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A pairwise pseudo-likelihood approach for the
additive hazards model with left-truncated and
interval-censored data
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Left-truncated and interval-censored data occur com-
monly and some approaches have been proposed in the lit-
erature for their analysis. However, most of the existing
methods are based on the conditional likelihood given left-
truncation times, which can be inefficient since the infor-
mation in the marginal likelihood of the truncation times is
ignored. To address this, in this paper, a pairwise pseudo-
likelihood augmented estimation approach is proposed un-
der the additive hazards model that can fully make use of
all available information. The derived estimator is shown
to be consistent and asymptotically normal, and simulation
studies suggest that the proposed method works well and
provides a substantial efficiency gain over the conditional
approach. In addition, the method is applied to a set of real
data arising from an AIDS cohort study.

Keywords and phrases: Additive hazards model, Boot-
strap, Interval-censored data, Left truncation, Pairwise
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1. INTRODUCTION

The analysis of left-truncated and interval-censored fail-
ure time data has recently attracted much attention due to
their general structure and common occurrence in many ar-
eas such as demographical, financial and medical studies. By
interval censoring [4, 23], we usually mean that the failure
time of interest is observed only to belong to a window or an
interval instead of being observed exactly or right-censored.
A typical example of interval-censored data is given in a
health or medical follow-up study, which commonly exam-
ines the status of a disease or medical condition of the study
subject from time to time. It is apparent that for the situa-
tion, the status of a subject may change between follow-up
times and also subjects may miss the scheduled follow-ups,
yielding interval-censored observations.

In addition to interval censoring, sometimes one may also
have to deal with left truncation that usually occurs due to
some sampling biases. One such case is that sometimes only
the subjects who satisfy certain conditions or experience
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some initial events can be included in a study. In prevalent
cohort studies, for example, they usually only include the
individuals who have survived until the enrollment. A more
specific example of left-truncated and interval-censored data
that motivated this investigation is given by an AIDS cohort
study that will be discussed in details below.

Many authors have investigated regression analysis of
right-censored or interval-censored failure time data. The
most common and popular models are the proportional haz-
ards model and its generalization. Some early and represen-
tative references on these include [1, 5, 7] on right-censored
data and [11, 13, 30] on interval-censored data. However, it
is well-known that sometimes one may be interested in the
additive or excess risk instead of the relative risk. For the
situation, the additive hazards model has been commonly
used and discussed by many authors [18, 19, 29].

For the analysis of left-truncated and right-censored or
interval-censored data, some approaches have been pro-
posed in the literature. However, most of the existing ap-
proaches are based on the conditional likelihood given the
left-truncation times. For example, [24] discussed regression
analysis of left-truncated and right-censored data under the
proportional hazards model, while [3] considered the same
problem under the semiparametric transformation model.
[15] and [21] both considered regression analysis of left-
truncated and interval censored data under the proportional
hazards model. [26] investigated the same problem with data
arising from the additive hazards model.

Note that for all conditional methods, they only make
use of partial information on truncation times. To address
this and improve the efficiency, some efforts have been
made to recover some missing information in the condi-
tional methods. Among others, for example, [14] and [27]
developed the pairwise pseudo-likelihood augmented esti-
mation approaches for right-censored data under the addi-
tive and proportional hazards model, respectively. [25] con-
sidered interval censoring instead of right censoring under
the proportional hazards model. [12] developed an EM al-
gorithm through introducing two layers of data augmenta-
tion for length-biased interval-censored data, a special case
of left-truncated and interval-censored data. However, there
does not seem to exist similar work for left-truncated and
interval-censored data under the additive hazards model,
the focus of this paper.
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In this paper, we propose to augment the conditional
likelihood with a pairwise likelihood constructed from the
marginal likelihood of the truncation times. First we will
begin in Section 2 with introducing some notation and de-
scribing the assumed models as well as the structure of
the observed data. The resulting likelihood function is then
presented. In Section 3, the pairwise pseudo-likelihood aug-
mented estimation procedure is proposed for inference and
the asymptotic properties of the estimator are established.
Section 4 presents some results obtained from an extensive
simulation study, which indicate that the proposed method
seems to work well for practical situations and provides a
substantial efficiency gain over the conditional approach. In
Section 5, the proposed approach is applied to a set of real
data arising from the AIDS cohort study, and Section 6 con-
tains some discussions and concluding remarks.

2. NOTATION AND MODELS

Consider a failure time study involving a disease and an
event of interest and for a patient from the target pop-
ulation, let T ∗ be the underlying survival time, measur-
ing the time from the disease onset to the event. Suppose
that there exists an independent truncation time, denoted
as A∗, measuring the time from the disease onset to the
study enrollment. In a prevalent cohort, this means that
we observe the pairs (A∗, T ∗) such that the events hap-
pen after the enrollment or we only have realizations from
(A, T ) ≡ (A∗, T ∗)|A∗ ≤ T ∗. Note that the above sampling
scheme induces a positive correlation between A and T in
the observed biased sample. Let Z be a p-dimension vector
of covariates for the subject involved in the study. In the fol-
lowing, it will be assumed that for each study subject, there
exist two observation times U and V with U < V and the
observed data have the form (A,U, V, δ1 = I(T ≤ U), δ2 =
I(U < T ≤ V ), δ3 = I(T > V ), Z), where δ1 + δ2 + δ3 = 1.
That is, only interval-censored data are available.

Let f and S denote the density and survival functions of
T ∗ and g the density function of A∗. Then the joint density
function h(t, a) of (T,A) evaluated at (t, a) can be expressed
as

h(t, a) =
f(t)g(a)∫∞

0
S(u)g(u)du

, 0 ≤ a ≤ t.

To describe the covariate effects, we assume that given Z,
the hazard function of T ∗ has the form

(1) λ(t|Z) = λ0(t) + βTZ,

where λ0(t) denotes an unknown baseline hazard function
and β is a vector of regression parameters. That is, the sur-
vival time of interest T ∗ follows the additive hazards model
([18, 19]). Let Λ0(t) =

∫ t

0
λ0(s)ds, the baseline cumulative

hazard function. Then the survival function of T ∗ is given
by S(t|Z) = exp{−Λ0(t)− βTZt}.

Suppose that the study consists of n independent subjects
and give the observed data

O = {(Ai, Ui, Vi, δ1i, δ2i, δ3i, Zi), i = 1, . . . , n} .

