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Fine-tuned sensitivity analysis for non-ignorable
missing data mechanism in linear regression
models

Rong Zhu, Peng Yin, and Jian Qing Shi
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Missing data is a widespread problem in many fields,
such as statistical analysis in medical research. The miss-
ing data mechanism (MDM) is overly complicated in many
cases, and the most complex one is the non-ignorable miss-
ingness. In this paper, we analyse the incomplete data bias
of maximum likelihood estimates on the inference of lin-
ear regression models with non-ignorable missing covariate
specifically, where the working model always has a small de-
parture from the true model. The incomplete data bias has
been divided into two parts because of two types of uncer-
tainties, one is the misspecified distribution between covari-
ates, the other is the misspecified MDM. We identify the key
sensitivity parameters in MDM and further propose gener-
ative MDM models, leading to a non-implausible set which
quantify a smaller range of possible solutions comparing to
the conventional sensitivity analysis and worst-case study.
Our analysis focuses the sensitivity of MDM modelling in
the missing covariate problems. Numerical examples are pre-
sented in both simulation studies and a real data example.

AMS 2000 subject classifications: Primary 62D10,
62J05; secondary 62F25.
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1. INTRODUCTION

We consider multi-variable regression analysis of a n-
dimensional vector of incomplete data set D = (D1, . . . , Dn)
where each Di are independent from the other. Some obser-
vations are missing, and a Bernoulli distributed indicator
vector R is defined to record the missingness. A standard
approach is to assume a parametric model of [R,D] with
parameters estimated by maximum likelihood of the model.
Selection model formulation (see Ch.12 in Little and Rubin,
2002) factorizes the distribution of [R,D] into a model for
[D] and a model for [R|D], where the latter is well known as
the MDM.

∗Corresponding author.

When the missing at random (MAR) assumption Little
and Rubin (2002) is plausible, the selection model formu-
lation seems compelling because it leads to likelihood ig-
norable for complete density family. However, as pointed
out by Little (1993), valid inference is rather based on the
knowledge of MDM; if assumptions about the MDM are
misspecified, say from a non-ignorable missing (i.e. missing
not at random – MNAR) data model, the parameter esti-
mation will be biased (Diggle and Kenward, 1994). Beyond
of the maximum likelihood method, the inverse probabil-
ity weighted estimating equations approach (Robins, Rot-
nitzky and Zhao, 1994) and the multiple imputation method
(Ibrahim et al., 2005) also require correct specification of
the MDM to ensure unbiased analysis. Maity, Pradhan and
Das (2019) proposed a likelihood-based method to reduce
the bias of the estimation of logistic regression with non-
ignorable missing responses, where the penalty term is by
multiplying the likelihood by a non-informative Jeffreys
prior.

A specific model for non-ignorable missing data is re-
quired for valid inference, which may be fitted by a para-
metric model (e.g. logistic model, probit model) or a semi-
parametric model (see e.g. Kim and Yu, 2011). Troxel,
Ma and Heitjan (2004) derived an index of sensitivity to
non-ignorability to capture the extent of sensitivity under
the assumption of ignorability based on a Taylor-series ap-
proximation to the non-ignorable likelihood. Wang, Shao
and Kim (2014) applied a non-response instrument vari-
able for the generalized method of moments to deal with
the estimation and identification with non-ignorable non-
response. Zhao and Shao (2015) proposed a semi-parametric
pseudo-likelihood approach with an instrumental variable to
identify and estimated parameters in the generalized linear
model with non-ignorable missing data. Gao et al. (2016) de-
veloped the non-linear sensitivity indices to study with the
non-ignorable missingness in both outcome and covariates.
Guo, Ma and Wang (2020) constructed the bias-corrected
semi-parametric estimating equations for the copula models
with non-ignorable missing data to improve the efficiency
of the estimation. Yuan et al. (2020) defined the non-linear
indexes of local sensitivity to non-ignorability for sensitivity
analysis to non-ignorable missingness in intensive longitudi-
nal data, which is a computationally feasible method. Zhang
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and Wang (2020) proposed a smoothed weighted empirical
likelihood to estimate the coefficient for quantile regression
with non-ignorable missing. However, it is not always the-
oretically possible to “characterize the set of all estimable
parameters for this class of models given a certain choice
of variables” (see p.14 in Ibrahim and Molenberghs, 2009).
The problem with these concerns as we may encounter in
the missing data comprises the non-identifiability and sen-
sitivity of MDM. A critical look at handling missing covari-
ate data in epidemiological studies was presented in Vach
and Blettner (1991) and then Greenland and Finkle (1995),
where the sensitivity of MDM and misspecification of covari-
ate models were investigated by simulation studies. To date,
there are not enough literatures investigating the problem of
MDM sensitivity in theory and exploring the potential key
risk of misspecified non-ignorable missing data. Thus, we
focus on local sensitivity evaluation about MDM misspec-
ification and we would summarize the sensitivity problems
of missing covariate in linear regression model into theoret-
ical form. We utilize likelihood-based incomplete data bias
measurement (Copas, 2013) to assess the effect of model
sensitivity, and simplify the complex uncertainty quantities
by some key sensitivity parameters. Then, local sensitivity
analysis (with worst case) (Copas and Eguchi, 2005) and
generative models (with small range) (Yin and Shi, 2019)
are used to examine the severity of MDM sensitivity.

In this paper, we start our analysis from maximum like-
lihood estimation (MLE) under a working model, i.e., the
model we usually used in practice; for example, a linear re-
gression problem under MAR assumption for the data with
partly missing covariates. The local sensitivity analysis ap-
proach is to investigate theoretically how sensitive the final
conclusion or the bias is to the assumption by examining
models in local area of the working model in a functional
space (each model can be treated as a function in a func-
tional space). And this sensitivity almost always exists under
non-ignorable missingness. We further decompose the bias
into two types: one is related to the distribution among co-
variates and the other is to the MDM assumption; both with
non-identifiability issues. Next, we would estimate the plau-
sible values of MLEs of parameters in worst case or in a small
range, where worst case is derived by maximizing squared
standardized bias. Yin and Shi (2019) proposed the gener-
ative modelling for MDM (GM-MDM), which attempted to
investigate the possibility of each MDM model assumption
and offered a plausible set of the sensitivity parameters. We
applied their idea to the above problems and provide a non-
implausible set which quantify a range of possible solutions
even if the true MDM is MNAR. The similar idea has also
been used in Andrianakis et al. (2017). We focus our discus-
sion on the missing covariates problem in a linear regression
model in this paper, but the method can be applied to other
related problems.

