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Multivariate frailty models using survey weights
with applications to twins infant mortality in
Ethiopia
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Several studies have shown that twin birth contributes
substantially to infant and child mortality mainly in
resource-poor countries. The excess rates among twins call
for research in statistical modeling to identify the main
causes behind it. In studies involving multiple individuals
from the same family, the fundamental independence as-
sumption in the classical statistical modeling is not plau-
sible. In addition, previous studies indicated that ignoring
sampling weight while dealing with a dataset collected with
complex survey design can introduce serious bias. This study
is then aimed to fill these methodological gaps to integrate
the dependence from twin birth with an advanced statis-
tical gamma frailty model to correctly identify the deter-
minants of infant mortality among twins in Ethiopia. We
compiled all available data from the 2016 Ethiopia Demo-
graphic and Health Survey with a total of 908 children (454
pairs of twins) with survey sampling weight incorporated in
the analysis. To identify predictors and to assess the pres-
ence and significance of frailty, semiparametric univariate,
bivariate shared, and correlated gamma frailty models were
fitted. The likelihood ratio test was employed to test the
significance of frailty term in the model. We found that sex
of the child, among twins birth order, preceding birth in-
terval, and succeeding birth interval are significantly asso-
ciated with twin infant mortality. The results of this study
further confirmed the significance of the shared frailty term
accounting for the unobserved heterogeneity.

Keywords and phrases: Frailty, Twin, Infant mortality,
Sampling weight, Survival.

1. INTRODUCTION

In Ethiopia, the rate of infant mortality shows an en-
couraging decline pattern in the past decade. The 2016
Ethiopia Demographic and Health Survey (EDHS) results
showed that infant mortality declined from 97 deaths per
1,000 live births in 2000 to 48 deaths per 1,000 live births
in 2016, which is about a 50% reduction in about 16 years.
The 2016 figure further indicates that 1 in every 21 children
in Ethiopia dies before celebrating their first birthday [5].
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Sub-Saharan Africa, not only has the highest rate of twin
births in the world [21] but also the world’s highest rate of
infant and child mortality [24]. Despite the significant im-
provements, the fate of twins’ survival in sub-Saharan Africa
is lagging behind that of singletons with an alarming one-
fifth of twins in the region die before the age of five years,
which is three times the mortality rate among singletons
[18]. In Ethiopia, the 2016 EDHS results showed that out
of the 914 children of multiple births recorded in the survey
(2 triple births and 454 twin births), 285 (31.2%) of them
died before they reach their first birthday, indicating that
1 in every 4 children of multiple births in Ethiopia dies be-
fore their first birthday [5]. There are a number of biological
and environmental contributing factors for this high mortal-
ity rate among children of multiple births in Sub-Saharan
African countries [8, 12, 21, 18]. For instance, close contact
between twin babies increases the chance of cross-infection
[12]. Hence, in studies involving multiple individuals from
the same family (e.g. twins), it is obvious to expect some
sort of association among these twins and the assumption
of independence is not plausible unless all-important famil-
ial factors were measured and controlled for in the model.
Children belonging to the same family share certain unob-
served characteristics (heterogeneity), which may not be suf-
ficiently described by the covariates included in the models.
Hence, failure to consider such unobserved association may
lead to biased parameters estimates [9].

Apart from taking into account the unobserved associa-
tion among twins, one has to consider also those major el-
ements of the survey design that may have an effect on the
model estimates based on survey data, including sampling
weights, which is the inverse probability of being included in
the sample adjusted for non-response [15, 20]. These weights
act to correct sample data for the unequal selection proba-
bilities and failure to include these in the modeling process
can lead to estimates that are seriously biased for their cor-
responding population quantities [17].

The persistence of high levels of infant mortality rates
among twins calls for a need to identify the potential de-
terminants of twins’ mortality, specifically in resource-poor
sub-Saharan countries like Ethiopia. Identifying potential
significant determinants of twin birth infant mortality is es-
sential to form policies and strategies to accelerate the re-
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duction of infant mortality and also to meet the United Na-
tions Sustainable Development Goals (SDGs). This study,
therefore, aims to identify the determinants of infant mortal-
ity among twins in Ethiopia, using an advanced frailty mod-
eling approach to incorporate the dependence/correlation
from twin mortality so that correct analysis can be per-
formed and appropriate public health recommendations can
be made.

2. MATERIALS AND METHODS

2.1 Data source

This study used data from the 2016 EDHS, where in-
formation about the twin’s mortality is extracted from the
birth history of women included in the survey. All twin
births recorded in the survey are included in this study.
The 2016 EDHS sample was stratified and selected in two
stages. Each region was stratified into urban and rural areas,
yielding 21 sampling strata. Samples of EAs were selected
independently in each stratum in two stages. Implicit strat-
ification and proportional allocation were achieved at each
of the lower administrative levels by sorting the sampling
frame within each sampling stratum before sample selec-
tion, according to administrative units in different levels,
and by using a probability proportional to size selection at
the first stage of sampling [5].

2.2 Variables of the study

The outcome (response) variable for this study is the sur-
vival time of a pair of infant twins measured in days. Among
the potential covariates that might have an effect on the
survival of twin infants, the following time-invariant factors
are included in the study: categorized mothers age at child-
birth (below 18 years, between 18–35 years and above 35
years), sex of the child, preceding birth interval (1st born or
no preceding child, below 18 months, between 18–24 months
and above 24 months), succeeding birth interval (below 18
months, between 18–24 months, above 24 months and last
born) and among twins birth order (firstborn and second-
born). In addition, the less likely-to-be time-variant factor
such as place of residence (urban, rural) is also included in
this study.

2.3 Methods of data analysis

With the aim of identifying potential predictors of infant
mortality and further assessing the presence and significance
of unobserved frailty a semiparametric univariate, shared,
and correlated gamma frailty models are fitted to the 2016
EDHS twins survival data. The following discussion is re-
stricted only to bivariate survival data.

