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A default Bayesian multiple comparison of two
binomial proportions

Emrah Gecili
∗
and Siva Sivaganesan

We consider a default Bayesian approach to multiple test-
ing of equality of two binomial proportions. While our ap-
proach is motivated by a scenario where one proportion cor-
responds to an experimental condition and the other to a
control, we find it is also reasonable for comparing two pro-
portions in general. We consider a selection of priors un-
der the alternative(s) including the intrinsic prior and a
newly proposed “mode-based” Beta prior, and investigate
their properties in terms of certain desirable characteristics
that we specify for default priors. We also develop priors for
the hyperparameters based on the conventional hyperprior
used for normal means multiple testing. We also consider a
computationally more efficient empirical Bayes approach us-
ing the intrinsic prior and the proposed Beta prior. We use
repeated simulation and real data sets to evaluate and illus-
trate the approach, and compare certain frequentist char-
acteristics of the results based on intrinsic and mode based
Beta prior using full Bayes and empirical Bayes approaches.
Additionally, the results from the Bayesian approach are
compared with a commonly used frequentist procedure us-
ing conventional thresholds in the respective settings. Over-
all, we find that the proposed mode-based Beta prior is a
suitable default prior for multiple testing of equality of two
proportions.
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1. INTRODUCTION

Bayesian approach to testing the equality of a single pair
of proportions has received considerable attention for long,
and until recently. But, the Bayesian approach to multiple
testing of several pairs of proportions has received relatively
little attention. Here, we consider a default Bayesian ap-
proach to multiple testing of equality of two binomial pro-
portions under several similar conditions. We first focus on
the choice of prior(s) under the alternative hypothesis in the
context of single testing of equality of two proportions, con-
ditional on a hyperparameter which controls the closeness of
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the prior to the null hypothesis. We seek priors that satisfy
certain desirable characteristics which we specify for priors
in a single testing context. We then extend the prior speci-
fication to the context of multiple testing of several pairs of
proportions by using an exchangeable prior for the pairs of
proportions under the alternatives along with the specifica-
tion of a prior for the hyperparameter.

One motivating example for this work is the DNA se-
quence data example of Tarone (1990). Here, the author
compared the proportions of nucleotide changes in tran-
scripts from the control and the study cells to determine
if the transcribed RNA in the study cells differs from that
in the control cells, for different nucleotide sites of a gene of
interest. Although our approach is particularly suitable for a
setting where the interest is in comparing proportions under
treatment and control, we also argue that the approach is
also suitable for comparing two proportions in more general
settings.

There are numerous articles in the literature on applica-
tions of Bayesian multiple testing, many involving Bayesian
variable selection, including, Müller, Parmigiani, & Rice
(2007), Bayarri et al. (2012), and Rockova & George (2014).
On Bayesian multiple testing of two binomial proportions,
Chen & Sarkar (2004) used a step-down approach involving
Bayes factors for families of hypotheses. They used normal
approximation to the binomial distribution and used con-
stant prior probabilities for each null hypotheses to calcu-
late Bayes factors, arguing that the step-down procedure
itself would correct for multiplicity. Here, we use a more
formal approach to multiple testing by accounting for mul-
tiplicity through the use of a prior for the common unknown
probability of null hypotheses, and also use the exact likeli-
hood. We also focus on two-sided alternatives as in Tarone
(1990). Bayesian approaches to single testing of binomial
proportions has a rich literature. These include, among oth-
ers, Howard (1998) who used normal priors for the log of
odds ratio, and Hsiao, Lee, & Kass (2005) who used a Beta
prior. There have been several interesting more recent de-
velopments on Bayesian approach to testing about binomial
proportion and contingency tables using intrinsic prior ap-
proach, starting with Casella & Moreno (2009). Later, Con-
sonni & Rocca (2008) used intrinsic prior approach to test-
ing equality of correlated proportions arising in pre- and
post- polls, Consonni, Foster, & Rocca (2013) used intrinsic
prior approach to non-local priors in the context of testing
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equality of two proportions, and Moreno, Vazquez, & Negrin
(2014) used intrinsic prior in the context of meta analysis
of binomial data. Other papers include Sverdlov, Ryeznik,
& Wu (2014) and Pham-Gia, Thin, & Doan (2017). Finally,
for a discussion of default (or, objective) Bayesian analysis
including motivation and a historical perspective, we refer
the interested readers to Berger (2006).

The paper is organized as follows. In Section 2, we de-
scribe the model and the form of the joint prior for two
proportions for a single test conditional on a hyperparame-
ter, and list certain desirable properties and evaluate them
in terms of these properties. In Section 3, we choose priors
for the hyperparameter for the priors deemed desirable from
Section 2. In Section 4, we provide details of computation
of posterior probabilities of the null hypotheses and an out-
line of an empirical Bayes approach for faster computing.
In Section 5, we give examples based on simulated and real
data, and end with a conclusion.

2. MODEL AND PRIORS FOR BAYESIAN
MULTIPLE TESTING

Analogous to the setting described in the DNA sequence
data example of Tarone (1990), we let x0i and x1i be the
sample counts at position i for groups 0 and 1, respec-
tively, and assume x0i ∼ Binomial(n0i, p0i) and x1i ∼
Binomial(n1i, p1i), i = 1, ..., k, and are independent given
p0i and p1i. Our interest is in simultaneous testing of the
hypotheses

(1) H0i : p0i = p1i vs H1i : p0i �= p1i, i = 1, ..., k.

Multiplicity adjustment in Bayesian multiple testing is
achieved by choosing an appropriate prior for the prior prob-
ability of the null hypotheses, and for the parameters in the
models specified by the hypotheses. We let p = P (H0i), for
i = 1, ..., k, be the common probability of the null hypothe-
ses, and use Beta(α, β) prior for p, with the default choice
of α = β = 1. We use the following notation and general
form of priors for the rest of the parameters;

• Under H0i: p0i ∼ Uniform(0, 1), independently of each
other, with p1i = p0i, for all i,

• Under H1i: Conditional on hyperparameter τ , prior for
(p0i, p1i) is π1(p0i, p1i|τ), and for τ is π(τ).

The model specification will be completed by choosing an
appropriate choice for π1(p0i, p1i|τ) and π(τ).