The rest of the paper is organized as follows. Section 2
discusses the main problem of MDM misspecification with

missing covariate problems and how to evaluate the incom-
plete data bias. The linear regression models with miss-
ing covariate under continuous and binary confounder are
discussed separately. Both the local sensitivity analysis
and GM-MDM are discussed in Section 3. Section 4 per-
forms the simulation studies under different models of non-
ignorable missingness and covariate distributions. In Sec-
tion 5, we present the real data example analysis. Fur-
ther discussion will be addressed in Section 6. Technical
proofs, some detailed derivative processes, and some ex-
tra numerical results are presented in Supplementary Ma-
terials http://intlpress.com/site/pub/files/ supp/sii/2023/
0016/0004/SII-2023-0016-0004-s002.pdf.

2. LOCAL SENSITIVITY ANALYSIS WITH
MDM UNCERTAINTY

Given collected data, we specify a model {f(·, θ), θ ∈ Θ}
to inference parameter θ. However in practice, the true data
generating distribution, denoted as g(·), is not always equal
to the specified model or working model f(·). Copas and
Eguchi (2005) discussed the model uncertainty issue and in-
complete data bias analysis. For complete data Z and incom-
plete data Y , the parametric model gZ(z; θ) and its marginal
model gY (y; θ) =

∫
(y)

gZdz specify the distribution of Z and

Y respectively, where
∫
(y)

means integration with respect to

z over the missing set. In many cases, inference is based on
a working model fZ , while data Z is in fact generated by
a nearby distribution gZ . To formulate distribution in a lo-
cal neighbourhood of fZ , let uZ(z; θ) be any scalar function
of Z and parameter θ, standardized to have mean zero and
variance one under the model fZ . Then for small values of
ε, the sampling model

(2.1) gZ = gZ(z; θ, ε, uZ) = fZ(z; θ) exp{εuZ(z; θ)}

is non-negative and integrates to one, thus, identifies a
distribution in the neighbourhood of fZ . And the distri-
bution of Y induced by gZ is gY = gY (y; θ, ε, uY ) =∫
(y)

fZ(z; θ) exp{εuZ(z; θ)}dz ≈ fY (y; θ) exp{εuY (y; θ)},
where uY (y; θ) = Ef{uZ(z; θ)|Y = y}, which integrates
the missing data out, and fY is the corresponding marginal
model of fZ for incomplete data: fY =

∫
(y)

fZdz.

Under the identifiability condition (see Lin, Shi and Hen-
derson, 2012), the incomplete data bias bθ is the first-order
approximation to the difference θgY −θgZ , which is given by
(2.2)
θgY − θgZ ≈ bθ = εEf [uZ(z; θ){I−1

Y sY (y; θ)− I−1
Z sZ(z; θ)}],

where θgY = argθ[EgY {sY (y; θ)} = 0], θgZ =
argθ[EgZ{sZ(z; θ)} = 0], sY (y; θ) = ∂ log fY (y; θ)/∂θ and
sZ(z; θ) = ∂ log fZ(z; θ)/∂θ are the score functions, IY =
E(s2Y (y; θ)) and IZ = E(s2Z(y; θ)) are the information ma-
trices of fY and fZ respectively, and argθ[·] returns the set
of all possible values of θ from the brackets.
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2.1 Missing covariate in regression models

With missing data problem, there are many uncertainty
occurrences in model fitting when we consider the distri-
butions of observed and unobserved covariates and MDM.
Now, we specifically focus on the uncertainty analysis for
linear regression models with missing covariate problem.

Assume there is an experiment design comprised of a re-
sponse variable T , and the fully observed covariate X and
the partially missing covariate C. For example, in genetic
epidemiology field, the response variable T (also named as
“phenotype”) may be a continuous trait (e.g., blood pres-
sure). Variable X may represent the environment variable
or patient demographic such as patient’s age, gender or
drug therapy. Variable C may represent a confounding data,
e.g. diet or smoking status, which may have a number of
samples with data unobserved. With non-ignorable MDM
(MNAR), the data generating model under complete data
Z = {T,X,C,R} is:

gZ = fT |XC(t|x, c; θ)fXC(x, c)f(r|t, x, c),(2.3)

where R is a missing indicator, which sets to 0 if the cor-
responding C is missing and 1 otherwise, and f(r|t, x, c) is
the model for the true MDM. We usually do not know the
true form of f(r|t, x, c), so we may instead use:

(2.4) fZ = fT |XC(t|x, c; θ)fXC(x, c)f1(r|t, x, c),

where f1(r|t, x, c) is a working model, which is usually se-
lected as a parametric model (e.g. logistic linear model).
The difference between the two models indicates the prob-

lem of MDM sensitivity, i.e. exp{εRuR} = f(r|t,x,c)
f1(r|t,x,c) . If we

use the notation in Equation (2.1), the misspecification part
exp{εuZ} is re-written as exp{εRuR} to present the uncer-
tainty source caused by the different MDM specifically.

True MDM model f(r|t, x, c) is usually unknown, thus
this misspecification under MNAR is common. The fitted
model f1(r|t, x, c) cannot be examined by goodness-of-fit
test due to the partly missingness of c. Actually, it is often
fitted by a MAR model in practice, i.e. f1(r|t, x) or f1(r|x).
For simplification, we only consider f(r|x, c) and f1(r|x) as
the true and working MDM models in the following part. In
this case, uR directs non-ignorable missing data into ignor-
able missing data frame, and maps the complex uncertain
non-ignorable missing data pattern into a much simpler and
identifiable model, but with stronger assumptions and often
the cost of incomplete data bias.

When we further consider the specification of the covari-
ate density, the model fit of f(c|x, r = 0) is very difficult,
thus, we estimate the distribution of (X,C) based on the
observed data or often simply assume X and C are inde-
pendent:

f∗
Z = fT |XC(t|x, c; θ)fX(x)fC(c)f1(r|x).(2.5)

Similarly, we can use exp{εXCuXC} = fXC(x,c)
fX(x)fC(c) as the

misspecification of covariate distribution.