2.3.1 Shared gamma frailty model

Let the bivariate random variables (Ti1, Ti2) be the first
and second survival times of the two children in the ith

cluster (twin) (i = 1, . . . , n). Assuming that the frailties

Zi, (i = 1, . . . , n) are acting multiplicatively on the base-
line hazard function h0(tij) and both the survival times
of children Ti1 and Ti2 are conditionally independent given
frailty Zi = zi. The conditional hazard model for jth child
(j = 1, 2) in the ith twin given frailty Zi = zi has the form
[13]:

(1) hij(tij |Xij , Zi) = zih0(tij) exp (X
′
ijβ), j = (1, 2)

where the vectors Xij = (Xij1, Xij2, . . ., Xijp)
′ and β =

(β1, β2, . . ., βp)
′ are covariates and regression parameters, re-

spectively. Those children who possess zi > 1 are more frail
for reasons left unexplained by the covariates and will have
an increased risk of death. The frailties, Zi, are assumed to
be independently and identically distributed random vari-
ables. In this study, Zi are assumed to follow gamma distri-
bution given by:

(2) g(z) =
z

1
σ2 −1 exp (− z

σ2 )

Γ( 1
σ2 )(σ2)

1
σ2

Under the assumption of independence, the conditional
survival function in the bivariate case for given frailty Zi =
zi at time ti1 > 0 and ti2 > 0 is,

S(ti1, ti2|Xi1, Xi2, Zi) = S(ti1|Xi1, Zi)S(ti2|Xi2, Zi)

= e−zi[H(ti1)+H(ti2)](3)

where H(tij) = H0(tij) exp (X
′
ijβ) for j = (1, 2) and H0(t)

denote the cumulative baseline hazard function. Consider
the marginal likelihood function:
(4)

Lmarg =

∫ ∞

0

(−1)(δ1+δ2)
∂2

∂tδ11 ∂tδ22
e−z(H(t1)+H(t2))g(z)dz

where g(z) is the probability density function given in
equation-2. If a parametric form is not assumed for the base-
line hazard, h0(.), estimates of the model parameters can
easily be obtained using either the method of Expectation-
Maximization (EM) or penalized partial likelihood (PPL).

Let’s consider parameter estimation technique following
the modified EM approach for the semiparametric bivariate
shared gamma frailty model with incorporating sampling
weight. The word ‘modified’ refers to the modification of the
M-step so that the frailty parameter can be estimated from
the profile log-likelihood as discussed below. In the univari-
ate gamma frailty model, random effect term is introduced
to each infant instead of the twins together. Since, univari-
ate frailty model refers to a shared frailty model when the
cluster size is one, estimation of the univariate (individual)
frailty approach can be straightforward from the estima-
tion of bivariate shared gamma frailty approach. Consider
the full likelihood as if the frailties were observed. The log-
likelihood is given by [7]:

(5) L(β, σ2|Z) = L1(β|Z)L2(σ
2|Z)
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where

L1(β|Z) =

n∏
i=1

[
(zih0(ti1)e

X′
i1β)

δi1
(zih0(ti2)e

X′
i2β)

δi2

× e−zi(H0(ti1)e
X′

i1β+H0(ti2)e
X′

i2β)
]

(6)

and

(7) L2(σ
2|Z) =

n∏
i=1

g(zi)

The complete likelihood representation given in equation-
5 is obtained by taking partial derivatives of equation-3 with
respect to (t1, t2) in accordance with censoring information
for the twin of children and multiplying the result by the cor-
responding probability density function given in equation-2.
Since the data used in this study is from EDHS which uses a
sample survey design with weights, accordingly these sam-
pling weights are incorporated in the analysis. Now with
sampling weight denoted by w and sampling weight of the
individual mother wi1 = wi2 = wi, equation-6 become:

L1(β|Z) =

n∏
i=1

[
(zih0(ti1)e

X′
i1β)

δi1wi

(zih0(ti2)e
X′

i2β)
δi2wi

× e−ziwi(H0(ti1)e
X′

i1β+H0(ti2)e
X′

i2β)
]

(8)

Denote the weighted version of Nelson–Aalen estimator
of H0(t) [4] by:

(9) Ĥ0(t) =
∑
tij≤t

dwpl∑
tpl≥tij

wpe
x′
plβ+ln(zp)

where dwpl
=

∑
tpl=tij

δplwp is the number of events at time

tij or number of children died at time tij (weighted). Let’s
further substitute the Nelson–Aalen estimator ofH0(t) given
in equation-9 into the logarithm of equation-8 to get:

(10) l1(β|Z) =

n∑
i=1

2∑
j=1

δijwi

[
ηij − ln

( ∑
tpl≥tij

wpe
ηpl

)]

where ηij = x′
ijβ + ln(zi). Now one can easily see that

equation-10 coincides with Cox’s partial likelihood with
sampling weight w and ln(z) as an additional Cox-like co-
variate with a known regression coefficient equal to one. Fur-
ther, instead of Zi one has to use its expected value, E(Zi).