3. CHOICE OF PRIORS FOR (p0i, p1i)
UNDER THE ALTERNATIVE

HYPOTHESES

We first focus on the specification of the prior
π1(p0i, p1i|τ) for (p0i, p1i) under H1i for single test of equal-
ity of two proportions (for a fixed i), conditional on hyper-
parameter τ . For convenience, without loss of generality, we

drop the suffix i in the rest of this and next subsection.
Most of the priors used for estimation are not appropriate
for testing hypotheses, because the null hypothesis is not
taken into account in the formulation of the prior.

3.1 Desirable properties

Here we seek certain desirable properties for a default
prior π1(p0, p1|τ) to satisfy. The first one is that the prior
be centered around the null. This is a widely accepted char-
acteristic in the literature for objective Bayesian testing
starting with the recommendation in Jeffreys (1961). For
instance, consider testing a point null hypothesis θ = 0 ver-
sus the alternative hypothesis that θ �= 0. In this context,
0 is a special value for θ among the all possible values of
θ, and in the absence of any other prior information includ-
ing the absence of any other special values for θ, it makes
sense that the values of θ closer to 0 should a priori be con-
sidered more likely than those away from 0. This heuristic
argument leads to the conclusion that prior for θ under the
alternative hypothesis ought to be centered around 0, and
decreasing away from 0. This notion is also borne out, natu-
rally, by the intrinsic prior method of deriving an objective
prior under the alternative hypothesis essentially with the
only knowledge of the point null hypothesis under consid-
eration, Berger and Pericchi (1996). The testing or model
selection priors recommended by many authors all satisfy
this property. These include the family of g-priors recom-
mended in Zellner and Siow (1980), and later by Liang et
al. (2008) and Bayarri et al. (2012) among others. The well-
known intrinsic prior methodology used to construct rea-
sonable objective priors for testing hypotheses are popular
partly because it provides a way of converting a estimation
priors into proper testing priors that are centered around
the null, e.g., Casella & Moreno (2009) developed intrin-
sic priors that are centered around the null in the context
comparing contingency tables.

On the other hand, it is also important that the prior is
not overly concentrated around the null and allows flexibil-
ity for p1 to deviate from p0 by allowing a wide range of
values for the correlation between p0 and p1. For instance,
correlation only in a high range (near 1) would indicate that
the prior would inherently constrain both parameters to be
very close to each other rather than have the flexibility for
them to differ based on the likelihood. (We note priors sat-
isfying the first property would typically allow only positive
correlation.) This property is also used in Moreno, Vazquez,
& Negrin (2014) for motivation of a prior they used for pro-
portions in the context of meta analysis. Similarly, we also
seek that the prior allows flexibility near the boundary by
allowing p1 to deviate from p0 when p0 is close to either 0
(or 1),i.e., a priori, |p1 − p0| does not go to 0 as p0 goes
to 0. This would thus allow the same flexibility a posteriori,
rather than constraining p1 also to be close to 0 (or, 1) when
p0 is, regardless of the likelihood. These properties can be
formally stated as follows;
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(i) The prior is centered around the null region p1 = p0,
and decreasing away from the null region,

(ii) The prior allows a wide range of values between 0 and
to 1 for correlation between p1 and p0, and

(iii) Pr(|p1 − p0| > ε|p0) > 0 for some ε > 0, as p0 → c ∈
{0, 1}.

3.2 Choice of priors

We consider four choices for π1(p0, p1|τ), three of which
have been used in the literature in the context of single
testing, and another that we propose anew. They are listed
below along with whether they satisfy the three desirable
properties.

Intrinsic Prior:
Intrinsic prior approach to testing, developed by Berger &

Pericchi (1996) and Moreno, Bertolino, & Racugno (1998),
is an attractive and natural way to derive an objective prior
for testing hypotheses. In the context of testing hypotheses
about proportions. Casella & Moreno (2009) used the ap-
proach to develop objective priors for testing independence
in two way contingency tables (single testing of proportions).
This was followed by a series of papers on the use of intrin-
sic priors in the context of testing single hypotheses about
equality of proportions and contingency tables. They include
Consonni & La Rocca (2008), Moreno, Vazquez, & Negrin
(2014) and Consonni, Foster, & Rocca (2013).

The intrinsic prior for (p0, p1) using independent uniform
priors as default prior for p0 and p1 can be written as, see
Casella & Moreno (2009),

π1(p0, p1|m)

(2)

=

m∑
s=0

m∑
t=0

(
m
s

)(
m
t

) Γ(s+ t+ 1)Γ(2m− s− t+ 1)

Γ(2m+ 2)
·

×Be(p0|s+ 1, m− s+ 1)Be(p1|t+ 1, m− t+ 1),

m ≥ 1.

where Be(x|a, b) is Beta distribution with parameters a, b,
and m is an integer representing the (imaginary) training
sample size used in the construction of the prior. We can
also show that (see Appendix A),

E(p1|p0) =
2 + 2m+ p0m

2

(2 +m)2
and corr(p0, p1) =

m2

(2 +m)2
.

(3)

Figure A1 in Appendix A displays the intrinsic prior for two
different choices of m. This prior satisfies the first property
in Section 3.1. It centered around the region of the null
hypotheses, p0 = p1, and decreases away from the null. The
degree of concentration is controlled by the training sample
size m which we regard as a discrete hyperparameter. It

is increasingly concentrated around the region of the null
hypothesis with increasing m.

By (3), the correlation ρ, between p0 and p1 takes values
in the range of (1/9,1), for m ≥ 1, which is very close to
(0,1), and hence satisfies the second property. It is also easy
to see that the marginal distributions of p0 and p1 are both
uniform over (0, 1). Thus, the conditional distribution of p1
given p0, as seen from (2), is a mixture of Beta distributions.
This can be used to show that the intrinsic prior also satisfies
the third property in Section 3.1, and thus it satisfies all
three properties.

Consonni, Foster, & Rocca (2013) stated that the results
from the intrinsic prior and a suitable Beta prior centered
at p0 would be similar for single testing problem of binomial
proportions. However, the probability mass transfer toward
p0 takes place more smoothly under the intrinsic prior than
under a Beta prior with increasing precision, because the
intrinsic prior is a mixture of Beta distributions.

Mode-Based Beta Prior: We propose a prior which is a
mixture of Beta distributions given by

π1(p1|p0, r) ∼ Beta(rp0 + 1, r(1− p0) + 1), p0 ∼ Uni(0, 1)
(4)

where r > 0 is a hyperparameter. This prior is similar to
a prior used by Kass & Hsiao (1993). With a prior placed
on r, this prior is also a mixture of Beta distributions. For
this prior, the mode of the conditional distribution of p1|p0
is p0. As shown in Figure A3, Appendix B, the joint prior
is centered and nearly symmetric around the the region of
the null hypothesis for all values of r and thus satisfies the
first property in Section 3.1.