The corresponding working model f∗
Y for the incomplete

data Y = {T,X,C(r), R}, where C(r=1) is observed and
C(r=0) is missing, is given by
(2.6)

f∗
Y =

∫
(y)

f∗
Zdz = fr

T |XC(t|x, c(r); θ)fX(x)fr
C(c)f1(r|x),

with fr
T |XC(t|x, c(r); θ) =

{
fT |XC(t|x, c; θ), r = 1;
fT |X(t|x; θ), r = 0

and

fr
C(c) =

{
fC(c), r = 1;
1, r = 0.

It is easy to notice that model

f∗
Y is fully identifiable and parameters can be estimated by
MLE method.

We are interested in estimating θ, and we would like to
know the influence of the misspecified assumptions on the
parameter estimation. The following theorem gives formula
to calculate the double unavoidable misspecification quan-
tities with the incomplete data.

Theorem 1. The data generating distribution for com-
plete data Z is noted as gZ = gZ(z; θ, εR, εXC , uR, uXC) =
f∗
Z(z; θ) exp(εXCuXC) exp(εRuR), where f∗

Z is the working
model, and the limiting value of MLE is denoted θgZ . Cor-
respondingly, the sampling distribution under incomplete
data Y is gY , which is the marginal model of gZ : i.e.
gY = f∗

Y (y; θ) exp(εRuR|Y ) exp(εXCuXC|Y ), where uXC|Y =
Ef∗

Z
(uXC(z; θ)|Y ) and uR|Y = EfZ (uR(z; θ)|Y ). So, we use

the model f∗
Y (y; θ) to fit the observations sampling from gY ,

and the limiting value of MLE under Y is denoted θgY . The
incomplete data bias bθ under some identifiability conditions
is given by

θgY − θgZ ≈ bθ = εRI
∗
Y
−1EfZ (uRs

∗
Y )−εRI

∗
Z
−1EfZ (uRs

∗
Z)

+εXCI
∗
Y
−1Ef∗

Z
(uXCs

∗
Y )

−εXCI
∗
Z
−1Ef∗

Z
(uXCs

∗
Z),(2.7)

with s∗Y and I∗Y as score function and information matrix
under model f∗

Y , while s∗Z and I∗Z as those under f∗
Z .

The proof of Theorem 1 is given in Section S1 in Sup-
plementary Materials. In Theorem 1, gZ is non-negative
and integrates to one and including first-order terms in
(εRuR, εXCuXC) and so identifies a distribution in the
neighbourhood of f∗

Z . Two types of biases are decomposed
and will be investigated separately. Specifically, the first two
terms in the bias expression in (2.7) can be described as the
MDM bias:

(2.8) bR = εRI
∗
Y
−1EfZ (uRs

∗
Y )− εRI

∗
Z
−1EfZ (uRs

∗
Z),

and the last two terms as the covariate bias:
(2.9)

bXC = εXCI
∗
Y
−1Ef∗

Z
(uXCs

∗
Y )− εXCI

∗
Z
−1Ef∗

Z
(uXCs

∗
Z),
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Figure 1. Distributions of Z and Y : (a) complete-data model
– the true model gZ in (2.3) is in a neighbourhood of the

model fZ in (2.4) with a misspecified MDM, and in addition
fZ is in a neighbourhood of the model f∗

Z in (2.5) with a
further misspecified distribution between X and C; (b)

incomplete observed data model – project the model for Z to
the model for Y .

and bθ = bR + bXC . In a regression model with missing co-
variates, the MDM bias bR is mainly caused by the non-
identifiability of MDM under MNAR and a misspecified
MDM is used, and the covariate bias bXC is mainly caused
by the misspecified distribution between X and C. For the
latter, a special case, as used in practice often, is to set a
model under a (wrong) strong assumption for the correla-
tion between the fully observed covariateX and the partially
missing covariate C.

To geometrically visualize the relationship between the
true models and the working models of the complete data
Z and the incomplete data Y , we provide Figure 1, which
also illustrates how the incomplete data bias arises. For
any given θ, the misspecification quantities εXCuXC(z; θ)
and εRuR(z; θ) are the vectors joining f∗

Z(z; θ) to fZ(z; θ)
and fZ(z; θ) to gZ(z; θ), respectively. These vectors have
“length” εXC and εR, and “direction” given by the unit
vectors uXC(z; θ) and uR(z; θ) respectively.

2.2 MDM uncertainty under a linear
regression model

For complete data Z = {T,X,C,R}, the linear fixed ef-
fect model can be written as

(2.10) t|(x, c) ∼ N(θ0 + θXx+ θCc, σ
2),

where σ2 is the variance of the error term. A normal
distributed model is assumed here. And the model with
the incomplete data Y = {T,X,C(r), R} is t|(x, c, r) ∼
N(θ0 + θXx + rθCc, σ

2 + (1 − r)θ2Cσ
2
c ). For complete case,

the incomplete data model is the same with the complete
data model; while for incomplete case, the model t|(x, r =
0) ∼ N(θ0 + θXx, σ2 + θ2Cσ

2
c ) is similar to the missing con-

founder problem (Copas and Eguchi, 2005). Here we use
the maximum likelihood method to estimate the parame-
ters θ = (θ0, θX , θC)

T and the incomplete data bias bθ.

For complete data Z and incomplete data Y ,
the log-likelihoods, the score functions, and the
Fisher information matrices for the linear model are
l∗Z(θ; z), l

∗
Y (θ; y), s

∗
Z(z; θ), s

∗
Y (y; θ), I

∗
Z and I∗Y respectively,

whose equations are listed in Section S2 in Supple-
mentary Materials. To simplify notations, we define
v = (c, cx, θ2Cσ

2
c (c

2 − σ2
c ))

T. Let fR|Z = f(r|x, c) and
fR|Y = f1(r|x). Since EfT |XC

(sZ) = 0 for all x and c, the
MDM bias is

(2.11) bR ≈ θCI
∗
Y
−1

σ2
Y

EfXC

{
(fR=1|Y − fR=1|Z)v

}
,

and the covariate bias is
(2.12)

bXC ≈ θCI
∗
Y
−1

σ2
Y

{EfXC
(vfR=0|Y )− EfXfC (vfR=0|Y )},

where EfXC
(·) indicates the expectation under the joint dis-

tribution fXC(x, c), while EfXfC (·) indicates the expecta-
tion under the independent distribution fX(x)fC(c). Equa-
tion (2.11) contains the term fR=1|Y −fR=1|Z , which reflects
the difference between the true MDM and the working MDM
that we assume. The MDM bias bR will disappear if the true
MDM is known, i.e. fR=1|Y − fR=1|Z = 0. Equation (2.12)
contains the term EfXC

(vfR=0|Y )−EfXfC (vfR=0|Y ), which
is influenced by the correlation of X and C. The covariate
bias bXC will be zero if the correlation between X and C
does not exist, i.e. EfXC

(vfR=0|Y ) = EfXfC (vfR=0|Y ). The
parameter θC is the effect of covariate C and σ2

c is the vari-
ance of that covariate, the term θ2Cσ

2
c in σ2

Y = σ2 + θ2Cσ
2
c

measures the error in the assumption that corr(x, c) = 0 in
the working model f∗

Z . Both θC and σ2
Y have influence in

the MDM bias and the covariate bias.

