
Statistics and Its Interface Volume 16 (2023) 579–591

On the optimal configuration of a square array
group testing algorithm

Ugnė Čižikovienė and Viktor Skorniakov
∗

Up to date, only lower and upper bounds for the opti-
mal configuration of a Square Array (A2) Group Testing
(GT) algorithm are known. We establish exact analytical
formulae and provide a couple of applications of our result.
First, we compare the A2 GT scheme to several other classi-
cal GT schemes in terms of the gain per specimen attained
at optimal configuration. Second, operating under objective
Bayesian framework with the loss designed to attain min-
imum at optimal configuration, we suggest the preferred
choice of the group size under natural minimal assumptions:
the prior information regarding the prevalence suggests that
grouping and application of A2 is better than individual
testing. The same suggestion is provided for the Minimax
strategy.
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1. INTRODUCTION

The task of identification of infected patients in a given
cohort is the frequent one. Though the plain consecutive
testing of all individuals is an obvious solution, there are
many other ways to approach that problem. The term Group
Testing (GT) refers to the testing strategy when the testing
of distinct specimens is replaced by the testing of groups
of pooled specimens. It appears that the idea was first de-
scribed in the famous paper of Dorfman [13]. He looked for
a cost saving way to screen the U.S. soldiers for syphilis
during the period of the World War II and suggested the
following scheme. Instead of testing each individual blood
sample, pool N samples and test the group; if the group
tests positive, retest each single individual; if the group tests
negative, then all individuals in the group are healthy and
no retesting is needed. It is clear that, when the prevalence
of the disease is low, a small fraction of pools needs retesting
thereby leading to significant cost savings.

Since the appearance of the experiment described in [13],
the idea came to stay to many other fields (quality control,
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informational sciences, environmental sciences, etc.) as well.
In biomedical context, GT is widely applied to screen for
infectious diseases like HIV, hepatitis and, most recently,
COVID-19 ([43], [42], [6], [26], [38], [39], [1], [11], [12], [17],
[23], [33], [29]). It also appears to be a very useful technique
in genetics ([14], [10], [30], [8]).

In this paper, we focus on the Square Array (A2) GT
algorithm introduced by Phatarfod and Sudbury [32] and
later generalized by Berger, Mandell and Subrahmanya [5].
The A2 operates as follows. Given n2 specimens, one places
them on n × n matrix and tests the pools defined by sub-
sets corresponding to rows and columns. The cases lying on
the intersections of rows and columns exhibiting positive re-
sponses are further retested and, assuming that the test is
perfect, all infected are identified.

One of the most important characteristics of each GT al-
gorithm is the optimal configuration. To introduce the con-
cept, consider an arbitrary GT scheme and let TN denote
the total (random) number of tests performed over the co-
hort spanning N individuals. The optimal configuration is

the size of the cohort which minimizes function N �→ E(TN )
N ,

i.e., the expected number of tests per individual. Though,
for a given prevalence, numerical solution of the optimal
configuration is always possible, analytical formulae provide
much more insights allowing, in particular, analytical com-
parisons of different GT schemes. For the case of the Dorf-
man scheme described above, the optimal configuration was
established by Samuels [34] quite long ago. However, for a
couple of its modifications, namely, the modified Dorfman
scheme [36] and Sterrett scheme [37], the analytical formu-
lae, though conjectured, were unknown [25] and established
only recently [45]. Pretty much the same situation is with
A2. To our best knowledge, only Hudgens and Kim [18] ad-
dressed this problem and did not succeed in providing the
final solution. Namely, in [18] the authors obtained lower
and upper bounds for the optimal A2 configuration leaving
the exact formulae undiscovered. In this paper, we fill in
the gap by providing exact solution similar to that obtained
by Samuels [34] and Skorniakov and Čižikovienė [45] for the
case of the classical Dorfman scheme and its modifications.

A tightly related problem is that of identification of cost-
saving prevalence range. Its description is as follows. Under
Binomial Testing (BT) model (see Subsection 2.1), each in-
dividual can independently be infected with a constant prob-
ability p ∈ (0, 1). Given a particular GT scheme satisfying
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BT assumptions, its cost-saving prevalence range is an in-
terval (0, p0) with the following property: only for p ∈ (0, p0)
application of optimally configured GT scheme results in an
average amount of tests per person strictly less than 1. The
fundamental result of Ungar [40] discovered in 1960 says
that for any binomial GT scheme its cost-saving prevalence

range lies in
(
0, 3−

√
5

2

)
. Put another way, if p > 3−

√
5

2 , then

there is no GT scheme which performs better than one-by-

one testing. Value 3−
√
5

2 is known as the Universal Cut-Point
(UCP). Its utility is obvious: knowing that prevalence ex-
ceeds UCP, application of GT makes no sense and one has
to resort to testing of single individuals. However, for many
schemes the cost-saving upper bound p0 is even lower than
UCP. Its identification is therefore another important task
in theoretical description of the GT scheme at hand. For
the case of A2, we cover this problem along the way. It is an
honest deal to say that Hudgens and Kim [18] addressed this
problem as well and succeeded in providing practically opti-
mal value p̃0 very close (but not equal) to the theoretically
exact cut-point p0 obtained by us.

The paper is organized as follows. In Section 2, we state
our results and provide a couple of applications. Section 3
is devoted to discussion. Finally, there are two appendices
containing proofs, figures, and link to the web repository
with tabular data.