Denote (U, V ) = (A,A) + (U0, V0) and assume that (U0, V0)
is independent of (A, T ) given Z. Then the fully likelihood
of the observed data is proportional to

Ln =

n∏
i=1

{
{S(Ai|Zi)−S(Ui|Zi)}δ1i{S(Ui|Zi)− S(Vi|Zi)}δ2i

S(Vi|Zi)
δ3ig(Ai)

}/{∫ ∞

0

S(u|Zi)g(u)du
}

=

n∏
i=1

{
{S(Ai|Zi)−S(Ui|Zi)}δ1i{S(Ui|Zi)− S(Vi|Zi)}δ2i

S(Vi|Zi)
δ3i

}
S(Ai|Zi)×

n∏
i=1

S(Ai|Zi)g(Ai)∫∞
0

S(u|Zi)g(u)du

≡ LC
n × LM

n .

In the above, LC
n represents the conditional likelihood func-

tion of (U, V, δ1, δ2, δ3) given (A,Z) and LM
n the marginal

likelihood function of A given Z. Note that here it is as-
sumed that g, the density function of A, does not depend
on the covariates Z.

3. PAIRWISE PSEUDO-LIKELIHOOD
AUGMENTED ESTIMATION

PROCEDURE

As mentioned above, in the presence of left truncation,
most of the existing methods are based on the conditional
likelihood function LC

n . A main drawback of this is that
the resulting estimators can be less efficient since they com-
pletely ignore the information contained in LM

n . To ad-
dress this and improve the efficiency, we propose to sup-
plement LC

n with the information in LM
n . Specifically, fol-

lowing [14] and [25], we first apply the pairwise pseudo-
likelihood method by [17] to LM

n in order to eliminate the
nuisance function g, and then estimate β and Λ0(·) based on
a composite likelihood consisting of LC

n and LP
n , the pairwise

pseudo-likelihood derived below.
Suppose that a sample {(Ai, Zi), (Aj , Zj) : i < j} is avail-

able. Following the argument in [17], the pseudo-likelihood
of the pair (i, j), conditional on (Zi, Zj) and the order statis-
tic of (Ai, Aj), is given by

{ S(Ai|Zi)g(Ai)∫∞
0

S(u|Zi)g(u)du
× S(Aj |Zj)g(Aj)∫∞

0
S(u|Zj)g(u)du

}/
{ S(Ai|Zi)g(Ai)∫∞

0
S(u|Zi)g(u)du

× S(Aj |Zj)g(Aj)∫∞
0

S(u|Zj)g(u)du
+

S(Ai|Zj)g(Ai)∫∞
0

S(u|Zj)g(u)du
× S(Aj |Zi)g(Aj)∫∞

0
S(u|Zi)g(u)du

}
=

1

1 +Rij(β)
,
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where Rij(β) denotes the generalized odds ratio and has the

form

Rij(β) =
S(Ai|Zj)S(Aj |Zi)

S(Ai|Zi)S(Aj |Zj)
= exp{βT (Zi − Zj)(Ai −Aj)}

under the additive hazards model. The pairwise pseudo-

likelihood LP
n of all pairs is then given by

LP
n =

∏
i<j

1

1 +Rij(β)
.

It is worth noting that LP
n is a function of β only, not de-

pending on Λ0 nor g by canceling them out, whereas LM
n is

a function of (β,Λ0, g).

Furthermore, [17] showed that the pairwise likelihood can

retain the majority of the information in the likelihood from

which it is derived, and that the efficiency loss may not be

substantial, depending on the model as well as the values

of the parameters by the simulation studies. Therefore, to

estimate (β,Λ0), we propose using LP
n as a reasonable good

surrogate for LM
n in the full likelihood approach. The analo-

gous idea has been exploited in the analysis of left-truncated

data by [14, 25, 27].

To account for the different magnitudes of LC
n and LP

n , we

propose to maximize the following composite log-likelihood

function:

ln(β,Λ0) =
1

n

n∑
i=1

{
δ1i log{S(Ai|Zi)− S(Ui|Zi)}

+ δ2i log{S(Ui|Zi)− S(Vi|Zi)}+ δ3i log{S(Vi|Zi)}

− log{S(Ai|Zi)}
}
− 2

n(n− 1)

∑
i<j

log{1 +Rij(β)}.

It is easy to see that this is not an easy task since

the composite log-likelihood function involves both finite-

dimensional and infinite-dimensional parameters. To deal

with this, following [31], we employ the sieve maxi-

mum likelihood estimation method and use the Bernstein

polynomials-based function to approximate Λ0(·).
Specifically, define the Bernstein polynomials-based func-

tion Λ∗(t) =
∑m

k=0 φkBk(t,m, tl, tu), where

Bk(t,m, tl, tu) =

(
m

k

)(
t− tl
tl − tu

)k (
1− t− tl

tl − tu

)m−k

with
∑

0≤k≤m |φk| ≤ Mn, 0 ≤ φ0 ≤ φ1 ≤ · · · ≤ φm, m =

o(nv) for some v ∈ (0, 1) and 0 ≤ tl < tu < ∞. In practice,

[tl, tu] is usually taken as the range of the observed times.

Then it is nature to define the estimator θ̂n = (β̂T
n , Λ̂n)

T by

maximizing ln(β,Λ
∗). Specifically, differentiating ln(β,Λ

∗)

with respect to (β, φ) yields the following score functions:

∂ln(β,Λ
∗)

∂β
=

1

n

n∑
i=1

{
δ1i

∂S(Ai|Zi)
∂β − ∂S(Ui|Zi)

∂β

S(Ai|Zi)− S(Ui|Zi)
+

δ2i

∂S(Ui|Zi)
∂β − ∂S(Vi|Zi)

∂β

S(Ui|Zi)− S(Vi|Zi)
+ δ3i

∂S(Vi|Zi)
∂β

S(Vi|Zi)
−

∂S(Ai|Zi)
∂β

S(Ai|Zi)

}

− 2

n(n− 1)

∑
i<j

∂Rij(β)
∂β

1 +Rij(β)
,

∂ln(β,Λ
∗)

∂φk
=

1

n

n∑
i=1

{
δ1i

∂S(Ai|Zi)
∂φk

− ∂S(Ui|Zi)
∂φk

S(Ai|Zi)− S(Ui|Zi)
+

δ2i

∂S(Ui|Zi)
∂φk

− ∂S(Vi|Zi)
∂φk

S(Ui|Zi)− S(Vi|Zi)
+ δ3i

∂S(Vi|Zi)
∂φk

S(Vi|Zi)
−

∂S(Ai|Zi)
∂φk

S(Ai|Zi)

}

− 2

n(n− 1)

∑
i<j

∂Rij(β)
∂φk

1 +Rij(β)
,

where

∂S(t|Z)

∂β
= S(t|Z)(−Zt),

∂S(t|Z)

∂φk
= S(t|Z)(−Bk(t,m, tl, tu)),

∂Rij(β)

∂β
= Rij(β)(Zi − Zj)(Ai −Aj),

∂Rij(β)

∂φk
= 0.