Suppose β̂q, Ĥ0q (t), σ̂
2
q denote estimates of β,H0(t) and σ2

at qth iteration. Estimates of the conditional expectations of
Zi at q

th iteration denoted by ẑiq , i = 1, . . . , n evaluated at
parameter estimates of qth iteration can be obtained using:

(11) ẑiq =

1
σ̂2
q
+

2∑
j=1

wiδij

1
σ̂2
q
+

2∑
j=1

wiĤ0q (tij)e
X′

ij β̂q

Following profile likelihood approach due to Therneau
and Grambsch [22], first express the hazard terms in terms
of the expected frailty and the unweighted event. That is
for the unweighted gamma frailty, the conditional expec-
tations of the frailty term is ẑi = θ+di

θ+[H(t1)+H(t2)]
, implies

[H(t1)+H(t2)] = e− ln(ẑi)(θ+di)−θ, where θ = 1
σ2 and the

unweighted event is given as di = (δi1 + δi2). Then substi-
tute this term into the log of the marginal likelihood given
in equation-4 and then, subtracting and adding a penality

term
n∑

i=1

−1
σ2 (ln(zi)− zi) results:

lprof (σ
2) = lcox +

n∑
i=1

[
1

σ2
(log(zi)− zi)

+ (
1

σ2
+ di)(1− log(

1

σ2
+ di))

− 1

σ2
log(σ2) + log Γ

(
1

σ2
+ di

)
− log Γ

(
1

σ2

)]
(12)

where lcox can be obtained using equation-10 and here di
is the sum of events (unweighted) in pair i. Note that
for gamma frailty, both PPL and EM approaches produce
the same result [7, 22]. The main feature of equation-12
is the expression of hazard term in terms of the expected

frailty and the unweighted events. i.e.,
2∑

j=1

wiH0(tij)e
X′

ijβ =

exp(− ln(zi))(1/σ
2 + di) − 1/σ2, which is not equal to

exp(− ln(zi))(1/σ
2 + dwi) − 1/σ2 where dwi is the sum of

events (weighted) in the ith twin pair. Now, the algorithm of
parameters estimation consists of an inner and outer loops.
Let’s denote the outer loop iteration by l and the inner loop
by q.

Inner loop

Given a conventional values of β̂l,q, Ĥ0l,q (t) and σ̂2
l ,

• Step 1: Obtain ẑiq using equation-11.

• Step 2: Maximize equation-10 to obtain β̂l,q+1 and

obtain Ĥ0l,q+1
(t) using equation-9. Maximization of

equation-10 given ẑiq can be carried out using standard
Cox PH fit procedure with ln(ẑiq ) as an “offset” term
and wi as weight.

• Step 3: Iterate step 1 and 2 until the maximum absolute
differences between successive estimates reach tolerance
i.e., max(|β̂l,q+1 − β̂l,q|) < 10−10.

Outer loop

Given β̂l,q+1, Ĥ0l,q+1
, ẑiq+1

• Maximize equation-12 to obtain σ̂2
l+1.

• Iterate inner and outer loop until convergence. Conver-
gence can be checked using absolute difference of es-
timated frailty parameters estimated at previous and
current outer iterations. i.e., |σ̂2

l+1 − σ̂2
l | < 10−6.
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2.3.2 Bivariate correlated gamma frailty model

The bivariate correlated gamma frailty model introduced
by [26] included univariate and shared frailty models as spe-
cial cases. If the frailty variances of the two subjects in pairs
are zero, then it implies absence of frailty. With non-zero
frailty variances, if the correlation between the frailties is
zero, then correlated frailty model reduced to univariate
frailty model. In addition, if the correlation between the
frailties is 1, then correlated frailty model reduced to shared
frailty model [10, 11].

Let the survival times of the two subjects (children) be
conditionally independent given their frailties Z1 and Z2

and, let k0, k1, k2 be some nonnegative real-valued numbers
[26]. Then Z1 and Z2 can be decomposed as Zj = Y0 + Yj ,
j = (1, 2), where Y0, Y1 and Y2 are independent gamma-
distributed same scale λ random variables with density:

(13) g(Yj) =
λkjy

kj−1

j e−λyj

Γ(kj)
, kj > 0, λ > 0, j = (0, 1, 2)

Obviously, Z1 and Z2 are correlated in view of the shared
part of frailty Y0 in both Z1 and Z2. Further assuming equal
shape parameters (k1 = k2 = k) for the distributions of
Y1 and Y2, forces the frailties Z1 and Z2 to follow gamma-
distributed correlated random variables [26] given by:

(14) Zj ∼ Γ(k0 + k, λ), j = (1, 2)

For the standard assumption that the mean frailty of in-
dividuals is one (at the beginning of the follow-up), the fol-
lowing holds:

(15) E[Z1] = E[Z2] =
k0 + k

λ
= 1

thus, the frailty variances are equal and given by:

(16) V (Z) = V (Z1) = V (Z2) =
1

λ
= σ2

This leads to the correlation coefficient of Z1 and Z2 given
by:

(17) ρ =
cov(Z1, Z2)√
V (Z1)V (Z2)

=
k0

k0 + k

Let

(18) λ =
1

σ2
; k0 =

ρ

σ2
; k =

1− ρ

σ2

then

(19) Zj ∼ Γ(
1

σ2
,
1

σ2
), j = (1, 2)

Now it is possible to derive the marginal likelihood function
as:

Lmarg =

∫ ∞

0

∫ ∞

0

∫ ∞

0

(
(−1)(δ1+δ2)

∂

∂tδ11
e−(y0+y1)H(t1)

∂

∂tδ22
e−(y0+y2)H(t2)

2∏
j=0

g(yj)
2∏

j=0

dyj

)
(20)

where g(yj), j = 0, 1, 2 are the pdf given in equation-
13 with parameters given in equation-18. EM algorithm-
based parameter estimation for the above bivariate corre-
lated gamma-frailty model with equal sampling weights has
already been developed by Iachine [16] and here we pre-
sented short summary of the approach. Iachine [16] derived
the complete log-likelihood as if the frailties are observed.
Then, showed that the complete log-likelihood structure al-
lows to combine Cox’s regression and maximum likelihood
techniques to obtain parameter estimates.

E-step: Compute the conditional expected values of yj
and ln(yj) for j = 0, 1, 2 denoted by Bj = E(yj |data) and
Aj = E(ln(yj)|data) for j = 0, 1, 2 evaluated at the current
iteration estimates.