The conditional variance of p1 given p0 for this prior is a
decreasing function of r and thus prior becomes more con-
centrated around the null hypothesis as r becomes larger.
We can also show the following expressions for the correla-
tion and marginal variance for this prior distribution,

corr(p0, p1) = r

√
r + 3

(r + 2)(r2 + 3r + 6)
and(5)

V ar(p1) =
r2 + 3r + 6

12(r + 2)(r + 3)
.

From the above it is clear that the prior allows the full range
of (positive) values for the correlation satisfying the second
property. Since the condional prior in (4) remains a valid
Beta distribution in the limits as p0 approaches 0 or 1, this
prior satisfies the third property, and thus all three proper-
ties in Section 3.1.

In addition, we also considered three other priors. One
is the mean-based Beta prior, similar to the mode-based
Beta prior except that for this prior the mean of the condi-
tional distribution of p1 given p0 is equal to p0. The other
is logit-normal prior which assigns a normal distribution for
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the conditional distribution of the odds-ratio of p1 to p0,
given p0. The third one is a Farlie–Gumbel–Morgenstern
(FGM) parametric class of probability distribution which
has uniform marginals similar to the intrinsic prior, and was
used for meta analysis for sparse discrete Binomial data by
Moreno, Vazquez, & Negrin (2014). We show (in Appendix
C) that the mean-based Beta prior does not satisfy the sec-
ond and third properties, the logit-normal prior does not
satisfy the third property (in Appendix D), and the FGM
family prior does not satisfy the second property (in Ap-
pendix E). Moreno, Vazquez, & Negrin (2014) found this
FGM type prior to have too large Type -I error probability
and too small power compared to the intrinsic prior in the
context of meta analysis.

We therefore focus on the the intrinsic prior and the
mode-based Beta prior in the rest of the paper.

3.3 Specification of prior for the
hyperparameter

We now turn to specifying a hyperprior for the parameter
τ for the intrinsic prior and mode-based prior, namely the
parameter m for the intrinsic prior and the parameter r for
the mode-based prior.

Our choice of the hyperprior stems from the analogous
prior used by Scott & Berger (2006) in the context of mul-
tiple testing of normal means, where yi|μi, σ

2 ∼ N(μi, τ
2)

and the mean(s) μi was assigned N(0, τ2) prior, and the
hyperparameter τ2 was assigned the prior

(6) π(τ2|σ2) =
σ2

(σ2 + τ2)2
, τ2 > 0.

The authors motivated this prior as a suitable approxima-
tion to the objective estimation-prior for the variance in
the second level of a hierarchical normal model, Berger and
Strawderman (1996). This prior has a peak at τ2 = 0 and de-
creases away from 0. Default priors for random effects vari-
ance recommended in the literature such as the shrinkage
prior, Daniels (1999), and the half-t prior, Gelman (2006),
also share the same feature.

To obtain a suitable default prior for the hyperparameter
τ2, we follow the form of the prior (6). For this, we let σ2 =
E(V ar(x1i − x0i)), the variance of (x1i − x0i) marginalized
over p1i and p0i. Also, we let τ

2 = V ar(p1i−p0i), conditional
on the hyperparameter for a prior in Section 3.2. We use
these specifications to construct a prior for τ2 as in (6).

Prior for the Hyperparameter in the Mode-Based
Beta Prior:

For this prior, σ2 = E(V ar(x1i − x0i)) ≈ 1/3, and
V ar(p1i|r) ≈ 1/12 where we use ≈ to mean approximate
equality. We find it more convenient to use w = 1/r hence-
forth instead of r. We can verify that, τ2 = V ar((p1i −

p0i)|r) ≈ 1/(3(w−1 + 2)) which has a range of (0, 1/6). Fol-
lowing the form of (6), we propose a prior for τ2 given by

π(τ2) =
3σ2

(σ2 + τ2)2
, 0 < τ2 < 1/6,

which leads to the following prior for w

(7) π(w) =
3

(1 + 3w)2
, 0 < w < ∞.

Note that τ2 is increasing in w and the prior π(w) is mono-
tonically decreasing with peak at w = 0 (or τ2 = 0).

Prior for the Hyperparameter in the Intrinsic Prior:
Using (3) and the fact that p0 and p1 each has uniform

U(0, 1) distribution as it’s marginal, we have

V ar(p1i−p0i|m) = τ2(m) = 2(m+1)/3(m+2)2, m = 1, 2, ...

which increases in m and approaches to zero as m ap-
proaches to ∞. Thus for a (discrete) prior for τ2(m) to peak
at 0, it would require a prior for m that is increasing as m
approaches to ∞, an untenable condition since we also re-
quire the prior to be proper. As a way around, we could
bound the range of m, but, we found that results using such
priors are sensitive to the choice of the bound.

Alternatively, we may use an approach similar to the one
in Moreno, Vazquez, and Negrin (2014) to derive a prior for
m. First, we consider a continuous prior for τ2, in the form
of (6). With σ2 = 1/3 as before, the resulting prior for τ2 is

(8) π(τ2) = (15/2)
1

(1 + 3τ2)2
, 0 < τ2 < 2/9.

Now, we construct a discrete prior for m by discretizing (8)
and using the approximation τ2(m) ≈ 2/(3(m + 2)). This
gives the prior

(9) π(m) =
5

(m+ 4)(m+ 5)
, m = 1, 2, ...

This prior induces a prior for τ2 that has negligible mass
near 0, and is increasing in τ2 putting most of the mass at
high values, (Figure A2 in Appendix A), unlike the priors
referred to earlier. For the rest of the paper, we use the
mode-based Beta prior with the hyperprior (7) for w and the
intrinsic prior with hyperprior (9) for m in our simulation
and real data examples, and compare the results.

