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SIMEX estimation for quantile regression model
with measurement error

Yiping Yang
∗
, Peixin Zhao, and Dongsheng Wu

The quantile regression model with measurement error
is considered. To deal with measurement error, we extend
the simulation-extrapolation (SIMEX) method to the case
of quantile regressions in the presence of covariate measure-
ment error. The proposed SIMEX estimation corrects the
bias caused by the measurement error, and not requires the
equal distribution assumption of the regression error and
measurement error. The asymptotic distribution of the pro-
posed estimator is derived. The finite sample performance of
the proposed method is investigated by a simulation study.
A real dataset from the Framingham Heart Study is ana-
lyzed to illustrate the proposed method.
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1. INTRODUCTION

Errors-in-variables models have drawn much attention in
medicines, biology, economics, finance and other fields. It
is well known that the estimator can also be seriously bi-
ased for the mean regression and quantile regression if one
ignores the measurement error. To correct the bias caused
by the measurement error, Liang, Härdle and Carroll [1]
yielded the consistent estimation by applying the so-called
“correction for attenuation”. Cui [2] obtained the consistent
M estimators of errors-in-variables models based on the or-
thogonal residual when the regression error and each com-
ponent of measurement errors follow the same distribution.
Cui and Li [3], Cui and Chen [4] extended the orthogonal
method to obtain the constrained empirical likelihood con-
fidence region for the linear errors-in-variables models and
the consistent generalized least square estimation for semi-
linear errors-in-variables models. Cook and Stefanski [5] pro-
posed the SIMEX method to correct the bias due to additive
measurement error. SIMEX has emerged as an important
method developed to eliminate the biases of parameter esti-
mates caused by measurement errors in a variety of models,
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see for example Carroll, Lombard, Küchenhoff and Stefan-
ski [6], Carrol, Maca and Ruppert [7], Liang and Ren [8],
Nolte [9], Delaigle and Hall [10] Yang, Tong and Li [11].

The above literatures are discussed in mean regression
with the errors-in-variables. Quantile regression with mea-
surement error has been investigated before, however, little
research has been done in this field due to the difficulty
of correcting the bias directly. He and Liang [12] extended
the orthogonal method to obtain a consistent quantile esti-
mation for linear errors-in-variables model. Jiang [13] also
considered the composite quantile regression method for lin-
ear error-in-variable models based on the orthogonal resid-
uals. The orthogonal method requires the equal distribu-
tion assumption, which is very strong and difficult to verify
in practice. Hu and Schennach [14] proposed the consistent
estimators of the nonparametric quantile regression model
based on instrumental variables. But sometimes instrumen-
tal variables are difficult to obtain in practical application.

The SIMEX method has been widely used in mean regres-
sion with measurement error, while seldom used in quantile
regression. In this paper, we apply the SIMEX method to
the quantile regression model with measurement error. Our
method is feasible and easy to apply without assuming the
same distribution of the regression error and measurement
error. The asymptotic distribution of the proposed estimator
is investigated. Simulation results show that the proposed
method leads to much better performance than the naive
approach that ignores measurement error and the orthogo-
nal method proposed by He and Liang [12].

The remainder of this paper proceeds as follows. Section
2 proposes the SIMEX estimator for linear quantile regres-
sion model and its asymptotic properties. In section 3, the
results of Monte-Carlo experiments are reported. Section
4 discusses the application of the proposed method. The
proofs are given in the Appendix.