To establish asymptotic properties of the proposed esti-
mators above, define the distance between θ1 = (βT

1 ,Λ1)
T

and θ2 = (βT
2 ,Λ2)

T as d(θ1, θ2) = (‖β1 − β2‖2 + ‖Λ1 −
Λ2‖22)1/2, where ‖·‖ is the Euclidean norm, and ‖Λ1−Λ2‖22 =
E[(Λ1(U)−Λ2(U))2+(Λ1(V )−Λ2(V ))2+(Λ1(A)−Λ2(A))

2].
Let θ0 = (βT

0 ,Λ0)
T denote the true value of θ. The follow-

ing theorems give the asymptotic consistency of θ̂n and the
asymptotic normality of β̂n.

Theorem 3.1. Suppose that the regularity conditions 1-4
given in the Appendix hold. Then θ̂n is a strong consistent
estimator of θ0.

Theorem 3.2. Suppose that the regularity conditions
1-4 given in the Appendix hold. Then d(θ̂n, θ0) =
Op(n

−min{rv/2,(1−v)/2}), where 0 < v < 1 such that the
Bernstein polynomial degree m = o(nv) and r is defined
in condition 1.

Theorem 3.3. Suppose that the regularity conditions 1-
6 given in the Appendix hold. If r > 2, v > 1/2r, then√
n(β̂n − β0) → N(0,Σ), where Σ = I−1

∗ (β0), denoting the
semiparametric efficient bound for β with respect to the com-
posite log-likelihood function, with I∗(β0) given in the last
paragraph of the Appendix.
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The proofs of the theorems above are sketched in the Ap-
pendix. For the application of the method proposed above,
one needs to choose m, the degree of freedoms for Bern-
stein polynomials. Many authors have discussed this ([31])
and suggested to set m = [n1/4], the largest integer smaller
than n1/4, which will be used below. Also to make inference
about the parameter β, it is obvious that we also need to
estimate the covariance matrix of β̂n. Since the covariance
matrix of β̂n is complex and difficult to estimate immedi-
ately, we propose to apply the simple bootstrap procedure
([10]) described below. It is well-known that the bootstrap
procedure can usually provide a direct and easy tool to esti-
mation of covariances and confidence intervals among others
when there is no explicit formula available for them.

Let B be a prespecified positive integer and for each b =

1, ..., B, draw a simple random sample O(b) =
{
O

(b)
i ; i =

1, . . . , n
}
of size n with replacement from the observed data

O =
{
Oi; i = 1, . . . , n

}
. Let β̂(b) denote the proposed es-

timator of β based on the resampled data set O(b) defined
above. Then a nature estimator of the covariance matrix of
β̂n is given by

Σ̂ =
1

B − 1

B∑
b=1

{
β̂(b) − 1

B

B∑
b=1

β̂(b)
}⊗2

,

where a⊗2 = aaT . The simulation study below indicates
that this procedure works well.

4. SIMULATION STUDY

In this section, we present some results obtained from a
simulation study performed to investigate the finite-sample
properties of the proposed pairwise pseudo-likelihood es-
timation procedure and compare it to the conditional ap-
proach. In the study, we considered the situation with two
covariates where Z1 was assumed to follow a Bernoulli dis-
tribution with success probability 0.5 and Z2 to follow the
uniform distribution over (0, 1). The failure time T ∗ was gen-
erated from model (2.1) with Λ0(t) = t and Z = (Z1, Z2)

T .
The underlying truncation time A∗ was independently gen-
erated from the exponential distribution or the uniform dis-
tribution, where the parameter was determined by the per-
centage of the truncation proportion (TP).

To form a prevalent cohort of sample size (SS) n, the real-
izations of A∗, T ∗, Z were generated until n subjects satisfied
the sampling constraint A∗ ≤ T ∗. To generate the observa-
tion times U and V , we assumed that each subject was sup-
posed to be observed at a sequence of fixed, equally spaced
time points t1 < · · · < tk. Furthermore, it was assumed that
at each time point, a subject was actually observed with the
probability p. Then we defined U and V to be the largest
and smallest tj at which subject was observed and that are
smaller and larger than the generated failure time T , re-
spectively. We set k = 10, tj = A + 0.1j, j = 1, . . . , 10 and
p = 0.8. We generated 500 data sets with n = 200 or 400,

B = 20 and m = [n1/4], the largest integer smaller than
n1/4.

Tables 1 and 2 give the estimation results obtained for
the regression parameters β = (0.5, 0.5)T with A∗ from the
exponential distribution and the uniform distribution, re-
spectively. They include the estimated bias (Bias) given by
the average of the estimates minus the true value, the sample
standard error (SSE), the average of the estimated standard
errors (ESE), and the 95% empirical coverage probability
(CP). The relative efficiency (RE) given by the sample vari-
ance of the conditional approach divided by that of the pro-
posed method is also shown in the tables. One can see from
the tables that the estimates seem to be unbiased and gave
better performance when SS increased. Also for the vari-
ance estimation, the bootstrap method seems to perform
well, and the results on CP suggest that the normal approx-
imation to the distribution of the estimators appears to be
appropriate. In addition, as expected, the proposed pairwise
pseudo-likelihood estimator provided considerable efficiency
gains compared to the corresponding conditional approach
estimator under all scenarios considered, especially under
the high truncation proportion scenarios. Note that in the
above, we took B = 20. We also considered different values
for B such as B = 50 or 100 and obtained similar results.
In other words, the bootstrap variance estimation does not
seem to be sensitive to B.

To see the performance on the proposed method further,
Figures 1 and 2 display the estimated baseline cumulative
hazards functions for the situations corresponding to Ta-
bles 1 and 2 with SS n = 400, respectively. They include
the true baseline cumulative hazards function (black and
solid curves), the averages of the obtained estimates (red
and dashed curves) and the 95% empirical confidence bands
(blue and dash-dot curves). One can see from the figures
that the proposed method seems to work well.

