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Network vector autoregressive moving average
model∗

Xiao Chen, Yu Chen
†
, and Xixu Hu

Modeling a continuous response of a large-scale network
is an important task and it has become prevailing in prac-
tice at present. This paper proposes a novel network vec-
tor autoregressive moving average (NARMA) model which
considers the responses from both an ultra-high dimension
vector and the network structure effects. Compared with
the network vector autoregressive (NAR, [26]) model, we
take into account the lagged innovations and corresponding
network effect in our proposed model. With more param-
eters considered and a moving average term incorporated,
the proposed NARMA model can fit the data more closely
and accurately, thus has a better performance than the NAR
model. A modified least square estimation for the NARMA
model is introduced, and the consistency properties are fully
investigated. Finally, we demonstrate the superiority of the
proposed NARMA model by investigating the financial con-
tagions of S&P500 index constituents.

Keywords and phrases: Network data, Modified least
square estimator, Vector autoregressive moving average,
High dimensional time series.

1. INTRODUCTION

High-dimension network structure is common in social
networks and financial networks, such as the interpersonal
relationships on Facebook, Twitter and the interplay be-
tween stock prices which are included in the same index or
market. In this article, we concentrate our interest on fi-
nancial data. On the one hand, different companies in the
market are no longer independent of each other due to glob-
alization and an increasing number of upstream and down-
stream enterprises. On the other hand, a huge number of
covariates can be collected for each stock, such as market
cap, PE ratio, EPS, and so on. As a result, it indicates that
network data plays an important role in many fields, such
as being used to provide site user portraits ([11]), character-
ize social capital flow patterns ([3]), and analyze consumer
behaviors ([9]).

∗We thank the AE and the two referees for their helpful comments and
suggestions which greatly improved our paper.
†Corresponding author.

Consider a large-scale network with N nodes (i.e., users,
indexes) indexed by 1 ≤ i ≤ N . To describe the net-
work structure, we define an adjacency matrix A = (aij) ∈
R

N×N , where aij = 1 if there exists a relationship (i.e., a
directed edge) from i to j, and aij = 0 otherwise ([24]).
Throughout this paper we assume that the adjacency ma-
trix A is non-random. By convention, let aii = 0 for any
1 ≤ i ≤ N . Let Yit ∈ R be a continuous response ob-
tained from node i at time point t, 1 ≤ t ≤ T . Denoting
Yt = (Y1t, . . . , YNt)

� ∈ R
N , we are interested in studying

the dynamic pattern of Yt. In the past literatures, vector
autoregression (VAR) and the corresponding dimension re-
duction methods have been extensively studied, especially
the factor models ([17], [10], [2], [18]).

Zhu et al. [26] proposed a network vector autoregression
(NAR) model. The NAR model assumes that each node’s
response at a given time point is a linear combination of
(a) its previous value, (b) the average value of its connected
neighbors, (c) a set of node-specific covariates, and (d) an
independent noise. The advantages of the NAR model are
tow-fold. First, as a variant of the vector autoregression
(VAR) model, it captures the relationship between multi-
variate time series, thus fully utilizing information of all
time series. ([2], [14]). Second, by taking network structures
into consideration, the NAR model significantly reduces the
computation time complexity O(N2) of the VAR model, to
an acceptable level, while keeping the high prediction per-
formance.

Taking network structure into time series modeling has
shown its effectiveness in many scenarios. For example, Zhu
and Pan [25] propose the grouped network vector autore-
gression (GNAR) model classifying individuals in the net-
work into different groups to express heterogeneity. Zhu
et al. [28] further design the network quantile autoregression
(NQAR) model accounting the network information into a
quantile regression framework and concentrated on the tail
dependency. Chen, Fan and Zhu [4] propose the community
network autoregression (CNAR) model, allowing heteroge-
neous network effects across different network communities
with unknown cross-sectional dependence accounted by the
non-community-related latent factors. Last but not least,
Armillotta and Fokianos [1] propose the Poisson network
autoregression to link multivariate observation-driven count
time series models with time-varying network data.

Despite its simple form and easy interpretation, the only
two essential parameters that the NAR model considers, the
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coefficients of its previous values and the average of its con-
nected neighbors, strictly restrict the scenarios it can be
applied and may cause model misspecification. To address
this issue, some flexible extensions to the NAR model have
been considered in the literature. For instance, Dou, Parrella
and Yao [5] and Zhu et al. [29] implement a node-specific
network effect to characterize different inferential powers of
different nodes. Sun [21], Wang, Lin and Wang [23], and Sun
and Malikov [22] investigate the nonlinear and nonparamet-
ric extensions. Sojourner [20], Liu, Patacchini and Rainone
[13] and Zhu et al. [27] consider the multivariate responses.
However, almost all of these articles concentrate on the im-
pact of previous responses while ignoring the influence of
the previous noises.

In this article, we propose a novel network autoregressive
moving average (NARMA) model which considers both the
influence of the lagged responses and the influence of the
lagged noises. The response Yit is influenced by six factors,
(a) its own lagged value Yi(t−1), (b) a set of node-specific co-

variates Zi, (c) its connected neighbors n−1
i

∑N
j=1 aijYj(t−1),

(d) its lagged noise εi(t−1), (e) the lagged noise of its con-

nected neighbors n−1
i

∑N
j=1 aijεj(t−1), and (f) an indepen-

dent noise εit.
Our paper contributes to the literature in the follow-

ing four aspects. Firstly, we propose a network vector au-
toregressive moving average model by considering the net-
work effect of the lagged error terms. Meanwhile, compared
with the ordinary ARMA model, our model significantly
reduces the dimensions while keeping high prediction accu-
racy when the data dimension is exceptionally high. Sec-
ondly, to investigate its theoretical properties, we first pro-
pose a specific definition of invertibility in high-dimensional
time series modeling. Combined with the high-dimensional
stationarity definition proposed by Zhu et al. [26], we pro-
vide an estimator for the proposed NARMA model based
on a modified least square estimation and obtain its con-
sistency. Thirdly, to tackle the unobservable problem be-
fore time T = 0, we innovatively use the truncated resid-
ual error terms to approximate the whole ones with consis-
tency guarantees. Fourthly, we demonstrate the superiority
of our proposed model through extensive simulation studies
and a real-world example. The NARMA model fits better
with lower root mean square error in the high-dimensional
case than the NAR model. We also illustrate the asymptotic
properties through simulation results. In the S&P500 index
constituents price modeling, the NARMA model predicts
with higher accuracy than the NAR model, thus holding
outstanding advantages in ultra-high-dimensional network
structure data modeling.

The rest of the article is organized as follows. Section 2
introduces the NARMA model with its stationarity, invert-
ibility, consistency and a p-lag extension. Section 3 gives
three kinds of numerical studies and analyses. A case study
about the prices of S&P 500 constituents is given in Section
4. A brief discussion is given to conclude the article in Sec-
tion 5. All technical details can be found in the Appendix.

2. NETWORK VECTOR AUTOREGRESSIVE
MOVING AVERAGE MODEL

2.1 Model and notations

Let N be the network size and Yit be the response
collected from the ith subject at time t. We also as-
sume a p-dimensional node-specific random vector Zi =
(Zi1, . . . , Zip)

� ∈ R
p can be observed. We propose the

NARMA model as follows:

Yit = λ+ Z�
i γ + β1n

−1
i

N∑
j=1

aijYj(t−1)

+ α1n
−1
i

N∑
j=1

aijεj(t−1) + β0Yi(t−1)

+ α0εi(t−1) + εit,

(1)

where ni =
∑

j �=i aij (out-degree of the node) is the number
of nodes that node i follows. We set aij = 1 if i follows j with
the meaning that follower i can be affected by its leader j.
Specifically, we assume 1

N

∑N
i=1

1
ni

> 0, which means most
rows of the adjacency matrix are sparse.

The term λ + Z�
i γ characterizes the nodal impact of

the ith node, where λ ∈ R is the intercept and γ =
(γ1, . . . , γp)

� ∈ R
p is the associated coefficient vector which

is invariant over time t. The quantity n−1
i

∑N
j=1 aijYj(t−1)

represents the average impact of the leaders that the ith
node follows. Its associated parameter β1 is referred to as
the network effect. Similarly, n−1

i

∑N
j=1 aijεj(t−1) is the av-

erage impact of the error terms from the nodes that node
i follows. α1 is referred to as the network effect of the er-
ror term. The term Yi(t−1) is the standard autoregressive
impact with β0 referred to as the momentum effect. Com-
pared with the NAR model([26]), Et−1 appears directly for
Yt rather than an indirect effect.

Now we introduce some notations used in this paper. The
parameter space is established as Θ = {(λ, γ, α0, α1, β0, β1) :
α0+β0 �= 0, α1+β1 �= 0} (the condition exists as the coeffi-
cients cannot be zero). Moreover, εit is the error term follow-
ing a normal distribution with E(εit) = 0 and Var(εit) = σ2.
When one considers the multivariate distribution of Et =
(ε1t, . . . , εNt)

�, it is more realistic to take the covariance
matrix as a non-diagonal one. However, this might lead to
a large number of extra unknown parameters, which adds
additional complexity to the model. For convenience, we as-
sume a diagonal covariance structure for Et. Lastly, ‖ · ‖
without subscript means �2-norm in the following.

Remark 2.1 (Relation to the ARMA model). The
NARMA model is a simplification of the ordinary ARMA
model. It reduces the number of coefficients by only taking
influential nodes into consideration. Hence it is much more
convenient when we consider a large-scale network. Taking
the network structure into consideration saves lots of time
while also retaining great accuracy.
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Remark 2.2 (Advantages compared with the NAR model).
Compared with an NAR model, the proposed NARMA model
considers the influence of the past errors, which can obtain
more accurate predicted values, especially when the time di-
mension is large. Though the parameter estimation is a bit
harder than the NAR model, we can still give solutions and
the efforts are worthwhile.

For simplicity, we define Z = (Z1, . . . , ZN )� ∈ R
N×p and

B0 = λ1+ Zγ ∈ R
N , where 1 = (1, . . . , 1)� is a compatible

vector with all elements of 1. We collect all the unknown
parameters and denote them by θ = (λ, γ, α0, α1, β0, β1).
Recall that Yt = (Y1t, . . . , YNt)

� ∈ R
N . Then we can rewrite

Eq. (1) in a vector form:

Yt = B0 + GYt−1 +KEt−1 + Et.(2)

In Eq. (2), G = β1W + β0I and K = α1W + α0I, W is
defined as diag{n−1

1 , . . . , n−1
N }A which is a row-normalized

adjacency matrix whose rows are not null and I is an identity
matrix with a compatible dimension. Et = (ε1t, . . . , εNt)

� ∈
R

N is the innovation vector. Since the adjacency matrix A
is assumed to be a non-stochastic matrix as before, matrices
G, K and W are all non-stochastic. However, B0 is a random
matrix due to the assumption that Z is random.

2.2 Strict stationarity

Since Yt is a time series, it is of interest to study its
stationarity. In the following, we derive the conditions for
strict stationarity in the non-asymptotic and the asymptotic
cases respectively: N is a finite number and N → ∞. We
follow the definitions in both cases given in Zhu et al. [26].
We start with the non-asymptotic case first.