Remark 1. In Section S2 in Supplementary Materials, we
provided another form for bR and bXC which linked to some
quantities have clear physical explanation. They may be
used in practice to understand how the bias is related to
those quantities if we have some prior knowledge. We also
offer the detailed derivation procedure for the following bi-
ases under continuous and binary confounders.

For simplicity, we suppose X and C have the multi-
variate normal distribution (X,C)T ∼ N(μXC ,ΣXC) with
μXC = (μx, μc)

T and correlation ρ, then the MDM bias in
Equation (2.11) can be rewritten as

(2.13) bR ≈ θCI
∗
Y
−1{f1(r = 1)− f(r = 1)}

σ2
Y

E(v|r = 1),
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where f1(r = 1) and f(r = 1) are the observed probabilities
for the working MDM and the true MDM respectively, and
E(·|r = 1) is the expectation given r = 1. This formula lit-
erally shows how the MDM bias correlated to the quantities
for the working MDM and the true MDM. The key drivers
of sensitivity relies on f1(r = 1) − f(r = 1), which is the
difference between the working MDM and the true MDM.
When the working MDM is equal to the true MDM, i.e.
f1(r = 1) = f(r = 1), there is no uncertainty for the MDM,
and no MDM bias. The covariate bias in Equation (2.12) is
(2.14)

bXC ≈ θCI
∗
Y
−1

σ2
Y

f1(r=0)ρ
σc

σx

⎛
⎝ E(x|r = 0)− μx

E(x2|r = 0)− μxE(x|r = 0)
ξ

⎞
⎠,

where ξ = θ2Cσ
2
c [ρ

σc

σx
{E(x2|r = 0) − 2μxE(x|r = 0) + μ2

x −
σ2
x} + 2μc{E(x|r = 0) − μx}]. The covariate bias correlates

with the key sensitivity parameter from covariate distribu-
tion, which is the correlation coefficient corr(x, c) = ρ be-
tween X and C. Specially, if the covariate correlation ρ = 0,
the incomplete data bias will not exist, which measures the
cost of misspecification of covariate correlation.

Suppose X is a binary variable, such as the treatment
variable, i.e. X ∼ B(1, px), and the conditional distribu-
tion of C|X has mean μc|x and variance σ2

c|x. For simplifi-

cation, we suppose σ2
c|x=0 = σ2

c|x=1 and denote them as σ2
0 .

By calculation, we have that the mean and variance of C
are μc = pxμc|x=1 + (1 − px)μc|x=0 and σ2

c = σ2
0 + px(1 −

px)(μc|x=1 − μc|x=0)
2 respectively, and the covariance be-

tween X and C is cov(x, c) = px(1 − px)(μc|x=1 − μc|x=0),
which is determined by μc|x=1−μc|x=0, i.e. the difference of
the mean values of C under the treatment group (X = 1)
and the control group (X = 0). Under this case, the MDM
bias in Equation (2.11) is

(2.15) bR ≈ θCI
∗
Y
−1{f1(r = 1)− f(r = 1)}

σ2
Y

E(v|r = 1),

and the covariate bias in Equation (2.12) is

bXC ≈ θCI
∗
Y
−1cov(x, c)

σ2
Y

×

⎛
⎝f1(r = 0|x = 1)− f1(r = 0|x = 0)

f1(r = 0|x = 1)
Ξ1

⎞
⎠ ,(2.16)

where Ξ1 = θ2Cσ
2
c{f1(r = 0|x = 1) − f1(r = 0|x =

0)}(μc|x=1+μc|x=0). And the biases are influenced by f1(r =
1) − f(r = 1) and cov(x, c) respectively. Since the covari-
ance is cov(x, c) = px(1 − px)(μc|x=1 − μc|x=0), the term
μc|x=1−μc|x=0 shows the correlation between X and C, and
also implies the difference of the mean values of C under bi-
nary treatment variable X, thus, it influences the covariate
bias bXC significantly.

3. SENSITIVITY ANALYSIS

3.1 Local sensitivity analysis

The method of finding the most sensitive direction uZ

in Equation (2.1) by maximizing squared standardized bias
(SSB) has been introduced in Copas and Eguchi (2005).
Here, we also can derive the most sensitive directions uR

and uXC based on Copas and Eguchi (2005)’s idea.
Denote θ = (θ0, θX , θC)

T, the scalar parameter φ = dTθ,

the estimation of φ under the working model f∗
Y as φ̂ =

dTθ̂gY , and the incomplete data bias bφ = dTbθ. The squared
standardized bias can be written as

SSB =
b2φ

nvarf∗
Y
(φ̂)

=
{dT(bR + bXC)}2

dTI∗Y
−1d

≤ 2
(dTbR)

2

dTI∗Y
−1d

+ 2
(dTbXC)

2

dTI∗Y
−1d

.(3.1)

Next, we consider the two terms above respectively.

By some technical details, we have (dTbR)2

dTI∗
Y

−1d
≤ ε2R{1 −

λmin(Λ
∗)}, where λmin(Λ

∗) is the minimum eigenvalue of

Λ∗ = I∗Y
1/2I∗Z

−1I∗Y
1/2. The equality holds when uR =

dT(I∗
Y

−1s∗Y −I∗
Z

−1s∗Z)

{dT(I∗
Y

−1−I∗
Z

−1)d}1/2 and d = I∗Y
1/2νmin(Λ

∗), where νmin(Λ
∗)

is the eigenvector of Λ∗ with the smallest eigenvalue. We
put the expression of d into uR and obtain that uR =
νT
min(Λ

∗)I∗
Y

1/2(I∗
Y

−1s∗Y −I∗
Z

−1s∗Z)

{1−λmin(Λ∗)}1/2 , which is the “worst case” di-

rection for the MDM bias. Similarly, the worst or the most
sensitive direction of uXC is similar to uR, because the term
(I∗Y

−1s∗Y − I∗Z
−1s∗Z) is the same. Thus, the squared stan-

dardized bias is

SSB =
b2φ

nvarf∗
Y
(φ̂)

≤ 2ε2R{1− λmin(Λ
∗)}+ 2ε2XC{1− λmin(Λ

∗)}.(3.2)

Remark 2. See Section S3 in Supplementary Materials for
some technical details. Although Equations (3.1) and (3.2)
provide upper bound of the bias, it is difficult to use the
general results in practice. Therefore, a very conservative
method of double-the-variance was given in Copas and
Eguchi (2005). We propose to use a generative modelling
approach in the next section to quantify the range of the
bias.