For the problem discussed above, one may be also inter-
ested in the performance of either the proposed method or
the conditional approach that simply ignores the truncation.
To investigate this, we repeated the studies and compared
the three methods. Table 3 displays the estimated biases for
the three approaches under various situations with n = 400
and the set-ups being same as with either Table 1 or Table
2. It is easy to see that the ignoring of the left-truncation
can yield biased estimates.

5. AN APPLICATION

Now we apply the inference procedure proposed in the
previous sections to the AIDS cohort study of hemophiliacs
discussed in [9] and [16] among others. The original study
consists of 257 patients with Type A or B hemophilia and
these patients were at risk for HIV-1 infection due to the
contaminated blood factor that they received for their treat-
ment. For both HIV-1 infection and AIDS diagnosis times,
only interval-censored data are available. For the analysis
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Table 1. Simulation results on estimation of β with A∗ following the exponential distribution

TP SS Parameter Bias SSE ESE CP Bias SSE ESE CP RE

Proposed approach Conditional approach

40 % n=200 β1 0.0075 0.2312 0.2293 0.930 0.0137 0.2530 0.2554 0.934 1.197
β2 0.0176 0.3639 0.4055 0.946 0.0378 0.4117 0.4565 0.932 1.280

n=400 β1 −0.0024 0.1561 0.1583 0.940 0.0050 0.1795 0.1752 0.938 1.322
β2 0.0065 0.2555 0.2679 0.940 0.0156 0.2810 0.2985 0.940 1.210

60 % n=200 β1 0.0112 0.2113 0.2088 0.936 0.0082 0.2566 0.2501 0.940 1.475
β2 0.0362 0.3669 0.3606 0.940 0.0569 0.4389 0.4385 0.934 1.431

n=400 β1 0.0151 0.1429 0.1460 0.934 0.0085 0.1774 0.1770 0.942 1.541
β2 −0.0064 0.2282 0.2416 0.948 0.0029 0.2832 0.2938 0.940 1.540

80 % n=200 β1 0.0181 0.1843 0.1938 0.956 0.0201 0.2459 0.2583 0.956 1.780
β2 0.0567 0.3097 0.3206 0.944 0.0805 0.4201 0.4480 0.944 1.840

n=400 β1 0.0088 0.1286 0.1344 0.948 0.0149 0.1708 0.1819 0.948 1.764
β2 0.0179 0.2136 0.2168 0.932 0.0238 0.2842 0.2945 0.946 1.770

Table 2. Simulation results on estimation of β with A∗ following the uniform distribution

TP SS Parameter Bias SSE ESE CP Bias SSE ESE CP RE

Proposed approach Conditional approach

40 % n=200 β1 0.0151 0.2355 0.2385 0.950 0.0197 0.2499 0.2565 0.944 1.126
β2 0.0203 0.3966 0.4278 0.942 0.0228 0.4173 0.4568 0.938 1.107

n=400 β1 −0.0057 0.1635 0.1662 0.946 −0.0022 0.1707 0.1769 0.940 1.090
β2 0.0067 0.2729 0.2804 0.946 −0.0050 0.2899 0.2991 0.950 1.128

60 % n=200 β1 0.0287 0.2137 0.2136 0.932 0.0463 0.2559 0.2593 0.952 1.434
β2 0.0222 0.3490 0.3667 0.942 0.0171 0.4161 0.4484 0.938 1.421

n=400 β1 −0.0072 0.1499 0.1483 0.948 −0.0105 0.1720 0.1778 0.952 1.317
β2 0.0026 0.2332 0.2419 0.946 −0.0016 0.2682 0.2923 0.950 1.323

80 % n=200 β1 0.0075 0.1788 0.1779 0.946 0.0227 0.2459 0.2614 0.944 1.891
β2 0.0195 0.2865 0.2999 0.952 0.0473 0.4173 0.4519 0.962 2.122

n=400 β1 0.0141 0.1284 0.1244 0.944 0.0040 0.1763 0.1781 0.952 1.885
β2 0.0095 0.1969 0.2025 0.944 0.0156 0.2881 0.3002 0.958 2.141

Figure 1. Estimates of the baseline cumulative hazards function Λ with A∗ following the exponential distribution: the left for
TP = 40%, the middle for TP = 60% and the right for TP = 80%.

below, we will focus on the 188 patients who were found
to be infected by HIV-1 at the time of the analysis and
among them, 41 were diagnosed to have AIDS. The patients
are classified into two groups, lightly and heavily treated
groups, according to the amount of blood they received for
hemophilia. Also the age indicators that indicate if the age
of a subject was below 20 at his or her HIV-1 infection were
recorded. Our interest is to assess the treatment and age

effects on the AIDS diagnosis time.
For the analysis, define Ti to be the AIDS diagnosis time

for patient i. Denote Zi = (Z1i, Z2i)
T , where Z1i = 0 if the

ith patient belongs to the lightly treated group and Z1i = 1
otherwise, Z2i = 0 if the ith patient had age below 20 at
HIV-1 infection and Z2i = 1 otherwise. By following [15]
and [26], we will use the midpoint of the observed interval
for HIV-1 infection as the left-truncation time for the AIDS
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Figure 2. Estimates of the baseline cumulative hazards function Λ with A∗ following the uniform distribution: the left for
TP = 40%, the middle for TP = 60% and the right for TP = 80%.

Table 3. Estimated biases of regression parameters with n = 400

TP Parameter proposed conditional ignoring proposed conditional ignoring
approach approach truncation approach approach truncation

A∗ exponential A∗ uniform

40 % β1 0.0035 0.0067 −0.1781 0.0155 0.0164 −0.2619
β2 0.0077 0.0157 −0.1808 −0.0040 −0.0059 −0.3333

60 % β1 0.0169 0.0203 −0.2077 0.0159 0.0226 −0.2859
β2 0.0143 0.0132 −0.2564 −0.0019 −0.0049 −0.3954

80 % β1 0.0081 0.0061 −0.2227 0.0131 0.0205 −0.2468
β2 0.0161 0.0247 −0.2644 −0.0034 0.0119 −0.3534

Table 4. The estimated covariate effects for the AIDS cohort
study

covaraites proposed conditional ignoring
approach approach truncation

Group 0.0162 0.0168 0.0003
ESE 0.0060 0.0053 0.0073

p-value 0.0069 0.0015 0.9672
Age 0.0023 0.0034 −0.0048
ESE 0.0064 0.0062 0.0130

p-value 0.7193 0.5834 0.7120

diagnosis time. We estimated the covariate effect using the
proposed approach with m = 3 and B = 100. For com-
parison, we also analyzed the data by using the conditional
approach and the approach ignoring truncation as discussed
in the previous section.