2. RESULTS AND APPLICATIONS

2.1 Statement of the results

Before proceeding to the statement of the results, we first
formulate Binomial Testing Assumptions (BTA) which are
assumed to hold in the remaining part of the paper by de-
fault.

BTA1: The tested cohort consists of independent indi-
viduals. Each individual is infected with the same con-
stant probability p ∈ (0, 1) (termed prevalence in the
sequel).
BTA2: The test under consideration is perfect and there
is no dilution effect. That is, pooling does not affect the
performance of the test.

The way A2 operates was already described in the intro-
ductory Section 1. However, we need an explicit expression
for the average number of tests E(TN ) applied under A2 to
the cohort spanning N = n2, n ≥ 2, individuals. The latter
was derived by Phatarfod and Sudbury [32] and is equal to

(2.1) 2n+ n2
(
1− 2qn + q2n−1

)
,

where q := 1 − p. Therefore, in this parametrization, an
average number of tests per person

(2.2) t(q, n) :=
1

N
E(TN )

∣∣∣
N=n2

=
2

n
+ 1− 2qn + q2n−1,

and the corresponding optimal configuration

nopt = nopt(q) := argminn∈{2,3,...}t(q, n).

The existence, uniqueness and bounds on nopt for various
values of q ∈ (0, 1) were established by Hudgens and Kim
[18]. Our reconsideration (given in Theorem 2.1 and Corol-
lary 2.1 below) aimed to sharpen their results (see discussion
in Section 3) and provide the complete theoretical charac-
terization of A2.

Theorem 2.1. Let g(q, n) = 2
n − 2qn + q2n−1 = t(q, n)− 1.

(i) For (q, n) ranging in (1/2, 1)× (2,∞), system of equa-
tions

(2.3)

⎧⎨
⎩

1 = nqn
(
1− qn−1

2

)

n ln q = −
(
1− qn−1

2

)

(1−qn−1)

has a unique solution (q∗, n∗) ≈ (0.748416, 4.453524).
(ii) For any fixed q ∈ (q∗, 1) and with respect to n, equation

g(q, n) = 0 admits two solutions nL, nU : 2 < nL <
n∗ < nU < ∞. On (nL, nU ), n �→ g(q, n) attains values
in (−∞, 0) whereas on (2,∞)\[nL, nU ] it attains values
in (0,∞).

(iii) For any fixed q ∈ (q∗, 1), the region (nL, nU ) is the one
where A2 is efficient, i.e., t(q, n) < 1 for n ∈ (nL, nU ).
In that region, there exists a unique (and, therefore,
global) minimizer nmin of (2,∞) � n �→ t(q, n). For
q ∈ [0.755, 1), it is given by

(2.4) nmin =
1

p
2
3

+
1

2p
1
3

+ 0.2 + 3p2 + t∗

for some t∗ ∈ [0, 1].

(2,∞) � n �→ t(q, n) also has a unique (and, therefore,
global) maximizer located in the region (nU ,∞). For any
fixed q ∈ (0, q∗), A2 is never optimal, i.e., (2,∞) � n �→
t(q, n) attains values in (1,∞).

Corollary 2.1. Let g(q, n) be as in Theorem (2.1). Then
g(q, 5) = 0 has a unique solution q5 ≈ 0.750209961. For all
q ∈ (q5, 1), nopt(q) belongs to the set1

(2.5)

{⌊
1

p
2
3

+
1

2p
1
3

+ 3p2 + 0.2

⌋
+ i : i = 0, 1, 2

}
.

Remark 2.1. In the Corollary 2.1, the region (q5, 1) ⊂
(q∗, 1). An explanation for this truncation stems from the
fact that (q5, 1) is the region where practical application of
A2 makes sense. To be more precise, applying Theorem 2.1
for a fixed q ∈ (q5, q∗), we have that t(q, nmin) < 1 with
nmin = nmin(q) given by (2.4). However, this nmin(q) ∈
(4, 5) and min(t(q, 4), t(q, 5)) > 1 when q ∈ (q∗, q5). We
touch this question briefly in the discussion Section 3 when

1here and in the sequel, �x� stands for an integer part of x ∈ R
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talking about relation of our results to those of Hudgens and
Kim [18]. Though we do not provide a separate proof of this
fact, technical details can be filled in after the inspection of
the proofs presented in the Appendix A.

2.2 Examples of applications

2.2.1 Comparison to other GT schemes

In order to shed the light on to performance of A2, we
compare it to several other GT schemes in terms of magni-
tude of optimal configuration Nopt and gain across the range
p ∈ (0, 0.249790) where application of A2 seems reasonable.
In this comparative analysis, for a fixed q = 1−p, we define
the gain as

G(q) = (1− t(q,N∗)).

Here, t(q,N) = E(TN )
N is an average number of tests per

person when the tested group size is equal to N whereas
N∗ stands for the unrounded optimal configuration, i.e.,
the minimizer of the continuous argument function [1,∞) �
N �→ t(q,N). Defined this way, the gain multiplied by 100
has a meaning of an average number of tests saved per 100
persons in comparison to usual one by one testing. Pre-
ceded by several remarks, below comes a description of the
a fore mentioned GT schemes. To distinguish between the
schemes, we assign one letter abbreviations to each and, by
making use of these letters, superscript all related quanti-

ties. E.g., t(A2)(q,N
(A2)
∗ ) denotes the value of t(q,N∗) when

A2 is the scheme under consideration.