Since the definition of strictly stationary when N is fixed
is well-known, we give no more detailed description here.
Under the definition, we can give the following theorem.

Theorem 2.1. Suppose that E‖Zi‖ < ∞ and N is fixed. If
|β0|+ |β1| < 1, then there exists a unique strictly stationary
solution with a finite first-order moment to the NARMA
model (2). The solution takes the form of

Yt = (I − G)−1B0 + Et +
∞∑
j=1

Gj−1(K + G)Et−j .(3)

The proof of Theorem 2.1 is given in the Appendix.
Next, we study the strict stationarity under the condition

thatN → ∞. In classical time series theory, the dimension of
the model is fixed. However, when incorporating the network
structure, the number of nodes (i.e, the dimension of the
model, N) could be really large. Therefore, it is interesting
to investigate whether the strict stationarity is still satisfied
when N → ∞. Zhu et al. [26] first states the definition of
strict stationarity in the extreme case:

Definition 1. Let {Yt ∈ R
N} be a N -dimensional time se-

ries with N → ∞. Define W = {ω ∈ R
∞ :

∑
|ωi| < ∞},

where ω = (ωi ∈ R : 1 ≤ i ≤ ∞)� ∈ R
∞. For each

ω ∈ W, let wN = (ω1, . . . , ωN )� ∈ R
N be a truncated N -

dimensional vector. Then {Yt} is said to be strictly station-
ary, if it satisfies the following conditions for any ω ∈ W,

(1) Y ω
t = limN→∞ w�

NYt exists in the almost sure sense;
(2) {Y ω

t } is strictly stationary.

Moreover, Yt is said to have a finite m-th order moment if
max1≤i<∞ E|Yit|m < ∞.

In the classical settings when N is fixed, one can ver-
ify that {Yt} is strictly stationary if and only if {w�

NYt} is
strictly stationary for any wN ∈ R

N . As a result, Defini-
tion 1 can be viewed as an extension of the classical station-
arity with fixed N to the diverging case. Using the definition
above, we can have the following theorem for the NARMA
model:

Theorem 2.2. Under the same conditions as in Theo-
rem 2.1 with N → ∞. Then the solution defined as Eq.
(3) is a unique strictly stationary solution (in the sense of
Definition 1) to the NARMA model with a finite first-order
moment.

The proof is also given in the Appendix. Remarkably, the
strict stationary solution when N → ∞ shares the same
form when N is fixed. Theorem 2.2 shows the stationarity
of the high-dimensional NARMA model.

2.3 Invertibility

Compared with the seminal NAR model, with the addi-
tion of moving average part, the response vector Yt satis-
fies an ARMA-structure. Therefore, it is very important to
investigate the invertibility of NARMA model. Similar to
the discussion in stationarity above, we can define two sets
of invertibility according to whether N is a finite value or
N → ∞. First, we start with the classical settings when N
is fixed. We adopt the classical definition for the invertibil-
ity of ARMA model given in Pham and Tran [19]. Thus we
have the following Theorem.

Theorem 2.3. Suppose that E‖Zi‖ < ∞ and N is fixed.
If (|α0| + |α1|) < 1, then there exists a unique invertible
solution with a finite first-order moment to the NARMA
model (2). And the solution takes the form of

Et := Et(θ) = −(I +K)−1B0

+ Yt −
∞∑
j=1

(−K)j−1(K + G)Yt−j .
(4)

The proof of Theorem 2.3 is similar to the proof of sta-
tionarity. From Theorem 2.3 we can get an inverse represen-
tation of Et. Eq. (4) can be further simplified by combining
responses Yt with the constant terms. Without loss of gen-
erality, we use the following form in the rest of the article:

Et = Yt −
∞∑
j=1

(−K)j−1(K + G)Yt−j .(5)
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From Eq. (5) we can see that the inverse representation re-
lies on the values of Yt and the values of K and G. Re-
call the formulae of K and G, we can further notice that
the inverse representation relies on the parameters θ =
(λ, γ, α0, α1, β0, β1). Actually, the response vector Yt before
time 0 are unobservable and the parameter vector is un-
known. To tackle these problems, by convention, we always
initialize Y0 as a arbitrary value y0 and replace the param-
eter θ with an estimated version θ̂ = (λ̂, γ̂, α̂0, α̂1, β̂0, β̂1).
Therefore, we need to extend the conditions for invertibility
into the practical scenarios. Denote the value of Et given y0

by E(t|y0) and the value of Et given (y0, θ̂) by Eθ̂(t|y0)
. We

show the extended conditions for invertibility as the follow-
ing remarks.

Remark 2.3. Following Pham and Tran [19], we say that
the process Yt is invertible if E(t|y0) − Et converges to 0 in
some sense, as t → ∞, regardless of y0.

Remark 2.4. We say that the model (2) is invertible at θ̂
relative to the observation process Yt if there exists a sta-
tionary process Eθ̂t := Et(θ̂) such that Eθ̂(t|y0)

−Eθ̂t converges
to 0 in some sense as t → ∞, regardless of y0.

Next we address the situation when N → ∞. To our best
knowledge, there exists no widely accepted general defini-
tion. As a possible attempt, we give definitions in several
aspects.

Definition 2. Let {Yt ∈ R
N} be a N -dimensional time

series with N → ∞.

(a) {Yt} is said to be strongly invertible under �1-norm if
it satisfies that

‖Eθ(T |y0) − ET ‖1 → 0 a.s.,

when N,T → ∞.
(b) {Yt} is said to be strongly invertible under �∞-norm if

it satisfies that

‖Eθ(T |y0) − ET ‖∞ → 0 a.s.

when N,T → ∞.
(c) {Yt} is said to be weak invertible in mean if it satisfies

that

lim
min{N,T}→∞

1

NT

T∑
t=1

1�(Eθ(t|y0) − Et) → 0.

(d) {Yt} is said to be weak invertible in mean square if it
satisfies that

lim
min{N,T}→∞

1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0) → σ2
Et
.

Based on the definitions (a), (b) and (d), we have the
following results:

Theorem 2.4. Suppose that (|α0| + |α1|) < 1 and (|β0| +
|β1|) < 1, the solutions defined in (5) satisfy the extended
invertible definitions under l1-norm, l∞-norm, and mean
square sense.

(1) When min{N,T} → ∞ and logN = o(T ),

‖Eθ(T |y0) − ET ‖1 → 0 a.s.

(2) When min{N,T} → ∞,

‖Eθ(T |y0) − ET ‖∞ → 0 a.s.

(3) When min{N,T} → ∞,

1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0) −
1

NT

T∑
t=1

E�
t Et → 0 a.s.

The details of the proof are included in the Appendix.
Based on Theorem 2.4, we prove the consistency of the
Eθ(t|y0) and the consistency of the variance. Combining with
Remarks 2.3 and 2.4, we can say that the NARMA model
is invertible even in the diverging cases.

From the Appendix, it can be noted that the existence
of B0 makes no difference in the estimation. Thus, we can
omit it here. Define Eθ(t|y0) as follows,

Eθ(t|y0) = Yt −
t−1∑
j=1

(−K)j−1(K + G)Yt−j

− (−K)t−1(K + G)y0,

(6)

where y0 is the starting value. Then invertibility in variance
can be written as

1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0) −
1

NT

T∑
t=1

E�
θtEθt → 0, a.s.,

when min{N,T} → ∞. The proof of the invertibility of the
NARMA model in variance is given in the Appendix.

2.4 Parameters estimation

Theorem 2.4(1)(invertibility in variance) shows that if we
use the true parameters to get noises with an arbitrary y0,
the estimated noises will be close to the real ones. Therefore,
we can derive a least square estimation for the parameter
vector θ. Define the sum of squares of “errors” as

VT (θ̃) =
1

NT

T∑
t=1

E�
θ̃(t|y0)

Eθ̃(t|y0)
,(7)

where θ̃ is defined on a given set Θ̃. Following the idea of the
least square estimation, we can minimize VT (θ̃) to obtain an
estimate of θ:

θ̂T = argmin
θ̃∈˜Θ

VT (θ̃).(8)
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Next, we discuss the asymptotic properties of θ̂T .

Theorem 2.5. Let δ > 0, if (|α0| + |α1|) < 1 − δ and
(|β0|+|β1|) < 1−δ, then the modified least squares estimator

θ̂T on Θ̃ = {(λ, γ, α0, α1, β0, β1) : (|α0|+|α1|) ≤ 1−δ, (|β0|+
|β1|) ≤ 1− δ} is strongly consistent.

Theorem 2.5 shows the consistency of the estimated θ̂T ,
which is obtained by minimizing VT (θ̃). It provides an esti-
mation together with theoretical guarantees for estimating
the parameters of the NARMA model. Since the items con-
taining λ and γ have no connection with the network, for
simplicity, we omit them in the following. To prove The-
orem 2.5, we first provide some useful lemmas in the Ap-
pendix. Theorem 2.5 can be easily proved by using these
lemmas.

Remark 2.5. Maximum likelihood estimation is not worth
recommending here since this method is relatively complex
with large estimation error in high-order case. Parameter
estimation methods for ARMA model are given in some
literatures([8], [15]) and their methods are interesting for
our further studies.

2.5 General NARMA(p) model

Note that the proposed model (1) only considers one lag.
For simplicity, we refer to it as a NARMA (1) model. As a
flexible extension, one could consider the NARMA (p) model
as follows:

Yit = λ+ Z�
i γ +

p∑
m=1

βm

ni

N∑
j=1

aijYj(t−m)

+

p∑
m=1

αm

ni

N∑
j=1

aijεj(t−m) +

p∑
m=1

φmYi(t−m)

+

p∑
m=1

ρmεi(t−m) + εit.

(9)

Let Y
∗
t = (Y�

t ,Y
�
t−1, . . . ,Y

�
t−p+1)

� ∈ R
Np. Then the

NARMA(p) model (9) can be expressed in vector form as

Y
∗
t = B∗

0 + G∗
Y

∗
t−1 +K∗E∗

t−1 + E∗
t ,(10)

with B∗
0 = (B�

0 ,0
�
N(p−1))

� ∈ R
Np, E∗

t = (E�
t , E�

t−1, . . .,

E�
t−p+1)

� ∈ R
Np and

G∗ =

(
	 βpW + φpIN

IN(p−1) ON(p−1),N

)
,

K∗ =

(
ℵ αpW + ρpIN

IN(p−1) ON(p−1),N

)
,

where 	 = (β1W + φ1IN , . . . , βp−1W + φp−1IN ) ∈
R

N×N(p−1), ℵ = (α1W + ρ1IN , . . . , αp−1W + ρp−1IN ) ∈
R

N×N(p−1), 0n is the n-dimensional zero vector, On1,n2 is
the n1 × n2 dimensional zero matrix, and In is the n × n

dimensional identity matrix. The NARMA(p) model has the
same properties just like the NARMA(1) model and we give
no more detailed description here.