Table 4 presents the analysis results, including the esti-
mated covariate effects, the estimated standard error, and
the p-value for testing the covariate effect being zero. One
can see from the table that the proposed approach and the
conditional approach suggest that there seems no age effect
on AIDS diagnosis time. Furthermore, they indicate that
the patients in the heavily treated group had significantly
shorter AIDS diagnosis time or higher risk of developing
AIDS than in the lightly treated group. Although the con-
clusions are similar, it seems that the conditional approach
overestimated the group and age effects. In addition, the ap-

proach ignoring truncation seems to give some misleading or
completely different results or conclusions as suggested by
the simulation study. We also tried other values for m and
B and obtained similar results.

6. DISCUSSION

This paper discussed regression analysis of left-truncated
and interval-censored data under the additive hazards model
and a pairwise pseudo-likelihood estimation approach was
proposed. In the proposed method, by augmenting a pair-
wise likelihood from the marginal likelihood of the trun-
cation times, one can recover some missing information in
the conditional methods. Furthermore, the asymptotic prop-
erties of the proposed estimator were established, and the
simulation study indicated that the proposed procedure per-
formed well and gave the efficiency gain over the conditional
approach. Also the approach was applied to a set of real data
from the AIDS cohort study.

As mentioned above, the focus of this paper has been
on the left-truncated and interval-censored data where the
truncation time is known exactly. Sometimes this may be
not true since the truncation time may also be interval-
censored or one may face the right-truncation case. It would
be useful to generalize the proposed approach to these sit-
uations. For the assumptions used in our paper, one is that
the underlying truncation time and the observation times
are independent of the interested survival time given the
covariates. Sometimes this may be inappropriate since the
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patient in a health study or clinical trials may tend to see
doctors and be examined according to his feelings. For the
situation, it would be necessary to consider the approach
under the dependent truncation and censoring assumptions.
Also note that for simplicity, it has been assumed that co-
variates have no effect on the left truncation variable, which
may be not true sometimes. It will be straightforward to
generalize the proposed method to this latter situation.

There exist some other directions for future research. One
is the development of model checking procedures for the
use of the additive hazards model in the situation discussed
above. In general, the additive hazards model is used when
one is interested in the additive or excess risk. However, it
may not be easy for the development based left-truncated
and interval-censored data since there seem to exist little re-
search on the problem even based on interval-censored data.
Another direction is that in the implementation of the pro-
posed procedure, the Bernstein polynomials are used to ap-
proximate the baseline cumulative hazards function. One
needs to choose the degree of the polynomials and one na-
ture way is to try different values and compare the results.
An alternative way is to develop some likelihood principles
such as AIC, BIC or data-driven methods for its selection.

APPENDIX A. PROOFS OF THE
ASYMPTOTIC RESULTS

In this appendix, we will sketch the proofs of the the-
orems given above. First we need to give some more no-
tations and conditions. Define the parameter space Θ =
{θ = (βT ,Λ)T ∈ B ⊗ M}, where B is a subset of Rp

and M is the collection of all bounded and continous non-
creasing, nonnegative functions over [0, τ ]. Define the sieve
space as Θn = {θ = (βT ,Λn)

T ∈ B ⊗ Mn}, where Mn

is the collection of the Bernstein polynomials-based func-
tion defined in Section 3. Let lci (θ) and lpi,j(θ) denote the

log LC
n and LP

n , respectively, corresponding to subject i
and pair sample (i, j). For two independent observations
O and O′, denote W = (O,O′), then rewrite ln(θ) =
[2/{n(n− 1)}]

∑
1≤i<j≤n r(θ,Wij) with Wij = (Oi, Oj) and

r(θ,Wij) = rij(θ) = {lci (θ) + lcj(θ)}/2 + lpi,j(θ). The letter C
represents a constant, and it does not necessarily represent
the same value each time. Let P 2 = P ⊗P denote the prod-
uct probability measure. Then, we establish the asymptotic
properties of θ̂n = (β̂T

n , Λ̂n)
T under the following regularity

conditions.

Condition 1. The true value of β, denoted by β0, lies in the
interior of a compact set B in Rp. The true cumulative base-
line hazard function Λ0(t) is rth continuously differentiable
for r ≥ 2 and strictly increasing on [0, τ ] with Λ0(0) = 0.

Condition 2. The covariate vector Z has bounded support
in Rp and cov(Z) is nonsigular.

Condition 3. There exists a positive η such that P (U−A >
η) = 1 and P (V − U > η) = 1. Furthermore, the union

support of A, U and V is contained in an interval [a, b],
where 0 < a < b < ∞ with 0 < Λ0(a) < Λ0(b) < ∞.

Condition 4. For every θ in a neighborhood of θ0,
P 2{r(θ,W )− r(θ0,W )} ≤ −Cd2(θ, θ0).

Condition 5. The matrix E(SβS
T
β ) is finite and positive

definite, where Sβ is defined below.

Condition 6. 0 < P 2{r′(θ0,W )[ι]} < ∞ for all ι �=
0, ι ∈ V , where V denotes a linear span of Θ − θ0; For
θ ∈ {θ ∈ Θ, d(θ, θ0) = O(δn)}, P 2{r′′(θ,W )[θ− θ0, θ− θ0]−
r′′(θ0,W )[θ − θ0, θ − θ0]} = O(δ3n) and δ3n = o(n−1).

Proof of Theorem 1. Define Ln = {r(θ,W ) : θ ∈ Θn}. Un-
der Conditions 1 – 4, we have that for any θ1 and θ2 ∈ Θn,

|r(θ1,W )− r(θ2,W )| ≤ 1

2
{|lc(θ1, O)− lc(θ2, O)|

+ |lc(θ1, O′)− lc(θ2, O
′)|}+ |lp(θ1,W )− lc(θ2,W )|.