Remark 2.2. Recall that, in section 2.1, we have intro-
duced reparametrization of N by equality N = n2, where n
is the number of rows (columns) in the squared array used
in the definition of A2. In this example and in all what
follows after, this reparametrization remains in force: writ-
ing t(A2)(q,N), we actually mean t computed by making use
of equation (2.4) with n ranging continuously unless stated
otherwise. When we want to emphasize reference to (2.4),
n is used instead of N . For all other schemes considered,
reparametrizations of similar kind do not apply.

Remark 2.3. The behaviour of quantities compared is more
naturally interpreted in terms of the prevalence p = 1 − q.
Therefore, p but not q is used in the accompanying graphs.
Also, because of the same reason and for the sake of conve-
nience, we quite often denote an argument of the function
considered by q and write an explicit formula in terms of p.

Remark 2.4. In this example, we have chosen to operate
on the continuous scale because it is much easier to per-
ceive visually in comparison to the discrete one. However,
keeping in a view the practical aspect, comprehensive numer-
ical results (see Appendix B) are given on the discrete scale.
Comparing both one can find out that the discrepancies are
small.

Dorfman scheme D. � The Dorfman scheme was de-
scribed in the introductory Section 1. For this scheme,

(2.6) t(D)(q,N) =
1

N
+ 1− qN

andN
(D)
∗ solves equation 1/N2 = −qN ln q. Samuels [34] has

shown that rounded optimal configuration N
(D)
opt is either 1+


p−1/2� or 2+
p−1/2�. Hence, N (D)
∗ =

√
p−1(1+o(1)), p →

0+. Approximation N
(D)
∗ ≈

√
p−1 is accurate enough (see

[35] for tabulated numerical results), and one can further
show that

t(D)(q,N
(D)
∗ ) = 2

√
p(1 + o(1)), p → 0 + .

Consequently, G(D)(q) = 1− 2
√
p+ o(

√
p), p → 0+. �

Sterrett scheme S. � Sterrett [37] suggested the following
modification of the Dorfman2 scheme: one should retest ini-
tial positive pool sequentially one by one until appearance
of the first positive case and then again apply pool testing to
the remaining tail. If the remaining untested set tests posi-
tive, one should proceed recursively as previously until the
remaining set tests negative or the whole set of individuals
gets tested. Malinovsky and Albert [25] conjectured that,

for p ∈ (0, (3−
√
5)/2), rounded optimal configuration N

(S)
opt

lies in the set{


√
2p−1�, 


√
2p−1�+ 1, 


√
2p−1�+ 2

}
.

Skorniakov and Čižikovienė [45] affirmed their

conjecture showing along the way that N
(S)
∗ ∈[√

2p−1 − 1,
√

2p−1 + 1
]
for p ∈ (0, (3 −

√
5)/2). From the

latter result it then follows that

N
(S)
∗ =

√
2p−1(1 + o(1)),

t(S)(q,N
(S)
∗ ) =

√
2p(1 + o(1)), p → 0 + .

Hence, G(S)(q) = 1−
√
2p+ o(

√
p), p → 0+. �

Halving scheme H. � This scheme resembles divide and
conquer sorting and can be described by the following steps.

Step 1. Test initial pooled cohort. If it tests negative,
finish; if it tests positive, proceed to Step 2.
Step 2. Divide the cohort into two approximately equal
parts consisting of the first and second halves and apply
the whole algorithm (starting from Step 1) to the two
obtained parts recursively.

It is difficult to trace back the first reference discussing this
scheme in detail. To our best knowledge, it was treated al-
ready by Johnson et al. [20]. However, it appears that its
asymptotic analysis was first accomplished not so long ago

2in fact, his suggestion was built on the already modified Dorfman
scheme
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Figure 1. Graph showing behaviour of optimal pool sizes and gains on original and log–log scales.

by Zamman and Pippenger [44] whereas in [35] it was dis-
cussed a fresh without a strict focus on asymptotic regime
when p → 0+. There it was shown that, forN = 2n, rounded
optimal configuration

N
(H)
opt ∈ {
1/(2 log2(1/q))�, 
1/(2 log2(1/q))�+ 1}

leading thereby to the following asymptotic relationships:

N
(H)
∗ = − 1

2 log2 q
(1 + o(1)),

t(H)(q,N
(H)
∗ ) = −(2p log2 p)(1 + o(1)),

G(H)(q) = 1 + 2p log2 p+ o(p log p), p → 0 + . �

Figure 1 shows the behaviour of N∗ and gain G for the case
of A2 and the three schemes described above. Note that, in

case of A2, total optimal pool size N
(A2)
∗ = n2

min with nmin

given in Theorem 2.1. Due to that raise to the square, N
(A2)
∗

grows to infinity much faster than the counterparts of the
remaining schemes, and, because of this, in the top left sub-
figure, the range of p starts quite far from the origin and
the accompanying bottom left sub-figure on the log scale is
given. It clearly depicts the relationships

(2.7) ln
(
N

(D)
∗

)
, ln

(
N

(S)
∗

)
∼ −1

2
ln(p), ln

(
N

(H)
∗

)
∼

− ln(p), ln
(
N

(A2)
∗

)
∼ −4

3
ln(p),

following from the formulae given above and clearly showing

that the asymptotic slope of ln
(
N

(A2)
∗

)
on the − ln p scale

is the largest one.
Turning to sub-figures on the right, one sees that there

are ranges where A2 outperforms other schemes. Numerical
solutions are as follows:

• RA2,D = {p ∈ (0, 0.249790) : G(A2)(q) > G(D)(q)} =
(0, 0.115589);

• RA2,S = {p ∈ (0, 0.249790) : G(A2)(q) > G(S)(q)} =
(0, 0.028071);

• RA2,H = {p ∈ (0, 0.249790) : G(A2)(q) > G(H)(q)} =
(0.012936, 0.220788).