M-step: Obtained new estimates for the next iteration.
The derived working log-likelihood function after substitut-
ing the unobserved frailty variables by their conditional ex-
pected values such as substitute yj and ln(yj) by Bj and Aj

respectively and zij = Bi0 +Bij , for j = 1, 2 is given by:

(21) llC = llI(σ
2, ρ) + llII(β)

where

llI(σ
2, ρ) = n

(
ρ− 2

σ2
ln(σ2)− ln(Γ(

ρ

σ2
))− 2 ln

(
Γ(

1− ρ

σ2
)

))

+

n∑
i=1

(
ρ

σ2
Ai0 +

1− ρ

σ2
(Ai1 +Ai2)−

1

σ2

2∑
j=0

Bij

)

(22)

(23) llII(β) =

n∑
i=1

2∑
j=1

δij

(
x′
ijβ−ln

( ∑
tpl≥tij

ex
′
plβ+ln(ẑpl)

))

where ẑij = (Bi0+Bij). As equation-23 coincides with Cox’s
partial likelihood when ln(ẑij) is considered as an additional
Cox-like covariate with a known regression coefficient equal
to one, standard procedures for the Cox regression can be
used to obtain β and H0(t) and equation-22 is maximized
to obtain the new frailty parameters. These two steps are
iterated until convergence.

In this paper, we have modified the above bivariate cor-
related gamma-frailty model estimation procedure in a way
that enable us to incorporate the sampling weight. Thus,
we have incorporated the sampling weight and developed
the parameter estimation procedures. Integrating out the
frailty variables in equation-20 considering the four censor-
ing possibilities i.e., (δ1 = 1, δ2 = 1), (δ1 = 1, δ2 = 0),
(δ1 = 0, δ2 = 1) and (δ1 = 0, δ2 = 0) and taking the natu-
ral logarithm, the mariginal log-likelihood function can be
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given by:

llmarg =

n∑
i=1

2∑
j=1

δij

(
ln(h0(tij)) + x′

ijβ

)

−
n∑

i=1

(
(k0 + δi1 + δi2) ln(M0) + (k + δi1) ln(M1)

+ (k + δi2) ln(M2)

)
+

∑
δ1δ2 ln(LI)

+
∑

δ1(1− δ2) ln(LII) +
∑

(1− δ1)δ2 ln(LIII)

(24)

where: H(t) = H0(t)e
β′x, M0 = 1 + σ2(H(t1) + H(t2)),

M1 = (1 + σ2H(t1)), M2 = (1 + σ2H(t2)),

LI =

[
ρ(ρ+ σ2)

M0
2 +

ρ(1− ρ)

M0

(
1

M1
+

1

M2

)
+

(1− ρ)2

M1M2

]

LII =

[
ρ

M0
+

(1− ρ)

M1

]

LIII =

[
ρ

M0
+

(1− ρ)

M2

]

Denote the equal weight version of the Nelson–Aalen esti-
mator of H0(t) by:

(25) Ĥ0(t) =
∑
tij≤t

dpl∑
tpl≥tij

ex
′
plβ+ln(zpl)

where dpl =
∑

tpl=tij

δpl is the number of events at time tij .

The following equation-26, which is the first line of equation-
24 can easily be obtained assuming frailty variables (Z1 and
Z2) are observed and further by substituting H0(t) with its
Nelson–Aalen estimator, which is given in equation-25.

(26)
n∑

i=1

2∑
j=1

δij

(
x′
ijβ − ln

( ∑
tpl≥tij

ex
′
plβ+ln(zpl)

))

Now one can easily see that equation-26 coincides with Cox’s
partial likelihood with ln(zij) as an additional Cox-like co-
variate with a known regression coefficient equals to one.
This shows that given zij it is possible to estimate β; and
H0(t) can be obtained using equation-25. However, zij is not
observed and thus needs to be substituted by its expected
value. Similar to the mariginal log-likelihood expression, to
derive the expression of the conditional expected values of
the frailties, the four censoring possibilities needs to be con-
sidered. Here, we presented derivation of the expressions of
the conditional expected values for the case where both sur-
vival times (t1, t2) are uncensored i.e., (δ1 = 1, δ2 = 1). The
expressions for the remaining three censoring possibilities
can be derived in a similar manner.

The conditional distribution of y0, y1, y2 denoted by
f(y0, y1, y2|(tij , δij , Xij)) can be given by:

f(y0, y1, y2|(.)) =
∂2

∂t1∂t2
S(t1, t2|y0, y1, y2, x1, x2)g(y0, y1, y2)

S(t1, t2)

= C
(y20+y0y1+y0y2+y1y2)g(y0)g(y1)g(y2)

LmargI

(27)

where C=h0(t1)e
β′x1h0(t2)e

β′x2e−(y0+y1)H(t1)−(y0+y2)H(t2),
g(yj), j = 0, 1, 2 are the pdf given in equation-13 with pa-
rameters given in equation-18 and LmargI is given by:
(28)

LmargI = h0(t1)e
β′x1h0(t2)e

β′x2M0
−k0M1

−kM2
−k × LI

where Mr, r = 0, 1, 2 and LI are expressions given in
equation-24. Suppose g(a, b) denotes gamma distribution
with shape and scale parameters are a and b, respectively
and let’s introduce the following notations:

q1 =
ρ(ρ+ σ2)

M2
0

=
k0(k0 + 1)

λ2
0

q2 =
ρ− ρ2

M0M1
=

k0k

λ0λ1

q3 =
ρ− ρ2

M0M2
=

k0k

λ0λ2

q4 =
(1− ρ)(1− ρ)

M1M2
=

k1k

λ1λ2

Sq = q1 + q2 + q3 + q4

pl =
ql
Sq

, l = 1, 2, 3, 4

gd1(.) = g(k0 + 2, λ0)g(k, λ1)g(k, λ2)

gd2(.) = g(k0 + 1, λ0)g(k + 1, λ1)g(k, λ2)

gd3(.) = g(k0 + 1, λ0)g(k, λ1)g(k + 1, λ2)

gd4(.) = g(k0, λ0)g(k + 1, λ1)g(k + 1, λ2)

(29)

where λ0 = 1
σ2 + H(t1) + H(t2), λ1 = 1

σ2 + H(t1), λ2 =
1
σ2 + H(t2) and H(t) = H0(t)e

β′X. Using theses notations
it is possible to re-write the conditional distribution of y0,
y1, y2 given in equation-26 as the sum of mixture of gamma
distributed variates given below:

f(y0, y1, y2|(.)) =
1

Sq

[
q1gd1(.) + q2gd2(.)

