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Frequentist Bayesian compound inference
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In practice often either the Bayesian or frequentist
method is used, although there are some combined uses of
the two methods, a formal unified methodology of the two
hasn’t been seen. Here we first give a brief review of the
two methods and some combination of the two, then pro-
pose a procedure using both the frequentist likelihood and
the Bayesian posterior loss in parameter estimation and hy-
pothesis testing, as an attempt to unify the two methods.
Basic properties of the proposed method are studied, and
simulation studies are carried out to evaluate the perfor-
mance of the method.

MSC 2010 subject classifications: Primary 62F99; sec-
ondary 62F10.
Keywords and phrases: Bayesian estimate, Compound
inference, High order behavior, Maximum likelihood esti-
mate.

1. INTRODUCTION

The frequentist and the Bayesian methods are the two
dominant schools for inference. The two schools mainly
favour their own method, and the practitioners often have
to choose one of the methods and ignore the other. Each
method has its own advantages and dis-advantages. The
two methods share some common basic asymptotic prop-
erties, which have been studied extensively. The Bernstein-
von Mises theorem, for example in Prakasa Rao (1987) and
LeCam and Yang (1990), states that under general condi-
tions the Bayes and frequentist inferences are equivalent:
the two estimators are asymptotically first order equivalent,
and the posterior distribution around its mean is close to
the distribution of the maximum likelihood estimate (MLE)
around the true parameter – both are efficient, asymptoti-
cally normal with mean zero and the inverse Fisher infor-
mation as the asymptotic covariance matrix, and so it is
impossible to improve the two types of estimators in their
asymptotic behaviour. However, the two methods are differ-
ent in second and higher order terms (Gusev, 1975), or in
many other aspects, such as finite sample properties, each
of them has its own advantage(s) in some situations (Han
et al. 2022). For example, if x1, ..., xn iid Bernoulli(θ), the

frequentist MLE of the true θ0 is θ̂ = x̄, the data mean. If
the sample size n is small, it may happen that x̄ ≈ 0 (or
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1), which may not be reasonable. For a Bayes estimator,
if we set a prior θ ∼ U [0, 1], then under the squared error
loss, the Bayes estimator of θ0 is θ̌ = (x̄ + 1/n)/(1 + 2/n),
which is a bit further away from 0 or 1, and is more reason-
able. On the other hand, if a bad prior is used, the Bayes
estimator will be worse than the MLE. Thus in application
they have received different appreciations for various rea-
sons. The debate over which method should be preferred has
a long history and will continue. However, at the method-
ological level, both schools appreciate the advantages of each
other, and there are some efforts to advocate compromises
or combined uses of the two methods. The Bayesian has ap-
preciated steady growth partially due to the development of
computation facilities, but in practice the main stream sta-
tistical tool is still frequentist. Efron (2005) summarized the
main reasons for this as the ease of use, modelling and ob-
jectivity. Lindley (1990) gave a broad review of the present
position of Bayesian statistics. Below we first give a brief
review of each method, and their combined method, then
introduce our proposed compound model as a new attempt
to unify the two methods.