Within these ranges, numerically estimated maximal differ-
ences are

• maxp∈RA2,D
100(G(A2)(q) − G(D)(q)) = 6.2179 at p =

0.017128;
• maxp∈RA2,S

100(G(A2)(q) − G(S)(q)) = 1.9342 at p =
0.003984;

• maxp∈RA2,H
100(G(A2)(q) − G(H)(q)) = 6.5951 at p =

0.104908.

Finally, comparing the behaviour of the optimal pool sizes

one has that

√
N

(A2)
∗ (and, therefore, N

(A2)
∗ as well) exceeds
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Figure 2. Graph showing behaviour of maximal tested pool size for different schemes.

max(N
(D)
∗ , N

(S)
∗ ) for all p ∈ (0, 0.249790). For the scheme

H, however, the following holds true:

√
N

(A2)
∗ < N

(H)
∗ for p ∈ (0, 0.023178];√

N
(A2)
∗ > N

(H)
∗ for p ∈ [0.023179, 0.249790);

N
(A2)
∗ > N

(H)
∗ for all p ∈ (0, 0.249790).

Figure 2 provides a zoomed in visual illustration. Regarding

the role and distinction between

√
N

(A2)
∗ and N

(A2)
∗ , consult

the discussion Section 3.

2.2.2 Optimal configuration when the prevalence is un-
known

In reference [24], the authors sought for the pool size lead-
ing to optimal testing by making use of the scheme D when
the prevalence is unknown. In their work, two approaches
were used. Both (approaches) were based on the following
loss function. Given scheme X, define

(2.8) L(X)(q,N) = t(X)(q,N)− t(X)(q,N
(X)
opt ),

where N
(X)
opt = N

(X)
opt (q) = argminN∈{1,2,...} t

(X)(q,N) is the
optimal configuration when the prevalence p (and hence q =
1 − p) is known. It is clear that L(X)(q,N) ≥ 0 ∀(q,N) ∈

(0, 1)×N and, for a given q, L(X)(q,N) = 0 precisely when

N = N
(X)
opt (q).

In what follows, to distinguish between N
(X)
opt (q) and op-

timal configuration suitable for unknown q’s, the latter con-

figuration is denoted by N
(X)
� .

The first approach in [24] was to make use of mini–max

strategy and take N
(X)
� as a minimizer of

(2.9) {1, 2, . . .} � N �→ sup
q

L(X)(q,N).

The second approach was to make use of Bayesian paradigm

and, after putting the prior π on q, to take N
(X)
� as a mini-

mizer of

(2.10) {1, 2, . . .} � N �→ Eπ(L
(X)(q,N)) =

Eπ(t
(X)(q,N))− c(π), c(π) = Eπ(t

(X)(q,N
(X)
opt )).

In this example, we have adopted both approaches to
the case of A2. When using the Bayesian one, π was taken
uniform over (0.750210, 1). Thereby, we have modeled situ-
ation when the only prior information is that an application
of A2 makes sense (see Corollary 2.1). Also, we have modi-
fied (2.10) and used

(2.11) {1, 2, . . .} � N �→ Eπ(L
(X)(q,N))2 =
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Eπ

(
t(X)(q,N)− t(X)(q,N

(X)
opt )

)2

instead. To justify our choice, note that, in (2.10), c(π)
does not depend on N . Therefore, minimization of the tar-
get function amounts to minimization of {1, 2, . . .} � N �→
Eπ(t

(X)(q,N)). This way important information carrying

function q �→ t(X)(q,N
(X)
opt ) remains unutilized: it is more

reasonable to look for an estimate minimizing distance to
optimal value function.

Figures 3–4 show graphs of (2.9) and (2.11) for the case of
X = A2 and the previously mentioned prior π. Note that,
adopting the above to our case, in (2.8), (2.9), (2.10), we
have used function t defined by (2.2). Numerical estimation
yielded the following values:

• N
(A2)
� = 122 for the case of mini–max approach;

• N
(A2)
� = 72 for the case of Bayesian approach.

Finishing, it is important to note that, though the strategy
discussed above leads to suboptimal testing in a stable envi-
ronment where prevalence is close to constant and its reliable
estimation is possible, it appears to be a reasonable strat-
egy when the prevalence is varying rapidly and is difficult
to capture by data at hand. Therefore, at least in the initial
stage, it can be considered as a good alternative for optimal
testing during pandemics like COVID–19. Of course, under
such circumstances, one can (and should) use various pri-
ors motivated by expert knowledge and/or domain specific

factors and obtain different estimates of N
(X)
∗ resulting in a

higher gain.

3. DISCUSSION

It was already mentioned in the introductory Section 1
that, to our best knowledge, [18] is the only reference where
A2 was treated in the same way like we did here. Therefore,
we first discuss our input in comparison with [18] and then
turn to a more general setting.