Define ϕt(ω) = Λω(t) + tβT
ωZ and ϕt,t′(ω) = (t− t′)(βT

ωZ −
βT
ωZ

′), with Λω = ωΛ1+(1−ω)Λ2 and βω = ωβ1+(1−ω)β2.
Then, by the mean value theorem, we have that there exist
0 ≤ ξ, ζ ≤ 1, such that

|lc(θ1, O)− lc(θ2, O)| ≤ |δ1{ϕ′
A(ξ)− ϕ′

U (ξ)}
+ δ2{ϕ′

U (ξ)− ϕ′
V (ξ)}+ δ3(ϕ

′
V (ξ)− ϕ′

A(ξ))|

and

|lp(θ1,W )− lp(θ2,W )| ≤ ϕA,A′(ζ)

where ϕ′
t(ξ) = (Λ1 − Λ2)(t) + t(β1 − β2)

TZ and ϕ′
t,t′(ζ) =

(t− t′)[(β1−β2)
T (Z−Z ′)]. Under Conditions 1 – 3, we have

that |r(θ1,W ) − r(θ2,W )| ≤ C||β1 − β2|| + C||Λ1 − Λ2||∞
where ||Λ1−Λ2||∞ = supt |Λ1(t)−Λ2(t)| ≤ max0≤k≤m |φ1k−
φ2k| = ||φ1−φ2||, φi = (φi0, . . . , φim)T denote the Bernstein
coefficients corresponding to Λi, i = 1, 2.

Combine the results, let θ(1), . . . , θ(N) be the minimum
collection of points in Θn, for any θ ∈ Θn, there exists k
such that

2

n(n− 1)

∑
1≤i<j≤n

|r(θ,Wij)− r(θ(k),Wij)|

≤ C||β − β(k)||+ C||φ− φ(k)|| < ε.

It can be checked that B, the compact subset of Rp,
is covered by (C/ε)p balls with radius ε/2C and {φ ∈
Rm+1,

∑m
k=0 |φk| ≤ Mn} is covered by (CMn/ε)

m+1 balls
with radius ε/2C. Then the covering number is

N(ε,Ln, L
1(Un)) ≤ C(Mn/ε)

m+1(1/ε)p.

So

logN(ε,Ln, L
1(Un))

n

P−→ 0.
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By Corollary 3.2 in [2], we obtain

sup
θ∈Θn

|Unr(θ,W )− P 2r(θ,W )| → 0 a.s..

Let g(θ,W ) = −r(θ,W ). Define Kε = {θ : d(θ, θ0) ≥ ε, θ ∈
Θn} for ε > 0 and

κ1n = sup
θ∈Θn

|Ung(θ,W )− P 2g(θ,W )|

κ2n = Ung(θ0,W )− P 2g(θ0,W ).

We can show that

inf
Kε

P 2g(θ,W ) = inf
Kε

{P 2g(θ,W )− Ung(θ,W ) + Ung(θ,W )}

≤ κ1n + inf
Kε

Ung(θ,W ).

If θ̂n ∈ Kε, since θ0 is the extreme point of the likelihood,
we have

inf
Kε

Ung(θ,W ) = Ung(θ̂n,W ) ≤ Ung(θ0,W )

= κ2n + P 2g(θ0,W ).

Define δεn = infKε{P 2g(θ,W ) − P 2g(θ0,W )}. With Condi-
tion 4, P 2{r(θ,W )− r(θ0,W )} ≤ −Cd2(θ, θ0), we can con-
clude that

inf
Kε

P 2g(θ,W ) ≤ κ1n+κ2n+P 2g(θ0,W ) = κn+P 2g(θ0,W )

where κn = κ1n + κ2n, which satisfy κn ≥ δεn. Combine the

results, we have {θ̂n ∈ Kε} ⊆ {κn ≥ δεn}, which gives that

d(θ̂n, θ0) converges almost surely towards 0.

Proof of Theorem 2. First, by Theorem 1.6.2 of [20], there
must be a Bernstein polynomial Λ0,n which has

||Λ0,n − Λ0||∞ = O(m−r/2) = O(n−rv/2).

Define θ0,n = (β0,Λ0,n), where φ0 = (φ00, . . . , φ0m)T denote
the coefficients corresponding to Λ0,n and φ0k = Λ0{tl +
(k/m)(tu − tl)}. Then, we have d(θ0,n, θ0) = O(n−rv/2).

Define the following three classes of function:

Fη={r(θ,W )−r(θ0,n,W ) : θ ∈ Θn, η/2≤d(θ, θ0,n) ≤ η},
G(1)
η ={lc(θ,O)−lc(θ0,n, O) : θ ∈ Θn, η/2 ≤ d(θ, θ0,n) ≤ η},

G(2)
η ={lp(θ,W )−lp(θ0,n,W ) : θ ∈ Θn, η/2≤d(θ, θ0,n) ≤ η}.

Using Condition 4, it is easy to show that for large n,

sup
θ∈Θn

η/2<d(θ,θ0,n)≤η

P 2{r(θ,W )− r(θ0,n,W )} ≤

sup
θ∈Θn

η/2<d(θ,θ0,n)≤η

P 2{r(θ,W )− r(θ0,W )} +

P 2{r(θ0,W )− r(θ0,n,W )} ≤ −Cη2.

By the definition of the above classes, we have

E∗||n1/2(Un − P 2)||Fη ≤ E∗||n1/2(Pn − P )||G(1)
η

+ E∗||n1/2(Un − P 2)||G(2)
η

.

Define ϕ(β,Λ) = βT (Z − Z ′)(A − A′), then lp(θ,W ) =
− log[1 + exp{ϕ(β,Λ)}] is a Lipschitz transformation of ϕ
with finite bound. Further define

Hη = {ϕ(β,Λ)−ϕ(β0,Λ0,n) : θ ∈ Θn, η/2 ≤ d(θ, θ0,n) ≤ η},

which leads to E∗||n1/2(Un − P 2)||G(2)
η

≤ CE∗||n1/2(Un −
P 2)||Hη .

Next, denote Ûnϕ(β,Λ) =
∑n

i=1 E{Unϕ(β,Λ) −
P 2ϕ(β,Λ) | Oi}. It can be verified that P 2ϕ(β,Λ) =
2Cov{βTZ,A}. Moreover, since the pair Oi and Oj are i.i.d.,

E{ϕij(β,Λ) | Oi} =E{(βTZi − βTZj)(Ai −Aj) | Ai, Zi}
=βTZiAi −AiE(βTZi)− βTZiE(Ai)

+ E(βTZiAi).

Thus, we have

Ûnϕ(β,Λ)=

n∑
i=1

E

⎧⎨
⎩
(
n

2

)−1 ∑
j<k

ϕjk(β,Λ)−P 2ϕ(β,Λ) | Oi

⎫⎬
⎭

=
2

n

n∑
i=1

{
βTZiAi −AiE(βTZi)− βTZiE(Ai)

+ E(βTZiAi)
}
− 4Cov(βTZ,A).