3.2 Generative modelling for MDM

The idea of generative modelling for MDM (GM-MDM)
is first proposed by Yin and Shi (2019), which is used to
do the sensitivity analysis with MNAR data. In contrast to
the method discussed in Section 3.1 which focuses on the
worst-case direction but is not often easy to find meaningful
results, GM-MDM approach is to investigate the plausibil-
ity of the values for some inestimable parameters involved
in the model for missing data. For example, if the data is
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MNAR for the linear model discussed in Section 2.2, and
the true MDM is f(r = 1|x, c) = expit(1 + x + ηc), where
expit(a) = exp(a)/{1 + exp(a)}. The parameter η, namely
sensitive parameter, is inestimable since part of c is missing,
and the MDM depends on the missing part as well. The ba-
sic idea of GM-MDM is to investigate all potential candidate
of η and remove those implausible values. This will lead to
a so called non-implausible (NIP) set of η. As we will show
later by using numerical examples, it can usually provide
some meaningful and attractive results in practice. The GM-
MDM is often implemented using Monte Carlo techniques.

A general procedure of GM-MDM is described as follows.

Step 1. The observed data set is Dobs =

{ti, xi, c
(ri=1)
i , ri}ni=1, where {c(ri=0)

i }i are missing.
Under the assumption that the working MDM is MAR,
i.e. f1(r = 1|x) = expit(w0 + w1x), we can obtain the

coefficient estimator θ̂gY = θ̂MAR using Dobs.
Step 2. Impute the missing {ci}i,ri=0 by

f(c|ti, xi, ri = 0) = f(c|ti, xi, ri = 1)

×
f(ri=0|ti,xi,c)
f(ri=1|ti,xi,c)

E{ f(ri=0|ti,xi,c)
f(ri=1|ti,xi,c)

|ti, xi, ri = 1}
,(3.3)

where the true MDM f(ri = 1|ti, xi, c) depends on η,
which is inestimable. So, we select a value of η from a
proposal distribution or a candidate set, denoted by Γ.
The imputed ci is ĉi = ciI(ri = 1) + c̃iI(ri = 0), where
c̃i is the one generated from (3.3). Thus, we obtain the
“complete” data {ti, xi, ĉi}ni=1, we therefore use it to
calculate all the unknown parameters and denote it by
θ̂η.

Step 3. Re-generate t by ti,η = θ̂0,η + θ̂X,ηxi + θ̂C,η ĉi +
εi, where εi ∼ N(0, σ̂2), and then denote the dataset
generated by the given η as Dη = {ti,η, xi, ĉi, ri}ni=1

and denote Dobs
η as the corresponding part of Dobs.

Step 4. Compare the distance s(Dobs,Dobs
η ) between the

original observed data set Dobs and the corresponding
generated data set Dobs

η .
Step 5. Determine the non-implausible (NIP) set Γα for

the sensitivity parameters η.

Remark 3. We know that Dobs is corresponding to the true
model, while Dobs

η is corresponding to an assumed model

controlled by η. If the distribution of Dobs
η is very different

to the distribution of Dobs, the underline assumed model
is wrong. The closeness of the two distributions can be
assessed by a distance measure, e.g., K-nearest-neighbour
(KNN) distance or Kolmogorov-Smirnov (KS) distance de-
fined by the two-sample Kolmogorov-Smirnov statistic. In
the simulation study, we calculate the KS distance between
{ti}i,ri=1 and {ti,η}i,ri=1 to express this closeness, i.e. sKS =

sKS({ti}i,ri=1, {ti,η}i,ri=1) =
√

n1

2 sup
t

|F̂ (t)− F̂η(t)|, where

n1 is the sample size for the observed data {ti}i,ri=1, F̂ (t)

and F̂η(t) are the empirical distribution functions of the ob-
served data {ti}i,ri=1 and the generated sample {ti,η}i,ri=1

respectively, and sup is the supremum function. Define the
KS set as ΓKS,α = {η : sKS < c(α)}, where the value of

c(α) is generated by c(α) =
√

− log(α/2)/2 (Knuth, 1998)
based on the KS test. A non-parametric test based on any
distance measures can be conducted to remove less plausi-
ble candidates. In Step 5, by using a permutation method
to define an “achieved significance level” (ASL) with boot-
strap in Yin and Shi (2019). We first sample (Dboot,1,Dboot,2)
from the combined data set D∗ = (Dobs,Dobs

η ) and cal-

culate s∗ = s(Dboot,1,Dboot,2), where Dobs
η is the gener-

ated dataset given η, Dboot,1 is a sample randomly selected
from D∗, and so is Dboot,2. We repeat this step with a
sufficiently large number, and calculate the proportion of
{s∗ ≥ s(Dobs,Dobs

η )}. This is the empirical value of the fol-
lowing ASL value

ASLη = PrH0(s
∗ ≥ s(Dobs,Dobs

η )),(3.4)

where H0 is the null hypothesis stating that Dobs and Dobs
η

come from the same distribution. For a given significance
level, a non-implausible (NIP) set of sensitivity parameters
is defined as Γα = {η : ASLη > α}. Thus Γα and the corre-
sponding θη give a range of plausible solutions. All the mod-
els, which are not in the range, should be discarded. Note
that the NIP set Γα is general and suit for any distance,
while KS set ΓKS,α is only suit for KS distance based on KS
test. The detailed explanation of each step of the GM-MDM
can be found in Section S4 in Supplementary Materials.

Theorem 2. In the GM-MDM, if the true value of the sen-
sitivity parameter ηtrue is contained in Γ, then it will be se-
lected into the non-implausible (NIP) set Γα asymptotically
given a significance level α.