3.1 Comparison with the previous work

Figure 5 illustrates the behaviour of the function n �→ qn
appearing in the proof of Theorem 2.1. The minimum of
this function, denoted by q∗, is an exact lower bound of
the region where A2 is efficient on a continuous scale in
a sense that, given prevalence p ∈ (0, 1 − q∗) (or, alterna-
tively, q ∈ (q∗, 1)), the achievable minimum of (2,∞) � n �→
t(A2)(q, n) is strictly smaller than 1. This always holds true
for the unrounded optimal configuration, i.e., the minimizer
of (2,∞) � n �→ t(A2)(q, n) on the continuous scale. In [18],
the authors also provide a region of this kind. We utilize that
region in Corollary 2.1 and denote it (q5, 1). Remark 2.1 ex-
plains why it can be thought of as a region where A2 makes
sense from the practical point of view and how this can be
derived from our results. Linking our work to theirs, it is
important to mention that, deriving their proofs, Hudgens

Figure 3. Graph of {2, 3, . . .} � n �→ supq(t
(A2)(q, n)− t(A2)(q, n

(A2)
opt )).
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Figure 4. Graph of {2, 3, . . .} � n �→ Eπ(t
(A2)(q, n)− t(A2)(q, n

(A2)
opt ))2.

Figure 5. Graph illustrating relationships of n �→ qn and related quantities. The lower curve corresponds to q = 0.86.
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and Kim [18] operated on the discrete scale and obtained

this region as the one where {5, 6, . . .} � n �→ t(A2)(q, n)

is efficient. Having proved that n = 2, 3, 4 are never opti-

mal, they have also verified that (q5, 1) is the region where

practical application of A2 makes sense.

Summing up, in this direction, our input adds the missing

part to the theoretical characterization of A2 yet does not

bring novelty from the applied point of view. Turning to for-

mulae (2.4), (2.5), the situation is essentially different. Kim

and Hudgens [18] have given lower and upper bounds on the

configuration
√

N
(A2)
opt = n

(A2)
opt ∈ {5, 6, . . .} and ascertained

that the optimal configuration is unique. These bounds fa-

cilitate numerical computations and allow some insights on

the analytical scale yet they do not accommodate all the

benefits brought by formulae (2.4)–(2.5):

1. (2.5) provides a ready to use expressions for N
(A2)
opt

which are practically important when it comes to p’s

ranging near the origin where numerical solutions might

cause computational problems;

2. (2.4) and (2.5) enable to obtain analytical comparisons

of A2 with other schemes. An example of such analy-

sis is given in Subsection 2.2.1 when deriving relation-

ships (2.7). Without knowing analytical expressions of

N
(A2)
opt it would be impossible to contrast the asymptotic

slope of − ln p �→ lnN
(A2)
∗ (p) to the analogous asymp-

totic slopes of other schemes considered there. One can

go even further. Namely, if X is another scheme of in-

terest, one can compare analytically the behaviour of

t(A2)(q,N
(A2)
opt ) with t(X)(p,N

(X)
opt ) as p → 0+ (see a

comment in the forthcoming Subsection 3.2 regarding

an importance of analysis of this kind). It is again worth

to stress up that, in this asymptotic setting, validity of

pure numerical analysis is always questionable whereas

analytical result leads to accurate and definite analysis.

3.2 Discussion of other aspects

Several authors have already noted that array based algo-

rithms can be more efficient in certain settings [5], [22], [21].

Our findings confirm these observations: comparisons given

in Subsection 2.2.1 demonstrated that there were regions

where A2 performed better than other considered schemes.

The same behaviour is expected for other unconsidered

schemes satisfying binomial testing assumptions. Therefore,

though initially applied in a frame of genetic screening [4],

[3], [7], A2 is an appropriate candidate for other GT appli-

cations as well. Since GT is most effective when the preva-

lence p is low, for any scheme X, asymptotic behaviour of

t(X)(p,N
(X)
opt ) as p → 0+, is an important characteristic.

Among the schemes contrasted in Subsection 2.2.1, A2 takes

an intermediate position (with respect to this characteristic)

because3

lim
p→0+

t(A2)(q,N
(A2)
opt )

t(X)(q,N
(X)
opt )

= 0 for X ∈ {D,S},

and lim
p→0+

t(H)(q,N
(H)
opt )

t(A2)(q,N
(A2)
opt )

= 0.

This, however, comes at a cost of a quickly increasing max-
imal tested pool size at optimal configuration with relation-
ships inverse to those above:

lim
p→0+

N
(X)
opt (q)√
N

(A2)
opt (q)

= 0 for X ∈ {D,S},(3.1)

and lim
p→0+

√
N

(A2)
opt (q)

N
(H)
opt (q)

= 0.(3.2)

We would like to emphasize that, in case of A2,
√

N
(A2)
opt =

n
(A2)
opt (not N

(A2)
opt ) is the maximal tested pool size (corre-

sponding to the test of a distinct row/column) whereas in

case of all the rest schemes it is N
(X)
opt , X ∈ {D,H, S}. Thus

the appearance of
√

N
(A2)
opt in formulae (3.1)–(3.2) above.