The frequentist method. The frequentist method is simpler in
model formulation and computation, and is the dominating
tool in statistics. The commonly used procedures include
the parametric, semiparametric and nonparametric MLE,
the M-estimator, Z-estimator, order statistic, rank statistic,
U-statistic, V-statistic, and various forms of test statistics,
such as T-test and chi-squared test statistic. They are con-
venient to use, and their asymptotic study is relatively easy,
often via the empirical process theory. The frequentist’s the-
ory of weak convergence on functional space is a powerful
tool, which is rarely seen in the Bayesian framework. Ad-
vantages including simple in model formulation, objectiv-
ity, easier of theoretic stusy, not requiring specification of
prior distribution and loss function; and the computation
is straight forward and relatively simple. Frequentist mea-
sures like p-values and confidence intervals continue to domi-
nate statistical research. For nonparametric/semiparametric
models, the frequentist has aboundant methods, such as ker-
nal smoothing, spline, nonparametric maximum likelihood
estimate, etc. In this case, the Bernstein-von Mises theo-
rem dose not generally hold, and then the Bayesian method
may be inferior to the frequentist’s counter part. In hypoth-
esis test, the frequentist developed optimality criteria, such
as the most powerful test, and asymptotic efficiency crite-
ria, such as the Pitman, Chernoff, Bahadur and Hodges-
Lehmann efficiencies.
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The Bayesian method. The Bayesian can incorporate prior
knowledge about parameters into the model, and has a
broader theoretical framework using the statistic decision
theory. Wald’s complete class theorem (Wald, 1950. Theo-
rem 2.2, p.183) states that under some general conditions,
the set of all Bayesian procedures form a complete class:
any admissible procedure to a decision problem can be for-
mulated as a Bayesian procedure, or the limit of a sequence
of Bayesian procedures. For example, the frequentist maxi-
mum likelihood estimate (MLE) can be formulated as a spe-
cial Bayesian estimate under a 0-1 loss and uniform prior.
Also, the Bayesian model gives uncertainty interpretation
of the parameters via the posterior distribution. However,
the subjective specification of the prior is often a source of
debate, it may vary from one investigator to another. The
computation is more difficult than that of the frequentist
method. Often the Markov chain Monte Carlo method is
need for its computation, and the method itself requires di-
agnostic tool for convergence of the chain. Asymptotic study
of Bayesian procedure is more difficult than the frequen-
tist counter part. In the classic Bayes framework, the prior
is asymptotically negligible. Yuan and De Gooijer (2014)
considered asymptotically informative prior, whose effect is
asympotically non-negligible. For nonparametric Bayesian,
the main tool is the Dirichlet process prior, which has limita-
tion in application (Ferguson, 1973). Recently, many other
nonparametric Bayesian methods have been proposed for
broader applications, but not very convenient to use. For
hypothesis test, the Bayesian main tool is the Bayes Factor,
decision is based on some subjectively determined values.

Combination of the two methods. It is reasonable to expect
that a unified framework of the two methods will give us
more flexibility to achieve any given optimality criterion,
and provide a comprehensive few in the decision making.
There are some combined uses of Bayesian and frequentist
methods (Bayarri and Berger, 2004), in which, the authors
hope eventually leads to a general methodological unifica-
tion of the two methods. There are also compromises be-
tween the two methods (Good, 1992). A prominent exam-
ple is the empirical Bayes approach introduced by Robbins
(1955), in which some of the parameters in the prior is esti-
mated by the frequentist MLE.

Bayesian frequentist hybrid method. In practice, there are
situations in which one of the methods is more favourable
than the other by some criteria. Thus in inferring multi-
parameters, it may happen that on part of the parame-
ters, the frequentist method is preferable, while on the other
part a Bayesian procedure is more appropriate. Yuan (2009)
proposed a hybrid procedure for Bayesian and frequentist
methods, it perform the MLE on part of the parameters
and Bayesian procedure on the other part parameters. As
in practice, sometimes we have good prior information on
part of the parameters, the sound prior knowledge prefers a

Bayesian on this subset of parameters, while for the other
part of the parameters there is no reliable prior information,
even a non-informative prior on this part of parameter is not
desirable, and the MLE is favored on this part of parame-
ters. This motivates a joint operation of the two methods on
different parts of the parameters in the same model. Such
hybrid inference will give us more flexibility than using ei-
ther methods alone in achieving overall advantage. In this
paper we propose a hybrid estimator and study its consis-
tency and asymptotic high order behavior, and we illustrate
its application. Also, using the high-order expansions, we
considered a new type of second-order matching prior in the
objective Bayes context.

The proposed method. Our method here is not such combina-
tion nor compromise, not the quasi-Bayesian (which applies
Bayesian procedure on quasi-likelihood), not the pseudo-
Bayesian (which applies Bayesian procedure on pseudo-
likelihood or pseudo-prior), nor the empirical Bayes (which
incorporates uncertainty into a frequentist procedure via
Bayesian method), nor the Bayesian frequentist hybrid
method in the literature. The proposed method here is dif-
ferent from the above, we use both frequentist and Bayesian
procedure on the same parameters. Our method optimize
both the frequentist criterion of likelihood and the Bayesian
criterion of posterior risk simultaneously, and in some sense
can be viewed as a unified framework of the two methods.
We show that the new estimator is asymptotically equiv-
alent to the MLE, the Bayesian estimator and the hybrid
estimator in the first order, also it can optimize a second
order criterion, which cannot be achieved by using either
the MLE or the Bayes estimator. For hypothesis testing,
the frequentist method is based on the likelihood, while in
many cases it is desirable that the decision rule be based
on both the likelihood and the cost of the problem – the
loss function. The proposed method take these factors into
consideration simultaneously. We use the word “compound”
to distinguish the proposed method from the linear combi-
nation of MLE and Bayes estimator, or any other existing
methods combining both the frequentist and Bayesian ele-
ments.