The proof of Theorem 2 is given in Section S5 in Sup-
plementary Materials. Although we are almost sure the true
model can be selected, we cannot guarantee the consistency.
The size of NIP does not depend on the sample size only, it
also depends on the degree of the ignorability of the miss-
ing data. The latter cannot be eliminated by big data, it is
controlled by the randomness of the sample.

4. SIMULATION STUDIES

Now we perform simulation studies to further examine
the sensitivity of non-ignorable missing data. In order to
show the performance of the adjusted estimator with the
MDM bias bR and the covariate bias bXC , we design two
settings to report the results, one is to compare the cov-
erage rate (CR) with the results under MAR; another is
to show the local sensitivity by the “achieved significance
level” (ASL) values and KS distances with a range of sensi-
tivity parameters. Besides, more simulation studies to check
whether the missing rate will impact the performance of our
method have been considered, see the details in Section S6.3
in Supplementary Materials.
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Table 1. The biases bR, bXC , estimation and 95% coverage rate (CR) for θX .

n η ρ bR bXC θX,MAR θX,gz CRMAR CR

500 0.1 −0.3 0.001 −0.079 0.919 0.997 0.634 0.936
0 0.001 −0.001 1.001 1.001 0.956 0.944
0.3 0.001 0.080 1.086 1.005 0.604 0.936

0.5 −0.3 0.005 −0.078 0.925 0.998 0.650 0.962
0 0.006 0.000 1.007 1.000 0.954 0.958
0.3 0.005 0.081 1.090 1.004 0.570 0.940

1 −0.3 0.011 −0.078 0.922 0.990 0.658 0.904
0 0.011 0.000 1.011 1.000 0.948 0.950
0.3 0.009 0.082 1.096 1.005 0.524 0.928

2000 0.1 −0.3 0.001 −0.080 0.919 0.998 0.114 0.940
0 0.001 0.001 1.001 0.999 0.962 0.956
0.3 0.001 0.079 1.083 1.003 0.100 0.934

0.5 −0.3 0.005 −0.079 0.922 0.996 0.142 0.928
0 0.006 0.000 1.006 1.000 0.936 0.944
0.3 0.005 0.080 1.088 1.003 0.070 0.936

1 −0.3 0.011 −0.078 0.927 0.994 0.180 0.920
0 0.012 0.001 1.013 1.000 0.926 0.950
0.3 0.009 0.082 1.094 1.003 0.034 0.934

4.1 Simulation studies for coverage rate

We consider a linear regression model, which is the
same as that in Equation (2.10), i.e. t|(x, c) ∼ N(θ0 +
θXx + θCc, σ

2), where the true value of parameters θ =
(θ0, θX , θC)

T is chosen as (1, 1, 1)T and σ2 = 1. The covari-
ates (X,C)T follow a multivariate normal distribution with

mean vector (0, 0)T and covariance matrix

(
1 ρ
ρ 1

)
, where

the correlation coefficient ρ = −0.3, 0 and 0.3. We denote
this case as the normal case, besides, we also consider the
binary case when X ∼ B(1, px), see Section S6 in Supple-
mentary Materials for the results of additional simulations.
We drop some of the observations of C with f(r = 1|x, c) =
expit{(1+x+ηc)/2}, where η = 0.1, 0.5 and 1. The working
MDM is MAR with f1(r = 1|x, c) = expit(w0+w1x), where
the coefficients θ and w0, w1 can be estimated under the
working MAR with observed data. We simulate complete
observations with sample size n = {500, 2000} and replicate
500 times. The missing {ci}i,ri=0 have been imputed by 20
times for the stability of results.

The MDM bias (bR), the covariate bias (bXC), the esti-
mators of θ (θMAR) under the working MAR, the adjusted
estimators (θgZ = θMAR − bR − bXC from Equation (2.7)),
CR of θMAR under the working MAR (CRMAR), and the
adjusted CR of θgZ (CR) with 95% confidence interval are
listed in Table 1 for the parameter of interest θX .

In general, we can see that the adjusted θX,gZ is much
closer to 1 than θX,MAR, where 1 is the true value of θX .
The coverage rate CR is larger than CRMAR in most of
the cases. The MDM bias bR increases as η grows, which
is caused by the departure between the working MDM and
the true MDM. Besides, the CRMAR is so small when |ρ| is
large, e.g. ρ = ±0.3, while there is a significant growth for

adjusted CR in this case. When ρ = 0, which means there
is no correlation between X and C, the covariate bias bXC

is so much close to zero.

4.2 Simulation studies for ASL and KS

The settings are similar as before, except that we only
consider the correlation coefficient ρ = 0.3 as examples. The
sensitivity parameter η = 1, 3 and 5 in MDM, the sample
size n = 2000, and the time of repetition is 100. We set
the η ∈ [−20, 20], which is spaced by 0.5 as the interval,
thus, we have 81 candidate sensitive parameters, and the bi-
ases are calculated based on each candidate η. The missing
{ci}i,ri=0 have been imputed by 20 times for the stability
of results. The bootstrap process is used to calculate the
KS distances between the observed data {ti}i,ri=1 and the
generated data {ti,η}i,ri=1 under each sensitive parameter
η, thus the ASL values can be estimated and then the non-
implausible (NIP) set of η can be obtained, where the boot-
strap time is 100, and the given significance levels α = 5%
and 10%. We use c(α = 5%) =

√
− log(α/2)/2 ≈ 1.358

and c(α = 10%) =
√
− log(α/2)/2 ≈ 1.224 as the crit-

ical value for the KS distances to define the KS set, i.e.
{η : sKS < c(α)}. The procedures of the GM-MDM method
can refer to Section 3.2.

We calculate the estimation θMAR and 95% confidence
interval (CIMAR) under MAR, which are marked with dot-
ted lines in Figure 2. The adjusted estimation θgZ and the
corresponding 95% confidence interval (CIgZ ) are marked
with solid lines. And the dashed vertical line is for the true
value of η, while the dashed horizontal line is for the true
value of θX .

Figure 2 shows the estimation of θX and the correspond-
ing 95% CI under the MAR and the MNAR given different
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Figure 2. The 95% confidence interval (CI) of the estimator
for θX under MAR and GM-MDM with true η = 1, 3 and 5,
where the missing percentages are 0.392, 0.418 and 0.438

respectively.

η, where the true η = 1, 3 and 5 respectively. We can see that
the CIgZ contains the true θX , which is equal to 1, under the
true η in any case, however, the true θX is not included in
CIMAR, which is over estimated under MAR. The deficient
performance of the estimation under MAR is caused by the
fact that MAR is not the true MDM of the simulated data.
As η is far away from its true value, the incomplete data
bias is large, which results in that CIgZ cannot contain the
true θX when η is far away from its true value.