N
(A2)
opt is the batch size needed to organize optimal testing

since N
(A2)
opt =

(
n
(A2)
opt

)2

samples never get tested as a single

specimen. This distinction is important since in the applied
setting one has to take into account the fact that the oper-
ating characteristics of the test might depend on the size of
the tested pool. That is, sensitivity and/or specificity of the
test might become unacceptably low when the pooled sam-
ple is formed out of N ≥ Ncritical individual samples. Also,
subjects might be dependent and it might be reasonable to
take into account imperfectness of the test even on the sin-
gle individual basis. These facts limit usage of many schemes
satisfying binomial testing assumptions. E.g., scheme H, also
known under the name of optimal testing algorithm and giv-
ing best asymptotic performance as p → 0+, requires large
pool sizes. Inspecting figure 2, one sees that A2 also exhibits
such behaviour. Nonetheless, investigations giving theoret-
ical characterization of the GT scheme considered are im-
portant because of the following reasons.

Convenience: When choosing between two realizable
schemes, the preference does not always fall on the op-
timal one. If it turns out that the optimal scheme yields
a small surplus in gain, it can be exchanged to a more
simply realizable competitor. E.g., scheme D was re-
cently employed in Lithuania [2] for massive COVID-
19 testing and a large number of other countries do
the same [9]. Turning to A2, it appears that one of the

3the relationships are not difficult to justify by making use of the
formulae (2.5)

586 U. Čǐzikovienė and V. Skorniakov



reasons of its emergence in genetic applications was an
operational convenience.
Tolerable errors: Though there exist a lot of general-
izations allowing imperfectness of the test (e.g., [22],
[21], [15]), as noted by several authors [5], [18], [25], the
schemes assuming perfect tests can be quite accurate
since modern tests exhibit very small errors.
Benchmarking: BTA based schemes, being more sim-
ple to treat analytically, provide theoretically justi-
fied benchmark thresholds for more elaborated schemes
which assume imperfectness of the test and/or other
specific conditions (e.g., testing outcome dependence
on subject specific characteristics).
Basement: More elaborated schemes may emerge on the
basis of the simpler ones. An example is the scheme S
introduced in Subsection 2.2.1. It was built on the top
of scheme D. In [22] and [15], A2 serves as a basis for
extensions incorporating imperfectness of the test and
dilution effect.

APPENDIX A. PROOFS

Remark A.1. In the proof of Theorem 2.1, Step 1 is a
repetition of Lemma 1 in [18]. We have decided to rewrite
it here because it is very short and, along the way, some
notions used in the sequel appear.

Proof of Theorem 2.1. Step 1. We first show that, for any
fixed n ∈ (2,∞), there exists a unique qn ∈ (0, 1) such that

g(qn, n) = 0, g(q, n) < 0 ∀q ∈ (qn, 1) and

g(q, n) > 0 ∀q ∈ (0, qn).

To this end, note that

∂

∂q
g(q, n) = −2nqn−1 + (2n− 1)q2n−2 =

− 2nqn−1

(
1− 2n− 1

2n
qn−1

)
< 0 ∀n ∈ (2,∞).

Thus, given n ∈ (2,∞), q �→ g(q, n) is decreasing on (0, 1).
Since g(0+, n) = 2

n > 0 and g(1−, n) = 2
n −1 < 0, the claim

holds true.
Step 2. From Step 1 it follows that, for any fixed q ∈

(0, 1), we have a well defined function n �→ qn which is given
implicitly by equation g(qn, n) = 0. Since this function is
continuous, its range I ⊂ (0, 1) is an interval. Further, for
ε ∈ (0, 1) and n = 2 + ε,

g(1−ε, n) =
2

n
−2(1−nε+O(ε2))+(1−(2n−1)ε+O(ε2)) =

−ε

2 + ε
+ ε+O(ε2) > 0,

provided ε is small enough. Hence, analysis accomplished in
Step 1 implies that q2+ε ∈ (1 − ε, 1). Therefore, I = (q∗, 1)

for some q∗ ∈ (1/2, 1). To justify the lower bound 1/2, note
that

g(1/2, n) > 0 ⇐⇒ 2n > n

(
1− 1

2n

)
.

Since the right hand side holds true for all n > 2, it fol-
lows that g(1/2, n) > 0 ∀n > 2. Also note that g(q, n) >
0 ∀ (q, n) ∈ (0, q∗)× (2,∞) since an opposite contradicts the
definition of q∗.

Step 3. Fix q ∈ (q∗, 1). By Step 1–Step 2, g(q, n) = 0 has
at least one solution n = n(q) (suffices it to take n such that
qn = q). To show that there are two solutions, put c = 1

2q ,

make a change of variable qn = x, and rewrite g(q, n) = 0
in a form

(A.1) − ln q = − lnx(x− cx2).

Consider function h(x) = −(x−cx2) lnx for x ∈ (0, 1). Note
that

d

dx
h(x) = − ((1− cx) + (1− 2cx) lnx) = 0 ⇐⇒(A.2)

− lnx =
1− cx

1− 2cx
.

