
Statistics and Its Interface Volume 16 (2023) 475–491

Confidence in the treatment decision for an
individual patient: strategies for sequential
assessment
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∗
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Evolving medical technologies have motivated the devel-
opment of treatment decision rules (TDRs) that incorporate
complex, costly data (e.g., imaging). In clinical practice, we
aim for TDRs to be valuable by reducing unnecessary test-
ing while still identifying the best possible treatment for a
patient. Regardless of how well any TDR performs in the
target population, there is an associated degree of uncer-
tainty about its optimality for a specific patient. In this
paper, we aim to quantify, via a confidence measure, the
uncertainty in a TDR as patient data from sequential pro-
cedures accumulate in real-time. We first propose estimat-
ing confidence using the distance of a patient’s vector of
covariates to a treatment decision boundary, with further
distances corresponding to higher certainty. We further pro-
pose measuring confidence through the conditional probabil-
ities of ultimately (with all possible information available)
being assigned a particular treatment, given that the same
treatment is assigned with the patient’s currently available
data or given the treatment recommendation made using
only the currently available patient data. As patient data
accumulate, the treatment decision is updated and confi-
dence reassessed until a sufficiently high confidence level is
achieved. We present results from simulation studies and
illustrate the methods using a motivating example from a
depression clinical trial. Recommendations for practical use
of the measures are proposed.

Keywords and phrases: Precision medicine, Treatment
decision rules.

1. INTRODUCTION

Randomized controlled trials (RCTs) compare treat-
ments on average in the target population. Treatment de-
cisions based on average results from RCTs are a one-size-
fits-all approach that do not address the goal of personal-
izing treatment assignments for patients. It has long been
acknowledged that there is typically a wide heterogeneity
in the response to a particular treatment. Even when one
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treatment is better than another on average, there are pa-
tients that would benefit more from the inferior (on average)
treatment than from the superior one.

This has lead to heightened interest and a recent surge
of developments in precision medicine, where a treatment
decision for an individual is made based on the patient’s
baseline data, which might include characteristics such as
clinical, demographic and biological features. The precision
medicine approach continues to grow in popularity as tech-
nological advances allow for acquisition of complex biolog-
ical data for deep patient phenotyping, which can poten-
tially lead to the development of new therapeutics, more
treatment options, and the need for optimal treatment se-
lection. Patient-specific treatment decisions can be made by
developing treatment decision rules (TDRs), first formalized
by [15] and [17], using patient characteristics. As more de-
tailed patient information becomes available with advances
in technology, TDRs can become more accurate in selecting
the best treatment for individual patients.

Performance of TDRs is commonly assessed by estimat-
ing their “value”, i.e., the expected value of the outcome
if every patient receives the treatment prescribed by the
TDR. Specifically, a TDR d(X) maps a p-dimensional vec-
tor of patient baseline covariates X = (X1, . . . , Xp)

′ ∈ R
p

to a treatment indicator A. In this paper, we consider the
common case of a discrete treatment indicator A with only
two possible treatment options A = {1, 2}. If Y denotes the
outcome, the value of a decision rule d is defined as [16]:

(1) V
(
d(X)

)
= E

(
E
(
Y |X, A = d(X)

))
.

If (without loss of generality) a higher outcome of Y indi-
cates an improvement, then TDRs with higher values are
preferred as they lead to better outcomes across the entire
target population. With more patient information available,
TDRs are expected to improve and therefore have higher
values than TDRs employing fewer patient characteristics.
At the same time, it may be expected that optimal TDRs
would require more assessments to be made on patients.
This would elevate the cost and patient burden, both po-
tential barriers for implementation of these TDRs in clinical
practice.

Suppose an optimal TDR requires a large number of tests
or procedures to be performed on the patients, for exam-
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ple, all or a subset of the following: demographics, medi-
cal history, clinical evaluation, lab tests, neuropsychologi-
cal testing, structural and functional imaging. Each of these
procedures or tests provides a set of patient characteristics
from different data modalities: for example,m1 demographic
data; m2 variables assessing medical history; m3 variables
from a clinical data modality; . . . ; mK variables from the
last procedure, say a functional brain imaging under a spe-
cific task, i.e., an imaging data modality. Since the K proce-
dures above are not performed simultaneously, without loss
of generality assume that they are performed in some specific
order, 1 : K. The order may be determined by ranking or
classifying the procedures by criteria such as ease of admin-
istration, cost, length of time, and relative contribution to
the TDR. Let us also assume that TDRs based on data from
an expanding number of procedures satisfy an assumption
of increasing values. More precisely, if the k-th procedure
generates a vector of mk patient characteristics Xk, and
we let dk = dk(X1, . . . ,Xk) be the optimal TDR based on
patient characteristics obtained from the first k procedures,
then we assume V (dk) ≤ V (dk+1) for all k = 1, . . . ,K − 1.

While TDRs are constructed to perform well on average
across the target patient population (see (1)), inherently de-
cisions for individual patients will have different associated
levels of uncertainty depending on two major factors: (i) the
patients’ specific baseline characteristics used for making a
treatment recommendation and (ii) the uncertainty due to
estimating the corresponding TDR based on available train-
ing data. Even if the TDRs are well estimated and validated
(e.g., when a large training sample size is available), un-
certainty in the patient’s treatment recommendation may
persist if the currently available baseline measures lack suf-
ficient information to guide on an optimal treatment deci-
sion. This paper focuses primarily on the first component of
uncertainty by deriving analytical expressions of distances
to decision boundaries and probabilities of correct decisions
(and the corresponding level of confidence) given a patient’s
currently available baseline predictors; the uncertainty re-
lated to estimating TDRs is handled in the simulation stud-
ies in Section 5.

Each TDR establishes a boundary in a potentially high-
dimensional space of baseline covariates. If a vector of pa-
tient’s baseline values, denoted xnew, falls on one side of
the boundary, one of the two treatments is recommended,
while if xnew falls on the other side of the boundary, the
other treatment is recommended. Intuitively, the further a
patient’s xnew lies from the decision boundary, the higher
the confidence in a treatment decision.

For a new patient, it is of interest to quantify this cer-
tainty, or confidence, in the patient’s individual treatment
decision. Suppose dk is the TDR, based on the first k base-
line modalities, that has been sufficiently tested and vali-
dated for implementation in practice. In this setting, let

(2) dnewk = dk(x
new
1 , . . . ,xnew

k )

denote the treatment decision after k data modalities have
been collected. When data from the next test or procedure
are obtained, dnewk is updated to dnewk+1 and, respectively,
the measures of confidence in a patient’s treatment deci-
sion are reassessed. When an acceptable level of confidence
is achieved, the patient’s treatment decision would be con-
sidered nearly optimal and we would recommend the patient
begin this treatment, rather than undergo more testing. This
would allow patients to avoid unnecessary or costly proce-
dures while receiving the optimal treatment decision as early
in the examination process as possible.

In this paper, we present novel strategies for estimating
confidence in a patient’s treatment decision based on a se-
quential collection of baseline data from different tests or
procedures. In Section 2, we set up notations and describe
the general framework for sequential optimal treatment de-
cision making. We consider distance as a confidence measure
such that if a patient’s baseline measures xnew

1 , . . . ,xnew
k are

close to a treatment decision boundary, we intuitively would
not have high confidence in which treatment is optimal. In
order to study the utility of distance as a confidence mea-
sure, in Section 3 we present theoretical results on distance
to a decision boundary, a concept borrowed from the sup-
port vector machine literature [14]. Later, in Section 5.3, the
distance of a patient’s data to the decision boundary is used
to determine confidence in a treatment decision based on a
subset of predictors. In Section 4, a conditional probability
approach to estimating confidence is presented. We derive
two probabilities: 1) the probability that the ultimate treat-
ment decision made with all available covariates agrees with
the current decision made using a subset of covariates, i.e.,

P (dnewK = a|dnewk = a), a = 1, 2, for k < K

and 2) the probability that the ultimate treatment decision
made with all covariates is a particular treatment given the
patient’s currently observed covariates, i.e.,

P (dnewK = a|xnew
1 , . . . ,xnew

k ), a = 1, 2, for k < K.