Figures 3 reports the ASL and KS distances with η = 1, 3
and 5 respectively. The dots are the values of ASL and KS
under each given η, the dashed vertical line is for the true
value of η, the dotted horizontal line is α = 5% for ASL and
c(5%) = 1.358 for KS value, while the dashed horizontal line
is α = 10% for ASL and c(10%) = 1.224 for KS value.

The NIP sets Γα=5% of sensitivity parameters η with sig-
nificance level α = 5% are [−1.0, 3.5], [0.5, 7.0] and [2.0,
11.5], while Γα=10% are [−1.0, 3.0], [1.0, 6.0] and [2.5, 9.5]
for η = 1, 3 and 5 respectively, which are selected when the
ASL values are larger than the critical values 5% and 10%.
The KS sets ΓKS,α=5% of sensitivity parameters η are [−1.0,
3.0], [1.0, 6.0] and [2.5, 9.5], while ΓKS,α=10% are [−0.5, 2.5],
[1.5, 5.5] and [2.5, 8.5] for η = 1, 3 and 5 respectively, which
are selected when the KS values are less than the critical
value c(α = 5%) = 1.358 and c(α = 10%) = 1.224. We can
see that the true value η is contained in each NIP set and KS
set, and the sets with significance level α = 5% are slightly
wider than these with α = 10%. Although the GM-MDM
method does not offer a point estimation of the sensitivity
parameter, a convincing interval of the sensitivity parame-
ter can be obtained. When the sensitivity parameter is away
from its true value, the distance becomes larger, which is as
we expect.

Figure 3. The ASL values and KS distances with true
η = 1, 3 and 5.

5. REAL DATA EXAMPLE

To validate the performance of the proposed method, we
consider a real data example, which is to predict the acute
toxicity of diverse chemicals based on two molecular de-
scriptors, towards the fathead minnow (Pimephales prome-
las). The manufacturers can use the prediction results to
prove that their products are safe for human health and
the environment. The fish toxicity data set comes from the
UC Irvine Machine Learning Repository (Dua and Graff,
2017), which contains the information about the toxicity
towards fish and molecular descriptors of 908 chemicals.
The toxicity of diverse chemicals towards the fathead min-
now is defined as LC50 96 hours, which is the concentra-
tions causing death in 50% of test fathead minnows over
a test duration of 96 hours. The two molecular descriptors
are SM1 Dz and MLOGP, where SM1 Dz is the descrip-
tor calculated from 2D matrices derived from the molecular
graph, and MLOGP is the octanol-water partitioning coef-
ficient, which is considered the driving force of narcosis. We
are interested in the dependence of LC50 (T ) on SM1 Dz
(X) and MLOGP (C). Since the dataset is fully observed,
we use the artificial missing method to miss some values
of MLOGP, where the supposed true MDM is MNAR with
f(r = 1|x, c) = expit{(1+x+ηc)/2} and η = 1, 3 and 5. The
missing percentages are 0.394, 0.421 and 0.439 respectively.

We fitted a linear regression model (using ordinary least
squares) for LC50 (T ) with SM1 Dz (X) and MLOGP (C)
as covariates. First, we standardize the variables to reduce
the errors caused by dimensional difference, self-variation, or
large numerical difference, which can reveal statistically sig-
nificant findings that we might otherwise miss. Then, we use
the supposed true MDM to delete some values of MLOGP
(C). Thus, we can obtain the missing dataset, and the fol-
lowing analysis is based on this dateset. The GM-MDM pro-
cess in Section 3.2 is implemented, where the range of the
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Figure 4. The ASL values and KS distances with true
η = 1, 3 and 5 in fish toxicity dataset.

sensitivity parameter η is [−20, 20] spaced by 0.5. The sam-
ple size of this dataset is 908, and the missing {ci}i,ri=0 have
been imputed by 20 times for the stability of results. The
bootstrap process is used to calculate the KS distances be-
tween the observed data {ti}i,ri=1 and the generated data
{ti,η}i,ri=1 under each sensitive parameter η, thus the ASL
values can be estimated and then the non-implausible (NIP)
set of η can be obtained, where the bootstrap time is 100,
and the given significance level α = 5% and 10%. The pro-
cedures of the GM-MDM can refer to Section 3.2.

To compare with our proposed GM-MDM method, we
consider other three methods which are commonly used to
deal with missing data, i.e. complete case analysis (CCA),
multiple imputation (MI) (Rubin, 1987), and the estima-
tion with MAR f(r = 1|x) = expit(w0 + w1x) (MAR). The
CCA method assumes that the missingness in C is indepen-
dent of T , X and C, thus, coefficient estimation is obtained
based on the samples, where the missing data are deleted
during the analysis process. The estimations based on MI
method are calculated with the mice package in R (Buuren
and Groothuis-Oudshoorn, 2011). We set meth=“norm” in
‘mice’ function, which calculates imputations for univari-
ate missing data by Bayesian linear regression, and calcu-
late the estimations after the imputation by ‘with’ func-
tion. And estimations of the coefficient θ with MAR method
are implemented by assuming the true MDM is MAR with
f(r = 1|x) = expit(w0 + w1x).

The ASL values and KS distances under true MDM with
η = 1, 3 and 5 are showed in Figure 4. The panels on the
upside are the ASL values, where the NIP sets Γα=5% of
sensitivity parameters η with significance level α = 5% are
[−0.5, 4.0], [0.5, 7.0] and [1.5, 7.5], while Γα=10% are [0, 3.5],
[1.0, 6.5] and [2.0, 6.5] for η = 1, 3 and 5 respectively. The
panel on the downside are the KS distances, where the KS

sets ΓKS,α=5% of sensitivity parameters η are [0, 3.5], [1.0,
6.5] and [2.0, 7.0], while ΓKS,α=10% are [0.0, 3.0], [1.5, 4.5]
and [2.0, 6.0] for η = 1, 3 and 5 respectively. We can see that
all the NIP sets and KS sets cover the true value η.