2. SIMEX ESTIMATOR

Consider the following linear quantile regression model

Yi = XT
i β + εi, i = 1, . . . , n,

where Yi is the response variable, and Xi ∈ Rp is the vector
of covariables, β is the p-dimensional unknown parameter,
εi is the error term and satisfies P (εi ≤ 0|Xi) = τ with
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τ ∈ (0, 1). Often, the covariablesX are not exactly observed,
we observe covariables W with additive measurement error,

Wi = Xi + Ui,

where Ui ∼ N(0,Σuu) is independent of (X,Y ), and Σuu

is assumed known. However, the proposed method can be
still be used when Σuu is estimated, e.g, by the replication
experiments method in Carroll et.al [15]. It is well known
that the quantile regression estimator of β can be seriously
biased with ignoring the measurement error of Xi and using
Wi instead of Xi. Here, what of interest is to obtain an unbi-
ased estimate of β for a particular τ by the SIMEX method.
The key idea is to add additional measurement errors to
the mismeasured variables in order to estimate the effect
of the estimation bias and variance of the measurement er-
ror, and then extrapolate back to the case of no measure-
ment error (Carroll et al. [15]). In this section, we extend
the SIMEX method to quantile regression (QR) model with
measurement error. The proposed SIMEX algorithm can be
described as follows:

1. Simulation step

(a) Choose a grid of λ = 0 < λ1 < . . . < λM . Here
λ controls how much additional independent mea-
surement error is added to W .

(b) For a particular τ and each λm,

i. Generate a sequence of variables

Wib(λm) = Wi+(λmΣuu)
1/2Uib, b = 1, . . . , B,

where Uib ∼ N(0, Ip), Ip is a p ×
p identity matrix, B is a given inte-
ger. Noted that E(Wib(λm)|Xi) = Xi

and Var(Wib(λm)|Xi) = Var{(Wib(λm) −
Xi)

2|Xi} = (1+λm)Var(Wi|Xi). Hence, when
λm = −1, Var(Wib(λm)|Xi) = 0.

ii. Calculate the QR estimation for the simulated
data Wib(λm),

β̂
(τ)
b (λm) = argmin

β

n∑
i=1

ρτ (Yi −WT
ib (λm)β),

where ρτ (r) = τr − rI(r < 0) is the quantile
loss function.

iii. Average the estimated values β̂
(τ)
b (λm) over

b = 1, . . . , B,

β̂(τ)(λm) =
1

B

B∑
b=1

β̂
(τ)
b (λm).

2. Extrapolation step

(a) Use the extrapolant function G(λ,Γ) to fit the data
{β̂(τ)(λm), λm,m = 1, . . . ,M}. The extrapolation

function is usually unknown. The following extrap-
olate function tends to be the most widely used:
the quadratic function G(λ,Γ) = γ0 + γ1λ + γ2λ

2

with Γ = (γ0, γ1, γ2)
T (see Liang and Ren [8] and

Lin and Carroll [16]). Assume that the quadratic
function G(λ,Γ) serves as a good approximation
to the relationship for this data. Then, for j =
1, . . . , p,

Γ̂j = argmin
Γj

M∑
m=1

(
β̂
(τ)
j (λm)− G(λm,Γj)

)2

,

where Γj = (γ0j , γ1j , γ2j)
T , Γ̂j = (γ̂0j , γ̂1j , γ̂2j)

T

and β̂
(τ)
j (λm) is the jth component of β̂(τ)(λm).

(b) Extrapolate to the case of no measurement error
to obtain the SIMEX estimator

β̂
(τ)
SIMEX,j = G(−1, Γ̂j).

where β̂
(τ)
SIMEX,j is the jth component of β̂

(τ)
SIMEX.

Remark 2.1. When λ = 0, the SIMEX estimator reduces

to the naive estimator, β̂
(τ)
Naive,j = G(0, Γ̂j), which ignores

the measurement error and directly uses W instead of X.

To establish the asymptotic properties of β̂
(τ)
SIMEX, we first

list the following regularity conditions:
(C1) The matrix Ω(λ) = E{Wib(λ)W

T
ib (λ)} is positive

definite matrix for λ ∈ Λ = {λ1, λ2, . . . , λM}.
(C2) The conditional distribution of Y given Wb(λ) is ab-

solutely continuous, the corresponding density function f(·)
is bounded away from zero and finity at the τ conditional
quantiles.