3. NUMERICAL STUDIES

3.1 Simulation models

We demonstrate the finite sample performance of our pro-
posed methodology by considering the three kinds of net-
work model same as Zhu et al. [26]. Specifically, for each
example, the random error εit is simulated from a stan-
dard normal distribution N(0, 1). We simulate a three di-
mensional covariate vector Zi = (Zi1, Zi2, Zi3) ∈ R

3 from
a multivariate normal distribution MVN(0,Σz), where the
(ith, jth) element σij = 0.5|i−j|. For the nodal effect pa-
rameter γ, we set it as a fixed value γ = (−0.5, 0.3, 0.8)�.
Lastly, we simulate the response vector at time 0 (i.e.Y0)
from N(0, 1).

Example 1. (Dyad Independence Model). In the first exam-
ple, we consider a simple case where the network structure
is built on the relationships between pairs. We call the re-
lationship between two nodes a dyad, Dij = (aij , aji), ∀1 ≤
i < j ≤ N , and the relationships between different dyads
are independent. For the simulation probability of the mu-
tually connected dyads (i.e., Dij = (1, 1)), we set it as
P (Dij = (1, 1)) = 20N−1 following Zhu et al. [26]. For
the one-direction connected dyads (i.e., Dij = (1, 0) or
Dij = (0, 1)), we set the probability as P (Dij = (1, 0)) =
P (Dij = (0, 1)) = 0.5N−0.8. For dyad without connections
(i.e., Dij = (0, 0)), the probability is P (Dij = (0, 0)) =
1 − 20N−1 − N−0.8, which is very close to 1 for large N .
These settings ensure the network sparsity. To avoid degen-
erate cases, we always set one element of the row equal to
one if the elements of this row are all zero. Lastly, we investi-
gate the cases that T = 10, 50, 100 and (λ, β0, β1, α0, α1)

� =
(0.3, 0.5, 0.3, 0.5, 0.2)�.

Example 2. (Stochastic Block Model). The stochastic block
model is considered to be the major cause of financial conta-
gion. In the stochastic block model, nodes within the same
block have higher probability to be connected, which corre-
sponds to the phenomenon in stock market that stocks in
the same industry tend to connect more closely and form
the block structure. For the simulation settings, we follow
([16]) and randomly assign a block label (k = 1, . . . ,K) to
each node. We consider the cases where K ∈ {5, 10, 20}.
For the connection probabilities within blocks and out-
side of blocks, we set them as P (aij = 1) = 0.3N−0.3

and P (aij = 1) = 0.3N−1 respectively, making the con-
nections much denser between nodes with the same block
labels. Lastly, we fix T = 30 and (λ, β0, β1, α0, α1)

� =
(0.0,−0.2, 0.1,−0.1, 0.2)�.

Example 3. (Power-Law Distribution Model). In reality,
there is a common phenomenon that a few nodes have a
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great amount of connections while the rest of the majority
only have a few connections. This phenomenon is modeled as
the power-law distribution model in network science, which
is also quite popular in financial studies. To simulate such
network structure, we first generate in-degrees di =

∑
j aji

following a discrete power-law distribution P (di = k) =
ck−η, where c is a normalizing constant and we take η ∈
{1.2, 2.5, 5.0}. According to Gabaix [6], η equals to 3 fits the
stock market really well. Therefore, we take the values of η
around 3, with smaller values implying a heavier distribution
tail. Then we randomly sample di nodes to be the ith node’s
followers. Lastly, we fix T = 30 and (λ, β0, β1, α0, α1)

� =
(0.3, 0.5,−0.1, 0.4, 0.3)�.

3.2 Performance measurements and
simulation results

For each simulation example, a series of network sizes
is considered (i.e., N = 100, 500, 1000). To obtain the
modified least squares estimator described above, we use
an optimal algorithm for implementation: we generate 100
random vectors and choose the one with the least resid-
ual. We repeat the generation and selection for R = 300
times and take the mean as our final estimation. We de-

note the optimal estimator in the rth replication as θ̂
(r)

=

(λ̂(r), γ̂(r)�, β̂
(r)
0 , β̂

(r)
1 , α̂

(r)
0 , α̂

(r)
1 )�, then the final estimation

is given by θ̂ = R−1
∑R

r=1 θ̂
(r)

. To gauge the performances
of these estimators, we use the root mean square error
(RMSE). The RMSE for the jth estimator in θ is given by

RMSEj = {R−1
∑R

r=1(θ̂
(r)

j −θj)
2}1/2. The total number of

observed edges (i.e.,
∑

i,j aij) and the network density(i.e.,

{N(N − 1)}−1
∑

i,j aij) are also reported.
The detailed simulation results are summarized in Ta-

ble 1. For the first example (i.e., Table 1), we find that, if T

is fixed, the RMSE values for all θ̂j ’s decrease towards 0 as

N increases. For example, β̂0(i.e., the estimated momentum
effect) with T = 30, the RMSE value drops from 5.0% to
3.1%, as N increases from 100 to 1000. In the meanwhile,
the network density drops from 21.13% to 2.32%, which
means that the network structure is increasingly sparse. The
RMSE values are the same order compared with the simu-
lation results of the NAR model. The main possible reason
may be the optimization method could produce some error.

Remark 3.1. From Table 2, we find that when N = 1000,
the RMSE of β1 and α1 are larger than those when N =
500. The RMSEs of λ in Table 1 has the same problem.
This maybe incredible but can be explained. The network
density rapidly decreases when the dimension N increases.
This leads to fewer information and the increasement of the
RMSEs.

4. CASE STUDIES

In this section, we illustrate the performance of the pro-
posed NARMA model on real data set. We focus on the

application in financial data and consider the data from the
Standard & Poor’s 500 Index (S&P500) from January 2,
2018 to March 13, 2019. The data contains N = 477 stocks
during the T = 300 trading days. The response Yit is the
daily stock return. We select three covariates which are re-
lated to a corporation’s fundamentals: SIZE (i.e., the mar-
ket cap), PE (i.e., price earnings ratio), and Beta (β or beta
coefficient, a measure of the risk arising from exposure to
general market movements as opposed to idiosyncratic fac-
tors).

We first conduct a preliminary descriptive analysis of the
data. First, the average return during the analysis period,
i.e., T−1

∑
t Yit is calculated for each stock. This leads to

the histogram in the left panel of Figure 1. The mean daily
return of all stocks is given by −0.0035%. Next, the average
daily return over all stocks, i.e., N−1

∑
i Yit are calculated

for each day. This yields the line chart in the right panel
of Figure 1. A higher volatility level can be captured at the
beginning and the end of 2018.

The network relationship can be constructed by using the
top ten shareholder information of stocks ([28]). However,
when we study the stocks in S&P500, unlike the Chinese
stock market, some of the investment institutions and fund
companies in the U.S. hold the stock of almost every large
company, such as the Vanguard Group Inc., the Blackrock
Inc., the State Street Corporation, the FMR, LLC and so
on. Here in our study, we let aij = 1 if the ith and jth
stock share at least five shareholders in top ten, otherwise
aij = 0. The histogram of the degree of the adjacency matrix
is given in the left panel of Figure 2. Thereby, the network
structure graph can be obtained. This yields the right panel
of Figure 2.

We next fit the data to the NARMA model. We adopt a
sliding window approach to evaluate the model performance.
The time window for model training is set to be Ttrain = 300
days. The subsequent Ttest = 5 days are employed for model
testing.

The parameter estimation results are given in Table 4.
Firstly, it is obviously that the lagged error term is in the
same order as the lagged value term which means the error
term should not be cancelled. Secondly, the network effects
β1, α1 are both significant which states that the network
structure exists in financial data.

Then we compare the NARMA model with the NAR
model ([26]) in terms of the prediction accuracy. The results
are given in Figure 3. From this figure, we could find that
the NARMA model is better than the NAR model most of
the time. However, the performance of the NARMA model
is not significantly better than the NAR model. This might
due to the unperfect fit of the stocks’ return data to the
ARMA structure. Next we pay attention to the estimated
parameters. For the selected three covariates, except for the
coefficient of Beta, the other two coefficients in the NARMA
model and the NAR model are both close to zero, which
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Figure 1. Left panel: the histogram of the average return of N = 477 stocks; right panel: the line plot of daily average returns
of N = 477 stocks.

Figure 2. Left panel: the histogram of the degree of adjacency matrix; right panel: the graph of the network structure.
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Table 1. Simulation results for Example 1. The parameter estimation is given. The RMSE values (×10−2) are reported for every parameter estimates in
parentheses. Total number of observed edges (TNOE) and network density (ND) are also reported

T=10 T=30 T=100
N=100 N=500 N=1000 N=100 N=500 N=1000 N=100 N=500 N=1000

λ 0.281(15.4) 0.291(10.8) 0.323(12.3) 0.278(15.4) 0.298(11.4) 0.332(11.1) 0.343(15.3) 0.286(9.0) 0.336(10.2)

γ1 −0.373(12.0) −0.376(9.8) −0.486(8.9) −0.421(9.0) −0.439(6.6) −0.506(5.4) −0.498(5.5) −0.487(4.1) −0.494(3.9)
γ2 0.321(14.7) 0.277(11.0) 0.222(9.9) 0.363(11.1) 0.275(6.9) 0.275(6.4) 0.320(6.0) 0.295(4.7) 0.287(4.1)
γ3 0.701(17.4) 0.729(11.1) 0.700(11.1) 0.745(12.1) 0.783(8.9) 0.766(7.5) 0.783(7.3) 0.799(5.4) 0.790(4.8)

β0 0.599(6.7) 0.549(5.0) 0.532(4.9) 0.522(5.0) 0.511(3.8) 0.510(3.1) 0.502(3.3) 0.500(2.4) 0.504(2.0)
β1 0.370(20.0) 0.348(12.8) 0.305(12.0) 0.325(12.8) 0.302(8.5) 0.275(7.8) 0.271(9.5) 0.310(6.2) 0.278(6.2)
α0 0.454(8.0) 0.408(5.8) 0.420(5.0) 0.488(4.7) 0.474(3.4) 0.472(3.1) 0.489(3.1) 0.491(2.3) 0.490(1.9)
α1 0.338(21.3) 0.328(18.9) 0.331(17.3) 0.305(14.0) 0.277(14.2) 0.267(12.6) 0.278(10.9) 0.257(10.4) 0.251(9.1)

TNOE 2113 11547 23155 2113 11547 23155 2113 11547 23155
ND(%) 21.13 4.42 2.32 21.13 4.42 2.32 21.13 4.42 2.32

Table 2. Simulation results for Example 2. The parameter estimation is given. The RMSE values (×10−2) are reported for every parameter estimates in
parentheses. Total number of observed edges (TNOE) and network density (ND) are also reported

K=5 K=10 K=20
N=100 N=500 N=1000 N=100 N=500 N=1000 N=100 N=500 N=1000

λ 0.024(8.5) 0.001(4.2) 0.005(3.9) −0.014(6.6) 0.006(4.5) 0.011(4.1) 0.032(8.7) −0.001(4.6) 0.019(4.1)