More on the use of Mode-Based Beta Prior
While the mode-based Beta prior (4) was intended for

use in the context for testing equality of the proportions for
a treatment (p1) and a control (p0). It is also suitable for
testing the equality of two proportions in a general context.
In (4), marginal of p0 is U(0, 1) distribution the conditional
distribution of p1 given p0 is a Beta distribution with mode
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p0. For this joint prior, we can verify that the marginal prior
for p1 is also unimodal and symmetric around 0.5 (Appendix
B), with a variance of 0.268 (by numerical calculation) which
is very close the U(0, 1) distribution. We also verified using
numerical evaluation that the conditional distribution of p0
given p1 is unimodal with mode increasingly closer to p0 as
r increases. In addition, we plotted the conditional means
of p1 (given p0) versus p0 and the conditional mean of p0
(given p1) versus p1 for the prior (4), Figure A4 in Appendix
B. The plots show that these conditional expectations are
equal to each other for a big range of given values of p0
and p1. These properties suggest an approximate symmetry
between p0 and p1 in terms of the conditional distributions
of one versus the other and symmetric distributions for the
marginal of p1.

Moreover, calculation with the prior (4) with the roles
of p0 and p1 switched using simulated data gave nearly the
same posterior probabilities in a variety of settings. As an
illustration, we plotted the posterior probabilities of the null
hypotheses H0 using both priors and plotted them against
each other for a simulated data with m = 40 tests, see Fig-
ure A5 in Appendix B.

The properties of the mode-based prior and the numerical
evidence provided above suggest that this prior is to a cer-
tain degree symmetric between the two proportions and the
choice of which of the two proportions we choose as p0 has
little difference in the answers. Hence, the mode-based Beta
prior is also suitable for use in a wider context of testing
equality of two proportions.

4. POSTERIOR PROBABILITY AND AN
EMPIRICAL BAYES APPROACH

The general form of the multiplicity adjusted posterior
probability of H0i for mean-based Beta prior (it has similar
form for the other priors) is given by

(10) P (H0i|x) =
∫ 1

0
p g(p, Ik \ {i}) dp∫ 1

0
g(p, Ik) dp

where

g(p, Ik)

=

∫ ∏
j∈Ik

[
p+K∗

j

∫ 1

0

p
x0j

0j (1− p0j)
n0j−x0jh(r, p0j)dp0j

]
π(r)dr,

Ik = {1, ..., k}, h(r, p0j)

=
Beta (x1j + rp0j + 1, r(1− p0j) + n1j − x1j + 1)

Beta (rp0j + 1, r(1− p0j) + 1)
,

and

K∗
j = (1− p)Γ(n0j + n1j + 2)

/{Γ(x0j + x1j + 1)Γ(n0j + n1j − x0j − x1j + 1)}.

We assume that a decision rule to choose between H0i

and H1i is based on a 0 −K loss and is of the form below
for a pre-set threshold c,

(11) Choose H1i if P (H0i|x) < c, else, choose H0i.

Here, we use the conventional threshold of c = 0.5 when
calculating error rates.

4.1 An empirical Bayes approach

The fully Bayesian (FB) approach discussed above is
computationally considerably slower than the frequentist
methods. A computationally more efficient alternative to FB
is the empirical Bayes (EB) approach. Instead of assigning
priors to some hyper-parameters and integrating out with
respect to them, using their “consistent” estimates instead
may simplify computation and reduce computation time to
obtain posterior probabilities of the hypotheses. Hence, with
the EB approach, one does not have to specify a prior for
the hyperparameter w. In our numerical study, we also use
the EB approach as well to see if it can provide a good ap-
proximation to the FB approach considered in the previous
sections.

We considered a parametric EB approach by estimating p
and w. The estimates of p and w are obtained by maximizing
the logarithm of the marginal likelihood for (p, w), given by

m (x0, x1|p, w)

=

k∏
i=1

P (xi|p, w)

=

k∏
i=1

[
p

∫
P (xi|p0i, w)π(p0i)dp0i

+ (1− p)

∫ ∫
P (xi|p0i, p1i, w)πi(p0i, p1i|w)dp0idp1i

=

k∏
i=1

[
p

∫
P (x0i|p0i)P (x1i|p0i)π(p0i)dp0i

+ (1− p)

∫ ∫
P (x0i|p0i)P (x1i|p1i)πi(p0i, p1i|w) dp0idp1i

]
.

All computation in this paper was done using R. To com-
pute the posterior probability of the null hypothesis using
the FB approach and mode based prior, equation (10), we
use the integrate function in R to do the integrals with re-
spect to both p0j and r = 1/w, and Monte Carlo (MC) in-
tegration was used to estimate the integration with respect
to p.

For the EB approach, we use the mle function from the
stats4 package in R that utilizes the optim function to find
the minimum of the negative log-likelihood and obtain the
maximum likelihood estimators of p and w (m for the in-
trinsic prior).
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Table 1. Average posterior probabilities of the null hypotheses for the Intrinsic prior (Intr) and mode based prior (MB). p0i’s
are generated from Uni(0.2, 0.5), The number of tests k is 20, of which, for the first 15, the null hypotheses are true, and for
the last 5 the alternative hypotheses are true. p0i’s are generated from Uni(0.2, 0.5) and p1i’s are fixed so that the odds-ratio
between the p0i and p1i is 2. The Binomial sample sizes are set at n = 20. The three dots indicate the omitted part of the

table.

P (H0i|x) for true nulls P (H0i|x) for true alternatives

i 1 2 3 4 5 ... 11 12 13 14 15 16 17 18 19 20
Intr 0.69 0.71 0.70 0.69 0.70 ... 0.70 0.71 0.69 0.69 0.70 0.63 0.64 0.63 0.63 0.59
MB 0.56 0.58 0.55 0.54 0.55 ... 0.56 0.55 0.55 0.58 0.55 0.49 0.49 0.49 0.48 0.46

5. SIMULATION STUDIES AND REAL
DATA EXAMPLES

In this section we report the results of two simulation
studies and two real data examples. In the first simulation
study, we compare the mode based Beta (MB) prior and the
intrinsic (Intr) prior in terms of the posterior probabilities
of null hypotheses in a specific multiple testing setting. In
the second, we compare certain frequentist characteristics
of the Bayesian approach(es) using the mode-based prior
and the intrinsic prior and a frequentist approach, namely,
the Discrete Benjamini-Hochberg (DBH) method of Heyse
(2011). We also apply the empirical Bayes approach and use
the results to assess its accuracy as an approximation to the
fully Bayes approach. We end this section with two real data
examples.

5.1 Repeated sampling and frequentist
characteristics

Simulation Study 1
This simulation study is to compare the posterior prob-

abilities of the null hypotheses based on the intrinsic and
mode-based Beta priors in multiple testing of two propor-
tions. We used a specific simulation setting described below
and calculated the average posterior posterior probabilities
of each of the null hypotheses over repeated sampling under
the given setting.