In Section 2, we describe the proposed method and in
Section 3 study its asymptotic behavior. We show that the
compound estimator, Bayes estimator, MLE and the hybrid
estimator are all first-order equivalent, asymptotic normal
and efficient. In Section 4, we study Edgeworth expansions
for the density and distribution function of the compound
estimator after standardization. In Section 5 we show the
compound estimator can achieve a second order optimality
criterion. In Section 6 we propose the compound hypothesis
testing, and Section 7 give some examples for illustration
of the proposed methods. A short Concluding Remarks is
given at the end, account for some issues of the method and
future research topics. The used regularity conditions and
technical proofs of theorems are given in the Appendix.
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2. THE PROPOSED METHOD

Let xn = (x1, ...,xn) be a set of i.i.d. observations from
f(·|θ), a given density function of the data distribution
and θ ∈ Θ ⊂ Rd be the parameter of interest, π(θ) be
the prior density for θ, and π(θ|xn) = f(xn|θ)π(θ)/m(xn)
the posterior density of θ given the observed data, where
m(xn) =

∫
f(xn|θ)π(θ)dθ is the marginal density for Xn.

Let D be the decision space for inferring θ (D = Θ for es-
timation of θ0, the true parameter value for the observed
data), d(xn) ∈ D a decision rule, W (d(xn), θ) the loss
function, R(d, θ) = Eθ[W (d(xn), θ)] the risk of d(·) at θ,
R(d) =

∫
R(d, θ)π(θ)dθ the Bayes risk of d(·) and

R(d|xn) =

∫
W (d(xn), θ)π(θ|xn)dθ

the posterior risk of d(·) for inferring θ0. The Bayes decision
for θ based on the observed data xn is θ̌n = arg infd∈Θ R(d),
and from Bayes inference theory

θ̌n
a.s.
= arg inf

d∈Θ
R(d|xn) = arg inf

θ∈Θ

∫
W (θ, α)π(α|xn)dα.

The right-hand side above is called the generalized Bayesian
estimator of θ0.

In contrast, let l(θ|xn) = log f(xn|θ), the frequentist
maximum likelihood estimate (MLE) of θ0 is

θ̂n = arg sup
θ∈Θ

f(xn|θ) = arg sup
θ∈Θ

l(θ|xn).

In this compound inference, we infer θ0 by optimizing
both the criteria of the MLE and the generalized Bayesian
rule in the same framework. However, f(xn|θ) (or l(θ|xn))
and R(d|xn) have different scales, when combining the two
parts in the inference, we need to adjust them to the same
scale, otherwise one part will be dominant. If we expand
exp{π(θ|xn)} by Laplace method, the leading term is the

density of N(θ̂, I−1(θ̂)/n), with I(θ) the Fisher information
evaluated at θ, and n

∫
W (θ, α)π(α|xn)dα = Op(n), which

has the same scale as l(θ|xn). This motivates our estimate
θ0 by

θn = arg sup
θ∈Θ

(
f1−c(xn|θ) exp

{
−cn

∫
W (θ, α)π(α|xn)dα

})

(1) = arg sup
θ∈Θ

(
(1− c)l(θ|xn)− cn

∫
W (θ, α)π(α|xn)dα

)
,

where 0 ≤ c ≤ 1 is a constant to be determined. It is seen
that θn optimises the joint criterion of the likelihood and the
posterior risk, it is the MLE when c = 0, and the Bayesian
estimate when c = 1. Initially, we just set c = 1/2, latter
on we realize that put a c in the construction will give us
more flexibility to make the compound estimator θn = θn(c)
to satisfy some specified optimality criterion. We will see in
Section 3 how to choose the constant c for such purpose.

Let G(θ) be the function inside the outermost bracket
of (1), and G(1)(θ) be its derivative. θn can be found as
the solution of the ‘normal’ equation G(1)(θ) = 0. Thus θn
exists under similar conditions for the MLE and Bayesian
estimates.

Let θ̂n be the MLE of the true parameter θ0, and θ̌n the
Bayes estimator. One may wondering why not just simply
set the linear combination θ̄n = (1 − c)θ̂n + cθ̌n as the de-
sired estimator instead of (1). In fact, as G(θ̄n) ≤ G(θn),
and generally “=” does not hold, so θ̄n is not optimal by
the criterion given in (1), nor are the MLE and Bayesian
estimator. Also, we’ll see in Section 3 that we can choose c
so that the compound estimator θn achieves a second order
optimal criterion, but θ̄n cannot.