In Section 5 we present results from simulation studies of
the confidence measures, and evaluate cutoff thresholds for
assessing if a patient has achieved a desired level of high con-
fidence. An illustrative example using a depression clinical
trial is presented in Section 6. The limitations and implica-
tions of these findings are discussed in Section 7.

2. A FRAMEWORK FOR SEQUENTIAL
TREATMENT DECISIONS

We begin with a description of a general sequential proce-
dure for estimating TDRs and subsequently estimating con-
fidence in an individual patient’s treatment decision based
on a TDR. Assume it is possible to collect p total covari-
ates from K separate data modalities, with each procedure
generating mk covariates such that p =

∑K
k=1 mk. Suppose
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data on these p covariates exist from a RCT from which K
sequential TDRs d1, . . . , dK have been developed, satisfying
V (dk) ≤ V (dk+1) for k = 1, . . . ,K − 1.

To illustrate the sequential procedure and notation, con-
sider the case withK = 2 data modalities consisting of 2 sets
of covariatesX1 andX2, with p1 and p−p1 elements respec-
tively. Write X = (X ′

1,X
′
2)

′ and correspondingly, partition
the mean and covariance matrices as

μ =

(
μ1

μ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)

where Σ11 = cov(X1), Σ22 = cov(X2), and Σ12 = Σ′
21 is

the matrix of covariances between X1 and X2. Let Ya ∈ R

denote the potential outcome for a patient receiving treat-
ment a; assume without loss of generality that higher val-
ues of Ya are better. Let Ψ1Y1 and Ψ2Y2 denote the vector
of covariances between Ya and X1 and X2 for a = 1 and
2 respectively. We will assume throughout that conditional
expectations are linear (which often provides a good approx-
imation) and also consider the case with multivariate normal
data (where conditional expectations are exactly linear).

Starting with the first set of covariates X1, let us define
the corresponding TDR d1 using a linear relation

(3) ya = μya + β′
a1(X1 − μ1) + εa.

Under this model, the decision rule for a new patient with
xnew
1 covariates is to assign treatment 1 if μy1 +β′

11(x
new
1 −

μ1) > μy2
+ β′

21(x
new
1 − μ1); otherwise, the patient is as-

signed to treatment 2. This is the optimal TDR when only
the covariates X1 are available. To make this decision rule
operational, we can replace the parameters by their esti-
mates.

Next, if X2 is available, we can incorporate the second
set of covariates into the estimation of an updated TDR con-
taining all p covariates. The linear decision models, similar
to above, are now derived from

(4) ya = μya +α′
a1(X1 − μ1) +α′

a2(X2 − μ2) + νa.

The updated decision rule assigns treatment 1 to a new pa-
tient with (xnew′

1 ,xnew′

2 )′ covariates if μy1+α′
11(x

new
1 −μ1)+

α′
12(x

new
2 −μ2) > μy2 +α′

21(x
new
1 −μ1) +α′

22(x
new
2 −μ2),

and assigns treatment 2 otherwise.
This illustration with two consecutively assessed sets of

covariates can be easily generalized to a setting with K to-
tal data modalities, in which case the modalities, or sets of
covariates, are incorporated into TDR estimation sequen-
tially. Table 1 provides an illustration of a rich data source
with n total subjects, where predictors comprising X can be
divided into K data modalities, or sets of covariates, such
that m1 +m2 + · · ·+mK = p. From the illustration in Ta-
ble 1, K sequential TDRs can be developed. If we assume
the sequential TDRs (indicated below the table) have been
previously developed, tested, and validated, for a new pa-
tient with only xnew

1 ∈ R
m1 measured we can apply the

TDR d1 to obtain the patient’s treatment decision based on
the currently available patient information. We now aim to
determine how confident we are in the treatment decision
based on xnew

1 . To evaluate the decision made for this new
patient, we propose measures of confidence, or certainty, in
Sections 3 and 4. The measures of confidence are computed
for a patient sequentially, incorporating each successive test
or procedure as more patient data are collected, until a de-
sired level of confidence is achieved.

3. DISTANCE TO A DECISION BOUNDARY

For a given TDR d, a patient’s baseline characteristics
xnew will lie some distance from the decision boundary sep-
arating recommended treatment classes. This is a concept
related to the support vector machine literature [14], where
the classification method uses the distance to the decision
boundary to determine margins of the classifier. It is intu-
itively expected that there will be less certainty, or confi-
dence, in decisions for patients whose data fall on or near
the decision boundary. Greater certainty, or confidence, is
expected in the decisions when a patient’s vector of covari-
ates lies farther away from the decision boundary. This is
due to the notion that the estimated boundary could shift
somewhat as a result of minor perturbations to the data, for
example random sampling. If a patient’s data lie close to the
boundary, the side of the boundary on which the data lies
could switch if the data are perturbed slightly. This corre-
sponds to a switch in the assigned treatment, and therefore
it is important to quantify distance in order to provide con-
fidence in a patient’s treatment decision. We consider Eu-
clidean and (more generally) Mahalanobis distance metrics.

3.1 General equations for distance to a
linear decision boundary

Let us consider the case in which we have a linear decision
boundary, which can be viewed as a hyperplane. Denote a
hyperplane as

H = {x ∈ R
p : w′x+ b = 0},

with b = 0 indicating a hyperplane that runs through the
origin. As derived in [14], the Euclidean distance from a
new point xnew ∈ R

p to a linear decision boundary H is
expressed as

(5) δE(x
new) =

|w′xnew + b|√
w′w

.

One criticism of using Euclidean distance is its inability
to capture relationships between variables [3]. To address
this shortcoming, Mahalanobis distance, a generalization of
Euclidean distance, from a point xnew to a hyperplane can
be used and is expressed as

δM (xnew) =
|w′xnew + b|√

w′Σ−1w
,
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Table 1. Sequential TDR Framework Example

i Y A X

X1 X2 · · · XK

1 Y1 A1 X1,1 · · ·X1,m1 X1,m1+1 · · ·X1,m1+m2 · · · X1,p−mK+1 · · ·X1,p

...
...

...
...

...
...

...
n Yn An Xn,1 · · ·Xn,m1 Xn,m1+1 · · ·Xn,m1+m2 · · · Xn,p−mK+1 · · ·Xn,p

Set 1
︸ ︷︷ ︸

d1

Sets 1 & 2
︸ ︷︷ ︸

d2

...
Sets 1,2,. . . ,K

︸ ︷︷ ︸

dK

where Σ denotes the covariance matrix of the predictor vari-
ables and is assumed to be positive definite. (Note that when
Σ = σ2

Ip, i.e., when the predictor variables are uncorre-
lated with one another, each with a common variance, the
Mahalanobis distance corresponds to the usual Euclidean
distance.)

3.2 Distribution of distances to a linear
decision boundary

Our goal is to determine the utility of distance to a de-
cision boundary as a measure of confidence in a patient’s
treatment decision. In our framework, the sequential TDRs
dk for k = 1, . . . ,K have boundaries based on an increas-
ing number of predictors, with the ((m1 + · · · + mk) − 1)-
dimensional hyperplane containing all predictors in dk. By
studying the distribution of distances to a linear decision
boundary, we can study the relationship between distances
to boundaries based on a few covariates to distances to
boundaries when incorporating additional covariates.

While previous literature describes the behavior of dis-
tance between two points in higher dimensions [e.g., 1], there
is a paucity of investigations of distances from a point to a
hyperplane decision boundary. In the sequential framework,
it will be important to understand the behavior of Euclidean
and Mahalanobis distances to the decision boundary with
increasing number of covariates.

First, the distribution of the distances to a hyper-
plane with multivariate normal data is derived. Let X ∼
MVN (μ,Σ). Since linear transformations of multivariate
normal random vectors are normal, the numerator of (5) fol-
lows a normal distribution, w′X + b ∼ N (w′μ+ b,w′Σw),
where we denote μ = w′μ + b and σ2 = w′Σw. Denote
R = |w′X + b|, where taking absolute value by definition
means R is now distributed as folded normal. R/σ has a non-
central χ distribution with one degree of freedom and non-
centrality parameter μ/σ [e.g., see 20, Section 2.1]. There-

fore,

|w′X + b|√
w′Σw

∼ χ′
1(λ),

where χ′
1(λ) denotes a non-central χ distribution with one

degree of freedom and non-centrality parameter

λ =

(
w′μ+ b√
w′Σw

)
.