By i.i.d. property of the observations and the definition of
covariance, direct calculation gives

Ũn ≡ Unϕ(β,Λ)−P 2ϕ(β,Λ)−Ûnϕ(β,Λ)=

(
n

2

)−1 ∑
i<j

Ũ (i,j)
n

where

Ũ (i,j)
n =βTZiAi − βTZjAi − βTZiAj + βTZjAj

− 2Cov(βTZ,A)−
{
βTZiAi −AiE(βTZi)

− βTZiE(Ai) + E(βTZiAi)− 2Cov(βTZ,A)
}

−
{
βTZjAj −AjE(βTZj)− βTZjE(Aj)

+ E(βTZjAj)− 2Cov(βTZ,A)
}

=− (βTZi − E(βTZi))(Aj − E(Aj))

− (βTZj − E(βTZj))(Ai − E(Ai)).

Therefore, we have

Ũn = −
(
n

2

)−1 n∑
i=1

n∑
j=1

(βTZi − E(βTZi))(Aj − E(Aj))

 − 2

n

n∑
i=1

(βTZi − E(βTZi))
1

n

n∑
j=1

(Aj − E(Aj)),
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where  denotes asympototically equivalent. Similar argu-
ments as in the proof of Theorem 1 in [25], we have

(Un − P 2)ϕ(β,Λ) =
2

n

n∑
i=1

ϕ(1)(θ,Oi)

− 2

n2
{

n∑
i=1

ϕ(2)(θ,Oi)}{
n∑

j=1

ϕ(3)(θ,Oj)},

where ϕ(1)(θ,Oi) = βTZi[Ai − E{Ai}] − AiE{βTZi} +
E{βTZiAi} − 2Cov{βTZi, Ai}, ϕ(2)(θ,Oi) = βTZi −
E{βTZi} and ϕ(3)(θ,Oj) = Aj − E{Aj}.

Then, define the following three classes:

H(1)
η = {ϕ(1)(θ,O)− ϕ(1)(θ0,n, O) :

θ ∈ Θn, η/2 ≤ d(θ, θ0,n) ≤ η},
H(2)

η = {ϕ(2)(θ,O)− ϕ(2)(θ0,n, O) :

θ ∈ Θn, η/2 ≤ d(θ, θ0,n) ≤ η},
H(3)

η = {ϕ(3)(θ,O)− ϕ(3)(θ0,n, O) :

θ ∈ Θn, η/2 ≤ d(θ, θ0,n) ≤ η}.

So, we have E∗||n1/2(Un − P 2)||Hη ≤ CE∗||n1/2(Pn −
P )||H(1)

η
+CE∗||n1/2(Pn−P )||H(2)

η
+CE∗||n1/2(Pn−P )||H(3)

η
.

We can obtain that N[](ε,G(1)
η , L2(P )), N[](ε,H(1)

η , L2(P )),

N[](ε,H(2)
η , L2(P )) and N[](ε,H(3)

η , L2(P )) ≤ C(m + 1 +
p) log(η/ε) with the same idea of [22]. By Lemma 3.4.2 of
[28], we can conclude

E∗||n1/2(Un − P 2)||Fη ≤ C{(m+ 1)1/2η + (m+ 1)/n1/2}.

Now, take γn = n(1−v)/2, with Theorem 3.2.5 of [28],

we have that γnd(θ̂n, θ0,n) = Op(1). So d(θn, θ0) =
Op(n

−(1−v)/2 + n−rv/2).

Proof of Theorem 3. Let Υ denote a linear span of Θ − θ0.
Define the first order directional derivative of r(θ,W ) at the
direction ι ∈ Υ and the second order directional derivative
as

r′(θ,W )[ι] =
dr(θ + sι,W )

ds

∣∣∣
s=0

,

r′′(θ,W )[ι, ι̃] =
dr(θ + sι+ s̃ι̃,W )

ds̃ds

∣∣∣
s=0

∣∣∣
s̃=0

for any θ ∈ {θ ∈ Θ : d(θ, θ0) = O(δn)}, where δn =
n−min{(1−v)/2,rv/2}. Let r′(θ0,W )[ι] and r′′(θ0,W )[ι, ι̃] de-
note r′(θ,W )[ι] and r′′(θ,W )[ι, ι̃] evaluated at θ0, respec-
tively. Define Fisher inner product on the space Υ as
< ι, ι̃ >= P 2{r′(θ0,W )[ι]r′(θ0,W )[ι̃]} and Fisher norm
||ι|| =< ι, ι >. Let Ῡ be the closed linear span of Υ un-
der the Fisher norm. Then (Ῡ, || · ||) is a Hilbert space.
Define h(θ) = bTβ for any θ ∈ Θ with ||b|| ≤ 1. For any

ι = (ιβ , ιΛ) ∈ Υ, define

h′(θ0)[ι] =
dh(θ0 + sι)

ds

∣∣∣
s=0

= bT ιβ .

Following the idea from section 3.2 of [6], by the definition
of r(θ,W ), then

r′(θ0,W )[ι] = lim
s→0

r(θ0 + sι,W )− r(θ0,W )

s

=
∂r(θ0,W )

∂β
[ιβ ] +

∂r(θ0,W )

∂Λ
[ιΛ]

where

∂r(θ0,W )

∂β
=

1

2

∂lc(θ0, O)

∂β
+

1

2

∂lc(θ0, O
′)

∂β
+

∂lp(θ0,W )

∂β

and

∂r(θ0,W )

∂Λ
[ιΛ] =

1

2

∂lc(θ0, O)

∂Λ
[ιΛ] +

1

2

∂lc(θ0, O
′)

∂Λ
[ιΛ]

+
∂lp(θ0,W )

∂Λ
[ιΛ].

So the conditions for Riesz representation theory hold with

sup
ι∈Ῡ:||ι||>0

|h′(θ0)[ι]|2
||ι||2 = sup

ι∈Ῡ:||ι||>0

|bT ιβ |2
||ι||2

= sup
ι∈Ῡ:||ι||>0

|bT ιβ |2
P 2{r′(θ0,W )[ι]}2 < ∞.