Let β̂(τ)(Λ) = (β̂(τ)T (λ1), . . . , β̂
(τ)T (λM ))T , Γ =

(ΓT
1 , . . . ,Γ

T
p )

T , where Γj is the parameter vector estimated

in the extrapolation step for the jth component of β̂(τ)(λ)
with j = 1, . . . , p. Write G(Λ,Γ) = vec{G(λm,Γj), j =

1, . . . , p,m = 1, . . . ,M}, Res(Γ) = β̂(τ)(Λ) − G(Λ,Γ),
s(Γ) = {∂/∂(Γ)}Res(Γ), D(Γ) = s(Γ)sT (Γ), ε∗ib = Yi −
WT

ib (λ)β
(τ)(λ),

ηiB(λ, τ) =
1

f(0)

1

B

B∑
b=1

Wib(λ)
[
I(ε∗ib ≤ 0)− τ

]
,

ΨiB

{
Λ, τ

}
= vec{ηiB(λ, τ), λ ∈ Λ},

A11

(
Λ
)
= diag

{
Ω(λ), λ ∈ Λ

}
and

Σ(Λ, τ) = A−1
11

(
Λ
)
C11

{
Λ, τ

}{
A−1

11

(
Λ
)}T

,

where

C11

{
Λ, τ

}
= cov

(
ΨiB

{
Λ, τ

})
.
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Theorem 2.1. Suppose that conditions (C1)and (C2) hold,
then

√
n(β̂

(τ)
SIMEX−β(τ))

L−→ N{0,GΓ(−1,Γ)Σ(Γ){GΓ(−1,Γ)}T },

where

GΓ(λ,Γ) = {∂/∂(Γ)}G(λ,Γ),

Σ(Γ) = D−1(Γ)s(Γ)Σ(Λ, τ)sT (Γ)D−1(Γ).

3. SIMULATION

In this section, we discuss the finite sample performance
of our proposed estimator (SIMEXQR) by simulation stud-
ies. Consider the following model{

Yi = Xi1β1 +Xi2β2 + (εi − F−1
ε (τ)),

Wi = Xi + Ui, i = 1, . . . , n,

where Fε(·) is the distribution function of εi, Xi1, Xi2 ∼
N(0, 1), (β1, β2) = (1, 2), Ui is generated from
N(0, diag(0.42, 0.42)).The random error variables εi are
taken to be N(0, 0.42), 0.1∗t(1) and 0.2∗Cauchy(0, 1) distri-
bution. We compare the SIMEXQR method with the naive
quantile regression (NQR) proposed by Koenker and Bassett
[17], which ignores the measurement error and directly uses
Wi instead of Xi, and the orthogonal QR method (ORQR)
proposed by He and Liang [12]. In each simulation, we run
500 times to assess the performance with n = 150. In the
SIMEX algorithm, we take λ = 0, 0.2, . . . , 2 and B = 100.
We compute the biases and standard errors (SE) for the
three different types of distributions of the random error
with different quantile levels.

First, the Q-Q plots of the SIMEXQR estimators of β1

and β2 for the Cauchy random error with τ = 0.1, 0.5, 0.9
are plotted in Figure 1 and other cases are similar. Figure 1
shows that empirically these estimators are asymptotically
normal.

To evaluate the performance of the fitness of the
quadratic extrapolate function in extrapolation process, we
plot the trace of the extrapolation step of the SIMEX al-
gorithm for the Cauchy random error with τ = 0.1, 0.5, 0.9
for one run in Figure 2, and other cases are similar. Fig-
ure 2 shows the quadratic extrapolate function fits the data
(β̂(τ)(λ), λ) well.