+ q3gd3(.) + q4gd4(.)

]

= p1gd1(.) + p2gd2(.) + p3gd3(.) + p4gd4(.)

=

4∑
l=1

plgdl
(.)

(30)
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thus, the expected values of E(yj) denoted by ŷj , j = 0, 1, 2
can be given as follows:

ŷ0 =

4∑
l=1

plEy0(gdl
(.))

= p1
k0 + 2

λ0
+ p2

k0 + 1

λ0
+ p3

k0 + 1

λ0
+ p4

k0
λ0

= p1
(ρ+ 2σ2)

M0
+ (p2 + p3)

(ρ+ σ2)

M0
+ p4

ρ

M0

=
p1(ρ+ 2σ2) + (p2 + p3)(ρ+ σ2) + p4ρ

M0

(31)

ŷ1 =

4∑
l=1

plEy1(gdl
(.))

= p1
k

λ1
+ p2

k + 1

λ1
+ p3

k

λ1
+ p4

k + 1

λ1

=
(p1 + p3)(1− ρ) + (p2 + p4)(1− ρ+ σ2)

M1

(32)

ŷ2 =

4∑
l=1

plEy2(gdl
(.))

= p1
k

λ2
+ p2

k

λ2
+ p3

k + 1

λ2
+ p4

k + 1

λ2

=
(p1 + p2)(1− ρ) + (p3 + p4)(1− ρ+ σ2)

M2

(33)

Hence, the expected values of Zi1 and Zi2 denoted by ẑi1
and ẑi2 respectively can be given by:

(34) ẑij = ŷi0 + ŷij , i = 1, . . . , n; j = 1, 2

By substituting the expected values ẑij instead of zij in

equation-26 new estimates of β̂ can be obtained. Thus,
parameter estimation by maximizing the marginal log-
likelihood expression can be carried out by the inner and
outer loop. Let’s denote the outer loop iteration by l and
the inner loop by q.

Inner loop
Given a conventional values of β̂l,q, Ĥ0l,q (t) and σ̂2

l , ρ̂l,

• Step 1: Obtain ẑijq using equation-34.

• Step 2: Maximize equation-26 to obtain β̂l,q+1; and

obtain Ĥ0l,q+1
(t) using equation-25. Maximization of

equation-26 given ẑijq can be carried out using stan-
dard Cox PH fit procedure with ln(ẑijq ) as an “offset”
term.

• Step 3: Iterate step 1 and 2 until the maximum absolute
differences between successive estimates reach tolerance
i.e., max(|β̂l,q+1 − β̂l,q|) < 10−10.

Outer loop
Given β̂l,q+1, Ĥ0l,q+1

, ẑijq+1

• Maximize equation-24 to obtain σ̂2
l+1, ρ̂l+1. Here, the

first line expression should be substituted by (26).
• Iterate inner and outer loop until convergence. Conver-

gence can be checked using absolute maximum differ-
ence of estimated frailty parameters estimated at pre-
vious and current outer iterations.

When sampling weights denoted by wi = wi1 = wi2 are
incorporated, the expressions of the expected value of the
frailties are changed. M0 = (1+σ2w(H(t1)+H(t2))), M1 =
(1 + σ2wH(t1)), M2 = (1 + σ2wH(t2)) accordingly, λ0 =
1
σ2 +w(H(t1)+H(t2)), λ1 = 1

σ2 +wH(t1), λ2 = 1
σ2 +wH(t2).

the expected values ŷj , j = 0, 1, 2 are given as follows:

ŷ0 = p1
k0 + 2w

λ0
+ p2

k0 + w

λ0
+ p3

k0 + w

λ0
+ p4

k0
λ0

= p1
(ρ+ 2wσ2)

M0
+ (p2 + p3)

(ρ+ wσ2)

M0
+ p4

ρ

M0

=
p1(ρ+ 2wσ2) + (p2 + p3)(ρ+ wσ2) + p4ρ

M0

(35)

ŷ1 = p1
k

λ1
+ p2

k + w

λ1
+ p3

k

λ1
+ p4

k + w

λ1

=
(p1 + p3)(1− ρ) + (p2 + p4)(1− ρ+ wσ2)

M1

(36)

ŷ2 = p1
k

λ2
+ p2

k

λ2
+ p3

k + w

λ2
+ p4

k + w

λ2

=
(p1 + p2)(1− ρ) + (p3 + p4)(1− ρ+ wσ2)

M2

(37)

Hence, ẑi1 and ẑi2 can be given by:

(38) ẑij = ŷi0 + ŷij , i = 1, 2, ..., n; j = 1, 2

With sampling weight, equation-26 is changed in to:

(39)

n∑
i=1

2∑
j=1

δijwi

[
ηij − ln

( ∑
tpl≥tij

wpe
ηpl

)]

where ηij = x′
ijβ + ln(ẑij). In order to obtain new esti-

mates of the frailty parameters, using the profile likelihood
approach due to [22], the hazard terms are expressed in
terms of the expected frailties and the unweighted events
and then substitute all to equation-24. Thus, similar to the
equal weight correlated gamma frailty estimation procedure,
the algorithm consists of an inner and outer loops.

3. RESULTS

A total of 908 (454 pairs) twin child deliveries were
recorded in the 2016 Ethiopia Demographic and Health Sur-
vey (EDHS). The overall information on censoring and co-
variates included in this study are presented in Table 1.