γ1 −0.534(8.5) −0.509(6.0) −0.544(5.4) −0.548(9.5) −0.505(6.6) −0.536(5.6) −0.498(9.7) −0.526(6.1) −0.527(5.2)
γ2 0.387(9.1) 0.309(5.5) 0.301(5.2) 0.338(10.4) 0.305(5.9) 0.327(5.3) 0.327(9.4) 0.325(6.0) 0.319(5.1)
γ3 0.899(12.6) 0.858(8.6) 0.843(7.9) 0.887(12.9) 0.856(9.3) 0.842(7.8) 0.834(12.1) 0.867(8.9) 0.862(7.5)

β0 −0.338(13.7) −0.285(11.3) −0.283(10.1) −0.321(13.8) −0.279(11.7) −0.269(10.2) −0.293(13.8) −0.295(10.6) −0.290(9.3)
β1 0.095(12.8) 0.102(12.6) 0.108(15.2) 0.146(10.6) 0.100(9.1) 0.086(9.9) 0.105(8.6) 0.114(7.6) 0.112(7.8)
α0 0.088(15.1) 0.010(12.2) 0.002(11.0) 0.029(15.1) 0.004(12.7) −0.015(10.7) 0.018(14.0) 0.008(11.8) −0.002(9.8)
α1 0.210(16.2) 0.196(17.5) 0.195(19.4) 0.173(13.4) 0.208(13.2) 0.242(13.9) 0.241(11.8) 0.195(10.1) 0.207(10.4)

TNOE 291 2901 8770 195 1772 5094 159 1244 3226
ND(%) 2.91 1.16 0.88 1.95 0.71 0.51 1.59 0.50 0.32
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Table 4. Parameter estimation for the S&P500 data

λ β0 β1 α0 α1

0.0136 0.9628 0.9119 0.1199 0.3842

Figure 3. The accuracy of the NARMA model(red line) and
the NAR model(blue line). The NARMA model could achieve
higher accuracy compared with the NAR model most of the

time.

means the market cap and the price earning ratios have lit-
tle influence on the prediction. This may indicate that dur-
ing the period we choose, the trend of the returns is mainly
driven by the general market movements.

5. CONCLUDING REMARKS

In this article, we propose a network ARMA model
which considers the network structure information. Com-
pared with the classical ARMA model, NARMA model de-
creases the computational complexity significantly due to
the dimension reduction benefited from the incorporation
of network structure. We provide theoretical guarantees for
the consistency of the proposed estimators, which have been
confirmed by extensive numerical studies. We further illus-
trate the usefulness of our model using a real data set from
S&P500 index. A significant network structure term is de-
tected.

To conclude this work, we discuss some potential exten-
sions for future study. First, the NARMA model proposed
here applies to the case where the responses are continuous.
However, discrete responses are ubiquitous in real practice.
Thus, it is of great significance to extend the NARMAmodel
into noncontinuous cases. Second, the network structure is
assumed to be static through out the model specification.
This assumption is not so valid in reality, in which the net-
work changes and evolves as time progress. Hence it is worth
studying how to model a dynamic network structure in the
time series models. Third, researchers often use optimization
methods to estimate an ARMA-like model. Fitting a model
in such a way increases the computational cost and induces
slow convergence. Therefore, a lightweight and fast estima-
tion method specifically designed for ARMA-like models is
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in great need. Lastly, in this article, we only prove the con-
sistency of the NARMA model, while the asymptotic prop-
erties are yet to be confirmed. The main difficulties lie in
the complex solutions of Yt in our model. How to give a
brief expression of the asymptotic properties is awaited for
deeper investigation in the future.

APPENDIX: SUPPLEMENTARY MATERIAL

This is a supplementary material that contains the proofs
of Theorem 1, Theorem 2, Theorem 4 and some lemmas.

A.1 Proof of Theorem 2.1

Proof of Theorem 2.1. Denote λi(M) by the ith eigenvalue
of any arbitrary matrix M ∈ R

N×N . We first verify that the
solution satisfies strict stationarity. To this end, note that
since the absolute sums of W ’s rows are equal to 1, then
maxi |λi(W )| ≤ 1. Also we have

ρ = max
1≤i<N

|λi(G)| ≤ |β1| max
1≤i<N

|λi(W )|+ |β0| < 1.(11)

It holds that limm→∞
∑m

j=1 Gj−1(K + G)Et−j exists, and
then {Yt} is a strictly stationary process. It is straightfor-
ward to verify that {Yt} satisfies the NARMA model.

Next, we verify the uniqueness of the strictly stationarity
solution. Assume that {Ỹt} is another strictly stationary

solution to the NARMA model with E‖Ỹt‖ < ∞. Then

Ỹt =

m−1∑
j=1

Gj−1(K + G)
(
B0 + Et−j

)
+ Gm−1(K + G)Ỹt−m,

for any positive integer m. Hence by (11),

E‖Yt − Ỹt‖ = E
∥∥∥ ∞∑

j=m

Gj−1(K + G)
(
B0 + Et−j

)
− Gm−1(K + G)Ỹt−m

∥∥∥ ≤ Cρm,

where C is a constant independent of t and m. Note that m
is chosen arbitrarily. Hence, we have that E‖Yt − Ỹt‖ = 0,

i.e., so Yt = Ỹt with probability one. The proof of Theorem
1 is completed.

A.2 Proof of Theorem 2.2

Proof of Theorem 2.2. Note that {Yt} satisfies the NARMA
model for any N . To prove the existence of a stationary so-
lution, it is sufficient to show that {Yt} is strictly stationary
according to the definition.

Define |M |e as |M |e = (|mij |) ∈ R
n×p for any arbitrary

matrix M = (mij) ∈ R
n×p. Moreover, for matrices M1 =

(m
(1)
ij ) ∈ R

n×p and M2 = (m
(2)
ij ) ∈ R

n×p, define M1 � M2

as m
(1)
ij ≤ m

(2)
ij for 1 ≤ i ≤ n and 1 ≤ j ≤ p. Noting that

E|B0 + (K + G)Et−j |e � (|λ|+ E|Z�
I γ|+ |K + G|eE|εit|)1

and

|G|je1 = (|β1|W + |β0|I)j1 � (|β0|+ |β1|)j1,

we have,

E|w�
N (

∞∑
j=1

Gj(B0 + (K + G)Et−j) + Et)|

≤
∞∑
i=1

|ωi|
∞∑
j=1

(|β0|+ |β1|)j(|λ|+ E|Z�
i γ|+ |K + G|eE|εit|)

< ∞,

which implies that

lim
N→∞

w�
NYt = lim

N→∞
w�

N (

∞∑
j=1

Gj(B0 + (K + G)Et−j) + Et)

exists with probability one. Let Y ω
t = limN→∞ w�

NYt, and
it is obvious that {Y ω

t } is strictly stationary. Hence, {Yt} is
strictly stationary according to the definition.

Next, we verify the uniqueness of the strictly stationary
solution. Assume that {Ỹt} is another strictly stationary so-
lution to the NARMA model with finite first order moment.
Therefore, E|Ỹt|e � C11 for some constant C1. Then for
any N and weight ω, we have

E|w�
NYt −w�

N Ỹt|

= E|
∞∑

j=m

w�
NGj(B0 + (K + G)Et−j)−w�

NGm
Ỹt−m|

≤ C2

∞∑
j=m

{(|β0|+ |β1|)j + C1(|β0|+ |β1|)m}
∞∑
i=1

|ωi|,

where C2 is a constant. Consequently, by the arbitrary spec-
ification of m, we have Y ω

t = Ỹ ω
t with probability one. This

completes the proof of Theorem 2.2.

A.3 Proof of Theorem 2.3

Proof of Theorem 2.3. Let Êt be an estimate of Et satisfying
the equation

Yt = B0 + GYt−1 +KÊt−1 + Êt,

where the initial value Êt, t ≤ 0 can be arbitrarily chosen.
Let Ẽt = Et − Êt, we have

Ẽt = −KẼt−1,

where Ẽt is the estimated error. Following Granger and An-
dersen [7], we say that model 2 is invertible if Ẽt converges to
0 in mean square as t tends to infinity for any initial values.
Then

E
∣∣∣ẼtẼ�

t

∣∣∣ = E
∣∣∣KẼt−1Ẽ�

t−1K�
∣∣∣

≤ KE
∣∣∣Ẽt−1Ẽ�

t−1

∣∣∣K�.
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Setting Mt = Vec
(
E
∣∣∣ξ̃tξ̃Tt ∣∣∣), we have

|Mt| ≤ (|K| ⊗ |K|) |Mt−1| .

Since maxi |λi(W )| ≤ 1. Also we have

φ = max
1≤i<N

|λi(K)| ≤ |α1| max
1≤i<N

|λi(W )|+ |α0| < 1.(12)

It follows the sufficient condition of invertibility that the
maximum eigenvalue in absolute value of K is less than
unity(See Lemma 2.3(a) of Ling [12]). Thus the invertibility
is proved. It is straightforward to verify that the {Et} given
in Eq. 4 satisfies the NARMA model.

Next, we verify the uniqueness of the invertible solu-
tion. Assume that {E∗

t } is another invertible solution to the
NARMA model with E‖E∗

t ‖ < ∞. Then

E∗
t =

m−1∑
j=1

(−K)j−1(K + G)
(
B0 + Yt−j

)
+ (−K)m−1(K + G)E∗

t−m,

for any positive integer m. Hence by (12),

E‖Et − E∗
t ‖ = E

∥∥∥ ∞∑
j=m

(−K)j−1(K + G)
(
B0 + Yt−j

)
− (−K)m−1(K + G)E∗

t−m

∥∥∥ ≤ Cφm,

where C is a constant independent of t andm. Note thatm is
chosen arbitrarily. Hence, we have that E‖Et−E∗

t ‖ = 0, i.e.,
so Et = E∗

t with probability one. The proof of Theorem 2.3
is completed.

A.4 Proof of the Theorem 4

To prove the invertibility, it is obvious that B0 does not
influence our work, so for simplification, B0 is omitted here.

Proof of Theorem 2.4 (1). Note that Eθ(T |y0) − ET =∑∞
j=T (−K)j−1(K + G)YT−j . Since YT−j is the return in

our article, so there exists |YT−j | ≤ M . From Lemma 7,
it shows that |(−K)j−1(K + G)YT−j | ≤ CMρj−11, where
0 < ρ < 1. Therefore

‖Eθ(T |y0) − ET ‖1 =
∥∥∥ ∞∑

j=T

(−K)j−1(K + G)YT−j

∥∥∥
1

≤
∥∥∥ ∞∑

j=T

CMρj−11
∥∥∥
1
= N

∣∣∣ ∞∑
j=T

CMρj−1
∣∣∣

= CMN
ρT−1

1− ρ
.

Since N,T → ∞ and logN = o(T ), thus

‖Eθ(T |y0) − ET ‖1 = CMN
ρT−1

1− ρ
∼ o(1).

So the proof has been completed.

Proof of Theorem 2.4 (2). From Theorem 2.4 (1), there ex-
ists Eθ(T |y0) − ET =

∑∞
j=T (−K)j−1(K + G)YT−j and

|(−K)j−1(K + G)YT−j | ≤ CMρj−11, thus

‖Eθ(T |y0) − ET ‖∞ =
∥∥∥ ∞∑

j=T

(−K)j−1(K + G)YT−j

∥∥∥
∞

≤
∥∥∥ ∞∑

j=T

CMρj−11
∥∥∥
∞

= CM
ρT−1

1− ρ
−→ 0,

when N,T → ∞. So the proof has been completed.