Scaling a non-central χ distribution with one degree of free-
dom yields a folded normal distribution; by scaling and re-
arranging, we obtain

δE(X
new) :=

|w′Xnew + b|√
w′w

=

(√
w′Σw√
w′w

)(
|w′Xnew + b|√

w′Σw

)

∼ FN (μE , σ
2
E),

where FN denotes the folded normal distribution with pa-
rameters

(6) μE =
w′μ+ b√

w′w
, σE =

√
w′Σw√
w′w

.

The expected value for the folded normal distribution is
provided in [20, Equation 7]. For our application, the ex-
pected Euclidean distance from a point Xnew to a (p− 1)-
dimensional hyperplane is

E[δE(X
new)](7)

≈ σE

√
2

π
exp

[
−
(

μ2
E

2σ2
E

)]
+ μE

[
1− 2Φ

(
−μE

σE

)]

where Φ(·) denotes the CDF of the standard normal distri-
bution. For Mahalanobis distance, following a similar deriva-
tion, we can express
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δM (Xnew) :=
|w′Xnew + b|√

w′Σ−1w

=

( √
w′Σw√

w′Σ−1w

)(
|w′Xnew + b|√

w′Σw

)
∼ FN (μM , σ2

M ),

with

(8) μM =
w′μ+ b√
w′Σ−1w

, σM =

√
w′Σw√

w′Σ−1w
.

The expected value of the Mahalanobis distance from a
point Xnew to a (p− 1)-dimensional hyperplane is

(9) E[δM (Xnew)] ≈ σM

√
2

π
exp

[
−
(

μ2
M

2σ2
M

)]

+ μM

[
1− 2Φ

(
−μM

σM

)]
.

In the special case of multivariate standard normal with
Σ = Ip and μ = 0, δE(X

new) = δM (Xnew). If additionally
the hyperplane runs through the origin (b = 0), further sim-
plifications of (7) and (9) are possible, since this leads to
μE = μM = 0.

When Σ = Ip, σE = σM = 1. In this case, δE(X
new) =

δM (Xnew), with both expected values following a half-
normal distribution, or equivalently a χ distribution with
one degree of freedom. The expected values in particular
reduce to E[δE(X

new)] = E[δM (Xnew)] ≈
√

2/π.

3.3 A simulation illustration on distances to
a decision boundary

This section presents a simulation to illustrate the behav-
ior of these distances to the decision boundary in high di-
mensions. In these simulations, data of sample size n = 100
with p = 100 covariates were generated from a multivariate
normal distribution with zero means and a covariance ma-
trix assumed to be in the form of a correlation matrix with
all pairwise correlations equal to ρ, i.e.,

Σ = ρ11′ + (1− ρ)I,

with 1′ = (1, 1, . . . , 1). We will in particular study corre-
lated data with ρ = 0.5 to compare differences between Eu-
clidean and Mahalanobis distance metrics. From this sim-
ulated data, we randomly generated decision boundary hy-
perplanes by selecting a (p−1)-dimensional hyperplaneH(p)
in R

p for each p = 3, . . . , 100. This is done using the OjaNP

package in R [5], which computes a (p− 1) dimensional hy-
perplane passing through p points in R

p. The expected dis-
tances to the (p−1)-dimensional hyperplanes are computed
using (7) and (9). The data and random hyperplane genera-
tion are repeated for M = 50 repetitions and results for the
expected distances are averaged.

Figure 1 depicts the average distances to the hyperplanes
as a function of the number of p dimensions. The Maha-
lanobis distances, which are scaled versions of the Euclidean

Figure 1. Behavior of distance from a point in R
p to a

(p− 1)-dimensional hyperplane in high dimensions. The
colored curves represent the expected values for the distances
averaged across fifty simulations. The horizontal dashed lines

denote the theoretical limiting values.

distances, are smaller in magnitude than their Euclidean
distance counterparts. The average distances level out to a
constant limiting value; in the Euclidean distance case this
would be

lim
p→∞

E[δE ] = σE

√
2

π
,

with the counterpart for Mahalanobis distance obtained by
replacing σE with σM . The convergence value therefore de-
pends on σE or σM , which are a function of the covariance
matrix and hyperplane coefficient values w. This limiting
value is equivalent to the mean of a half-normal distribu-
tion, therefore indicating that the folded normal distributed
distance converges to half-normal.

Specifically in the context of our sequential framework
under the decision model in (3), the linear decision boundary
based on p1 < p observed covariates is determined by μy1 −
μy2+(β11−β21)

′(X1−μ1) = 0. The Euclidean distance of a
patient’s xnew

1 observed covariates to this decision boundary
is

(10) δE(x
new
1 ) =

|μy1 − μy2 + (β11 − β21)
′(xnew

1 − μ1)|√
(β11 − β21)

′(β11 − β21)
.

The corresponding Mahalanobis distance to the decision
boundary is

(11) δM (xnew
1 ) =

|μy1 − μy2 + (β11 − β21)
′(xnew

1 − μ1)|√
(β11 − β21)

′Σ−1
11 (β11 − β21)

.

To use these distances to measure confidence, based on
the results from the simulation studies, we will need to ac-
count for the number of observed covariates p1 and the max-
imum number of covariates p that can be included. An ad-
ditional factor impacting the distance are the correlations

Confidence in the treatment decision for an individual patient: strategies for sequential assessment 479



between covariates, which may vary within and between
data modalities. This poses a challenge in our sequential
setting since we will need to determine what magnitude a
patient’s distance to the decision boundary should be in or-
der to achieve high confidence in the treatment decision.
The plateau seen in Figure 1 that is achieved with p1 much
smaller than p indicates that it may be possible to achieve
high confidence for a small number of modalities when con-
fidence is based on distance. The possible use of distance as
a confidence measure will be further studied in the simula-
tions in Section 5.3.

4. A CONDITIONAL PROBABILITY
APPROACH

Let us define the ultimate treatment decision for a patient
as the decision from dK , the TDR obtained when using all
possible data modalities for the patient. Using the frame-
work described in Section 2, we derive conditional prob-
abilities for the ultimate treatment decision for a patient
given the treatment decision based on a patient’s currently
available data, or, alternatively, given the patient’s currently
available data from k < K tests or procedures.

Assume sequential TDRs d1, . . . , dK have been previously
estimated and validated, and assume a linear conditional
expectation as done previously (which will hold in the case
of elliptical distributions).

4.1 Reparameterization of a TDR based on
observed patient characteristics

We start by deriving a reparameterized version of the
TDR d1, the decision rule derived from (3), based on the
available patient covariates p1 < p. If X ∼ MVN (μ,Σ),
then we can reparameterize the TDR derived from (3) us-
ing the well-known property that a linear combination of
normally distributed random variables is normal. Write

(β11 − β21)
′X1 ∼ N (μ̃1, σ̃

2
1),

where

μ̃1 = (β11 − β21)
′μ1

(12) σ̃2
1 = (β11 − β21)

′Σ11(β11 − β21).

The linear combination is transformed to follow a standard
normal distribution, such that

(13) Zp1 =
(β11 − β21)

′(X1 − μ1)

σ̃1
∼ N (0, 1).

The slope coefficients βa1(a = 1, 2) in (13) can be written in
terms of population parameters, and (13) can be expressed
as
(14)

Zp1 =
(Ψ1,Y1 −Ψ1Y2)

′Σ−1
11 (X1 − μ1)√

(Ψ1Y1 −Ψ1Y2)
′Σ−1

11 (Ψ1Y1 −Ψ1Y2)
∼ N (0, 1).

For a new patient withXnew
1 , we assign treatment 1 if Zp1 >

cp1 where

cp1 =
μy2 − μy1√

(Ψ1Y1 −Ψ1Y2)
′Σ−1

11 (Ψ1Y1 −Ψ1Y2)
.