The descriptive summaries in Table 1 shows that
mother’s age at childbirth, in the first category below 18
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Table 1. Descriptive summaries of variables

Covariates

Child status

Alive Dead

Freq (%) Freq (%)

Mother’s AGE < 18 years 22 (50.0%) 22 (50.0%)
at child birth 18 – 35 years 544 (70.1%) 232 (29.9%)

> 35 years 60 (68.2%) 28 (31.8%)

Residence
Urban 117 (76.0%) 37 (24.0%)
Rural 509 (67.5%) 245 (32.5%)

Gender
Male 311 (63.6%) 178 (36.4%)
Female 315 (75.2%) 104 (24.8%)

Among twin’s First born 335 (73.8%) 119 (26.2%)
birth order Second born 291 (64.1%) 163 (35.9%)

No precede sibling 94 (64.4%) 52 (35.6%)
Preceding < 18 months 53 (51.0%) 51 (49.0%)

birth interval 18 – 24 months 72 (62.1%) 44 (37.9%)
> 24 months 407 (75.1%) 135 (24.9%)

Last born 252 (79.2%) 66 (20.8%)
Succeeding < 18 months 53 (45.3%) 64 (54.7%)

birth interval 18 – 24 months 66 (71.0%) 27 (29.0%)
> 24 months 255 (67.1%) 125 (32.9%)

years, there were 4.8% of the study population, (of whom
50% died), 9.7% of the children were born from mothers
whose age exceeds 35 years, (of whom 31.8% died); and the
remaining 85.5% children belong to mothers whose age at
birth was between 18 – 35 years (of whom 29.9% of them
died). 17.0% of children are in urban areas of which 76% are
alive. 53.9% of the total birth are male of whom 36.4% are
dead. Among the second-born twin children, 35.9% are dead,
while only 26.2% are dead among first-born ones. Regarding
preceding child’s birth interval, 16.1% of the children were
first born of whom 64.4% are alive and 35.6% are dead;
11.4% were born before their older sibling reaches the age
of 18 months of whom 49% are dead. Regarding the succeed-
ing birth interval, 35.0% were last born or no child after of
whom 79.2% are alive and 20.8% are dead; and 12.9% were
having a succeeding birth interval below 18 months of which
54.7% are dead.

The results of the log rank test given in Table 2 indicate
that the covariates sex, among twins’ birth order, preceding
birth interval and succeeding birth interval were found out
to be highly significant. However, residence and mother’s
age at birth were not significant at 5% level of significance.

According to Childs et al. [6], each child in a family has a
proper susceptibility to infection, independently of his fam-
ily members. In addition, inside the common global family
behavioral factor, parents may adopt a slightly different pre-
natal and neonatal attitude from one child to the next in the
family. Moreover, it is apparent that twins share a common
environmental effect. This is because they are usually grow-
ing up in the same household environment and their parents

Table 2. Results of the log-rank test of covariates

Covariates Test statistic Df p -value

Age of mother at birth 1.98 2 0.370
Residence 1.06 1 0.302
Sex 8.58 1 0.003*
Among twins’ birth order 10.04 1 0.001*
Preceding birth interval 12.9 3 0.004*
Succeeding birth interval 18.9 3 <0.001*

Table 3. Parameter estimates of UNIVARIATE gamma frailty
model with and without sampling weight

Covariates
Unweighted Weighted

Coef (SE) Coef (SE)

Sex
Male 0.4660 (0.1248)* 0.7947 (0.1767)*
Female (Ref)

Among twins’
birth order

Second born 0.3475 (0.1206)* 0.5285 (0.1686)*
First born (Ref)

Preceding
birth interval

No precd sibling 0.3341 (0.1647)* 0.7054 (0.2276)*
<18 months 0.6886 (0.1706)* 0.8162 (0.2546)*
18–24 months 0.3155 (0.1761) 0.1385 (0.2635)
>24 months (Ref)

Succeeding
birth interval

Last born −0.4370 (0.1539)* −0.7201 (0.2037)*
< 18 months 0.5417 (0.1586)* 0.4226 (0.2407)
18–24 months −0.0671 (0.2135) −0.0771 (0.3082)
>24 months (Ref)

σ2 5e-08 1.44*

I-loglik −1836.9 −1848.2

are more likely to adopt similar child care behavior. Thus,
it is appropriate to assess and test for the presence of unob-
served heterogeneity at individual and pair (twin) levels us-
ing statistical models that can take into the presence of cor-
relation and unobserved heterogeneity into account. Hence,
in this study, we have used appropriate gamma frailty mod-
els sequentially, starting from univariate then shared and
finally correlated frailty models. The results are given in
Tables 3–5.

Although there are minor differences in the parameter
estimates of coefficients, the results of all the fitted survival
models given in Tables 3, 4 and 5 showed gender, twin’s
birth order, preceding birth interval, and succeeding birth
interval were found to be significantly associated with twin
infant mortality at 5% level of significance. Table 3 revealed
that incorporation of sampling weight changes the estimate
of the individual heterogeneity parameter σ2 from zero (5e-
08) to 1.44. The likelihood ratio test of the frailty parameter
(H0 : σ2 = 0 vs H1 : σ2 > 0) is rejected with p-value
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Table 4. Parameter estimates of SHARED gamma frailty
model with and without sampling weight

Covariates
Unweighted Weighted

Coef (SE) Coef (SE)

Sex
Male 0.5930 (0.1659)* 0.6757 (0.1648)*
Female (Ref)

Among twins’
birth order

Second born 0.4209 (0.1251)* 0.4792 (0.1225)*
First born (Ref)

Preceding
birth interval

No precd sibling 0.4262 (0.2781) 0.6112 (0.2680)*
<18 months 0.8972 (0.3082)* 0.8408 (0.2986)*
18–24 months 0.4188 (0.3004) 0.2413 (0.3006)
>24 months (Ref)