3. ASYMPTOTIC BEHAVIOR

In this section we study the consistency and high order
asymptotic behavior of the compound estimator.

Consistency of the estimator. The study of the con-
sistencies of Bayes estimates, MLE and their relationships
has a relatively long history (Bernstein, 1917; Doob, 1949;
LeCam, 1953; Strasser, 1981; Wald, 1949; among others).
Doob (1949) established strong consistency of Bayes esti-
mators under very general conditions, and there is some
speculation that conditions for Bayesian consistency might
be found which are weaker than those for the MLE. Un-
der some basic assumptions, Strasser (1981) showed that
any conditions for the convergence (a.s.) of MLE assert
the concentration (a.s.) of the posterior distribution to the
true parametric value. This does not directly imply that
conditions for Bayesian consistency are weaker since poste-
rior concentration to the true parameter is not equivalent
to the consistency of Bayes estimate. The latter also de-
pends on the loss. Generally, the loss W (d, α) has the form
W (||d − α||) = W (d − α). To avoid confusion, we will use
W for any of these functional forms.

Theorem 1. Assume conditions (A1)-(A9) in the Ap-
pendix, that W (·) satisfies W (0) = 0, is strictly increasing
and continuous in a neighbourhood of 0. Then θn exists, and
as n → ∞ we have

θn → θ0, (a.s.).

High-order asymptotic behavior. High-order asymp-
totic expansions are used to assess estimators when they
have similar lower-order behavior. In Linnik and Mitro-
fanova (1965), Johnson (1970), Chibisov (1973) and Gusev
(1975), among others) such expansions of Bayes estimate
and MLE were obtained, so were their densities and related
quantities in the one-dimensional case. Below we derive high
order asymptotic expansion for the compound estimator.

We introduce the following notations. For an integer
vector i = (i1, ..., id) with ij ≥ 0 (j = 1, ..., d), denote

Compound inference 11



|i| =
∑d

j=1 ij , and for any g(·) ≥ 0, define log g(·) = 0 if
g(·) = 0. Denote 1 = (1, ..., 1)′ of length d, 0 = (0, ..., 0)′ of
length d. Let l(x|θ) = log f(x|θ) and the score at θ as

L(x|θ) = (L1(x|θ), ..., Ld(x|θ))′ :=

(∂l(x|θ)/∂θ1, ..., ∂l(x|θ)/∂θd)′, Ei(θ) = EθLi(X|θ),

Li(x|θ)=
( ∂|i|

∂θi11 · · · ∂θidd
L1(x|θ), ...,

∂|i|

∂θi11 · · · ∂θidd
Ld(x|θ)

)′
,

Si(θ) =
1√
n

n∑
j=1

Li(xj |θ),Δi(θ) =
1√
n

n∑
j=1

(Li(xj |θ)−Ei(θ)),

ρ0(θ) := (ρ1, ..., ρd)
′ =

( ∂

∂θ1
log π(θ), ...,

∂

∂θd
log π(θ)

)′
,

ρi = (
∂|i|

∂θi11 · · · ∂θidd
ρ1, ...,

∂|i|

∂θi11 ∂θidd
ρd)

′

and set Si = Si(θ0), Δi = Δi(θ0), Ei = Ei(θ0), and ρi =
ρi(θ0).

For vector H = (H1, ..., Hd)
′ and integer vector i =

(i1, ..., id), define Hi = (Hi1
1 , ..., Hid

d )′, 〈Hi〉 =
∏d

j=1 H
ij
j ,

i! =
∏d

j=1 ij !, and [i]! = (i1!, ..., id!)
′. For a = (a1, ..., ad)

′

and b = (b1, ..., bd)
′, define a + b = (a1 + b1, ..., ad + bd)

′,
ab = (a1b1, ..., adbd)

′, a/b = (a1/b1, ..., ad/bd) and 〈ab〉 =∏d
i=1 aibi. Denote ej = (0, .., 0, 1, 0, ..., 0)′, the d-vector with

jth element be 1 and the others be zeros.
As in Gusev (1975), for two real or random vector func-

tions ξ1 = ξ1(n, δ, θ0, y) and ξ2 = ξ2(n, δ, θ0, y), we define

ξ1
k∼ ξ2, if there exist finite positive constants C1k, C2k

and C such that for any compact K ⊂ Θ and for any
0 < δ < C1k,

sup
θ0∈K

sup
y

||ξ1(n, δ, θ0, y)− ξ2(n, δ, θ0, y)|| ≤ Cn−k/2nδC2k

for all n > C, and we write ξ1 − ξ2 = Op(n
−k/2).