To make this operational, parameter estimates can be sub-
stituted in for the parameters in this expression, but note
that if the dimension is large, some type of regularization
will be necessary in the estimation, e.g., if Σ11 is not of full
rank.

4.2 Reparameterization of a TDR based on
a full set of patient characteristics

Next, we can similarly reparameterize the TDR with all
p covariates. Following the notation in Section 2, the slope
coefficients are given by(

αa1

αa2

)
=

[
Σ11 Σ12

Σ21 Σ22

]−1 (
Ψ1Ya

Ψ2Ya

)
.

The full derivation is presented in A. After simplification,
the final expression containing the regression coefficients is
(15)(

αa1

αa2

)
=

(
Σ−1

11 (Ψ1,Ya −Σ12αa2)

(Σ22 −Σ21Σ
−1
11 Σ12)

−1(Ψ2Ya −Σ21βa1)

)
.

Then similarly to the approach in Section 4.1, we can write

(
α11 −α21

α12 −α22

)′ (
X1

X2

)
∼ N

((
α11 −α21

α12 −α22

)′ (
μ1

μ2

)
,

(
α11 −α21

α12 −α22

)′ (
Σ11 Σ12

Σ21 Σ22

)(
α11 −α21

α12 −α22

))
.

We express this as

(α11 −α21)
′X1 + (α12 −α22)

′X2 ∼ N (μ̃2, σ̃
2
2),

with

μ̃2 = (α11 −α21)
′μ1 + (α12 −α22)

′μ2

σ̃2
2 = (α11 −α21)

′Σ11(α11 −α21)

+(α12 −α22)
′Σ21(α11 −α21)

+(α11 −α21)
′Σ12(α12 −α22)

+(α12 −α22)
′Σ22(α12 −α22).

(16)

Transforming this to a standard normal gives
(17)

Zp =
(α11 −α21)

′(X1 − μ1) + (α12 −α22)
′(X2 − μ2)

σ̃2
,

with Zp ∼ N (0, 1). Thus, the TDR would assign treatment
1 to a new patient if Zp > cp, where

cp =
μy2 − μy1

σ̃2
.
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4.3 Joint probability

In this section, we use the joint distribution of Zp1 and Zp

to derive the conditional probability that the treatment de-
cision for a particular patient with all p covariates (ultimate
decision) agrees with the current decision based only on a
subset of p1 < p observed covariates. We then can also de-
rive the conditional probability that the treatment decision
with all p covariates is A = a (a = 1, 2), given the patient’s
currently observed p1 < p covariates.

The expressions for these conditional probabilities fol-
low from the joint probability density function (pdf) of Zp1

from (14) and Zp from (17). Define ρz = Cor(Zp1 , Zp) =
Cov(Zp1 , Zp). We can write

Cov(aT (X1 − μ1), b
T (X1 − μ1) + cT (X2 − μ2)) =

aTV ar(X1)b+ aTCov(X1,X2)c,

such that ρz can be expressed as

ρz = Cov(Zp1 , Zp) = aTΣ11b+ aTΣ12c,

where, using results for σ̃1 from (12) and σ̃2 from (16), we
have

a =
(β11 − β21)

σ̃1
, b =

(α11 −α21)

σ̃2
and

c =
(α12 −α22)

σ̃2
.

By properties of the multivariate normal distribution,
(Zp1 , Zp)

′ is bivariate normal:(
Zp1

Zp

)
∼ N

((
0
0

)
,

(
1 ρz
ρz 1

))
.

4.4 Conditional probability of the ultimate
treatment decision agreeing with current
decision

In the following, the conditional probabilities will be de-
rived in terms of an ultimate treatment decision of A = 1,
without loss of generality. The conditional probability that
a particular patient’s treatment decision with all p covari-
ates agrees with the current treatment decision made with
a subset of p1 < p covariates, specifically in the case where
the treatment is A = 1, is expressed as

(18)

P (Zp > cp|Zp1 > cp1) =

∫∞
cp

∫∞
cp1

fZp1 ,Zp(zp1 , zp)dzp1dzp

Φ(−cp1)

=

1

2π
√

1−ρ2
z

∫∞
cp

∫∞
cp1

exp

(
− z2

p1
−2ρzzp1zp+z2

p

2(1−ρ2
z)

)
dzp1dzp

Φ(−cp1)

where cp and cp1 are cutoff values for the corresponding
decision boundaries.

In [12] and [4], the authors describe and compare several
ways to evaluate the integral in (18). Denote the numerator
of (18) as

L(cp, cp1 , ρz) =
1

2π
√
1− ρ2z∫ ∞

cp

∫ ∞

cp1

exp

(
−
z2p1

− 2ρzzp1zp + z2p
2(1− ρ2z)

)
dzp1dzp.

As noted in [4], this reduces to a one-dimensional integral

(19) L(cp, cp1 , ρz) =

1

2π

∫ π

cos−1ρz

exp

(
−
c2p1

− 2ρzcp1cp + c2p
2sin2r

)
dr,

which can be expressed as

(20) L(cp, cp1 , ρz) = Φ(−cp)Φ(−cp1)+

1

2π

∫ ρz

0

1√
1− r2

exp

(
−
c2p1

− 2ρzcp1cp + c2p
2(1− ρ2z)

)
dr,

which can be evaluated by numerical integration. Alterna-
tively, the pmvnorm function in the mvtnorm package in R

provides a straightforward computation of the probability
from the joint bivariate normal distribution [8]. This prob-
ability gives essentially the same result as the numerical
integration of (20).

4.5 Conditional probability for a specific
ultimate treatment decision, given
current patient covariates

An alternative measure of confidence can be obtained
using estimates of the probability of a particular ultimate
treatment decision with all p covariates given a patient’s
observed set of p1 covariates, or P (dnewK = a|xnew

1 . . .xnew
k ).

To compute this, note that the conditional distribution of
Zp given Zp1 = zp1 is Zp|Zp1 = zp1 ∼ N (ρzzp1 , 1 − ρ2z). In
the case with a = 1, this probability can be expressed as

(21) P (Zp > cp|Zp1 = zp1) = 1−
∫ cp

−∞
fZp|Zp1

(zp|zp1)dzp

= 1− Φ

(
cp − ρzzp1√

1− ρ2z

)
.

Similar results can be obtained for a = 2.

5. SIMULATION STUDIES

In the previous sections, potential measures of confidence
in sequential treatment decisions based on distances and
conditional probabilities for TDRs using baseline patient
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characteristics were derived in terms of population param-
eters. This section investigates the performance of the con-
fidence measures when the TDRs are estimated based on
sample data with various sample sizes and number of pre-
dictors. TDRs are often developed using data from RCTs
with sample sizes that can vary substantially depending on
the type of study. For example, many RCTs in psychiatric
research have sample sizes in the range of 100-150 patients
per treatment arm, while other fields (e.g., cardiovascular
disease) more regularly enroll 1000-2000 patients per arm.
Fortunately, some recent international efforts have resulted
in much larger RCTs with upwards of 5000 patients per arm.

In order to obtain realistic results, data was simulated
to mimic a large depression RCT designed to discover
biomarkers for treatment response: the EMBARC (Estab-
lishing Moderators and Biosignatures of Antidepressant Re-
sponse in Clinical Care) study [19]. This is a multi-site
placebo-controlled RCT designed to study sertraline, an an-
tidepressant given to patients with major depressive dis-
order (MDD). MDD is a leading cause of disability glob-
ally [7]. Treatment options for MDD are often ineffectual,
or just marginally effective, with 30-40% of patients having
an inadequate response after multiple treatments [11]. The
challenges posed in the treatment of depression mean that
patients could benefit from the proposed personalized ap-
proaches. We use the EMBARC study to demonstrate the
utility of the methods developed in the previous sections.