Succeeding
birth interval

Last born −0.5748 (0.2393)* −0.6816 (0.2323)*
< 18 months 0.6608 (0.2941)* 0.4215 (0.2874)
18–24 months −0.0429 (0.3360) −0.0742 (0.3491)
>24 months (Ref)

σ2 2.33* 1.38*

I-loglik −1794.9 −1829.5

Table 5. Parameter estimates of CORRELATED gamma
frailty model with and without sampling weight

Covariates
Unweighted Weighted

Coef (SE) Coef (SE)

Sex
Male 0.5930 (0.1655)* 0.6757 (0.1635)*
Female (Ref)

Among twins’
birth order

Second born 0.4209 (0.1247)* 0.4792 (0.1225)*
First born (Ref)

Preceding
birth interval

No precd sibling 0.4262 (0.2773) 0.6112 (0.2598)*
<18 months 0.8972 (0.3078)* 0.8408 (0.2868)*
18–24 months 0.4188 (0.2995) 0.2413 (0.2910)
>24 months (Ref)

Succeeding
birth interval

Last born −0.5748 (0.2380)* −0.6816 (0.2268)*
< 18 months 0.6608 (0.2935)* 0.4215 (0.2753)
18–24 months −0.0432 (0.3357) −0.0742 (0.3394)
>24 months (Ref)

σ2 2.33* 1.38*
ρ 1 1

I-loglik −1794.915 −1829.38

Table 6. Comparison of weighted Univariate versus Shared
gamma frailty model

Univariate Shared

I Log-likelihood −1848.227 −1829.451
AIC 3667.8842 3596.843
BIC 4538.261 4195.533

less than 0.001. This indicates that we cannot ignore the
presence of unobserved individual heterogeneity in the study
population (at the individual level). However, the presence
of heterogeneity at the individual level does not indicate the
presence of correlation within groups. As Wienke [25] stated,
the estimate of the variance of the frailty from univariate
data may have nothing to do with association. Univariate
frailty variance is interpreted as a measure of unobserved
heterogeneity in the study population.

According to the results in Table 4, there is a reduc-
tion in the frailty parameter together with its standard er-
ror under the weighted frailty model. The weighted shared
frailty model has lower standard error in the frailty variable,
which shows that it is indeed a more appropriate choice of
model. A similar result has been reported recently by Wang
[23]. Moreover, the inclusion of survey weights in the shared
frailty model has resulted in the reduction of standard er-
rors of many of the parameters estimates in the model. Due
to this, some of the non-significant variables, such as “Pre-
ceding birth interval”, have become significant under the
weighted shared frailty model (Table 4).

The likelihood ratio test of the frailty parameter (H0 :
σ2 = 0 vs H1 : σ2 > 0) is rejected with p-value less than
0.001. This indicates that there is significant heterogene-
ity between pairs and the clustering effect was important
in modeling the hazard function. Since both univariate and
shared gamma frailty models are the special cases of corre-
lated gamma frailty model, it is possible to test hypotheses
about the appropriateness of the models and compare which
model fits the data better. Usually correlated gamma frailty
model is fitted to assess the genetic effect. To this end, we
need the zygosity information that would enable us to com-
pare the correlation between MZ and DZ twins. However,
here the fit is used to test hypotheses about the appropri-
ateness of the shared frailty model.

As shown in Table 5, the estimated frailty correlation pa-
rameter is 1. As a result, the estimated covariate coefficients
are almost equal to the estimated covariate coefficients of
shared gamma fit given in Table 4. In addition, the likeli-
hood ratio test statistic for the hypothesis (H0 : ρ = 1 vs
H1 : ρ < 1) is insignificant. Thus, we have no evidence to re-
ject that the model is a shared frailty model. Furthermore,
Table 6 showed that the shared gamma frailty model has
the highest log-likelihood and minimum AIC and BIC val-
ues, indicating that this model fits the data better than the
univariate gamma model.
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The hazard ratio estimates of the shared model given in
Table 4 indicated that the estimated hazard ratio of a male
twin infant (i.e. an infant of a twin birth) is 1.965 (95% CI:
1.418–2.728) implying that the risk of dying for a male twin
infant is 96.5% higher than a female twin infant, controlling
for the other covariates in the model.

The estimated hazard ratio of a second-born twin infant is
1.614 (95% CI: 1.271–2.055) implying that the risk of dying
for a second-born twin infant is 61.4% more likely than a
first-born twin infant (reference group), controlling for the
other covariates in the model.

The estimated hazard ratio of an infant of twin who born
before the older sibling reaches the age of 18 months is 2.318
(95% CI: 1.112–4.869). Thus, the hazard rate of an infant
twin born before the older sibling reaches the age of 18
months is 2.318 times higher than an infant of twin born
when the older sibling’s age exceeds 24 months (reference
group), controlling for other covariates in the model.

The estimated hazard ratio of an infant twin who has
no succeeding sibling is 0.505 (95% CI: 0.316–0.807). This
implies that an infant of twin who has no succeeding sibling
had a 49.5% lower hazard (risk) of death than an infant
of twin who has a younger sibling born after 24 months,
controlling for the other covariates in the model.

4. DISCUSSIONS

Since we aim to investigate the survival of twin infants
survey data, it is expected to employ a model that can take
the presence of correlation, unobserved heterogeneity and
survey weights into account. Thus, we selected the weighted
gamma frailty models as the most appropriate model to fit
to this type of data. As shown in Table 4, the variance
of the random effect estimated from the weighted shared
gamma frailty model is significant at 5% level of signifi-
cance. This indicates that there is significant heterogeneity
between pairs and the correlation within pairs cannot be ig-
nored and clustering effect was important in modeling the
hazard function.