Next, we compare the SIMEXQR method with the NQR
method and the ORQR method. Table 1, Table 2, Table 3
and Table 4 present the results for the three different random
error variables, respectively. From Table 1, Table 2, Table 3
and Table 4, we can see the following results:

(1) When the regression and measurement error are nor-
mally distributed with the equal variance σ2

ε = σ2
uu = 0.42

(see Table 1), the SIMEXQR and ORQR estimators have
smaller biases than the NQR estimator. Hence, the NQR
method is biased. The SE of SIMEXQR estimator is slightly
bigger than the ORQR estimator, but the bias of SIMEXQR

Figure 1. The Q-Q plots of the SIMEXQR estimates of every
parameter for the Cauchy random error with τ = 0.1, 0.5, 0.9.

estimator is smaller than the ORQR estimator in most cases.
Furthermore, we provide the mean squared error (MSE)
results to better compare the SIMEXQR method and the
ORQR method in Table 2. From the Table 2, we can see
that the MSE of SIMEXQR estimator is slightly bigger than
the ORQR estimator.

(2) For the heavy-tailed error distributions with t(1) and
Cauchy(0, 1) (see Table 3 and Table 4), the SIMEXQR es-
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Figure 2. The trace of the extrapolation step of the SIMEX
algorithm for the Cauchy random error with τ = 0.1, 0.5, 0.9
for one run. The simulated estimates (β̂(τ)(λ), λ) are plotted

(dots), and the fitted quadratic function (solid lines) is
extrapolated to λ = −1. The extrapolation results are the

SIMEX estimates (squares), the naive estimates correspond to
0 on the horizontal axis.

timator still performs well, but the NQR method is biased
because of ignoring the measurement error. The bias and SE
of the ORQR estimator are much bigger than the SIMEXQR
estimator, the principal reason is that the equal distribution
assumption of the regression error and measurement error
is violated.

(3) Note that the SE of the NQR estimator is smaller
than the SIMEXQR estimator, it is because that the naive
estimator doesn’t consider the extra variance caused by the
measurement error.

Figure 3. The histogram and density curve of the average
blood pressure (BP) in a fixed two-year period for the

Framingham Heart Study.

4. APPLICATION

In this section, we analyze a data set from the Framing-
ham Heart Study to illustrate the proposed procedure. The
dataset contains 5 variables with 1615 males. Liang, Härdle
and Carroll [1] used the partially linear errors-in-variables
model to analyze the relationship among the age, the log-
arithm of serum cholesterol level and the blood pressure.
What we’re interested in is how the serum cholesterol affects
the blood pressure. The response variable Y is their aver-
age blood pressure in a fixed two-year period and W is the
standardized variable for the logarithm of the serum choles-
terol level (log(SC)). Similar to Liang, Härdle and Carroll
[1], W is measured with error. σ2

uu is estimated to be 0.2632
by two replicates experiments. Figure 3 shows the density
curve of Y . From Figure 3, we see that the distribution of
Y is non-normal. Further, the p-value of the Kolmogorov-
Smirnov normal test is 1.954e − 14. From the test, we can
also see that the distribution Y is non-normal. Therefore, it
may be more reasonable to use the quantile regression to an-
alyze the dataset than the mean regression. The estimators
and standard errors of β based on NQR, SIMEXQR and
ORQR are reported in Table 5. Noted that we can obtain
the standard error by estimating the asymptotic variance in
Theorem 2.1, but the asymptotic variance in Theorem 2.1
is very complex. In order to avoid estimating the asymp-
totic variance, we use the Bootstrap method to compute
the standard errors. We sample with replacement 200 times
from the original 1615 data set and compute β̂(τ), then re-
peat the above step a number of times, 1000, to come up

with estimators β̂
(τ)
1 , . . . , β̂

(τ)
1000. The stand deviation of the

values β̂
(τ)
1 , . . . , β̂

(τ)
1000 is our estimator of the standard error
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Table 1. The biases and standard errors (SE) of the parameters β1 and β2 obtained by the NQR, SIMEXQR and ORQR
methods for different quantile levels with εi ∼ N(0, 0.42).