Proof of Theorem 2.4 (3). To prove this result, first we

should calculate each term of 1
NT

∑T
t=1 E�

θ(t|y0)
Eθ(t|y0) and

1
NT

∑T
t=1 E�

t Et respectively in the following:

1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0)

=
1

NT

T∑
t=1

{(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)

−
(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

(
(−K)t−1(K + G)y0

)
−

(
(−K)t−1(K + G)y0

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
+

(
(−K)t−1(K + G)y0

)�

(
(−K)t−1(K + G)y0

)}
,

and

1

NT

T∑
t=1

E�
t Et

=
1

NT

T∑
t=1

⎧⎨⎩(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
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−
(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)
−
( ∞∑

j=t

(−K)j−1(K + G)Yt−j

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
+
( ∞∑

j=t

(−K)j−1(K + G)Yt−j

)�

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)⎫⎬⎭ .

In order to prove is 1
NT

∑T
t=1 E�

θ(t|y0)
Eθ(t|y0) − 1

NT

∑T
t=1

E�
t Et → 0 a.s., we introduce some notations for convenience:

A : =
1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

(
(−K)t−1(K + G)y0

)
,

B : =
1

NT

T∑
t=1

(
(−K)t−1(K + G)y0

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
,

C : =
1

NT

T∑
t=1

(
(−K)t−1(K + G)y0

)�

(
(−K)t−1(K + G)y0

)
,

A′ : =
1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)
,

B′ : =
1

NT

T∑
t=1

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)�

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
,

C ′ : =
1

NT

T∑
t=1

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)�

( ∞∑
j=t

(−K)j−1(K + G)Yt−j

)
.

So after eliminating the same term, what need to be proved
is

(A−A′) + (B −B′)− (C − C ′) −→ 0, a.s.

To prove the left formula converges to zero, it is sufficient to
prove that the three terms of the left formula respectively
converge to zero. So we only give the proof of the first term
of the left converges to zero and the rest two are just the
same.

From the above, we need to prove A − A′ → 0 a.s. In
other words, we should prove

1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K)j−1(K + G)Yt−j

)�

(
(−K)t−1(K + G)y0 −

∞∑
j=t

(−K)j−1(K + G)Yt−j

)
−→ 0, a.s.

(13)

Without loss of generality, we can assume y0 = 0. Noting
that (

Yt −
t−1∑
j=1

(−K)j−1(K + G)Yt−j

)
−

∞∑
j=t

(−K)j−1(K + G)Yt−j = Et

and

Yt = Et +
∞∑
j=1

Gj−1(K + G)Et−j ,

substituting them into Eq. (13), then what we need to prove
can be written as

1

NT

T∑
t=1

(
Et + (−K)t−1

∞∑
m=1

Gm−1(K + G)E1−m

)�

(
(−K)t−1

∞∑
m=1

Gm−1(K + G)E1−m

)
−→ 0, a.s.

One part of the above equation is

1

NT

T∑
t=1

(
(−K)t−1

∞∑
m=1

Gm−1(K + G)E1−m

)�

(
(−K)t−1

∞∑
m=1

Gm−1(K + G)E1−m

)
.

From (b) of Lemma 3, we can easily find that this part
converges to 0. So we only need to consider the rest

1

NT

T∑
t=1

E�
θt ·

(
(−K)t−1

∞∑
m=1

Gm−1(K + G)E1−m

)
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−→ 0 a.s.

which is equivalent to

1

NT

T∑
t=1

(
E�
θt(−K)t−1

)( ∞∑
m=1

Gm−1(K + G)E1−m

)
−→ 0 a.s.

(14)

Let M(N) =
∑∞

m=1 Gm−1(K + G)E1−m, E(N,T ) =∑T
t=1(−K�)t−1Et. Noting that

E(N,T )�M(N)

NT
→ 0 a.s. when min{N,T} → ∞

is equivalent to

P
(

lim
min{N,T}→∞

E(N,T )�M(N)

NT
�= 0

)
= 0,

then we have

P
(

lim
min{N,T}→∞

E(N,T )�M(N)

NT
�= 0

)
=P

(
ω : ∃n, ∀m, ∃N,T ≥ m, s.t.

∣∣∣∣E(N,T )�M(N)

NT

∣∣∣∣ > 1

n

)
=P

( ∞⋃
n=1

∞⋂
m=1

⋃
N≥m

⋃
T≥m

∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
.

Also due to

P
( ∞⋂

m=1

⋃
N≥m

⋃
T≥m

∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
= lim

m→∞
P
( ⋃

N≥m

⋃
T≥m

∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
≤ lim

m→∞

∑
N≥m

P
( ⋃

T≥m

∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
≤ lim

m→∞

∑
N≥m

∑
T≥m

P
(∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
,

then for each n, if we can prove

∞∑
N=1

∞∑
T=1

P
(∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
< ∞,

we have

P
( ∞⋂

m=1

⋃
N≥m

⋃
T≥m

∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)
= 0.(15)

In fact, by using the Chebyshev’s Theorem, we find that

∞∑
N=1

∞∑
T=1

P
(∣∣∣E(N,T )�M(N)

NT

∣∣∣ > 1

n

)

≤
∞∑

N=1

∞∑
T=1

E
(
E(N,T )�M(N)

)4

N4T 4( 1n )
4

.

Let ΣE and ΣM be the covariance matrices of E(N,T ) and
M(N) respectively. Noting that ΣE and ΣM are both sym-
metric matrices which can be written as

ΣE = PΣE′P−1 and ΣM = QΣM ′Q−1

where P , Q are both orthogonal matrices and ΣE′ , ΣM ′

are corresponding diagonal matrices. So E(N,T ) and M(N)
can be written as E(N,T ) = PE ′

(N,T ), M(N) = QM
′
(N),

where the covariance matrices of E ′
(N,T ) and M

′
(N) are

ΣE′ and ΣM ′ respectively, so we have

E
(
E(N,T )�M(N)

)4

N4T 4ε4
=

E
(
E ′
(N,T )�P�QM

′
(N)

)4

N4T 4ε4
.

Since P�Q is also an orthogonal matrix for both P and Q
are orthogonal matrices, then from Lemma 2, we have that
if the elements of ΣE′ and ΣM ′ are uniformly bounded with
N and T , then

∞∑
N=1

∞∑
T=1

E
(
E ′
(N,T )�P�QM

′
(N)

)4

N4T 4

≤ C1

∞∑
N=1

∞∑
T=1

1

N2T 4
< ∞,

which is

∞∑
N=1

∞∑
T=1

E
(
E(N,T )�M(N)

)4

N4T 4ε4
< ∞.

Thus Eq. (15) holds and then Eq. (14) holds.
Now we only have to prove that the elements of ΣE′ and

ΣM ′ are uniformly bounded with N and T . Since

Et ∼ N(0, I), and E(N,T ) =

T∑
t=1

(−K�)t−1Et,

then

ΣE =

∞∑
T=1

(K�)t−1(K)t−1.

From Lemma 3 (a), we know that the largest eigenvalue
of ΣE is bounded, which is equivalent to that the ele-
ments of ΣE′ are uniformly bounded with N and T . From
Lemma 3(b), we also have that the largest eigenvalue of ΣM

is bounded, which is equivalent to that the elements of ΣM ′

are uniformly bounded with N and T . The proof is com-
pleted.
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A.5 Proof of Theorem 2.5

To prove Theorem 5, we begin with a lemma given by
Pham and Tran [19].

Lemma 1. Let VT (θ̃) be a sequence of continuous random

functions defined on a compact subset Θ̃ of a k-dimensional
Euclidean space R

k, θ be a point of Θ̃. Thus for any θ̂ ∈
Θ̃, θ̂ �= θ, there exists a neighborhood U(θ̂) of θ̂ such that

lim inf
N,T→∞

{
inf

θ̃∈U(θ̂)
VT (θ̃)− VT (θ)

}
> 0

Then θ̂, solution of the minimization of VT on Θ, converges
to θ.

Lemma 1 gives a method to verify whether the obtained
estimator has the property of consistency. Thus to prove
Theorem 5, we only need to check whether the VT (θ̃) we
choose satisfies the conditions in Lemma 1.

Proof of 2.5. Noting that

VT (θ) =
1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0),

we have

lim inf
N,T→∞

VT (θ) = lim inf
N,T→∞

1

NT

T∑
t=1

E�
θ(t|y0)

Eθ(t|y0)

→ lim inf
N,T→∞

1

NT

T∑
t=1

E�
θtEθt = σ2,

where σ2 = 1
NE[E�

t Et]. From Lemma 8 we get that

lim inf
N,T→∞

inf
θ̃∈U(θ̂)

VT (θ̃) > σ2

if m → ∞, which means if the neighborhood U(θ̂) is small

enough, then θ̂, solution of the minimization of VT on Θ, is
strongly consistent. The proof of Theorem 2.5 is completed.

A.6 Some technical lemmas

Lemma 2. Let X = (X1, . . . , XN ) ∼ N(0,Σ1), Z =
(Z1, . . . , ZN ) ∼ N(0,Σ2), P = (P )ij ∈ R

N×N , where Σ1,
Σ2 are diagonal matrices with bounded elements and P is
an orthogonal matrix. Then we have the following conclu-
sion

E[X�PZ]4

N4
≤ C1

N2
,(16)

where C1 is a constant which has no connection with P , N
and T .

Proof. Since X = (X1, . . . , XN ), Z = (Z1, . . . , ZN ), P =

(P )ij ∈ R
N×N , then

X�PZ =

N∑
i=1

N∑
j=1

PijXiZj .

Considering (X�PZ)4, we know that its expansion is the

linear combination of (PijXiZj)
l, 1 ≤ l ≤ 4. We just con-

sider the items whose powers are quadratic or quadruplicate

since E[Xi] = 0, 1 ≤ i ≤ N and E[Zj ] = 0, 1 ≤ j ≤ N . Then

E[X�PZ]4 = E
[
P11X1Z1 + P21X2Z1 + . . .

+ P(N−1)NXN−1ZN + PNNXNZN

]4
=E

[ N∑
i=1

N∑
j=1

(
PijXiZj

)4

+3
N∑
i=1

N∑
j=1

(
PijXiZj

)2

∑
m �=i,n �=j

(
PmnXmZn

)2]

+ E
[
6

N∑
i=1

N∑
j=1

(PijXiZj)

N∑
p=1

PpjXpZj

N∑
q=1

PiqXiZq(PpqXpZq)
]

− E
[
3

N∑
i=1

N∑
j=1

(
PijXiZj

)2( N∑
p=1

(
PpjXpZj

)2

+

N∑
q=1

(
PiqXiZq

)2)]

≤3E
{ N∑

i=1

N∑
j=1

[(
PijXiZj

)2 N∑
p=1

N∑
q=1

(
PpqXpZq

)2]}

+ 6E
[ N∑

i=1

N∑
j=1

(PijXiZj)
N∑

p=1

PpjXpZj

N∑
q=1

PiqXiZq(PpqXpZq)
]
.(17)

Recalling that the variances of Xi and Zj are bounded, we

can give a constant M > 0 such that E[X2
i ] ≤ M and

E[Z2
j ] ≤ M , then Var[Xi] ≤ M and Var[Zj ] ≤ M . Further-

more, after simple calculations, we have

Var[X2
i ] ≤ 2M,

Var[Z2
j ] ≤ 2M,

E[X4
i ] ≤ M2 + 2M,

E[Z4
j ] ≤ M2 + 2M.
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Taking these conclusions into the formula above,

E[X�PZ]4 ≤ 3
(
M2 + 2M

)2 N∑
i=1

N∑
j=1

[
P 2
ij

N∑
p=1

N∑
q=1

P 2
pq

]

+ 6
(
M2 + 2M

)2 N∑
i=1

N∑
j=1

|Pij |

·
N∑

p=1

|Ppj |
N∑
q=1

|PiqPpq|

≤ 3
(
M2 + 2M

)2

N2 + 6
(
M2 + 2M

)2

N2

= 9
(
M2 + 2M

)2

N2.