The simulation setting considered involves k = 20 tests
each of which for comparing two proportions p0i and p1i,
i = 1, .., k. We assume that the null hypotheses are true for
the the first 15 tests, i.e., p1i = p0i for i = 1, ..., 15, and
the alternative hypotheses are true for the last five tests,
We set the values of p0i’s, i = 1, ..., k = 20, by generating
them from Uni(0.2, 0.5), independently, and set p1i = p0i for
i = 1, ..., 15. For i = 16, ..., 15, we set the values of p1i so that
the the odds-ratio (OR) between p1i and p0i is 2. Using these
parameter settings, we simulated x0i and x1i, independently,
from Binomial(n = 20, p0i) and Binomial(n = 20, p1i) for
i = 1, .., k and calculated the posterior probabilities of the
k = 20 null hypotheses. We did 500 replications of the above
simulation and computation using the same fixed propor-
tions and obtained the average posterior probabilities of the
k null hypotheses.

The Table 1 presents the average posterior probabilities
of the true null hypotheses (i = 1, ..., 15) and the false null
hypotheses (i = 16, ..., 20) over the 500 repeated simulation.
We see that they are consistently higher for the intrinsic
prior than for the mode-based prior. The same phenomenon
was observed in other similar simulations that we carried
out. In Table 1, we omitted part the posterior probabilities
of true nulls in the middle (indicated by the three dots)
which were similar to what was observed for other true nulls.

Simulation Study 2
Here, we report on a simulation study with two settings

similar to the two real data examples given later in this
section. The first simulation setting is based on the DNA
sequence data, Tarone (1990), which has a small number of
tests with small sample size for each test, and the the sec-
ond simulation setting is based on the HIV data, Gilbert
(2005), which has a large number of tests and large sample
size for each test. We used repeated sampling and calculated
the following frequentist characteristics; average number of
true discoveries (ATD), average number of false discover-
ies (AFD), false discovery rate (FDR), and false negative
rate (FNR) using the default threshold of 0.5 for the pos-
terior probability of null hypothesis (for rejecting the null
hypothesis). In addition, we also calculated the frequentist
characteristics for the frequentist DBH approach using the
conventional cut-off 0.05 for the p-values. But, the posterior
probabilities of null hypotheses and p-values are not directly
comparable and hence neither are the use of these cut-offs.
We merely use them to see how the use of the aforemen-
tioned conventional choices in each paradigm would com-
pare in terms of their frequentist characteristics. and the
results need only be interpreted in this limited context.

Simulation Setting (i) Here, we fix the numebr of tests
k = 9 and Binomial sample size n = 10, as in the DNA
sequence data example. We also set p0i = p̂0i, i=1,. . . ,9
where p̂0i = x0i/n0i, based on the DNA sequence data. For
the first k0 tests, we set the null hypotheses as true, (p0i =
p1i, i=1, . . . k0), and for the last k1 tests, (k1 = 9− k0), we
set the alternatives as true. For the last k1 sets, we set the
values of p1i’s to make the odds-ratio of p1 to p0 equal to 5.
We did this simulation for each of two choices of k1, k1 = 3
and 6, and for each case, we simulated 500 data sets, and
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Table 2. The results of Simulation (i) with k = 9, k1 = 3, 6 and n = 10. For the first k0 tests, we set the null hypotheses as
true, (p0i = p1i, i=1, . . . k0), and for the last k1 tests, (k1 = 9− k0), the alternatives are set as true. For the last k1 sets, we
set the values of p1i’s to make the odds-ratio of p1 to p0 is 5. MB and EBMB stand for FB and EB methods based on the

mode-based prior. Intr and EBIntr stand for FB and EB methods based on the intrinsic prior and DBH stands for the discrete
Benjamini-Hochberg method

k1 = 3 MB EBMB Intr EBIntr DBH k1 = 6 MB EBMB Intr EBIntr DBH

ATD 2.25 2.24 1.81 1.99 0.66 5.52 5.62 4.92 4.8 1.09
AFD 0.7 0.92 0.43 0.56 0.01 1.25 1.84 2.02 1.8 0.005
FDR 0.24 0.29 0.19 0.22 0.015 0.18 0.25 0.29 0.27 0.005
FNR 0.25 0.25 0.4 0.34 0.78 0.08 0.06 0.18 0.2 0.81

Table 3. The results of Simulation (ii) with k = 118, k1 =5, 10 and n =73. Set p0i = p̂0i, i=1,. . . , 118 where p̂0i = x0i/n0i

are the estimates from the HIV data. For the first k0 tests, let null hypotheses be true (p0i = p1i, i=1, . . . k0), while for the
last k1 tests, we let the alternatives be true, and generated the last k1 p1i’s by using an odds-ratio of 5. MB and EBMB stand
for FB and EB methods based on the mode-based prior. Intr and EBIntr stand for FB and EB methods based on the intrinsic

prior and DBH stands for the discrete Benjamini-Hochberg method

k1 = 5 MB EBMB Intr EBIntr DBH k1 = 10 MB EBMB Intr EBIntr DBH

ATD 4.68 4.64 4.44 4.51 4.82 8.15 8.14 8.03 8.12 8.60
AFD 0.06 0.05 0.047 0.052 0.26 0.07 0.06 0.075 0.08 0.35
FDR 0.0127 0.011 0.0107 0.011 0.051 0.0085 0.0073 0.009 0.01 0.039
FNR 0.064 0.072 0.11 0.098 0.036 0.185 0.18 0.197 0.188 0.14

applied the methods to each data set. The summary results
are given in Table 2.

Simulation Setting (ii) Here, we used a setting similar
to the HIV sequence data example, and fixed the number
of tests k = 108 and the Binomial sample size n = 73.
We set p0i = p̂0i, i=1,. . . , 118 where p̂0i = x0i/n0i are the
estimates from the HIV data. For the first k0 tests, we let
null hypotheses be true (p0i = p1i, i=1, . . . k0), while for the
last k1 tests, we let the alternatives be true, and generated
the last k1 values of p1i’s using an odds-ratio of 5, same as in
the previous setting. We did the simulation for each of two
values of k1, k1 = 5 and10, and for each case, did repeated
simulation of 500 data sets and applied the methods to each
data set. The summary results are given in Table 3.