NQR SIMEXQR ORQR

β1 β2 β1 β2 β1 β2

τ Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

0.1 −0.1401 0.1014 −0.2801 0.1030 −0.0194 0.1547 −0.0287 0.1613 −0.0427 0.1165 −0.0931 0.1095

0.25 −0.1348 0.0934 −0.2805 0.0908 −0.0076 0.1490 −0.0300 0.1448 −0.0118 0.1060 −0.0344 0.1051

0.5 −0.1394 0.0879 −0.2798 0.0883 −0.0152 0.1422 −0.0273 0.1449 −0.0039 0.1118 −0.0056 0.1068

0.75 −0.1398 0.0905 −0.749 0.0893 −0.0104 0.1383 −0.0224 0.1400 −0.0171 0.1083 −0.0250 0.1072

0.9 −0.1412 0.0986 −0.2755 0.0999 −0.0126 0.1535 −0.0209 0.1572 −0.0475 0.1088 −0.0839 0.1074

Table 2. The mean squared errors (MSE) of the parameters β1 and β2 obtained by the SIMEXQR and ORQR methods for
different quantile levels with εi ∼ N(0, 0.42)

Method ß τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

SIMEXQR β1 0.0243 0.0223 0.0204 0.0192 0.0237

β2 0.0268 0.0219 0.0217 0.0201 0.0251

ORQR β1 0.0154 0.0114 0.0125 0.0120 0.0141

β2 0.0207 0.0122 0.0114 0.0121 0.0186

Table 3. The biases and standard errors (SE) of the parameters β1 and β2 obtained by the NQR, SIMEXQR and ORQR
methods for different quantile levels with εi ∼ 0.1 ∗ t(1)

NQR SIMEXQR ORQR

β1 β2 β1 β2 β1 β2

τ Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

0.1 −0.1376 0.1056 −0.2730 0.1067 −0.0144 0.1516 −0.00136 0.1569 0.5918 3.0447 0.6010 3.0412

0.25 −0.1368 0.0973 −0.2772 0.0956 −0.0108 0.1447 −0.0218 0.1468 0.6419 3.2551 0.8456 3.5285

0.5 −0.1392 0.0821 −0.2801 0.0875 −0.0157 0.1293 −0.0211 0.1425 0.7457 3.3828 1.0568 3.8368

0.75 −0.1357 0.1014 −0.2717 0.0915 −0.0089 0.1427 −0.0235 0.1424 1.0920 4.1982 1.0600 3.9107

0.9 −0.1251 0.1001 −0.2813 0.1079 −0.0109 0.1529 −0.0299 0.1562 0.9406 3.9840 0.8293 3.5379

Table 4. The biases and standard errors (SE) of the parameters β1 and β2 obtained by the NQR, SIMEXQR and ORQR
methods for different quantile levels with εi ∼ 0.2 ∗ Cauchy(0, 1)

NQR SIMEXQR ORQR

β1 β2 β1 β2 β1 β2

τ Bias SE Bias SE Bias SE Bias SE Bias SE Bias SE

0.1 −0.1345 0.1168 −0.2757 0.1251 −0.0029 0.1821 −0.0279 0.1848 0.9272 3.5626 1.3069 3.9905

0.25 −0.1365 0.1014 −0.2788 0.1074 −0.0123 0.1511 −0.0293 0.1593 1.8678 5.2401 1.9404 4.8803

0.5 −0.1363 0.0931 −0.2785 0.1006 −0.0113 0.1461 −0.0277 0.1572 1.9441 5.2781 2.2721 5.2483

0.75 −0.1399 0.0992 −0.2735 0.1054 −0.0175 0.1494 −0.0165 0.1582 1.6731 4.9010 2.0222 5.0782

0.9 −0.1292 0.1120 −0.2802 0.1165 −0.0052 0.1722 −0.0274 0.1789 1.1818 4.2165 1.2621 4.2187

of β̂(τ). The traces of the extrapolation step for the SIMEX

algorithm are presented with τ = 0.1, 0.5 and 0.9 in Fig-

ure 4. As can be seen from Figure 4, it is reasonable to use

the quadratic extrapolation function. Compared with the

ORQR method, the SIMEXQR estimators of β2 is larger.