The first inequal sign is established for the orthogonal ma-
trix P with

∑N
j=1 P

2
ij = 1 and

∑N
q=1 PiqPpq = 0 if i �= p. The

second inequality holds by using Cauchy-Schwarz inequality,
i.e.,

N∑
q=1

|PiqPpq| ≤

√√√√ N∑
q=1

P 2
iq

N∑
q=1

P 2
pq = 1 and

N∑
j=1

|PijPpj | ≤ 1.

Then

E[X�PZ]4

N4
≤

9
(
M2 + 2M

)2

N2
=

C1(M)

N2
.

The proof is completed.

Lemma 3. (a) For the matrix K, define a matrix

ΣK =
T∑

t=1

(K�)tKt.

Then the largest eigenvalue of ΣK is bounded when T →
∞.(Here N (the dimension of K) is not fixed.)

(b) For the matrix K, G, K̃ = α̃1W + α̃0I, G̃ = β̃1W + β̃0I,
define

Q =

∞∑
m=1

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)E1−m,

where {Et} are independent identically distributed ran-
dom vectors obeying standard multivariate normal dis-
tribution. If (|α0| + |α1|) < 1, (|β0| + |β1|) < 1,
(|α̃0|+ |α̃|1) < 1 and (|β̃0+ |β̃|1) < 1, then all eigenval-
ues of the covariance matrix of Q are bounded.

Proof. (a) Define |M |e as |M |e = (|mij |) ∈ R
n×p

for any arbitrary matrix M = (mij) ∈ R
n×p.

From the Weyl Theorem we know that λmax(ΣK) ≤∑T
t=1 λmax((K�)tKt) (for arbitrary matrix M , de-

fine λmax(M) to be the largest eigenvalue of M).
From the definition of λmax(M), then λmax(M) =

maxx�x=1 |x�Mx| when M is a positive semidefinite
matrix or a positive definite matrix. Thus we have

λmax(ΣK) ≤
T∑

t=1

λmax((K�)tKt)

=

T∑
t=1

max
x�
t xt=1

|x�
t (K�)tKtxt|

=

T∑
t=1

max
x�
t xt=1

|x�
t Kt(K�)txt|

≤
T∑

t=1

max
x�
t xt=1

‖(K�)txt‖21,e

=

T∑
t=1

max
x�
t xt=1

(|x�
t |e |(K�)t|e 1)2

≤
T∑

t=1

(|α0|+ |α1|)2t

≤ (|α0|+ |α1|)2
1− (|α0|+ |α1|)2

< ∞,

where the second equality is established since the eigen-
values of (K�)tKt and Kt(K�)t are the same, and
‖L‖1,e =

∑
(i,t)∈[N ]×[T ] |Lit| is the element-wise l1

norm.
(b) Let ΣQ be the covariance matrix of Q. Then we have

ΣQ =

∞∑
m=1

⎧⎨⎩( m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
)

( m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
)�

⎫⎬⎭ .

Similar to the proof of (a), we have

λmax(ΣQ) ≤
∞∑

m=1

max
x�
mxm=1

(
|x�

m|e
∣∣∣( m∑

j=1

(−K̃)m−j−1

(K̃ + G̃)Gj−1(K + G)
)�∣∣∣

e
1
)2

≤
∞∑

m=1

m∑
j=1

(
(|α̃0|+ |α̃1|)m−j−1(|β0|+ |β1|)j−1

· (|α0|+ |α1|+ |β0|+ |β1|)

· (|α̃0|+ |α̃1|+ |β̃0|+ |β̃1|)
)2

=
(|α0|+ |α1|+ |β0|+ |β1|)2

(|α̃0|+ |α̃1|)2
(
1− (|α̃0|+ |α̃1|)2

)
· (|α̃0|+ |α̃1|+ |β̃0|+ |β̃1|)2(

1− (|β0|+ |β1|)2
) < ∞.
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Thus we complete this proof.

Lemma 4. If (|α0| + |α1|) < 1, (|β0| + |β1|) < 1, (|α̃0| +
|α̃1| < 1) and (|β̃0|+ |β̃1| < 1), then the recursive estimation

Eθ̃t = Yt −
∞∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

has a stationary solution and it satisfies that

1

NT

T∑
t=1

E�
θ̃(t|y0)

Eθ̃(t|y0)
− 1

NT

T∑
t=1

E�
θ̃t
Eθ̃t → 0 a.s.

Proof. The proof of the stationarity of Eθ̃t is just like that
of Et, so we give no more detailed description here.

To consider the convergence of Eθ̃t, we take the expression

Yt = Et +
∞∑
j=1

Gj−1(K + G)Et−j

into account to the following equation

Eθ̃t = Yt −
∞∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j .

Define G−1 = 0 by convention, then we have

Eθ̃t = Et +
∞∑

m=1

(
Gm−1(K + G)

− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G)
)
Et−m,

(18)

where {Et} are independent identically distributed. Thus it
suffices to prove for all N , the largest eigenvalue of the vari-
ance matrix ΣEθ̃t

of Eθ̃t is finite, where

ΣEθ̃t
= I +

∞∑
m=1

{(
Gm−1(K + G)− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G)
)�

(
Gm−1(K + G)− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G)
)⎫⎬⎭

=: I +Σ
′
.(19)

By using the same method as Lemma 3, we can easily get
the conclusion.

To prove

1

NT

T∑
t=1

E�
θ̃(t|y0)

Eθ̃(t|y0)
− 1

NT

T∑
t=1

E�
θ̃t
Eθ̃t → 0 a.s.,

we just need to use the same steps as the proof of Theo-
rem 2.4 (3).

Define

A : =
1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)�

(
(−K̃)t−1(K̃ + G̃)y0

)
,

B : =
1

NT

T∑
t=1

(
(−K̃)t−1(K̃ + G̃)y0

)�

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)
,

C : =
1

NT

T∑
t=1

(
(−K̃)t−1(K̃ + G̃)y0

)�

(
(−K̃)t−1(K̃ + G̃)y0

)
,

A′ : =
1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)�

( ∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j

)
,

B′ : =
1

NT

T∑
t=1

( ∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j

)�

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)
,

C ′ : =
1

NT

T∑
t=1

( ∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j

)�

( ∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j

)
.

After eliminating the same term, we still need to prove that

(A−A′) + (B −B′)− (C − C ′) −→ 0 a.s.

We only give the detailed proof of the result A−A′ → 0 a.s.
and the other are similar and omitted. In other words, it
suffices to prove that the following equation

1

NT

T∑
t=1

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)�

(
(−K̃)t−1(K̃ + G̃)y0 −

∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j

)
608 X. Chen, Y. Chen, and X. Hu



−→ 0 a.s.

holds.

Without loss of generality, assume that y0 = 0 and

(−K̃)−1 = 0 by convention. Noting that

(
Yt −

t−1∑
j=1

(−K̃)j−1(K̃ + G̃)Yt−j

)
−

∞∑
j=t

(−K̃)j−1(K̃ + G̃)Yt−j = Eθ̃t

and

Yt = Et +
∞∑
j=1

Gj−1(K + G)Et−j ,

then what we need to prove can be written as

1

NT

T∑
t=1

(
Eθ̃t + (−K̃)t−1

∞∑
m=1

[
(−K̃)m−1(K̃ + G̃)

+

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
]
E1−m

)�

·
(
(−K̃)t−1

∞∑
m=1

[
(−K̃)m−1(K̃ + G̃)

+

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
]
E1−m

)
−→ 0 a.s.

Also we just consider

1

NT

T∑
t=1

E�
θ̃t

·
(
(−K̃)t−1

∞∑
m=1

[
(−K̃)m−1(K̃ + G̃)

+

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
]
E1−m

)
−→ 0 a.s.,

which is equivalent to

1

NT

T∑
t=1

(
E�
θ̃t
(−K̃)t−1

)
·
( ∞∑

m=1

[
(−K̃)m−1(K̃ + G̃)

+

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
]
E1−m

)
−→ 0 a.s.

Let

M̃(N) =

∞∑
m=1

[
(−K̃)m−1(K̃ + G̃)

+

m∑
j=1

(−K̃)m−j−1(K̃ + G̃)Gj−1(K + G)
]
E1−m,

and

Ẽ(N,T ) =

T∑
t=1

(−K̃�)t−1Eθ̃t.

Noting that

Ẽ(N,T )�M̃(N)

NT
→ 0 a.s. when min{N,T} → ∞

is equivalent to

P
(

lim
min{N,T}→∞

Ẽ(N,T )�M̃(N)

NT
�= 0

)
= 0,

then similar to the proof of Theorem 2.4(3), we only need
to prove for all ε > 0,

∞∑
N=1

∞∑
T=1

E
(
Ẽ(N,T )�M̃(N)

)4

N4T 4ε4
< ∞.

Let Σ
˜E and Σ

˜M
be the covariance matrices of Ẽ(N,T ) and

M̃(N). Noting that Σ
˜E and Σ

˜M
are both symmetric matri-

ces and they can be written as

Σ
˜E = PΣ

˜E′P−1 and Σ
˜M

= QΣ
˜M ′Q−1,

where P , Q are both orthogonal matrices and Σ
˜E′ , Σ

˜M ′ are
diagonal matrices, then E(N,T ) and M(N) can be written

as Ẽ(N,T ) = P Ẽ ′
(N,T ), M̃(N) = QM̃

′
(N), where the co-

variance matrices of Ẽ ′
(N,T ) and M̃

′
(N) are Σ

˜E′ and Σ
˜M ′

respectively. Thus

E
(
Ẽ(N,T )�M̃(N)

)4

N4T 4ε4
=

E
(
Ẽ ′
(N,T )�P�QM̃

′
(N)

)4

N4T 4ε4
.

P�Q is an orthogonal matrix since both P and Q are or-
thogonal matrices. From Lemma 2 we can konw that if the
elements of Σ

˜E′ and Σ
˜M ′ are bounded, then

∞∑
N=1

∞∑
T=1

E
(
Ẽ ′
(N,T )�P�QM̃

′
(N)

)4

N4T 4

≤ C1

∞∑
N=1

∞∑
T=1

1

N2T 4
< ∞,

Network vector autoregressive moving average model 609



and it is equivalent to

∞∑
N=1

∞∑
T=1

E
(
Ẽ(N,T )�M̃(N)

)4

N4T 4ε4
< ∞.