5.1 Overview of the simulation strategy and
goals

For illustration, we let K = 10 procedures (i.e., modali-
ties) to be performed on the patients, each of which pro-
duces 10 covariates Xk = (X10(k−1)+1, . . . , X10k)

′, for a
total of p = 100 covariates. We assume that the outcome
Y is observed in a RCT with 1:1 randomization to two
treatments a = 1 and a = 2. This simulated data will be
used to estimate the sequential TDRs, d1, d2, . . . , d10, based
on 10, 20, . . . , 100 covariates respectively. Test (“new”) data
will be generated to investigate the following quantities:

1. Across all subjects, the probability that the ultimate
treatment decision of A = 1 based on the decision d10
agrees with the current treatment decision of A = 1
based on dk, for all k = 1, . . . , 9. In other words, we
compute P (dnew10 = 1|dnewk = 1), using the notation
defined in (2).

2. For an individual subject, the probability of their ulti-
mate treatment decision based on dK being, say a = 1,
given the patient’s covariates from the first k < K tests,
i.e., P (dnew10 = 1|xnew

1 , . . . ,xnew
k ). We will refer to this

as a “personalized probability”. Different cutoffs for this
probability will be investigated to judge whether confi-
dence in the treatment decision is sufficiently high and
how various cutoffs affect the operating characteristics
of the sequential procedure.

3. The relationship between the personalized probabilities
and the distances to the treatment decision boundaries
as k increases.

The above quantities will be studied as functions of the sam-
ple size used to estimate the sequential TDRs d1, . . . , dK ,
and of the error variance of the outcome as a function of all
p covariates.

5.2 Data generation

The training sets used to generate the linear decision rules
contain covariates X = (X1, . . . , X100)

′ ∼ MVN (0,Σ)
where Σ is obtained from an estimate using the EMBARC
data. Six simulation configurations are studied, combining
two outcome generation models with three different sam-
ple sizes. The regression coefficient parameters, given by
βa = Σ−1ΨXYa , where ΨXYa = cov(X, Ya), are also
based on the EMBARC data. The first response genera-
tion model does not contain an error term and is given
by Ya = Xβa; the second model scenario incorporates an
error term: Ya = Xβa + εa; the errors are modeled as
ε1 ∼ N (0, 0.162), ε2 ∼ N (0, 0.182), similar to those in the
EMBARC data.

Three training set sample sizes were used: N = 105, 1000
and 105 per arm (the largest sample size is studied with the
goal of evaluating the benefit of ideal, albeit unrealistic, data
sets for the development of treatment decision rules). The
mean difference between the outcome under treatment 2 and
treatment 1 is μy2−μy1 = 0.05. The effect size (Cohen’s d) is
computed as the difference in the mean outcomes divided by
the pooled standard deviations of the groups [2]. In our sim-
ulated data, this is estimated as 0.05/0.17 = 0.29, a small
effect size similar to what is often seen in depression trials.
An independent test data with 100 subjects is generated
withX = (X1, . . . , X100)

′ ∼ MVN (0,Σ). Starting with the
first modality (i.e., the first set of covariates), covariates are
incorporated sequentially 10-at-a-time into the TDR esti-
mation: p1 = 10, 20, 30, 40, 50, 60, 70, 80, 90. For each p1 and
the remaining p − p1 covariates, βa1 from (3) and αa1 and
αa2 from (4) are obtained by least squares estimation using
the training data. The conditional probabilities defined in
(18) and (21), and the distance to the decision boundary
based on p1 observed covariates as defined in (10), are com-
puted. For each combination of data generation (with and
without error) and sample size, M = 100 training datasets
are generated and results are averaged over those M itera-
tions.

5.3 Results

5.3.1 Probability of agreement between the current and the
ultimate treatment decisions

In the following, we show simulation results for P (dnew10 =
1|dnewk = 1), where k < K = 10, which is one example of
agreement, the other being P (dnew10 = 2|dnewk = 2). Here
we only focus on the particular treatment A = 1, to keep
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Figure 2. Probability of agreement of ultimate and current
treatment assignment of A = 1. The blue dots represent the

true conditional probabilities, found by using the true
coefficients βa1 for the sequential TDRs. Z100 is the

reparameterized TDR for all p = 100 covariates and c100 is
the cutoff value for this decision boundary. The boxplots

represent the distribution of the probabilities across the 100
repeated Monte Carlo simulations, where the response is
generated without error (pink) and with error (green).

consistent with the results on personalized probabilities in
Section 5.3.2.

Figure 2 depicts the probability of an ultimate treatment
assignment of A = 1 given a current assignment of A = 1
based on p1 covariates. The figure indicates that as more
covariates are incorporated into the treatment decision, the
probability of the ultimate decision (of A = 1) agreeing
with the current decision based on the observed covariates
increases. There is an approximate linear relationship be-
tween the number of predictors measured for a patient and
the probability of agreement. With a very small training
data set, the variability in the probabilities is greater and
less aligned with the true probabilities, indicating that it
may be difficult to estimate useful measures of confidence
when TDRs are estimated with a small sample size and/or
noisy data.

5.3.2 Probability of the ultimate treatment decision being
treatment 1, given the currently observed covariates

The personalized conditional probability (21), along with
Monte Carlo 95% confidence bands, is depicted for three dis-
tinct individuals in Figure 3, and shows the utility of this
measure of confidence. The widths of the 95% confidence
bands decrease with increasing sample sizes, indicating less
variability in the estimated probabilities. In Figure 3, panel
A shows the optimal treatment decision for the patient is
A = 1, whereas in panel B, the optimal treatment decision
for the patient is A = 2, indicating the ability of our ap-
proach to distinguish between two patients who may have
very different sequential trajectories. Panel C alternatively

Figure 3. Personalized probabilities for three subjects. Subject
1 has an optimal treatment decision of A = 1, subject 2 has
an optimal treatment decision of A = 2, and subject 3 has no
clear optimal treatment. Z100 is the reparameterized TDR for
all p = 100 covariates and c100 is the cutoff value for this
decision boundary. The mean conditional probability is
indicated by the bold line. The bands represent the 95%

Monte Carlo confidence intervals (based on the 100 training
datasets generated).
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Figure 4. Personalized probability compared to Euclidean distance to the decision boundary based on p1 covariates. Each
point in the plot represents a patient in the test data (n = 100). The pink and blue indicators in the plot represent,

respectively, the average treatment decision of A = 1 and A = 2 that were assigned to each patient across the 100 repeated
simulations. The horizontal dashed line represents an equal probability of a patient being assigned to either treatment.

shows a patient for whom neither treatment decision ap-
pears to be optimal based on the conditional probabilities.
For this patient, obtaining additional covariates does not
result in greater confidence in either treatment option. In
this case, we would be inclined not to recommend either
treatment with high confidence based on our method. In
practice, this may represent an example where both treat-
ments are similarly effective (or ineffective) for the patient.
Accordingly, the cheaper treatment, or one that is beneficial
in some other way to the patient, could be considered.

Subjects 1 and 2, depicted in Figure 3, have a tendency
on average to be assigned the same treatment as additional
covariates are collected and incorporated into the sequen-
tial TDRs. However, the figure illustrates variability across
patients and, as such, there may be patients with unsta-
ble treatment assignments that switch often as more data is
obtained. In these cases, the utility of our measure of confi-
dence can be to identify such patients and determine what
patient characteristics may be driving the instability of the

treatment assignments.

5.3.3 Relationship between conditional probabilities and dis-
tances to the decision boundaries

The relationship between the Euclidean distance of the
patient’s covariates vector to the decision boundary based on
p1 < p covariates and the patient’s personalized probability
P (dnewK = 1|xnew

1 , . . . ,xnew
k ) is shown in Figure 4; p1 = 10

and p1 = 90 are depicted. When this probability is greater
than 0.5, the ultimate treatment decision is taken to be a =
1; these points on Figure 4 are colored in red, while the
points for which the conditional probability is less than 0.5
are colored in blue.

The figure shows that the farther away a patient’s data
lie from the decision boundary, the greater the conditional
probability of being ultimately assigned to treatment 1 or
treatment 2, indicated by the probabilities spreading out
toward 1 and 0, respectively. As expected, when the prob-
abilities are larger than 0.5, the average ultimate decision
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Table 2. Percent correct decisions (PCD) among those that reached the cutoff threshold for high confidence using
“personalized probability” of ultimate treatment assignment of A = 1 with fewer than p covariates; number of patients (out of
100) achieving cutoff for sufficient confidence in their treatment decision with p1 < p covariates (N); number of covariates in
the TDR when the patient reached the cutoff for high confidence (p1). The results are averaged across 100 Monte Carlo runs

for each of the sample size and outcome generation model combinations.