Now define ρ(θ−θ0) = r(θ,W )−r(θ0,W )−r′(θ0,W )[θ−
θ0]. Let εn be any positive sequence satisfying εn = o(n−1/2).
For any ι ∈ Υ, by the rth derivatives of Λ is bounded and
Theorem 1.6.2 of [20], there exists Πnι

∗ ∈ Θn−θ0 such that
||Πnι

∗ − ι∗|| = O(n−rv/2) and δn||Πnι
∗ − ι∗|| = o(n−1/2)

when r > 2 and v > 1/2r. By the definition of θ̂n and some
calculations, we have

0 ≤ Un{r(θ̂n,W )− r(θ̂n ± εnΠnι
∗,W )}

= ∓εnUnr
′(θ0,W )[ι∗]∓ I1 + I2 + I3,

where I1 = εnUnr
′(θ0,W )[Πnι

∗−ι∗], I2 = (Un−P 2){ρ(θ̂n−
θ0,W ) − ρ(θ̂n ± εnΠnι

∗ − θ0,W )}, ans I3 = P 2{ρ(θ̂n −
θ0,W )− ρ(θ̂n ± εnΠnι

∗ − θ0,W )}.
To bound I1, we define h1(O) = E{r′(θ0,W )[Πnι

∗ − ι∗] |
O}, σ2

1 = E{h1(O)}2 and σ2
2 = E{r′(θ0,W )[Πnι

∗ − ι∗]}2,
then the variance of Unr

′(θ0,W )[Πnι
∗− ι∗] is {4(n− 2)σ2

1 +
2σ2

2}/{n(n − 1)}. Further that ||Πnι
∗ − ι∗|| = o(1), then

σ2
1 = o(1) and σ2

2 = o(1). By Chebyshev’s inequality,

P (|Unr
′(θ0,W )[Πnι

∗ − ι∗]| ≥ εn) ≤
4(n− 2)σ2

1 + 2σ2
2

n(n− 1)ε2n
.

Then we have Unr
′(θ0,W )[Πnι

∗ − ι∗] = op(n
−1/2) and I1 =

εn × op(n
−1/2).
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In order to show I2 = εn × op(n
−1/2), we rewrite I2 as

follow:

I2 =∓ εn(Un − P 2){r′(θ̃,W )[Πnι
∗]− r′(θ0,W )[Πnι

∗]}
=∓ εn(Pn − P ){(lc)′(θ̃, O)[Πnι

∗]− (lc)′(θ0, O)[Πnι
∗]}

∓ εn(Un − P 2){(lp)′(θ̃,W )[Πnι
∗]− (lp)′(θ0,W )[Πnι

∗]}

where θ̃ lies between θ̂n and θ̂n ± εnΠnι
∗. By theorem 2.8.4

of [28], we know that Fc = {(lc)′(θ,O)[Πnι
∗]} is Donsker.

And define Fδcn
= {(lc)′(θ̃, O)[Πnι

∗]−(lc)′(θ0, O)[Πnι
∗], ||θ̃−

θ0|| = o(δn)}, then by Corollary 2.3.12 of [28], we have

(Pn−P ){(lc)′(θ̃, O)[Πnι
∗]−(lc)′(θ0, O)[Πnι

∗]} = op(n
−1/2).

By the Lemma 3 of [27], the preservation of theorem of
Lipschitz functions and Theorem 5.3.1 of [8], we conclude
that Fp = {(lp)′(θ,W )[Πnι

∗]} satisfies the CLT that, for
any f ∈ Fp, n1/2(Un − P 2)(f) converges weakly to a mean
zero Gaussian process Gf . Then with Theorem 4.1(b) of [2],
we know that

lim
δn→0

lim sup
n→∞

E||n1/2(Un − P 2)(f)||Fp
δn

= 0

where Fp
δn

= {(lp)′(θ̃,W )[Πnι
∗] − (lp)′(θ0,W )[Πnι

∗], ||θ̃ −
θ0|| = o(δn)}. It is easy to see that

(Un−P 2){(lp)′(θ̃,W )[Πnι
∗]−(lp)′(θ0,W )[Πnι

∗]} = op(n
−1/2).

Thus we get I2 = εn × op(n
−1/2).

For I3, by mean value theorem and Taylor expansion and
Condition 6, we have

P 2{ρ(θ − θ0,W )} = P 2{r(θ,W )− r(θ0,W )

− r′(θ0,W )[θ − θ0]} =
1

2
P 2{r′′(θ̃,W )[θ − θ0, θ − θ0]

− r′′(θ0,W )[θ − θ0, θ − θ0]}

+
1

2
P 2{r′′(θ0,W )[θ − θ0, θ − θ0]}

=
1

2
P 2{r′′(θ0,W )[θ − θ0, θ − θ0]}+ εn × op(n

−1/2)

where θ̃ lies between θ0 and θ. Therefore we have

I3 = −1

2
{||θ̂n − θ0||2 − ||θ̂n ± εnΠnι

∗ − θ0||2}

+εn × op(n
−1/2)

= ±εn < θ̂n − θ0,Πnι
∗ >+

1

2
||εnΠnι

∗||2 + εn × op(n
−1/2)

= ±εn < θ̂n − θ0, ι
∗ > ±εn < θ̂n,Πnι

∗ − ι∗ >

+
1

2
||εnΠnι

∗||2 + εn × op(n
−1/2).

Further that δn||Πnι
∗−ι∗|| = o(n−1/2) and ||Πnι

∗|| → ||ι∗||,
then I3 = ±εn < θ̂n − θ0, ι

∗ > +εn × op(n
−1/2).

Therefore, we obtain that n1/2 < θ̂n−θ0, ι
∗ >= n1/2(Un−

P 2){r′(θ0,W )[ι∗]}+ op(1) → N(0, ||ι∗||2). Let Λ∗
k be the so-

lution to infΛ∗ E{∂r(θ0,W )
∂β ek − ∂r(θ0,W )

∂Λ [Λ∗]}2. Define the k-

th element of Sβ0 as ∂r(θ0,W )
∂β ek − ∂r(θ0,W )

∂Λ [Λ∗
k] and I∗(β0) =

P 2(Sβ0S
T
β0
). Therefore, ι∗ = (ι∗β , ι

∗
Λ) with ι∗β = I∗(β0)

−1b
and ι∗Λ = −Λ∗ι∗β , where Λ∗ = (Λ∗

1, · · · ,Λ∗
p). So

||ι∗||2 = sup
ι∈Ῡ:||ι||>0

|h′(θ0)[ι]|2
||ι||2

= bTP 2(Sβ0S
T
β0
)−1b = bT I−1

∗ (β0)b,

where P 2(Sβ0S
T
β0
) is nonsingular by Condition 5. Combine

with Riesz representation theorem, we have that n1/2(β̂n −
β0) → N(0,Σ) where Σ = I−1

∗ (β0).
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