The estimators of β2 based on the NQR and SIMEXQR

method are not significantly different at τ = 0.9 quantile

level. The SIMEXQR estimator of β2 is larger than the

NQR estimator at τ = 0.1, 0.25, 0.5, 0.75. This means that

the blood pressure and the serum cholesterol are more pos-
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Table 5. The estimators (ES) and standard errors (SE) of the parameters β1 and β2 obtained by the NQR, SIMEXQR and
ORQR methods for different quantile levels in the Framingham Heart Study

NQR SIMEXQR ORQR

β1 β2 β1 β2 β1 β2

τ ES SE ES SE ES SE ES SE ES SE ES SE

0.1 111.8502 0.3275 1.8971 0.4396 111.8631 0.3775 2.3050 0.5463 112.9550 0.3282 1.8596 0.4771

0.25 118.8131 0.2962 1.6674 0.3546 118.8616 0.3371 1.9239 0.4753 120.2340 0.2305 1.7033 0.3371

0.5 127.1026 0.3271 2.5329 0.4081 127.0436 0.3374 2.9517 0.5629 129.0969 0.4011 2.7682 0.3407

0.75 138.4845 0.5887 3.0920 0.5825 138.4643 0.6654 3.8900 0.7302 141.1629 0.6775 3.1428 0.7071

0.9 153.6328 1.0732 1.4826 0.9951 153.3928 1.1904 1.4204 1.2850 158.9772 1.8104 1.5424 0.5262

Figure 4. The traces of the extrapolation step for the SIMEX
algorithm at τ = 0.1, 0.5, 0.9 for the Framingham Heart

Study.

itively correlated when the measurement errors are taken

into account. The results are similar to those in [1].

5. CONCLUSION

In this paper, we use the SIMEX method to obtain

the consistent parameter estimation for quantile regression

models in the presence of covairate measurement error. Our

method is easy to implement, and avoids the equal dis-

tribution assumption of the regression error and measure-

ment error. The proposed method can be easily extended

to various regression models, linear or nonlinear. The sim-

ulation results show that the proposed method reduces the

bias due to the measurement error compared to the naive

one. Compared with the method of He and Liang [12], the

SIMEX method performs better when the equal distribu-

tion assumption of the regression and measurement error is

violated.

However, there remain the further research topics. We

get the asymptotic properties of β̂
(τ)
SIMEX in Theorem 2.1.

Based on the Theorem 2.1, it would be worth discussing the

following linear hypothesis:

H0 : Rβ(τ) = r versus H1 : Rβ(τ) �= r,

where R is a given q × p full rank matrix, which implies

q ≤ p, r is a q-dimensional vector. Such testing problems

have been widely studied in the literature, see, for example,

Fan and Huang [18] and Zhu and Zhao [19]. When the equal

distribution assumption is satisfied, it would be also desir-

able to consider some theoretical results for comparing the

asymptotic variances of the SIMEXQR and ORQR meth-

ods. Furthermore, Nghiem and Potgieter [20] proposed the

simulation-selection-extrapolation (SIMSELEX) algorithm

with a variable selection step based on the group lasso in

high-dimensional errors-in-variables models. It would be a

very interesting topic of further research to apply the SIM-

SELEX method to in high-dimensional quantile regression

models with measurement error.
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APPENDIX

Proof of Theorem 2.1: Assume β(τ)(λ), λ ∈ Λ is the true
value based on the quantile model

QY (τ |Wb(λ)) = WT
b (λ)β(τ)(λ).

Let
√
n(β̂

(τ)
b (λ) − β(τ)(λ)) = un. Then un is the minimizer

of the following criterion

Ln =

n∑
i=1

{
ρτ

(
ε∗ib −

WT
ib (λ)un√

n

)
− ρτ (ε

∗
ib)

}
.

By applying the identity in Knight [21], we have

ρτ (r, s)−ρτ (r)=s (I(r ≤ 0)− τ)+

∫ s

0

{I(r≤ t)−I(r ≤ 0)}dt.