This study showed that the risk of dying for a male twin
infant is higher than for a female child. In agreement with
this result, a study on child mortality showed that the risk
of dying for a male child is higher than a female child [3].
This study also revealed the significant risk of a first born
infant of twin birth. Similar to this result, a child mortality
study showed that first-born children experience low sur-
vival compared to those children who have higher birth or-
der [1]. However, a study in Burkina Faso showed that the
variable is statistically insignificant [2]. Most importantly we
have found the significance of among twins’ birth order in
infant mortality. The risk of dying for a second-born infant
of twin birth is statistically higher than a first-born infant
of twin birth.

Unlike a study that showed children residing in urban
areas have a better chance of survival than those residing

in rural areas [1], this study found out that the place of
residence is not significant. In addition, the result of this
study disagreed with studies that showed children born from
women at youngest and oldest age are subject to high risk
of death [16, 19], this study found out the variable is not
significantly associated with survival of infant twins.

The current study also showed that infants of twin birth
who were born before the older sibling reaches the age of 18
months experience low survival compared to those infants of
twin birth who have more than 24 months spacing. Several
studies conducted on determinants of child mortality found
similar results [2, 14, 16].

5. CONCLUSIONS

Integrating the dependence from twin birth with the ad-
vanced statistical weighted gamma frailty models, the re-
sults of this study showed that the main significant factors
associated with twin infant mortality in Ethiopia are gender,
twin’s birth order, preceding birth interval, and succeed-
ing birth interval. The significant effect of the birth spac-
ing of the previous and succeeding sibling on the survival
chance of infants of twin birth indicates that efforts have
to be exerted to educate the public about family planning
and birth spacing, mainly in resource-poor countries like
Ethiopia. Further, male twins have a lower chance of sur-
vival compared to female twin children. Those twins who
were born before their sibling reaches 18 months experience
low survival compared to those twins who have more than
24 months spacing. The risk of infant mortality for a second-
born twin infant is higher than a first-born twin infant. This
study also showed the presence of significant heterogeneity
between pairs. Overall, the different modeling approaches in
this study revealed the significance of including a random ef-
fect in the model mainly to take into account the correlation
of event times among twins. The inclusion of survey weights
in the shared frailty model has improved the precision of
model parameter estimates.
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[14] Koissi, M.-C. and Högnäs, G. (2005). Using winbugs to study
family frailty in child mortality, with an application to child sur-
vival in ivory coast. African population studies, 20(1).

[15] Korn, E. L. and Graubard, B. I. (1995). Examples of differing

weighted and unweighted estimates from a sample survey. The
American Statistician, 49(3):291–295.

[16] Lachine, I. A. (1995). Parameter estimation in the bivariate
correlated frailty model with observed covariates via the EM-
algorithm. Odense Universitet, Center for Helsetjenesteforskning
og Socialpolitik.

[17] Madise, N., Stephenson, R., Holmes, D., and Matthews, Z.

(2003). Impact of estimation techniques on regression analysis:
an application to survey data on child nutritional status in five
african countries.

[18] Monden, C. W. and Smits, J. (2017). Mortality among twins
and singletons in sub-saharan africa between 1995 and 2014: a
pooled analysis of data from 90 demographic and health surveys
in 30 countries. The Lancet Global Health, 5(7):e673–e679.

[19] Sastry, N. (1997). A nested frailty model for survival data, with
an application to the study of child survival in northeast brazil.
Journal of the American Statistical Association, 92(438):426–435.
MR3186029

[20] Skinner, C. J., Holt, D., and Smith, T. F. (1989). Analysis of
complex surveys. Wiley. MR1049386

[21] Smits, J. and Monden, C. (2011). Twinning across the develop-
ing world. PloS one, 6(9):e25239.

[22] Therneau, T. M. and Grambsch, P. M. (2000). The cox model.
In Modeling survival data: extending the Cox model, pages 39–77.
Springer. MR1774977

[23] Wang, J. (2019). Weighted estimation for multivariate shared
frailty models for complex surveys. Lifetime data analysis,
25(3):469–479. MR3960835

[24] WHO (2016). Under five mortality rates.
[25] Wienke, A. (2010). Frailty models in survival analysis. CRC

press. MR2682965
[26] Yashin, A. I., Vaupel, J. W., and Iachine, I. A. (1995).

Correlated individual frailty: an advantageous approach to sur-
vival analysis of bivariate data. Mathematical population studies,
5(2):145–159.

Yehenew G. Kifle
Department of Mathematics and Statistics
University of Maryland Baltimore County
USA
E-mail address: yehenew@umbc.edu

Ding-Geng Chen
College of Health Solutions
Arizona State University
Phoenix, AZ
USA
Department of Statistics
University of Pretoria
South Africa
E-mail address: dinchen@asu.edu

Mesfin T. Haileyesus
Department of Statistics
Dire Dawa University
Ethiopia
E-mail address: mesfin.tsegaye@ddu.edu.et

502 Y. G. Kifle, D.-G. Chen, and M. T. Haileyesus

http://www.ams.org/mathscinet-getitem?mr=2723929
http://www.ams.org/mathscinet-getitem?mr=3369612
http://www.ams.org/mathscinet-getitem?mr=3369612
http://www.ams.org/mathscinet-getitem?mr=3073795
http://www.ams.org/mathscinet-getitem?mr=3186029
http://www.ams.org/mathscinet-getitem?mr=1049386
http://www.ams.org/mathscinet-getitem?mr=1774977
http://www.ams.org/mathscinet-getitem?mr=3960835
http://www.ams.org/mathscinet-getitem?mr=2682965
mailto:yehenew@umbc.edu
mailto:dinchen@asu.edu
mailto:mesfin.tsegaye@ddu.edu.et

	Introduction
	Materials and methods
	Data source
	Variables of the study
	Methods of data analysis
	Shared gamma frailty model
	Bivariate correlated gamma frailty model


	Results
	Discussions
	Conclusions
	Conflict of interest statement
	Author's contributions
	Funding
	Acknowledgement
	References
	Authors' addresses