The two simulation settings have very different sizes; the
first one with a small number of tests, k = 9, and a small
sample size, n = 10 (small sizes), and the second with a
large number of tests, k = 108, and a large sample size,
n = 73 (large sizes). For all approaches, the Bayes, empir-
ical Bayes, and DBH, the error rates (FDR and FNR) are
smaller in the second simulation with larger values for k and
n than in the first. For the Bayes approach with either prior,
when the number of true alternatives, k1, is increased while
the (total) number of tests is held fixed, FDR decreased and
FNR increased in each setting. This latter phenomenon can
be attributed to an overall decrease in the posterior proba-
bilities of null hypotheses due to the multiplicity adjustment
induced by an increase in overall evidence in favor of alter-
natives.

Based on the results for the Bayesian approach using the
two priors, we find that in the first setting (small sizes);
for the case with k1 = 3), the mode-based Beta prior gave
results indicating it is less conservative (with slightly larger
FDR, AFD and ATD; and smaller FNR) than the intrinsic
prior. For the same setting with k1 = 6, FDR and FNR
were smaller, and ATD was slightly larger for, indicating
that the use of the mode-based Beta prior gives an overall
more accurate results than the intrinsic prior. In the second
setting (large sizes) use of both priors showed no difference
giving approximately the same frequentist rates.

Comparing the fully Bayes (FB) and the empirical Bayes
(EB) approaches, we can see that EB approach is a good
approximation to FB approach for both priors when k and
n are large. When k and n are small, EB approach does not
provide a good approximation to FB. Specifically, EB ap-
proach using mode based Beta prior (EBMB) yields higher
number of discoveries (true and false) than its FB counter-
part (MB), while EB approach using intrinsic prior (EBIntr)
yields lower number of discoveries than its FB counterpart
(Intr) when k and n are small.

The results using the respective conventional cut-offs for
the Bayes approaches and the DBH approach in the first set-
ting (small sizes) indicate that the Bayes approaches have
larger FDR, AFD, and ATD; and smaller FNR. In the sec-
ond setting (large sizes), the results are much closer, but
the Bayes approach gave smaller FDR and AFD, somewhat
similar values for ATD and FNR. These properties indicate
that Bayes approach with the conventional cut-off 0.5 is less
conservative in the sense of finding more discoveries (true
and false) when k and n are small, but has an overall better

A default Bayesian multiple comparison of two binomial proportions 523



Figure 1. Results for DNA sequence data and comparison of proposed procedures. Figure (a) presents posterior probabilities of
the null hypotheses. The blue square stands for MB, the black triangle is for EBMB, red diamond is for Intr, and the green
filled circle is for EBIntr. Figure (b) shows the number of discovery as c changes, the blue dashed line is for the MB and the

black solid line is for EBMB, red dotted line is for Intr and the dashed green line is for EBIntr.

accuracy when k and n are large, in comparison to the use
of DBH.

5.2 Real data applications

We provide two applications for multiple testing problem
of equality of two proportions; one using the DNA sequence
data, and the other using an HIV sequence data.

(i) DNA sequence data (Tarone 1990)
The data set has 9 tests, corresponding to the nine nu-

cleotide sites. The posterior probabilities of nulls for the 9
tests are plotted in Figure 1 (a). We note that the poste-
rior probabilities of the null hypotheses for the mode-based
Beta prior are smaller than those of the intrinsic prior, con-
sistent with the results for the repeated simulations (i) with
smaller k1. For deciding between the null and the alternative
hypotheses, we used a cut-off value c, and call it a “discov-
ery” when the posterior probability of a null hypothesis is
less than c. The number of discoveries for a range of values
for c are displayed in Figure 1 (b). In particular, for the
cut-off value c = 0.5 there are differences between the con-
trol and study cells at Sites 1, 2, 3 and 4 using the mode
based prior, and at Sites 1 for the intrinsic prior, and for
c = 0.05, there is only difference at Site 1 using the mode
based prior while none using the intrinsic prior. For compari-
son, in Tarone (1990), the author used a modified Bonferroni
procedure and found differences at Sites 3, 1, and 9 at 5%
level. Additionally, DBH only yielded differences at Site 1
at 5% level.

We also note that EB approach has consistently smaller
posterior probabilities for null hypotheses than FB approach
for mode-based Beta prior, and larger probabilities for the

intrinsic prior. This is similar to what we found earlier in the
simulation study, where the EB approach did not provide a
good approximation to FB when the number of tests was
small.

(ii) HIV sequence data
This example is from an HIV sequence study considered

by Gilbert (2005), where data were available on two sets of
gag p24 amino-acid sequences, infected with subtype B HIV
and subtype C HIV. For each sequence set, the degree of
polymorphism at each position in the sequences can be mea-
sured by the frequency of non-consensus amino-acids at the
position. The goal was to identify the positions at which the
probability of a non-consensus amino-acid differs between
the two sets of sequence sets; the consensus amino-acid is the
modal amino-acid for the sequence set. The data consists of
146 gag p24 amino acid sequences, with 73 of them infected
with subtype HIV C (Group 0), and the other 73 infected
with HIV B (Group 1). Of the 231 positions in HIV gag
p24, 113 have the modal amino acid in all 146 sequences, i.e.
are perfectly conserved, and more details about this study
can be found in Gilbert (2005). Thus, there are k = 118
positions that contribute information to the comparison of
interest. We let p0i and p1i respectively be the probabilities
of a non-consensus amino-acid at position i for group 0 and
group 1 sequences, respectively. The goal is to test simulta-
neously H0i : p0i = p1i vs H1i : p0i �= p1i, i = 1, . . ., 118.
Here, the ith null hypothesis (resp. alternative hypothesis)
indicates that the probabilities of non-consensus amino-acid
at ith position are the same (resp. different) for Group 0
and Group 1. The results are summarized in Figure 2. We
observe that the posterior probabilities of the null hypothe-
ses for the mode based Beta prior are smaller than those for
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Figure 2. The posterior probabilities of nulls for the full Bayesian and empirical Bayesian methods based on the mode-based
Beta prior for some of randomly selected tests (left), and the plot for the number of discoveries vs cut-off (right) for HIV data
when k=118. Figure (a) presents posterior probabilities of the null hypotheses. The blue square stands for the MB, the black

triangle is for EBMB, red diamond is for Intr, and the green filled circle is for EBIntr. Figure (b) shows the number of
discovery as c changes, the blue dashed line is for the MB and the black solid line is for EBMB, red dotted line is for Intr and

the dashed green line is for EBIntr.

the intrinsic prior, although no more than 0.1, and that the
FB and EB based posterior probabilities, for each prior, are
very close to each other. These results are consistent with
the findings in Simulation (ii). From Figure (b), the num-
bers of discovery are equal to 32 for both MB and EBMB,
and equal to 29 for both Intr and EBIntr for c = 0.5; and
they are 11 and 10 when c = 0.05 for using mode based prior
and intrinsic prior, respectively.