The coefficient estimations by the three compared meth-
ods and the NIP sets and KS sets of the coefficients are
reported in Table 2, where the values in round brackets are
the standard errors from Complete case analysis (CCA) and
Multiple Imputation (MI), while the ranges in square brack-
ets are the NIP sets and KS sets of the coefficients from
GM-MDM method. The standard error of CCA is much
larger than that of the MI in each setting, which means
the CCA method is not as much stable as the MI method.
The coefficients of the CCA, MI and MAR methods are not
much similar, which means if we use different methods to
analysis, the different results may obtain. The advantage of
the GM-MDM method is that it offers a reasonable interval
estimation instead of a point estimation of the coefficients,
which can avoid the overestimation or underestimation with
the inappropriate method.

6. DISCUSSION

The sensitivity of the MDM is common and difficult since
lack of randomization or lack of identifiability (Copas and
Eguchi, 2005). Without considering those effects could lead
to biases (Vach and Blettner, 1991; Greenland and Fin-
kle, 1995). In this paper, we mainly focus on investigating
the sensitivity analysis of non-ignorable missing covariate in
the linear regression model. We use the local bias analysis
method to measure the uncertainty and extent the general
model uncertainty problem to the non-ignorable missing co-
variate problem, where two kinds of uncertainties have been
considered, one is the MDM uncertainty, the other is the
correlation between observed covariate and missing covari-
ate. The sensitivity measurement, or so-called “incomplete
data bias” is calculated and interpreted by meaningful and
interpretable quantities, such as the covariate variable cor-
relation, the conditional mean difference of the missing co-
variate.

To identify the key sensitivity parameter in the incom-
plete data bias is difficult but crucial. This could illustrate
the most crucial factors that drive the non-ignorable sen-
sitivity. As for the continuous covariates case, we used the
approximate likelihood-based bias evaluation, which iden-
tifies covariate correlation corr(x, c) as the key sensitivity
drive of covariate misspecification; the difference of the ob-
servation probability between the working MDM and the
true MDM f1(r = 1) − f(r = 1) as the key drive of
MDM uncertainty measure. As for the binary covariates
case, we find that the conditional mean difference of C|X,
i.e. E(c|x = 1) − E(c|x = 0) influences the covariate mis-
specification bias, where E(c|x = 1) − E(c|x = 0) is pro-
portional to the covariance cov(x, c); while the difference
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Table 2. Estimations of model parameters in fish toxicity dataset. (The missing percentages are 0.394, 0.421 and 0.439
respectively.)

η Estimator Intercept SM1 Dz (X) MLOGP (C)

1 CCA −0.011 (0.03) 0.277 (0.028) 0.597 (0.032)
MI −0.077 (0.013) 0.286 (0.008) 0.625 (0.015)

MAR −0.091 0.264 0.807
GM-MDM (Γα=5%) [−0.108, 0.127] [0.252, 0.295] [0.508, 0.619]

GM-MDM (ΓKS,α=5%) [−0.076, 0.107] [0.254, 0.285] [0.527, 0.619]
GM-MDM (Γα=10%) [−0.076, 0.107] [0.254, 0.285] [0.527, 0.619]

GM-MDM (ΓKS,α=10%) [−0.076, 0.087] [0.254, 0.285] [0.546, 0.619]

3 CCA 0 (0.032) 0.249 (0.026) 0.612(0.034)
MI −0.193 (0.016) 0.287 (0.011) 0.694(0.02)

MAR −0.184 0.248 0.888
GM-MDM (Γα=5%) [−0.165, 0.158] [0.236, 0.282] [0.490, 0.681]

GM-MDM (ΓKS,α=5%) [−0.129, 0.140 ] [0.236, 0.275] [0.504, 0.677]
GM-MDM (Γα=10%) [−0.129, 0.140 ] [0.236, 0.275] [0.504, 0.677]

GM-MDM (ΓKS,α=10%) [−0.106, 0.067] [0.242, 0.263] [0.581, 0.677]

5 CCA −0.012 (0.035) 0.233 (0.026) 0.634 (0.037)
MI −0.274 (0.016) 0.285 (0.01) 0.749 (0.014)

MAR −0.241 0.24 0.938
GM-MDM (Γα=5%) [−0.174, 0.121] [0.251, 0.269] [0.528, 0.723]

GM-MDM (ΓKS,α=5%) [−0.145, 0.099] [0.251, 0.268] [0.544, 0.703]
GM-MDM (Γα=10%) [−0.145, 0.086] [0.251, 0.268] [0.557, 0.703]

GM-MDM (ΓKS,α=10%) [−0.145, 0.065] [0.251, 0.268] [0.575, 0.703]

f1(r = 1) − f(r = 1) has effect on the MDM bias. We fur-
ther perform simulation studies and real data example to
support the robustness of our theoretic derivation.

Several crucial points need to be addressed. One impor-
tant point is that the MDM misspecification can be a seri-
ous problem, depending on how we “cut the cake”. Several
parameters drive those sensitivity, include the correlation
between observed covariates and missing covariates, the dis-
tribution parameters of the missing covariates. Conventional
sensitivity analysis can be adopted to investigate which of
them are more sensitive than the other, as shown in our
discussion. In practice, we may measure the worst case of
incomplete data bias and adjust the parameter estimation.
More recommended approach comes from GM-MDM, which
examines the plausibility of each choice of sensitivity param-
eter by evidence. The other key point is that MDM bias can-
not be avoided by simply increasing sample size. We should
always give caution concerns about the MDM assumptions
and specifications. Regarding the identifiability issue, the
specification of non-ignorable MDM is impossible without
further help, and the pattern of missing data is usually not
reflected from observed data only. MNAR model is plausible
in many places and needs to be examined.

There are some limitations for our method. First of all, we
only derive the approach under the selection model frame-
work, and do not consider other frameworks, such as shared
parameter framework and pattern mixture framework, due
to the different factorisation of these models. Besides, we
consider the misspecification of the missing covariate distri-
bution and the missing data mechanism, which can be ex-

tended to the misspecification of the response model. How-
ever, the problem of identifiability under the misspecifica-
tion of the response model needs more attention. Further-
more, our method is based on the linear regression model.
Study on our method under the more generalised models is
interesting, although they are more complicated with high-
dimensional covariates and non-linear case. Future work can
be addressed for these concerns.

SUPPLEMENTARY MATERIALS

The proof of Theorem 1, the detailed proving processes of
some equations in Section 2.2 and Section 3.1, the explana-
tion of each step of the GM-MDM in Section 3.2, the proof
of Theorem 2, additional simulation results for the binary
case and the effect in the performance of our method with
different missing percentage are available in Sections S1 –
S6 in Supplementary Materials.
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