Sample Size of Data for Developing the TDRs

105 per arm 1000 per arm 105 per arm

Cutoff y = Xβ y = Xβ + ε y = Xβ y = Xβ + ε y = Xβ y = Xβ + ε

0.05/0.95
PCD 0.72 0.68 0.95 0.97 0.97 0.97
N 97.9 86.0 60.0 62.2 57.0 56.8
p1 50.3 85.1 65.8 70.1 67.6 67.9

0.1/0.9
PCD 0.69 0.66 0.90 0.93 0.92 0.92
N 99.3 90.2 74.8 74.9 70.6 72.1
p1 41.0 81.5 59.2 63.3 60.9 61.1

0.2/0.8
PCD 0.66 0.63 0.82 0.85 0.85 0.85
N 100 95.5 92.6 91.1 91.8 91.1
p1 28.6 71.5 45.7 49.5 49.7 49.4

assigned to the patient is A = 1, and when less than 0.5,

the average ultimate decision is A = 2. When the decision

rule is poorly estimated (i.e., sample size of 105 per arm),

the majority of the personalized probabilities lie around 0.5,

as shown in the bottom left panel. When 90% of the co-

variates are included in the treatment decision, the average

probabilities are more extreme towards 0 and 1 than when

fewer (p1 = 10) of the covariates are included, indicating

greater confidence or certainty when more measures are ob-

tained on patients. We note that, as seen in the simulation

results in Section 3, the distance values tend to shrink in

magnitude as the number of covariates increases – the dis-

tances range from 0 to 1.2 when p1 = 10 (top panel), while

the range is from 0 to 1 when p1 = 90 (bottom panel).

The results with Mahalanobis distances are depicted in B

and show the same probability-distance relationship, with

Mahalanobis distances simply a scaled version of a smaller

magnitude than the Euclidean distances.

The simulations contain variables with moderate corre-

lations ranging from −0.28 to 0.49, but all variables came

from a single data modality, whereas in practice we expect

data from multiple modalities. Variables within one data

modality (e.g., obtained from the same procedure) are likely

to be more highly correlated than variables from different

modalities. In C and D, respectively, simulation results are

shown with data generated from equal correlation structures

within data modalities and varying correlations between

data modalities. The results are similar to those presented

here, and indicate that variability in the estimated proba-

bilities may be more likely due to differences between data

modalities rather than differences among variables within a

data modality.

5.4 Personalized sequential confidence
assessment scheme

In this section, we operationalize our methods by study-
ing cutoff threshold values for sufficient confidence in a treat-
ment decision such that further acquisition of patient’s char-
acteristics is deemed unnecessary. The goal is to provide a
cutoff that can hopefully prevent some patients from un-
dergoing unnecessary or costly tests to obtain more data,
while still ultimately providing the best possible treatment
decision.

Recall the personalized probability P (dnewK =
1|xnew

1 · · · ,xnew
k ), derived in (21). We evaluate three

cutoff schemes for this probability (given by upper and
lower thresholds): {> 0.95 or < 0.05}; {> 0.9 or < 0.1};
and {> 0.8 or < 0.2} under the six data generation
settings described previously. Each test subject has an
ultimate treatment decision found by applying d10, the
TDR with all covariates. For each patient, we determine if
the confidence in the patient’s treatment decision (i.e., the
probability given in (21)) reaches the specific cutoff value
with fewer than p = 100 covariates, and if so, we obtain
the number of observed covariates p1 when the cutoff is
reached. The treatment decision made when reaching the
cutoff is compared to the ultimate treatment decision. The
percent correct decision (PCD) is defined as the proportion
of individuals with the same ultimate treatment decision as
the treatment assigned with the cutoff threshold value out
of the number of patients who reached the cutoff threshold.
By using PCD, we aim to evaluate the proportion of
patients who will be assigned to their optimal treatment if
we control the P (dnewK = 1|xnew

1 , · · · ,xnew
k ) using various

cutoff thresholds. The PCD is then averaged across 100
simulations. We additionally extract the average number
of subjects that ever reach the confidence cutoff and the
average p1 covariates in the decision when patients reach
the cutoff.
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The results are depicted in Table 2 and indicate the over-
all ability of the personalized probability to align with the
true (i.e., optimal) decision. There are fairly high average
PCD values even in cases when we relax the cutoff val-
ues to be less stringent. There are few differences in PCD
when responses are generated with and without error, in-
dicating that perhaps moderate noise in the data will not
greatly impact the performance of the method. As an ex-
ample, when we choose the cutoff for high confidence to be
{> 0.9 or < 0.1} with 1000 patients per arm in the training
data set and error in the outcome generation, on average
85% of subjects achieving a cutoff threshold have the same
decision with their observed data as they would have had if
all possible covariates were obtained and used to make the
treatment decision. On average approximately 91 subjects
(out of 100) achieved a cutoff threshold, and did so with ap-
proximately half of the covariates observed. This shows the
utility of the personalized probability as a measure of confi-
dence by indicating that we may not need all data modalities
measured on subjects in order to recommend a treatment
decision with confidence.

6. APPLICATION TO DATA FROM A
DEPRESSION CLINICAL TRIAL

Here we illustrate a potential use of the sequential treat-
ment decision process in practice, using the EMBARC de-
pression study. We use as a criteria for confidence the per-
sonalized probability, or P (dnewK = 1|xnew

1 , . . . ,xnew
k ), with

cutoff threshold {> 0.9 or < 0.1}. With this example, we
demonstrate the utility of measuring confidence in person-
alized treatment decisions.

Of the 242 subjects in this dataset, 125 were randomized
to placebo (A = 1) and 117 were randomized to the antide-
pressant drug sertraline (A = 2). Baseline covariates that
were considered as potential treatment effect modifiers are
from four data modalities and are assessed in the following
order: (1) eighteen clinical variables; (2) eight behavioral
phenotypes (BP) from neuropsychological testing; (3) three
variables obtained from electroencephalography (EEG); and
(4) ten variables characterizing brain functioning, obtained
from functional magnetic resonance imaging (fMRI). The
treatment outcome Y was the improvement in symptom
severity, measured by the Hamilton Rating Scale for De-
pression, from week 0 (baseline) to week 8, where positive
values of Y indicate improvement from baseline and larger
values are preferred. The clinical variables are a mixture
of binary (0/1), integer, and continuous variables, while all
other data modalities contain continuous variables only.

Using these data, we construct the following TDRs with
multiple linear regression models: a) d1: TDR based on
clinical covariates, with (estimated) value V̂ (d1) = 8.57;
b) d2: TDR based on clinical + BP covariates, with value
V̂ (d2) = 8.92, c) d3: TDR based on clinical + BP + EEG
covariates, with V̂ (d3) = 9.17; and d) d4: TDR based on

all clinical + BP + EEG + fMRI covariates, V̂ (d4) = 9.44.
Estimates of value, see (1), of the TDRs are obtained by
computing the average of the outcomes of patients whose
assigned treatment in the RCT coincides with the treat-
ment recommended by the TDR. We consider d4 to be the
ultimate optimal decision, while d1, d2 and d3 are the linear
TDRs when only the respective data modalities are avail-
able. The values agree with our expectation that value in-
creases with increasing number of procedures (i.e., patient
characteristics), here p = 39 total variables. A new patient
would undergo the following procedure:

1. Obtain the clinical variables. Estimate the probability
that the ultimate the treatment decision will be A = 2
(antidepressant) given the patient’s set of clinical co-
variates, P (d4 = drug|xclinical).

• If P (d4 = drug|xclinical) > 0.9, recom-
mend the antidepressant treatment; if P (d4 =
drug|xclinical) < 0.1, recommend the placebo
treatment.

• If the probability P (d4 = drug|xclinical) does not
achieve one of the thresholds {> 0.9 or < 0.1},
continue to step 2.

2. Obtain the “BP” variables from neuropsychological
testing. Estimate the probability of an ultimate treat-
ment assignment of the antidepressant, given the pa-
tient’s set of clinical and BP covariates, or P (d4 =
drug|xclinical,xbp).