Then we only have to prove the elements of Σ
˜E′ and Σ

˜M ′

are bounded. Since

Eθ̃t ∼ N(0, I +Σ
′
) and Ẽ(N,T ) =

T∑
t=1

(−K̃�)t−1Eθ̃t,

then we have

Σ
˜E =

∞∑
t=1

(K̃�)t−1(K̃)t−1 +

∞∑
t=1

(K̃�)t−1Σ
′
(K̃)t−1,

where Σ
′
is defined as (19). It is sufficient to consider the

latter part. Define

Lm = Gm−1(K + G)− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G),

thus

λmax

( ∞∑
t=1

(K̃�)t−1Σ
′
(K̃)t−1

)
= λmax

( ∞∑
t=1

∞∑
m=1

(K̃�)t−1L�
mLm(K̃)t−1

)

≤
∞∑
t=1

max
x�
mxm=1

(
|x�

m|e
∞∑

m=1

∣∣∣(K̃�)t−1L�
m

∣∣∣
e
1

)2

Just like Lemma 3, it can be easily proved that the largest
eigenvalue of

∑∞
t=1(K̃�)t−1Σ

′
(K̃)t−1 is finite. Using Weyl

Theorem, we know that the largest eigenvalue of Σ
˜E is

bounded and it is equivalent to that the elements of Σ
˜E′ are

uniformly bounded with N and T . Also from Lemma 3(b)
we know that the largest eigenvalue of Σ

˜M
is bounded and

it is equivalent to that the elements of Σ
˜M ′ are uniformly

bounded with N and T . Thus we complete this proof.

Lemma 5. For arbitrary matrices A = (aij)N×N and B =
(bij)N×N , define (A∗B)ij = aijbij is the Hadamard product
of matrices. Then for arbitrary matrices A,B,C,D ∈ R

N×N

and N -dimension random vector {Et : Et ∼ N(0, IN ), t =
. . . ,−2,−1, 0, 1, 2, . . .}, we have

Cov
(
E�
t A�BEt−m, E�

t C�DEt−m

)
= 1�

[
(AC)� ∗ (BD�)

]
1,(20)

Cov
(
E�
t AEt−m, E�

t B�CEt−m

)

= 1�
[
(BA�) ∗ C

]
1,(21)

Cov
(
E�
t A�AEt, E�

t B�BEt
)

= 2 · 1�
[
(AC�) ∗ (BD�)

]
1,(22)

where m is an arbitrary positive integer.

Proof. Before proving the above equations, first we give
some conclusions. Since Et ∈ R

N and Et ∼ N(0, IN ), let
Et = (εt1, . . . , εtN )�, then E[ε2tk] = 1. Also, since ε2tk obeys
Chi-square distribution, then Var(ε2tk) = 2, and E[ε4tk] =
Var(ε2tk) + (E[ε2tk])

2 = 3. Therefore,

E[E�
t Et] =

N∑
k=1

E[ε2tk] = N

and

E[E�
t A�AEt] = E

[ N∑
i=1

(

N∑
j=1

aijεtj)
2
]

=

N∑
i=1

N∑
j=1

a2ij = tr(AA�).

Then we turn back to the proof. Firstly,

Cov
(
E�
t A�BEt−m, E�

t C�DEt−m

)
= E

[(
E�
t A�BEt−m − E

[
E�
t A�BEt−m

])
(
E�
t C�DEt−m − E

[
E�
t C�DEt−m

])]
= E

{(
E�
t A�BEt−m

)(
E�
t C�DEt−m

)}
= E

{[ N∑
i=1

( N∑
j=1

aijεt,j

)( N∑
q=1

biqεt−m,q

)]
[ N∑

i=1

( N∑
j=1

cijεt,j

)( N∑
q=1

diqεt−m,q

)]}

=E
{ N∑

i=1

[ N∑
j=1

aijεt,j

N∑
q=1

biqεt−m,q

N∑
m=1

cmjεt,j · dmqεt−m,q

]}

=

N∑
i=1

N∑
m=1

[ N∑
j=1

aijcmj

N∑
q=1

biqdmq

]

=

N∑
i=1

N∑
m=1

[
(AC�)i×m(BD�)i×m

]
= 1�

[
(AC�) ∗ (BD�)

]
1,

where A = (aij)N×N , B = (bij)N×N , C = (cij)N×N ,
D = (dij)N×N , (AC�)i×m means the ith row, mth column
element of AC� and the second equal sign is established
since Et and Et−m are independent. The proof of (20) is
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completed. The proof of (21) is similar to that of Eq. (20)
thus we omit it here.

As for Eq. (22),

Cov
(
E�
t A�AEt, E�

t B�BEt
)

= E
[(

E�
t A�AEt − E

[
E�
t A�AEt

])
(
E�
t B�BEt − E

[
E�
t B�BEt

])]
= E

[(
E�
t A�AEt − tr(AA�)

)(
E�
t B�BEt − tr(BB�)

)]
= E

[
E�
t A�AEtE�

t B�BEt
]
− tr(AA�)tr(BB�)

= E
{[ N∑

i=1

( N∑
j=1

aijεt,j

)2][ N∑
i=1

( N∑
j=1

bijεt,j

)2]}

− tr(AA�)tr(BB�).

(23)

Then we have

E
{[ N∑

i=1

( N∑
j=1

aijεt,j

)2][ N∑
i=1

( N∑
j=1

bijεt,j

)2]}

= E
[ N∑

i=1

N∑
j=1

a2ijε
2
t,j ·

N∑
i=1

N∑
j=1

b2ijε
2
t,j

]

+ E
{ N∑

i=1

[ N∑
j=1

aijεt,j

N∑
q=1,q �=j

aiqεt,q

· 2
N∑

m=1

bmjεt,jbmqεt,q

]}
.

Then let the former part be written as κ1 and the latter be
written as κ2. Considering κ1 and κ2,

κ1 = E
{ N∑

i=1

N∑
j=1

a2ijε
2
t,j

N∑
m=1

N∑
q=1,q �=j

b2mqε
2
t,q

}

+ E
{ N∑

i=1

N∑
j=1

a2ij

N∑
m=1

b2mjε
4
t,j

}

=

N∑
i=1

N∑
j=1

a2ij

N∑
m=1

N∑
q=1,q �=j

b2mq + 3

N∑
i=1

N∑
j=1

a2ij

N∑
m=1

b2mj

=

N∑
i=1

N∑
j=1

a2ij

N∑
m=1

N∑
q=1

b2mq + 2

N∑
i=1

N∑
j=1

a2ij

N∑
m=1

b2mj

= tr(AA�)tr(BB�) + 2

N∑
j=1

(A�A)j×j(B
�B)j×j ,

and

κ2 = 2E

⎧⎨⎩
N∑
i=1

N∑
m=1

[ N∑
j=1

aij

N∑
q=1,q �=j

aiqbmjbmq

]
ε2t,jε

2
t,q

⎫⎬⎭

= 2
N∑
i=1

N∑
m=1

[ N∑
j=1

aij

N∑
q=1,q �=j

aiqbmjbmq

]

=

N∑
i=1

N∑
m=1

[ N∑
j=1

aijbmj

N∑
q=1,q �=j

aiqbmq

]

=2

N∑
i=1

N∑
m=1

[ N∑
j=1

aijbmj

N∑
q=1

aiqbmq

]
−2

N∑
i=1

N∑
j=1

a2ij

N∑
m=1

b2mj

= 2

N∑
i=1

N∑
m=1

(
(AB�)i×m(AB�)i×m

)
− 2

N∑
j=1

(A�A)j×j(B
�B)j×j

= 2 · 1�
[
(AB�) ∗ (AB�)

]
1− 2

N∑
j=1

(A�A)j×j(B
�B)j×j .

Thus, substituting κ1 and κ2 into (23),

Cov
(
E�
t A�AEt, E�

t B�BEt
)

= E

⎧⎨⎩[ N∑
i=1

( N∑
j=1

aijεt,j

)2][ N∑
i=1

( N∑
j=1

bijεt,j

)2]⎫⎬⎭
− tr(AA�)tr(BB�)

= κ1 + κ2 − tr(AA�)tr(BB�)

= 2 · 1�
[
(AB�) ∗ (AB�)

]
1.

The proof of Eq. (22) is completed.

Lemma 6. Let two matrices A,B ∈ R
N×N and ∗ is the

Hadamard product defined in Lemma 5, then it holds that

1�|A ∗B|e1 ≤ 1�|AT |e|B|e1.(24)

Proof. Let A = (aij)N×N , B = (bij)N×N , then

1�|A ∗B|e1 =

N∑
i=1

N∑
j=1

|aijbij |,

1�|A|e|B|e1 =

N∑
i=1

[ N∑
j=1

|aij |
N∑
j=1

|bij |
]
.

It is obviously that

1�|A ∗B|e1 ≤ 1�|AT |e|B|e1

The proof is completed.

Lemma 7. For m = 1, 2, . . ., denote

Am = Gm−1(K + G)− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G),
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and A0 = 1, then there exists a constant ρ < 1 such that

sup
θ∈Θ

|Am|e1 ≤ Cρm−11,

where C is a constant.

Proof. For simplicity, we omit the subscript of sup in the
following. By the definition of Am, we have

sup |Am|e1 = sup
∣∣∣Gm−1(K + G)− (−K̃)m−1(K̃ + G̃)

−
m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G)
∣∣∣
e
1

� sup
∣∣∣Gm−1(K + G)

∣∣∣
e
1

+ sup
∣∣∣(−K̃)m−1(K̃ + G̃)

∣∣∣
e
1

+ sup
∣∣∣ m∑
j=1

(−K̃)j−1(K̃ + G̃)Gm−j−1(K + G)
∣∣∣
e
1.

We just need to prove the first part satisfies the lemma since

the others are similar. Consider sup
∣∣∣Gm−1(K+G)

∣∣∣1, we have
sup

∣∣∣Gm−1(K + G)
∣∣∣
e
1

�
(
|α0|+ |α1|+ |β0|+ |β1|

)
sup |Gm−1|e1

�
(
|α0|+ |α1|+ |β0|+ |β1|

)(
|β0|+ |β1|

)m−1

1.

So sup
∣∣∣Gm−1(K+G)

∣∣∣1 ≤ C1ρ
m−1
1 1 and ρ1 = |β0|+ |β1| < 1.

Therefore, the proof is completed.

Lemma 8. For θ̂ ∈ Θ and its neighborhood Um(θ̂) which

shrinks to θ̂, we have

lim
m→∞

lim inf
N,T→∞

inf
θ̃∈Um(θ̂)

{
(NT )−1

T∑
t=1

E�
θ̃t
Eθ̃t

}
> σ2,

where σ2 = 1
NE

[
E�
t Et

]
.

Proof. Recalling Eq. (18) and the definition of Am, Eθ̃t can
be written as

Eθ̃t = Et +
∞∑
i=1

AiEt−i.