Thus we write Ln as follows

Ln =
n∑

i=1

WT
ib (λ)un√

n
[I(ε∗ib ≤ 0)− τ ] +Bnb(λ),

whereBnb(λ) =
n∑

i=1

∫WT
ib(λ)un/

√
n

0
[I(ε∗ib ≤ t)− I(ε∗ib ≤ 0)].

Moreover, we have

E(Bnb(λ)) =

n∑
i=1

∫ WT
ib(λ)un/

√
n

0

[F (t)− F (0)]dt

=
1

n

n∑
i=1

∫ WT
ib(λ)un/

√
n

0

√
n
[
F (t/

√
n)− F (0)

]
dt

→ 1

2
f(0)uT

nΩ(λ)un.

Var(Bnb(λ))=

n∑
i=1

E

{∫ WT
ib(λ)un/

√
n

0

[I(ε∗ib ≤ t)− I(ε∗ib≤0)

− (F (t)− F (0))]dt}2

≤
n∑

i=1

n∑
i=1

E

[∣∣∣∣∣
∫ WT

ib(λ)un/
√
n

0

[I(ε∗ib ≤ t)

− I(ε∗ib ≤ 0)− (F (t)− F (0))]dt|]

× 2

∣∣∣∣WT
ib (λ)un√

n

∣∣∣∣
≤ 4E(Bnb(λ))

max1≤i≤n

∣∣WT
ib (λ)un

∣∣
√
n

→ 0.

Then, it follows that

Ln=

n∑
i=1

WT
ib (λ)un√

n
[I(ε∗ib ≤ 0)−τ ]+

1

2
f(0)uT

nΩ(λ)un+op(1).

Since Ln is a convex function, then following Knight [21]
and Koenker [22], we have

√
n(β̂

(τ)
b (λ)− β(τ)(λ)) = −Ω−1(λ)

f(0)

n∑
i=1

n−1/2Wib(λ)

× [I(ε∗ib ≤ 0)− τ ] + op(1).

According to the definition of β̂(τ)(λ), we have
(A.1)
√
n(β̂(τ)(λ)− β(τ)(λ)) = Ω−1(λ)n−1/2

n∑
i=1

ηiB(λ, τ) + op(1).

By (A.1), the limit distribution of
√
n(β̂(τ)(Λ)− β(τ)(Λ)) is

multivariate normal distribution N(0,Σ).
Extrapolation step yields

Γ̂ = argmin
Γ

ResT (Γ)Res(Γ).

The estimating equation for Γ̂ is

s(Γ̂)Res(Γ̂) = 0.

Then
√
n(Γ̂− Γ)

L−→ N(0,Σ(Γ)).

Because β̂
(τ)
SIMEX = G(−1, Γ̂), the limit distribution of√

n(β̂
(τ)
SIMEX − β(τ)) is multivariate normal distribution with

mean zero and covariance

GΓ(−1,Γ)Σ(Γ){GΓ(−1,Γ)}T .
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A. (1996). Asymptotics for the SIMEX estimator in structural
measurement error models. Journal of the American Statistical
Association 91 242–250. MR1394078

[7] Carroll, R. J., Maca, J. and Ruppert, D. (1999). Non-
parametric regression in the presence of measurement error.
Biometrika 86 541–554. MR1723777

[8] Liang, H., Ren, H. (2005). Generalized partially linear mea-
surement error models. Journal of Computational and Graphical
Statistics 14 237–250. MR2137900

[9] Nolte, S. (2007). The multiplicative simulation extrapolation ap-
proach. Center for Quantitative Methods and Survey Research,
University of Konstanz, Working Paper.