• If the probability achieves one of the cutoff thresh-
olds {> 0.9 or < 0.1}, recommend treatment 1 or
treatment 2, respectively, as above.

• If the probability does not achieve the threshold,
continue to step 3.

3. Obtain variables from EEG testing. Estimate the prob-
ability of an ultimate treatment assignment of the an-
tidepressant, given the patient’s set of clinical, BP and
EEG covariates, or P (d4 = drug|xclinical,xbp,xeeg).

• If the probability achieves one of the cutoff thresh-
olds {> 0.9 or < 0.1}, recommend treatment 1 or
treatment 2, respectively.

• If the probability does not achieve the threshold,
continue to step 4.

4. Obtain variables from fMRI testing and recommend
treatment based on d4 using all four modalities: clinical,
BP, EEG and fMRI.

Table 3 depicts the sequential confidence procedure for
three subjects. Subject A achieved a threshold of high con-
fidence with just the first clinical modality observed and
Subject B achieved a high confidence threshold with 3 of
the 4 modalities observed (i.e., with fewer than the total
number of modalities). Subjects A and B were assigned to
the same treatment with our sequential confidence approach
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Table 3. Personalized probabilities of an ultimate treatment assignment of A = 2 (antidepressant) given individual subject
data using the sequential procedure for assessing confidence. A bold value indicates the point at which high confidence was

achieved. The treatment assignment using sequential confidence corresponds to the treatment assigned if the subject achieved
the threshold. The treatment assigned using the optimal TDR is the assignment including patient’s data from all four data

modalities.

Data Modalities in the Sequential TDRs Treatment Assignment

Subject
Clinical Clinical

BP

Clinical
BP
EEG

Using
Sequential
Confidence

Using
Ultimate
TDR (d4)

A 1 - - Drug Drug

B 0.28 0.10 0.09 Placebo Placebo

C 0.76 0.61 0.32 - Placebo

as they would have been if we had obtained all of their data,
indicating the utility in minimizing unnecessary acquisition
of more complex data modalities. Subject C did not achieve
a threshold for high confidence. In cases where high confi-
dence in a decision is not met, the optimal treatment either
remains unknown or perhaps the patient would respond sim-
ilarly to either treatment.

We applied the procedure described above to all subjects
in the EMBARC data. Out of the 242 subjects, the percent-
ages of individuals who achieved high confidence, using the
{> 0.9 or < 0.1} cutoff thresholds, with fewer than the max-
imum number of covariates (p = 39) are: 78.5% with clinical
variables only, 6.2% with clinical and BP variables, and 7.0%
with clinical, BP, and EEG. These percentages sum to 91.7%
and thus nearly all subjects achieve high confidence of their
treatment decision with information from fewer than 4 pro-
cedures. The percentages of subjects whose decision with all
four modalities agrees with the decision made if and when
the subject achieves high confidence are 75.8% with clinical
data, 86.7% with clinical and BP data, and 88.2% with clin-
ical, BP, and EEG data. This reveals that the optimal treat-
ment decision for a subject in this data can, to a large ex-
tent, be determined with our approach using a limited set of
modalities, and that this treatment decision agrees with the
decision if we were to measure all possible data modalities.

7. DISCUSSION

In this paper, we presented novel strategies for assessing
confidence, or certainty, in an individual treatment decision.
While studied in the context of a depression clinical trial,
the methods are general and can be applied in other medical
fields.

The sequential procedure introduced assumes that the
“ultimate” TDR involves patient characteristics from sev-
eral (K) tests or procedures each giving rise to variables
from different data modalities. We assume throughout this
paper that the order of the K modalities is based on the
order in which the data would be collected on a typical pa-
tient, and is selected with the guidance of a clinician. How-
ever, an interesting avenue for future research would be to

determine an optimal sequential ordering of the modalities
to add to the TDR to maximize value. One approach is to
perform a forward stepwise procedure that begins with esti-
mating TDRs for each of the K modalities individually, and
selecting the modality, denoted as m1∗ , associated with the
largest value. Next, TDRs containing m1∗ and each remain-
ing modality (i.e. m1∗ +mk, k �= 1∗) will be estimated and
the modality that leads to the greatest increase in value will
be selected for inclusion into the TDR. Then this procedure
is repeated until all modalities are entered into the TDR. If
we let V ∗

1 , V
∗
2 , . . . , V

∗
K denote the corresponding values for

the TDRs in this sequence, then a threshold p∗ could then be
chosen to determine the number of modalities to add to the
ultimate TDR, based on, for example V ∗

k /V
∗
K > p∗. An al-

ternative approach to consider is to base the order of adding
modalities on maximizing the probability of agreement (18)
of an ultimate treatment assignment given data using all
possible subsets of modalities (which is usually computa-
tionally feasible since K tends to be small in practice).

If only a TDR based on one modality is available, for
example with just a set of EEG measurements, the proba-
bility approach will no longer be relevant, since all necessary
variables can be obtained from one test. Instead, using dis-
tance to the decision boundary will allow for an absolute
measure of certainty. In our simulation studies, on average,
distances are smaller with more covariates in the TDR or
with increasing correlations between variables. Determin-
ing high confidence in a patient’s treatment decision using
distance will require cutoff values that depend on p1, the
number of observed covariates. Future studies should focus
on exploring how far away a patient’s data lie from a de-
cision boundary in order for given level of confidence to be
reached. Additionally, the current use of the Mahalanobis
distance results in only a scaled version of the Euclidean dis-
tance as noted in Section 3.1. For our working multivariate
normal model, the conditional distribution given a subset of
baseline covariates impacts the conditional mean only and
not the conditional covariance matrix (which is constant).
To add greater flexibility, future research could investigate
regression and conditional probability approaches where the
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baseline covariates may impact both the conditional mean
and covariance matrix [e.g., 10].

In the context of decision rules based on linear bound-
aries, the proposed conditional probabilities are straightfor-
ward to interpret, which is especially important for imple-
mentation in clinical practice. They have the added ben-
efit of computationally simple closed-form expressions un-
der normality assumptions. In particular, the personalized
probability for a new subject, P (dnewK = a|xnew

1 . . .xnew
k ), is

recommended as the most practical approach from a preci-
sion medicine perspective, given the ability to sequentially
measure confidence in real-time for an individual patient.

The simulation studies indicated that the distance and
probability approaches both rely heavily on how well the
sequential decision rules are estimated. In cases with large
amounts of noise and smaller samples, more rigorous cut-
offs for high confidence are needed to offset the weak TDR
estimation. The choice of cutoff thresholds also should de-
pend on a clinician’s evaluation of the value of gathering
additional information, i.e., how do we maximize assign-
ing patients to the optimal treatments while minimizing the
number of time-consuming and costly procedures a patient
will need. Based on the simulation results and the illustra-
tive EMBARC example, we propose the following scheme
for assessing confidence:

1. Apply dk, the estimated decision based on k modal-
ities, to a new patient with covariates observed from
k procedures xnew

1 . . .xnew
k , and obtain the treatment

decision.
2. Estimate P (dnewK = a|xnew

1 . . .xnew
k ), using (21) for this

new patient.
3. Compare the personalized probability to a cutoff

threshold for high confidence. For TDRs estimated with
very small samples, use the strictest cutoff threshold
({> 0.95, < 0.05}); otherwise, choose a reasonable
threshold based on the medical implications, consult-
ing with a clinician.

If this probability lies beyond the confidence threshold, we
recommend the appropriate treatment based on our con-
fidence measure. Otherwise, we suggest that the patient
undergo additional testing and repeat steps 1-3 updating
dk with additional data modalities until high confidence is
achieved.