Since 1−cx > 1−c > 0 and− lnx > 0 for all x ∈ (0, 1), it fol-
lows that 1−2cx > 0 as well, provided x solves (A.2). There-
fore, the range of possible solutions of (A.2) shrinks to (0, q).
Moreover, relationships lim

x→0+

d
dxh(x) = ∞, lim

x→1−
d
dxh(x) =

c − 1 < 0 imply that (A.2) has at least one solution. Since
1−cx
1−2cx+lnx = 1+ cx

1−2cx+lnx increases on (0, q), the solution
is unique. Denote it x0. Based on the sign of the derivative,
we have that h ↑ on (0, x0) and h ↓ on (x0, 1). Hence, at
x0, h attains its maximum and (A.1) admits exactly two
solutions if h(x0) > − ln q, one solution if h(x0) = − ln q,
and has no solutions if h(x0) < − ln q. By the choice of q
(recall that q > q∗), the last case can not hold. To exclude

the second one, note that the function
(

1
2 ,

1
2q∗

)
� c �→ x0(c)

is well defined and decreasing since

− lnx0 =
1− cx0

1− 2cx0
⇒ − d

dc
lnx0(c) = −

d
dcx0(c)

x0(c)
=

d

dc

1− cx0

1− 2cx0
=

x0 + c d
dcx0(c)

(1− 2cx0)2
⇒

d

dc
x0(c) =

−x2
0

(1− 2cx0)2 + cx0
< 0.

Therefore, (q∗, 1) � q �→ x0(q) is increasing. Taking into
account that q �→ − ln q is decreasing, we finally deduce
that h(x0) > − ln q for all q ∈ (q∗, 1). The monotonicity of
q �→ x0(q) and q �→ − ln q also leads to conclusion that q∗
can be solved from equation

− ln q∗ = h(x0(q∗))
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along with a unique n∗ ∈ (2,∞). Hence (i).
Step 4. Assume the setting of Step 3. Let 0 < xL = qnU <

xU = qnL < q denote two solutions of (A.1). By above,
h(x) > − ln q ⇐⇒ x ∈ (xL, xU ). Reverting to (0,∞) �
n �→ g(q, n), this reads as g(q, n) < 0 ⇐⇒ n ∈ (nL, nU ).
Note that n �→ g(q, n) > 0 in the neighborhood of ∞. Also,
from Step 1–Step 2, we have that n �→ g(q, n) > 0 in the
right neighborhood of 2 and that nU ∈ (2,∞). Therefore,
continuity of n �→ g(q, n) > 0 yields that nL ∈ (2,∞) as
well. Finally, it is clear that nL < n∗ < nU (see figure 5 for
a graphical illustration). Hence (ii).

Step 5. In this step, we identify the number and location
of zeroes of the derivative of (2,∞) � n �→ g(q, n) having
fixed q ∈ (q∗, 1). From analysis given in Step 4, it follows that
(2,∞) � n �→ g(q, n) has at least two extremes: there must
be a minimum in (nL, nU ) (since function is negative here),
and maximum in (nU ,∞) (since the function is positive here
and limn→∞ g(q, n) = 0+. To see that there are no other
extremes, consider equation

(A.3)
∂

∂n
g(q, n) = − 2

n2
− 2qn ln q + 2q2n−1 ln q = 0,

and rewrite it by making use of notions introduced in Step
3 as follows:

(A.4) − x lnx =
√

− ln q

√
x

1− 2cx
, x ∈

(
0,

1

2c

)
= (0, q).

Next, note that:

• h1(x) = −x lnx is strictly convex–up and positive on
(0, 1) with lim

x→0+
h1(x) = lim

x→1−
h1(x) = 0+;

• h2(x) =
√

x
1−2cx is strictly positive and increasing

on
(
0, 1

2c

)
= (0, q), it has one inflection point, and

lim
x→0+

h2(x) = 0, lim
x→q−

h2(x) = ∞.

Taking this information into account, we conclude that (A.4)
can have at most two solutions and confirm thereby the
assertion stated above.

Step 6. It remains to justify expression (2.4). Let

(A.5) n(q, t) =
1

p
2
3

+
1

2p
1
3

+ 0.2 + 3p2 + t, t ∈ [0, 1].

It suffices to prove that, for all q ∈ [0.755, 1), the following
statements hold true:

(a) max(g(q, n(q, 0)), g(q, n(q, 1)) < 0; and

(b) ∃t ∈ [0, 1] : ∂
∂ng(q, n)

∣∣∣
n=n(q,t)

= 0.

Analytical calculations behind (a) and (b) are standard yet
very lengthy and tedious. Therefore, we omit the details and
end up with a graphical proof and a sketch of the analytical
one.

Figures 6–7 show a graph of

q �→ max(g(q, n(q, 0)), g(q, n(q, 1)))

Figure 6. Graph of q �→ max(g(q, n(q, 0)), g(q, n(q, 1))) for
q ∈ [0.765, 1). For reference, in the online version, function

identically equal to 0 is plotted in red.

Figure 7. Graph of q �→ max(g(q, n(q, 0)), g(q, n(q, 1)) for
q ∈ [0.755, 0.765]. For reference, in the online version,

function identically equal to 0 is plotted in red.

from which it is evident that (a) holds. Analytical proof
consists of the following steps.

(s1) Calculate ∂
∂q g(q, n(q, i)), i = 0, 1.

(s2) Check that ∂
∂q g(q, n(q, i)) < 0, i = 0, 1 on [0.755, 1) and

deduce that g(q, n(q, i)) decrease on [0.755,1).
(s3) Conclude that (a) indeed holds since
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g(0.755, n(0.755, 0)) ≈ −0.002258 and

g(0.755, n(0.755, 1)) ≈ −0.013690.

Turning to (b), first rewrite (A.3) as follows:

−n2qn ln q(1− qn−1) = 1.