From these results, it appears that the EB approach can
be a good approximation to the FB when the number of
tests, k, is large. However, EB does not give a good approx-
imation to FB when k is small, as observed in the simulation
study and in the the DNA sequence data example.

6. CONCLUSION

We have provided a default Bayesian approach to multi-
ple testing of equality of two proportions. We considered pri-
ors from the literature and introduced a new prior referred
to as mode-based Beta prior and evaluated them in terms
of three properties deemed desirable for a default prior in
the context of test of hypothesis comparing two proportions.
We found that the the intrinsic prior and the mode-based
Beta prior satisfied the three properties and chose them as
suitable default priors for multiple testing of the equality of
two proportions. We also constructed default priors for the
hyperparameters for the two priors. We found that prior for
the hyperparameter for the mode-based Beta prior can be
chosen to correspond to a prior for the variance of the differ-
ences in the proportions peak at zero and decreasing away

from zero; a feature common for the default prior for vari-
ance for normal means multiple testing. But, a prior for the
hyperparameter of the intrinsic prior does not correspond
to a prior for the variance with the same feature. We used
these two priors in two simulation studies involving repeated
sampling and with two real data examples. We also used an
Empirical Bayes approach as a computationally more effi-
cient potential alternative to the fully Bayes approach and
compared the results.

In the first simulation study we used repeated sampling in
multiple testing scenarios by setting the null hypotheses as
true for a (relatively large) number of tests and the alterna-
tive as true for the rest. In the first simulation study, we cal-
culated the average posterior probability of the null hypoth-
esis in each test using the two priors. The results reported
here and results from other similar simulations showed that
the intrinsic prior gave consistently higher posterior proba-
bilities than the mode based prior regardless of whether the
null or the alternative hypothesis is true in each test. This
indicated that intrinsic prior is more conservative than the
mode based Beta prior in the sense of favoring the null.

In the second simulation study we carried out repeated
sampling simulation in two settings, large size and small size,
and calculated certain frequentist characteristics including
FDR and FNR of the Bayes approach using the two pri-
ors. For this, we used a conventional cut-off value of 0.5 for
posterior probabilities of the null hypotheses. We also used
the empirical Bayes approach that does not require speci-
fication of prior for the hyperparameter(s) and used it in
the second repeated simulation study as well as with the
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real data examples. In addition, we also calculated the same
for the frequentist Discrete Benjamini-Hochberg (DBH) ap-
proach using the cut-off 0,05 for the p-values and compared
the results with those of the Bayes approaches. But, the
posterior probabilities of null hypotheses and p-values are
not directly comparable and hence the above choice of cut-
offs is only to see how the use of the conventional choices
in each paradigm would compare in terms of the frequentist
characteristics used, and need to be interpreted only in that
limited context.

The frequentist characteristics for the two priors were
nearly the same in the large size setting. In the small size
setting the intrinsic prior was more conservative (favoring
null more often) than the mode-based Beta prior for smaller
number of true alternatives (the sparser case) and, for larger
number of true alternatives there was an overall more accu-
rate performance for the the mode-based Beta prior. In the
real data examples, the intrinsic prior also gave larger pos-
terior probabilities for the null hypotheses in most tests,
consistent with findings from the first simulation study. We
also found that the empirical Bayes approach did not pro-
vide good approximation to the fully Bayes approach either
for the frequentist characteristics in the simulation study
or for the posterior probabilities in the real data examples.
This is consistent with the results of the second simulation
study for this setting. However, it gave good approximations
in the large size setting for both priors, both in the repeated
simulation and in the real data example. This would be use-
ful because the computation for the fully Bayes approach
is slower for larger sample sizes. For instance, the empirical
Bayes approach took only 5 seconds while the fully Bayes ap-
proach took more about 900 seconds for computation of the
HIV sequence data example with 118 tests. Overall, based
on the findings and the results we can conclude that the
mode-based Beta prior is a suitable default prior for use in
multiple testing of two proportions.

APPENDIX A. INTRINSIC PRIOR

• Plots of intrinsic prior for two different choices of m.

Lemma A.1. For the intrinsic prior in (2),

(A1) E(p1 |p0 ) =
2 + 2m+m2p0

(2 +m)2
.

Proof. Given the joint probability density (2), the marginal
dist. of p0 is uniform over (0, 1) and hence the conditional
probability density function of p1 given p0 has the same
expression as the joint density function. Thus, letting Aij =
Γ(i+ j + 1)Γ(2m− i− j + 1)/Γ(2m+ 2)), we have

E(p1|p0)

=

m∑
i=0

m∑
j=0

(
m
i

)(
m
j

)
Aij Be(p0 |i+ 1, m− i+ 1)(

j + 1

2 +m
)

Figure A1. π(p0, p1|m) for m = 5 (top), m = 40 (bottom)
for the intrinsic prior.

=
1

2 +m

m∑
i=0

m∑
j=0

(
m
i

)(
m
j

)
Aij Be(p0 |i+ 1, m− i+ 1)(j)

︸ ︷︷ ︸
B

+
1

2 +m

m∑
i=0

m∑
j=0

(
m
i

)(
m
j

)
Aij Be(p0 |i+ 1, m− i+ 1)

︸ ︷︷ ︸
B1

.

By integrating (2) over p0, we see that the term indicated

by B1 in the above is equal to 1, and using the label B, for

the expression as indicated in the first term on the right of

the above equation, we have

(A2) E(p1 |p0 ) =
1

(2 +m)
[B + 1]
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Now, we get

B =

m∑
i=0

(
m
i

) (m+ 1)!

i!(m− i)!
pi0(1− p0)

m−i.

m∑
j=0

m!

(m− j)!(j − 1)!

(i+ j)!(2m− i− j)!

(2m+ 1)!︸ ︷︷ ︸
C

Using Vandermonde’s identity and after some algebra, we
have

(A3) C =
m

(m+ 2)

(
m+1
i+1

)

Now, by plugging C in equation (A3), and after some more
algebra which we skip here, we get

B =
m

(m+ 2)
(1 +mp0).