Define A0 = 1, then Eθ̃t =
∑∞

i=0 AiEt−i. Taking this expres-
sion into the following equation, we have

lim
m→∞

lim inf
N,T→∞

inf
θ̃∈Um(θ̂)

{
(NT )−1

T∑
t=1

E�
θ̃t
Eθ̃t

}

≥ lim
m→∞

lim inf
N,T→∞

1

NT

T∑
t=1

∞∑
i=0

∞∑
j=0

{
inf

θ̃∈Um(θ̂)
E�
t−iA

�
i AjEt−j

}
.

Firstly, we prove the existence of right part of the above
inequality. Define⎧⎨⎩Vt : Vt =

∞∑
i=0

∞∑
j=0

[
inf

θ̃∈Um(θ̂)
E�
t−iA

�
i AjEt−j

]⎫⎬⎭ .

To prove the existence of the mean, it suffices to prove

lim
m→∞

lim inf
N,T→∞

P
(∣∣∣ 1

NT

T∑
t=1

Vt −
1

N
EVt

∣∣∣ > δ
)
→ 0.

In fact, using the Chebyshev’s inequality,

lim
m→∞

lim inf
N,T→∞

P
(∣∣∣ 1

NT

T∑
t=1

Vt −
1

N
EVt

∣∣∣ > δ
)

≤ lim
m→∞

lim inf
N,T→∞

Var
(∑T

t=1 Vt

)
N2T 2δ2

= lim
m→∞

lim inf
N,T→∞

TCov(VT , VT ) + . . .+Cov(XT , X1)

N2T 2δ2

≤ lim
m→∞

lim inf
N,T→∞

|Cov(VT , VT )|+ . . .+ |Cov(XT , X1)|
N2Tδ2

.

Define ηi = Cov(VT , VT−i), then we only need to prove

lim
m→∞

lim inf
N,T→∞

|η0|+ |η1|+ . . .+ |η∞|
N2T

→ 0.

Consider ηt, we have

ηt = Cov(Vt, V0)

= Cov
( ∞∑

i=0

∞∑
j=0

inf
θ̃∈Um(θ̂)

E�
t−iA

�
i AjEt−j ,

∞∑
i=0

∞∑
j=0

inf
θ̃∈Um(θ̂)

E�
−iA

�
i AjE−j

)
=

∞∑
i=0

∞∑
j=−t

∞∑
m=0

Cov
(

inf
θ̃∈Um(θ̂)

E�
−iA

�
t+iAt+jE−j ,

inf
θ̃∈Um(θ̂)

E�
−iA

�
i AmE−m

)
≤

∞∑
i=0

∞∑
j=−t

∞∑
m=0

[
Var

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
t+iAt+jE−j

)]1/2
[
Var

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)]1/2
≤

∞∑
i=0

∞∑
j=−t

∞∑
m=0

[
E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
t+iAt+jE−j

)2]1/2
[
E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)2]1/2
.
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Considering E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)2

, we have

E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)2

≤ E

(
sup |E�

−i||A�
i ||Aj ||E−j |

)2

= E

(
|E�

−i| sup |A�
i | sup |Aj ||E−j |

)2

= E

{[ N∑
m=1

( N∑
n=1

amn|ε−i,n|
)( N∑

q=1

bmq|ε−j,q|
)]

[ N∑
p=1

( N∑
n=1

apn|ε−i,n|
)( N∑

q=1

bpq|ε−j,q|
)]}

=

N∑
m=1

N∑
p=1

E

{[( N∑
n=1

amn|ε−i,n|
)( N∑

q=1

bmq|ε−j,q|
)]

[( N∑
n=1

apn|ε−i,n|
)( N∑

q=1

bpq|ε−j,q|
)]}

=
N∑

m=1

N∑
p=1

E

[( N∑
n=1

amn|ε−i,n|
)( N∑

n=1

apn|ε−i,n|
)]

· E
[( N∑

q=1

bmq|ε−j,q|
)( N∑

q=1

bpq|ε−j,q|
)]

,

where amn = (sup |Ai|)mn and bpq = (sup |Aj |)pq. Using
Lemma 7,

E

[( N∑
n=1

amn|ε−i,n|
)( N∑

n=1

apn|ε−i,n|
)]

=E

[ N∑
n=1

amnapn|ε−i,n|2
]

+

N∑
n=1

E

[(
amn|ε−i,n|

)( N∑
l=1,l �=n

apl|ε−i,l|
)]

=

N∑
n=1

amnapn +

N∑
n=1

E

(
amn|ε−i,n|

)
E

( N∑
l=1,l �=n

apl|ε−i,l|
)

≤
N∑

n=1

amnapn + E

( N∑
n=1

amn|ε−i,n|
)
E

( N∑
n=1

apn|ε−i,n|
)

≤
N∑

n=1

amnapn +
2C2

π
ρ2i−2.

Therefore

E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)2

≤
N∑

m=1

N∑
p=1

[ N∑
n=1

amnapn+
2C2

π
ρ2i−2

][ N∑
q=1

bmqbpq+
2C2

π
ρ2j−2

]

= 1�
[(

sup |Ai| sup |Ai|�
)
∗
(
sup |Aj | sup |Aj |�

)]
1

+
4C4

π2
ρ2i+2j−4N2 +

2C2

π
ρ2j−21�

(
sup |Ai| sup |Ai|�

)
1

+
2C2

π
ρ2i−21�

(
sup |Aj | sup |Aj |�

)
1

≤ C4ρ2i+2j−4N +
4C4

π2
ρ2i+2j−4N2

+
2C4

π
ρ2i+2j−4N +

2C4

π
ρ2i+2j−4N

=
4C4

π2
ρ2i+2j−4N2 +

(
C4 +

4C4

π

)
ρ2i+2j−4N

≤ C1ρ
2i+2j−4N2,

where C1 = 4C4

π2 +
(
C4 + 4C4

π

)
is a constant. Thus

lim
m→∞

lim inf
N,T→∞

|η0|+ |η1|+ . . .+ |η∞|
N2T

≤ lim
m→∞

lim inf
N,T→∞

1

N2T

∞∑
t=0

∞∑
i=0

∞∑
j=−t

∞∑
m=0[

E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
t+iAt+jE−j

)2]1/2
·
[
E

(
inf

θ̃∈Um(θ̂)
E�
−iA

�
i AmE−m

)2]1/2
≤ lim inf

N,T→∞

C1

T

∞∑
t=0

∞∑
i=0

∞∑
j=−t

∞∑
m=0

ρ2t+2i+j+m−4

= lim inf
N,T→∞

C1

T

1

ρ4(1− ρ)3(1− ρ2)
= 0.

Therefore, the mean of

lim
m→∞

lim inf
N,T→∞

1

NT

T∑
t=1

∞∑
i=0

∞∑
j=0

{
inf

θ̃∈Um(θ̂)
E�
t−iA

�
i AjEt−j

}
exists.

Secondly, we begin to prove the results. According to the
Fatou’s lemma, it can be easily found that

lim
m→∞

lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

E

{
inf

θ̃∈Um(θ̂)
E�
t−iA

�
i AjEt−j

}
≥ lim

m→∞
E

{
lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

inf
θ̃∈Um(θ̂)

E�
t−iA

�
i AjEt−j

}
.

Denote

Dm = lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

inf
θ̃∈Um(θ̂)

E�
t−iA

�
i AjEt−j .

Then we aim to prove lim
m→∞

E[Dm] > σ2, just like the proof
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above, we have

|Dm| ≤ lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

sup |E�
t−i||A�

i ||Aj ||Et−j | = Hm.

From the above, it shows that E[Hm] → E[H]. By the Dom-
inated Convergence Theorem, it can be proved that

E[Dm] → E[lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

E�
t−iA

�
i AjEt−j ].

Note that

E
[
lim inf
N→∞

1

N

∞∑
i=0

∞∑
j=0

E�
t−iA

�
i AjEt−j

]
= E

[
lim inf
N→∞

1

N

∞∑
i=0

E�
t−iA

�
i AiEt−i

]
= E

[
lim inf
N→∞

1

N

{
E�
t Et +

∞∑
i=1

E�
t−iA

�
i AiEt−i

}]
= σ2 + E

[
lim inf
N→∞

1

N

∞∑
i=1

E�
t−iA

�
i AiEt−i

]
.

So it suffices to prove E
[
lim inf
N→∞

1
N

∑∞
i=1 E�

t−iA
�
i AiEt−i

]
> 0.

In addition, we observe that

E
[
lim inf
N→∞

1

N

∞∑
i=1

E�
t−iA

�
i AiEt−i

]
= E

[
lim inf
N→∞

1

N

∞∑
i=1

N∑
m=1

( N∑
n=1

ai,mnEt−i,n

)2]
≥ lim inf

N→∞

1

N

∞∑
i=1

N∑
m=1

N∑
n=1

a2i,mn

= lim inf
N→∞

1

N

∞∑
i=1

tr(AiA
�
i ),

where ai,mn = (Ai)mn. First consider A1. Since

A1 = (K + G)− (K̃ + G̃)
= (α0 + β0 − α̃0 − β̃0)I + (α1 + β1 − α̃1 − β̃1)W,

if α0 + β0 �= α̃0 + β̃0 or α1 + β1 �= α̃1 + β̃1, then

lim inf
N→∞

1

N
tr(A1A

�
1 ) > 0

since
∑N

i=1 ni/N > 0 in the definition, which means what
we want to prove is established. When we turn to consider
A2, if α0 + β0 = α̃0 + β̃0 and α1 + β1 = α̃1 + β̃1,

A2 = G(K + G) + K̃(K̃ + G̃)− (K̃ + G̃)(K + G)

= (α̃0 − α0)(α̃0 + β̃0)I

+ [(α̃0 − α0)(α̃1 + β̃1) + (α̃1 − α1)(α̃0 + β̃0)]W

+ (α̃1 − α1)(α̃1 + β̃1)W
2.

From the definition, α0 + β0 �= 0 and α1 + β1 �= 0,which
means α̃0 + β̃0 �= 0 and α̃1 + β̃1 �= 0. Note that the diagonal
elements of A2 are

(α̃0 − α0)(α̃0 + β̃0) + (α̃1 − α1)(α̃1 + β̃1)W
2
mm.

If α̃0 = α0 or α̃1 = α1, then just the diagonal elements
satisfies

lim inf
N→∞

1

N
tr(A2A

�
2 ) > 0,

so we just consider other conditions. Let A2 = (M1,
. . . ,MN ) = (K1, . . . ,KN )� where Mi is the column vector
of A2 and Ki is the row vector. It is apparently that

P
(
KiMi =

(α̃0 − α0)(α̃0 + β̃0)

(α̃1 − α1)(α̃1 + β̃1)

)
= o(N),

which means that the probability of the diagonal elements
of A2 equals to 0 is o(N). Therefore we can easily get that

lim inf
N→∞

1

N
tr(A2A

�
2 ) > 0.

Thus

E

[
lim inf
N→∞

1

N

∞∑
i=1

E�
t−iA

�
i AiEt−i

]
> 0.

From the above, we can prove that

lim
m→∞

lim inf
T→∞

inf
θ̃∈Um(θ̂)

{
(NT )−1

T∑
t=1

E�
θ̃t
Eθ̃t

}
> σ2.

The proof is completed.
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