[10] Delaigle, A., Hall, P. (2008). Using SIMEX for smoothing
parameter choice in errors-in-variables problems. Journal of the
American Statistical Association 130 280–287. MR2394636

[11] Yang, Y. P., Tong, T. J., Li, G. R. (2019). SIMEX estimation
for single-index model with covariate measurement error. AStA
Advances in Statistical Analysis 103 137–161. MR3922272

[12] He, X., Liang, H. (2000). Quantile regression estimates for a class
of linear and partially linear error-in-variable models. Statistica
Sinica 10 129–140. MR1742104

[13] Jiang, R. (2015). Composite quantile regression for linear
errors-in-variables models. Hacettepe Journal of Mathematical
and Statistics 44 707–713. MR3410873

[14] Hu, Y., and Schennach, S. M. (2008). Instrumental variable
treatment of nonclassical measurement error models. Economet-
rica 76 195–216. MR2374986

[15] Carroll, R. J., Ruppert, D., Crainiceanu, C. M., Stefanski,

L. A. (2006). Measurement error in nonlinear models: a modern
perspective. Chapman and Hall/CRC. MR2243417

[16] Lin, X., Carroll, R. J. (2000). Nonparametric function esti-
mation for clustered data when the predictor is measured with-
out/with error. Journal of the American Statistical Association
95 520–534. MR1803170

[17] Koenker, R., Bassett, Jr. G. (1978). Regression quantiles.
Econometrica 46 33–50. MR0474644

[18] Fan, J., Huang, T. (2005). Profile likelihood inferences on semi-
parametric varying-coefficient partially linear models. Bernoulli
11 1031–1057. MR2189080

[19] Zhu, S., Zhao, P. (2019). Tests for the linear hypothesis in semi-
functional partial linear regression models. Metrika 82 125–148.
MR3922524

[20] Nghiem, L., Potgieter, C. (2019). Simulation-selection-
extrapolation: estimation in high-dimensional errors-in-variables
Models. Biometrics 75 1133–1144. MR4041817

[21] Knight, K. (1998). Limiting distributions for L1 regression es-
timators under general conditions. The Annals of Statistics 26
755–770. MR1626024

[22] Koenker, R. (2005). Quantile Regression. Cambridge University
Press. MR2268657

Yiping Yang
School of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing Key Laboratory of Social Economic and Applied
Statistics
Chongqing
China
E-mail address: yeepingyang@foxmail.com

Peixin Zhao
School of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing
China
E-mail address: zpx81@163.com

Dongsheng Wu
School of Mathematics and Statistics
Chongqing Technology and Business University
Chongqing
China
E-mail address: 1006725462@qq.com

552 Y. Yang, P. Zhao, and D. Wu

http://www.ams.org/mathscinet-getitem?mr=1619970
http://www.ams.org/mathscinet-getitem?mr=1965825
http://www.ams.org/mathscinet-getitem?mr=1379467
http://www.ams.org/mathscinet-getitem?mr=1394078
http://www.ams.org/mathscinet-getitem?mr=1723777
http://www.ams.org/mathscinet-getitem?mr=2137900
http://www.ams.org/mathscinet-getitem?mr=2394636
http://www.ams.org/mathscinet-getitem?mr=3922272
http://www.ams.org/mathscinet-getitem?mr=1742104
http://www.ams.org/mathscinet-getitem?mr=3410873
http://www.ams.org/mathscinet-getitem?mr=2374986
http://www.ams.org/mathscinet-getitem?mr=2243417
http://www.ams.org/mathscinet-getitem?mr=1803170
http://www.ams.org/mathscinet-getitem?mr=0474644
http://www.ams.org/mathscinet-getitem?mr=2189080
http://www.ams.org/mathscinet-getitem?mr=3922524
http://www.ams.org/mathscinet-getitem?mr=4041817
http://www.ams.org/mathscinet-getitem?mr=1626024
http://www.ams.org/mathscinet-getitem?mr=2268657
mailto:yeepingyang@foxmail.com
mailto:zpx81@163.com
mailto:1006725462@qq.com

	Introduction
	SIMEX estimator
	Simulation
	Application
	Conclusion
	Appendix
	Acknowledgements
	References
	Authors' addresses

