = νTW (p(i)w )ν.(A.7)

From the proof of Theorem 2, we can learn that our goal is to
find a upper bound of Mi without any unknown parameter
β included. Notice that parameter β is only in the vector

p
(i)
w , which belongs to the ni×ni matrix W (p

(i)
w ). So we want

to seek an upper bound of W (p
(i)
w ), which is independent on

β. We consider such a proportional expression as follows:

yTW (p
(i)
w )y

yTW (p∗)y
,(A.8)

where y ∈ Rni and p∗ =
(

1
ni
, 1
ni
, · · · , 1

ni

)T
.

Then we will seek an upper bound of the formula above.
For arbitrary y ∈ Rni fixed, suppose that ymax is the max-
imum component and ymin is the minimum component of
the vector y. If there exist more than one component to be
maximal or minimal, choose the first maximum or minimum
component we encounter in sequence to be ymax or ymin. We
take the numerator into account and seek an upper bound of
the numerator first. According to Theorem 2, the argument
indicates the result as follows:

yTMiy =
∑
j∈Ri

{
yTZj

}2
pjiw −

⎡⎣∑
j∈Ri

yTZjp
ji
w

⎤⎦2

≤ y2max + y2min

2
−
[
ymax + ymin

2

]2
=

(ymax − ymin)
2

4
.(A.9)

Set Zj to be a unit vector, denoted by ej where the ith
component of the vector Zj is 1 and the rest components
are 0. Due to this condition, we can obtain that

Mi =
∑
j∈Ri

ejej
Tpjiw −

⎡⎣∑
j∈Ri

ejp
ji
w

⎤⎦⊗2

=
∑
j∈Ri

diag(0, · · · , pjiw , · · · , 0)

−

⎡⎣∑
j∈Ri

(0, · · · , 1, · · · , 0)Tpjiw

⎤⎦⊗2

= D(p(i)w )− p(i)w (p(i)w )T = W (p(i)w ).(A.10)

According to equations (A.9) and (A.10), we can deduce
that, when arbitrary y from the total space is fixed,

yTW (p(i)w )y ≤ (ymax − ymin)
2

4
.(A.11)

We then consider the denominator and search for a lower
bound of the denominator. Notice that

yTW (p∗)y = yTD(p∗)y − (yTp∗)2

=
∑
j∈Ri

y2j /ni − (
∑
j∈Ri

yj/ni)
2.(A.12)

We can regard equation (A.12) as a variance of a discrete
random variable which has fixed mass 1/ni at each support-
ing point yj , where j = 1, · · · , ni. So our goal is equivalent
to find a lower bound of the variance. Keep the maximum
component ymax and the minimum component ymin fixed
while consider all other components of the vector y as un-
known variables of the variance function. Obviously, under
this circumstances, the variance function is minimized when
the mass (ni−2)/ni is put at the midrange. That is, for the
discrete random variable possessing the minimum variance,
all other components of its supporting points are equal to
(ymax + ymin) /2. Easy to calculate that the expectation of
this random variable is (ymax + ymin)/2. Hence this mini-
mum variance can be seen as a lower bound of the denom-
inator as follows when we fix an arbitrary y from the total
space:

yTW (p∗)y ≥
(
ymax − ymax + ymin

2

)
1

ni

+

(
ymin − ymax + ymin

2

)
1

ni

=
(ymax − ymin)

2

2ni
.(A.13)
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According to equations (A.11) and (A.13), we have found
a upper bound of the numerator and a lower bound of the
denominator of the proportion expression in (A.8) when the
arbitrary y from the total space is fixed. So a upper bound
of (A.8) can be obtained as follows:

yTW (p
(i)
w )y

yTW (p∗)y
≤ (ymax − ymin)

2

4

/ (ymax − ymin)
2

2ni
=

ni

2
.

(A.14)

Notice that this upper bound is independent on y, which
means that the upper bound in (A.14) is a uniform and
consistent bound of (A.8). So we can obtain that for all y

from the total space, yTW (p
(i)
w )y ≤ yT ni

2 W (p∗)y. This is
equivalent to the fact that

W (p(i)w ) ≤ ni

2
W (p∗).(A.15)

Consequently, we have found a upper bound matrix
W (p∗), which doesn’t contain any unknown parameter β.
According to (A.7) and (A.15), we can obtain that

xTMix

=νTW (p(i)w )ν ≤ νT
ni

2
W (p∗)ν

=
ni

2

{
ZTx

}T [
D(p∗)− p∗ (p∗)T

] {
ZTx

}
=
ni

2

{
ZTx

}T
D(p∗)

(
ZTx

)
− ni

2

{
ZTx

}T
p∗
[{

ZTx
}T

p∗
]T

=
ni

2

∑
j∈Ri

{
xTZj

}2 1

ni
− ni

2

⎡⎣∑
j∈Ri

xTZj
1

ni

⎤⎦2

=
∑
j∈Ri

xTZjZj
Tx/2− xT

∑
j∈Ri

Zj

⎧⎨⎩∑
j∈Ri

Zj

⎫⎬⎭
T

x
/
(2ni)

=xT

⎡⎢⎣∑
j∈Ri

ZjZj
T/2−

⎧⎨⎩∑
j∈Ri

Zj

⎫⎬⎭
⊗2/

(2ni)

⎤⎥⎦x.

Hence

Mi ≤

⎡⎢⎣∑
j∈Ri

ZjZj
T −

⎧⎨⎩∑
j∈Ri

Zj

⎫⎬⎭
⊗2/

ni

⎤⎥⎦/2,(A.16)

and we can deduce that

Hw(β) =
∑
i∈Ri

ΔiMi

≤
∑
i∈Ri

Δi

⎡⎢⎣
⎧⎨⎩∑

j∈Ri

Zj

⎫⎬⎭
⊗2/

ni −
∑
j∈Ri

ZjZj
T

⎤⎥⎦/2.(A.17)

Proof of Theorem 4: From the proof of theorem 1 we can
learn that
(A.18)

Qw(β
(m+1)|β(m))− �w(β

(m)) =
1

2
Uw(β

(m))TB−1
w Uw(β

(m)).

Note that the rate of convergence, measured by degree of
improvement at each iterative step is monotone decreasing
with the least bound matrix B from (A.18). And

B1 −B2 =

n∑
i=1

Δi

∑
j∈Ri

ZjZj
T/2

−
n∑

i=1

Δi

⎡⎢⎣∑
j∈Ri

ZjZj
T −

⎧⎨⎩∑
j∈Ri

Zj

⎫⎬⎭
⊗2/

ni

⎤⎥⎦/2

=

n∑
i=1

Δi

⎡⎢⎣
⎧⎨⎩∑

j∈Ri

Zj

⎫⎬⎭
⊗2/

ni

⎤⎥⎦/2 ≥ 0.

As a consequence that B1 ≥ B2, we can deduce that r1 ≤
r2.
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