The methods in this paper were derived in the multivari-
ate normal data setting. It would be useful to examine the
robustness of our results in cases where multivariate normal-
ity does not hold, e.g., for skewed data or a mixture of both
continuous and discrete variables. There are many other pos-
sible extensions such as deriving corresponding confidence
measures when there are more than two treatment options
and exploring ways to assess confidence using TDRs derived
with other approaches that produce nonlinear decision rule
boundaries, such as including nonlinear terms like squares
and cross-products in the TDRs producing quadratic deci-
sion boundaries in X [9], or an outcome weighted learning

(OWL) approach with a Gaussian kernel [21]. We note that
determining TDRs is a classification problem and that sim-
ple classification rules producing linear decision boundaries
often perform competitively compared to more complex ap-
proaches in terms of reducing prediction error [6] due to their
simplicity (a trade-off of variance for bias). It would also be
useful to explore regularization methods for the regression-
based linear TDRs such as ridge regression or the lasso [18]
when the dimension of the predictors becomes large relative
to the sample size.

APPENDIX A. DERIVATION OF
EQUATION 15

The complete derivation for (15) follows. Assume Σ11 is
non-singular and the Schur complement of Σ11 is invert-
ible, where the Schur complement is expressed as Σ22 −
Σ21Σ

−1
11 Σ12. By well-known results on inverting partitioned

matrices [e.g., 13, Theorem 2], the matrixΣ is invertible and
it’s inverse can be expressed by

[
Σ11 Σ12

Σ21 Σ22

]−1

=

[
A11 A12

A21 A22

]
,

where

A11 = Σ−1
11 +Σ−1

11 Σ12(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11

A12 = −Σ−1
11 Σ12(Σ22 −Σ21Σ

−1
11 Σ12)

−1

A21 = −(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11

A22 = (Σ22 −Σ21Σ
−1
11 Σ12)

−1.

We can write(
αa1

αa2

)
=

[
A11 A12

A21 A22

](
Ψ1Ya

Ψ2Ya

)
=

(
A11Ψ1Ya +A12Ψ2Ya

A21Ψ1Ya +A22Ψ2Ya

)
.

Plugging in the population parameters for A11, A12, A21,
and A22 and simplifying gives(
αa1

αa2

)

=

⎛
⎜⎜⎝
(Σ−1

11 +Σ−1
11 Σ12(Σ22 −Σ21Σ

−1
11 Σ12)

−1Σ21Σ
−1
11 )Ψ1Ya

−Σ−1
11 Σ12(Σ22 −Σ21Σ

−1
11 Σ12)

−1Ψ2Ya

−(Σ22 −Σ21Σ
−1
11 Σ12)

−1Σ21Σ
−1
11 Ψ1Ya

+(Σ22 −Σ21Σ
−1
11 Σ12)

−1Ψ2Ya

⎞
⎟⎟⎠

which can be written as(
αa1

αa2

)

=

⎛
⎝ Σ−1

11 Ψ1Ya−
Σ−1

11 Σ12(Σ22 −Σ21Σ
−1
11 Σ12)

−1(Ψ2Ya −Σ21βa1)

(Σ22 −Σ21Σ
−1
11 Σ12)

−1(Ψ2Ya −Σ21βa1)

⎞
⎠ .
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Figure 5. Personalized probability compared to Mahalanobis
distance to the decision boundary based on p1 covariates.
Each point in the plot represents a patient in the test data

(n = 100). The pink and blue indicators in the plot represent,
respectively, the average treatment decision of A = 1 and
A = 2 that were assigned to each patient across the 100

repeated simulations. The horizontal dashed line represents an
equal probability of a patient being assigned to either

treatment.

The final expression is

(
αa1

αa2

)
=

(
Σ−1

11 (Ψ1,Ya −Σ12αa2)

(Σ22 −Σ21Σ
−1
11 Σ12)

−1(Ψ2Ya −Σ21βa1)

)
.

APPENDIX B. MAHALANOBIS DISTANCE
TO THE DECISION
BOUNDARY IN

SEQUENTIAL FRAMEWORK

Using the same simulation study described in Section 5,
we additionally studied the relationship between the per-
sonalized probability P (dnewK = 1|xnew

1 , . . . ,xnew
k ) and the

Mahalanobis distance to the decision boundary based on p1,
the number of observed covariates, computed with (11). The
results in Figure 5 show that Mahalanobis distances are a
scaled version of the Euclidean distance with smaller mag-
nitudes, so the relationships in the plots are similar to that
in Figure 4.

Figure 6. Probability of agreement of ultimate and current
treatment assignment of A = 1 with equally correlated

predictors, with no error in the outcome generation in (a) and
error in the outcome generation in (b). Z100 is the

reparameterized TDR for all p = 100 covariates and c100 is
the cutoff value for this decision boundary. The boxplots
represent the probabilities across the 100 repeated Monte
Carlo simulations, where the colors represent the three

correlations.

APPENDIX C. PROBABILITY OF
AGREEMENT WITH

EQUALLY CORRELATED
COVARIATES

In our sequential framework, we expect that variables
may be more highly correlated with others in the same sub-
set compared with variables in other subsets. For example,
variables measured from the same test such as an imag-
ing scan may be more correlated than an imaging measure
with a demographic variable. The following simulation stud-
ies aim to capture the impact of different correlations on the
conditional probabilities. Here we focus for simplicity on pre-
senting results for the probability of agreement as described
in (18).

Simulations that varied the amount of equal correlation
within subsets were conducted. The equal correlation setting
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is similar to the simulation settings described in Section 5.2.
We assume the same correlation matrix as (3.3), in this case
with ρ = {0.1, 0.5, 0.8}.

We observe in Figure 6A that increasing ρ values cor-
respond to a decrease in the overall average probabilities
of agreement. However, the amount of variability across
the M = 100 simulations remains relatively stable. Thus,
the variability in the probability estimates may not be at-
tributable specifically to the amount of correlation among
variables. In Figure 6B, we observe that when the training
data is small and the outcome is generated with error the
probabilities are fairly similar across different correlations,
especially with fewer p1 covariates included in the treatment
decision. With a larger sample size, we see the similarity to
Figure 6A.

APPENDIX D. PROBABILITY OF
AGREEMENT WITH BLOCK
CORRELATED COVARIATES

Further simulations on the estimated probabilities and
distances to the decision boundary were conducted in which
the amount of correlation within subsets was fixed to be
larger than the amount between subsets, which is the most
realistic to real world clinical data.

The simulation settings described in Section 5.2 are very
similar this case. The only difference in the data generation
is in the covariance structure, as here we designate three
block correlation settings, where the blocks are defined in
subgroups of 10 covariates. The within correlation (within
each block) is ρw = {0.1, 0.5, 0.8}, while the correlation be-
tween covariate subgroups is ρb = 0.1. The correlation ma-
trix R can be written as:

R =

⎛
⎜⎜⎜⎜⎜⎝

B1 ρb11
′ ρb11

′ · · · ρb11
′

ρb11
′ B2 ρb11

′ · · · ρb11
′

ρb11
′ ρb11

′ B3 · · · ρb11
′

...
...

...
. . .

...
ρb11

′ ρb11
′ · · · ρb11

′ B10

⎞
⎟⎟⎟⎟⎟⎠

and block matrix Bk, where k is the subset, is written as

Bk =

⎛
⎜⎜⎜⎜⎜⎝

1 ρw ρw · · · ρw
ρw 1 ρw · · · ρw
ρw ρw 1 · · · ρw
...

...
...

. . .
...

ρw ρw · · · ρw 1

⎞
⎟⎟⎟⎟⎟⎠ .

We observe in panel A of Figure 7 that increasing ρw val-
ues correspond to a decrease in the overall average probabil-
ities of agreement, but that the amount of variability across
the 100 simulations remains stable. The variability in the
probability estimates may be more attributed to differences
between subsets rather than within subsets of covariates. On
the other hand, in panel B of Figure 7 we observe that when

Figure 7. Probability of agreement of ultimate and current
treatment assignment of A = 1 with block correlation

structures, with no error in the outcome generation in (a) and
error in the outcome generation in (b). Z100 is the

reparameterized TDR for all p = 100 covariates and c100 is
the cutoff value for this decision boundary. The boxplots
represent the probabilities across the 100 repeated Monte

Carlo simulations, where the colors represent the three within
subgroup correlations.

the training data is small and generated with error the prob-
abilities are fairly similar across different correlations. This
shifts once p1 is around 50 covariates to be more similar to
case with no error in the outcome generation.
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