Finally, substituting B in equation (A2), yields (A1), com-
pleting the proof.

Lemma A.2. For the intrinsic prior in (2),

(A4) corr(p0i, p1i) =
m2

(2 +m)2
.

Proof. This is easily derived using (A1) and the fact that
each of p0i and p1i has its marginal as uniform distribution
over (0, 1).

• Prior distribution for the variance of the intrinsic prior
induced by the prior on m.

Figure A2. Prior for τ2 induced by the prior (9) for the
hyperparameter m of the intrinsic prior.

APPENDIX B. MODE-BASED PRIOR

• Symmetry of the marginal distribution of p1:

Figure A3. π(p0, p1|r) for r = 3 (top), r = 10 (bottom) for
the mode-based Beta prior.

Letting Beta(x : a, b) denote the density function of the
Beta(a, b) distribution and π(p1|r) be the marginal distribu-
tion of p1, we get from (4), using B(x : a, b) = B(1−x, b, a)

π(p1|r) =
∫

Beta(1− p1 : r(1− p0) + 1, rp0 + 1)dp0

=

∫
Beta(1− p1 : rp′0 + 1, r(1− p′0) + 1)dp′0

= π(1− p1|r).

• Plots of the conditional mean of p1i|p0i versus p0i and
the conditional mean of p0i|p1i versus p1i.

• Figure A5: The figure gives the plot of the posterior
probability of the null hypothesis p1i = p0i using the prior
(4), and the prior obtained by switching p0 and p1 in (4)
for a simulated data with 40 tests. Null hypothesis was as-
sumed true for the first 30 tests, and a pair of observations
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Figure A4. Plots of the conditional means of p0i given p1i vs.
p1i, and of p1i given p0i vs. p0i, marginalized over r.

Figure A5. Posterior probabilities of the null hypothesis
p1i = p0i using the prior (4) indicated on the horizontal axis
(1-0) and the corresponding posterior probabilities using the
prior obtained by switching p0 and p1 in (4) on the vertical

axis (0-1), for a simulated data with 40 tests.

for these were each simulated from Bin(10, 0.2) and the al-
ternative hypotheses were assumed true for the last 10 tests
and the observations were were generated from Bin(10, 0.2)
and Bin(10,0.7).

APPENDIX C. LOGIT-NORMAL PRIOR

This prior is defined by letting θi = log
(

p1(1−p0)
p0(1−p1)

)
and

defining π1(p0, p1) indirectly by letting,

(A5) θi|p0, τ2 ∼ N(0, τ2), p0 ∼ Uni(0, 1)

where τ2 is the hyperparameter for this prior. By numerical
calculation, we verified that this prior allows a range of (0, 1)
for the correlation between p1 and p0, and thus satisfies the
second property in Section 3.1. However, it does not satisfy
the third property, as shown below.
(A6)
Pr(|p1 − p0| > ε|p0) > 0 for some ε > 0, as p0 → c ∈ [0, 1].

is not satisfied by the logit-normal prior.

Proof. Given ε > 0, taking 0 < p0 < ε,

P (|p1 − p0| > ε|p0) = P (p1 > p0+ε|p0)+P (p1 < p0 − ε|p0),
= P (p1 > p0 + ε|p0),
= P (logit(p1) > logit(p0 + ε)|p0),
= P (Z > (logit(p0 + ε)− logit(p0))/τ),

where, Z ∼ N(0, 1). Now, letting p0 go to 0, P (|p1 − p0| >
ε|p0) → 0. Similarly, we can also verify that P (|p1 − p0| >
ε|p0) → 0 as p0 → 1. Hence the condition (A6) is not satis-
fied.

APPENDIX D. MEAN BASED BETA PRIOR

This prior is a mixture of Beta distributions for (p0, p1|r)
and it is given by

(A7) p1|p0, r ∼ Beta(rp0, r(1− p0)), p0 ∼ Uni(0, 1)

where r > 0 is the hyperparameter. This prior was also used
by Kass & Hsiao (1993), Kass & Raftery (1995), and Hsiao,
Lee, & Kass (2005) in the context of testing the equality of
a single pair of proportions (for k = 1). Kass & Hsiao (1993)
used this prior with a fixed value for w = 1/r in the single
testing context. Under this prior, the conditional mean of p1
given p0 is p0, hence the name mean-based Beta prior. Also,

V ar(p1|p0) =
p0(1− p0)

r + 1
and Corr(p1, p0) =

√
(r + 1)

(r + 3)
.

By construction, this prior density is centered around the
null hypothesis and decreases away from the null and thus
satisfies the first property in Section 3.1.

Using the Markov inequality, for any ε > 0, we get

(A8) P (p1 > ε|p0, r) <
E(p1|p0, r)

ε
=

p0
ε
.

Hence, P (p1 > ε|p0, r) → 0, as p0 → 0, for any ε >0. Fur-
thermore, the correlation coefficient between p1 and p0 is in
the range of (0.5773, 1] as r varies in (0,∞). This means this
prior is unable to model a correlation coefficient between p1
and p0 smaller than 0.5773. Thus, this prior does not satisfy
the second and third properties in Section 3.1.

APPENDIX E. FARLIE GUMBEL
MORGENSTERN PRIOR

A well known class of bivariate distributions that has
uniform marginals is the FGM distribution which can be
given by

(A9) π(p1, p0|κ) = 1 + κ(2p1 − 1)(p0 − 1)

where 0 ≤ κ ≤ 1 is the hyperparameter. This prior was
used for Bayesian meta analysis of sparse discrete Binomial
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data by Moreno, Vazquez, & Negrin (2014). The conditional
mean and variance are given by

E(p1|p0, κ) =
1

2
+

κ

3
(p0 −

1

2
), and

V ar(p1|p0, κ) =
1

3
+

κ

6
(2p0 − 1)− (

1

2
+

κ

6
(2p0 − 1))2.

The conditional mean is increasing (respectively, decreas-
ing) in κ when p0 > 1/2 (resp. when p0 < 1/2), and the con-
ditional variance is decreasing in κ, Also, Corr(p1, p0) =

κ
3 ,

and hence, the correlation coefficient between p1 and p0 is
in the range of [0, 1/3] as κ varies in (0, 1). This prior is
not able to model a correlation coefficient between p1 and
p0 greater than 0.333. Thus, this prior does not satisfy the
second property in Section 3.1.
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