Next, consider function

h(t, q) = −n2(q, t)qn(q,t) ln q(1− qn(q,t)−1)− 1

with n(q, t) given by (A.5) and q ∈ [0.755, 1). Since t �→
h(t, q) is continuous, it suffices to show that, for any q ∈
[0.755, 1), h(0, q) < 0 and h(1, q) > 0. Figure 8 shows graphs
of q �→ h(0, q), q �→ h(1, q). These confirm (b). Considering
analytical part, the following is the suggested route.

(s1) Calculate ∂2

∂q2h(i, q), i = 0, 1.

(s2) Check that ∂2

∂q2h(0, q) > 0 whereas ∂2

∂q2h(1, q) < 0 on

[0.755, 1) and deduce that h(0, q) is convex downwards
whereas h(1, q) is convex upwards on [0.755,1).

(s3) By making use of Taylor’s expansion, check that
lim

q→1−
h(0, q) = 0− and lim

q→1−
h(1, q) = 0+.

(s4) Conclude that (b) indeed holds since

h(0, 0.755) ≈ −0.2645889 and

h(1, 0.755) ≈ 0.081749.

Proof of Corollary 2.1. Uniqueness of q5 was established in
Step 1 of the proof of Theorem 2.1. Hudgens and Kim [18]

Figure 8. Graphs of q �→ h(0, q), q ∈ [0.755, 1) (lower curve,
online plotted in blue) and q �→ h(1, q), q ∈ [0.755, 1) (upper

curve, online plotted in green).

(Lemmas 2, 7, and 14) have demonstrated that nopt(q) �∈
{2, 3, 4} ∀q ∈ (0, 1). From their results we also have that
nopt(q) = 5 ∀q ∈ (q∗, 0.755]. It is straightforward to verify
that

∀ q ∈ (q5, 0.755]

⌈
1

p
2
3

+
1

2p
1
3

+ 3p2 + 1.2

⌉
= 5.

Hence the claim in the region (q5, 0.755]. For q ∈ [0.755, 1),
it follows from Theorem 2.1 by noting that at least one of
numbers in the set (2.5) belongs to {n ∈ (2,∞) : t(q, n) < 1}
because of (a) in Step 6 of proof of Theorem 2.1.

APPENDIX B. TABLES AND FIGURES

The material contained in this appendix was produced
by making use of an open source computer algebra sys-
tem SymPy [28] and the python packages constituting the
core kit for scientific numerical programming with python:
NumPy [16], SciPy [41], Matplotlib [19] and Pandas [27],
[31]. The table accompanying Subsection 2.2.1 is placed
in our Open Science Framework repository (https://osf.io/
bdxca, file A2 table.csv). For the prevalence p ranging over
(0, 0.249790) at a step equal to 10−6 and for each scheme
considered there, the following information is given: op-
timal (rounded) pool size Nopt(q) and gain G(q) = 1 −
t(q,Nopt(q)). In case of A2, n

(A2)
opt (q) and t(A2)(q, n

(A2)
opt (q))

are reported (see Subsection 2.2.1, Remark 2.2 for the de-
tails).
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[11] de Wolff, T., Pflüger, D., Rehme, M., Heuer, J. and Bit-

tner, M.-I. (2020). Evaluation of pool-based testing approaches
to enable population-wide screening for COVID-19. PLOS ONE
15 e0243692.

[12] Deckert, A., Bärnighausen, T. and Kyei, N. N. (2020). Sim-
ulation of pooled-sample analysis strategies for COVID-19 mass
testing. Bulletin of the World Health Organization 98 590–598.

[13] Dorfman, R. (1943). The detection of defective members of large
populations. The Annals of Mathematical Statistics 14 436–440.

[14] Du, D. and Hwang, F. (2006). Pooling designs and nonadaptive
group testing: important tools for DNA sequencing. Series on ap-
plied mathematics v. 18. World Scientific, New Jersey. OCLC:
ocm70407992. MR2282446

[15] Habtesllassie, Y. G., Haines, L. M., Mwambi, H. G. and Odhi-

ambo, J. W. (2015). Array-based schemes for group screening
with test errors which incorporate a concentration effect. Journal
of Statistical Planning and Inference 167 41–57. MR3383235

[16] Harris, C. R. et al. (2020). Array programming with NumPy.
Nature 585 357–362.

[17] Hogan, C. A., Sahoo, M. K. and Pinsky, B. A. (2020). Sam-
ple Pooling as a Strategy to Detect Community Transmission of
SARS-CoV-2. JAMA 323 1967.

[18] Hudgens, M. G. and Kim, H.-Y. (2011). Optimal Configuration
of a Square Array Group Testing Algorithm. Communications in
Statistics – Theory and Methods 40 436–448. MR2765839

[19] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment.
Computing in Science & Engineering 9 90–95.

[20] Johnson, N. L., Kotz, S. and Wu, X. (1991). Inspection Er-
rors for Attributes in Quality Control. Springer US, Boston, MA.
MR1214790

[21] Kim, H.-Y. and Hudgens, M. G. (2009). Three-Dimensional
Array-Based Group Testing Algorithms. Biometrics 65 903–910.
MR2649863

[22] Kim, H.-Y., Hudgens, M. G., Dreyfuss, J. M., Westre-

ich, D. J. and Pilcher, C. D. (2007). Comparison of Group
Testing Algorithms for Case Identification in the Presence of Test
Error. Biometrics 63 1152–1163. MR2414593

[23] Lohse, S., Pfuhl, T., Berkó-Göttel, B., Rissland, J.,
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