To simplify notation, denote I = I(θ0) the Fisher infor-
mation, and I−1 its inverse.

Theorem 2. Under conditions (B1)-(B10) in the Appendix,
we have

√
n(θn − θ0) =

k−1∑
r=0

n−r/2Br +Op(n
−k/2),

where the Br’s are d-vectors given at the end of the proof,
they are polynomials in the Δi’s of degree r + 1, their co-
efficients are polynomials in the Ei’s, |i| = 2, ..., r + 1, in
I−1 and the ρi’s; the Br’s are given by the recursive for-
mula (0 ≤ r ≤ k − 1), with D given in condition (B9),
which will involve 〈μ〉i = E[〈θi〉] and μ1,j = E[θ〈θj〉], with
θ ∼ N(0, I−1).

Remark 1. In Theorem 2, the expressions of the Br’s are
involved and given at the end of the proof. They are com-
puted recursively. i.e., first set B0 = I−1Δ0, then B1 can be
computed; given B0 and B1, B2 can be obtained;..., given
B0, ....Br. Br+1 can be obtained. Also, in the expression for
Br, we note the fact that 〈μ〉j = 0 for |j| odd, and μ1,j = 0
for |j| even. This will simplify the evaluations.

Remark 2. By the results in Yuan (2009) and the above
Theorem, the MLE, Bayes estimator, hybrid estimator and
the compound estimator all have the same first order term

I−1Δ0
D→ N(0, I−1), thus all these estimators are first order

equivalent and efficient.

In Theorem 2, if we set c = 0, then we get the asymptotic
expansion of the MLE, and the Br’s are exactly the same as
the Ho

r’s for MLE given in Yuan (2009). If we set c = 1, then
we get the asymptotic expansion of the Bayes estimator, in
this case the Hr’s should be the same as the Gr’s for Bayes
estimator given in Yuan (2009), though they have seemingly
different expressions. The general expressions for the Br’s
are complicated, but in application the second term B1 is
of more interest than the higher order terms, which has a
much simpler expression as given by the following

Corollary 1. The second order term B1 in the expansion
of

√
n(θn − θ0) is

B1 = I−1
( ∑

|i|=2

Ei
〈Bi

0〉
i!

+
∑
|i|=1

Δi〈Bi
0〉
)

+[(1− c)I+ 2cD]−12cDI−1ρ0,

where B0 = I−1Δ0 and D is given in condition (B9).

Note. For the compound estimator, its second order term
in the expansion is not a linear combination of those of the
MLE and of the Bayesian estimator. i.e., B1 is not of the
form a(c)Ho

1 + (1 − a(c))G1 for some 0 ≤ a(c) ≤ 1, where
Ho

1 and G1 are the second order term in the expansions
of the MLE and of the Bayesian estimator respectively, as
given in Yuan (2009). In particular, H0

1 is the second term
in the expansion of Theorem 2 corresponds to c = 0 (MLE),
and G1 is that term corresponds to the case c = 1 (Bayes
estimator). Their expressions are somewhat involved and
not show here.

4. EDGEWORTH EXPANSION

Edgeworth expansion (EE) has been extensively studied
in the literature. EEs for density and distribution functions
of normalized i.i.d. random vector summation can be found
in Bhattacharya and Rao (1986).

Edgeworth expansion for the density fn(·) and distribu-
tion function Fn(·) of the sample mean or smooth function
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of the sample mean often have the form,

fn(x) = φΛ(x) +

k∑
j=1

n−j/2pj(x)φΛ(x) +Op(n
−(k+1))R(x),

where pj(x) is a homogeneous polynomial in x of degree 3j,
it is an odd or even function depends on j is an odd or even
number.; Λ is the covariance matrix of the sample, φΛ(·) and
ΦΛ(·) are the density function and distribution function of
the normal vector N(0,Λ); and

Fn(x) = ΦΛ(x) +

k∑
j=1

n−j/2qj(x)φΛ(x) +Op(n
−(k+1)),

where qj(x) is a polynomial in x of degree no more than 3j−
1, given by the relationship qj(x)φΛ(x) =

∫ x
pj(y)φΛ(y)dy

(or equivalently pj(x)φΛ(x) =
d
dx [qj(x)φΛ(x)]); it is an odd

or even function depends on j is an even or odd number.
Hall (1992) contains EE for statistics of the form H(Sn).

Bickel (1974) surveyed works of EE on some asymptotic
normal nonparametric statistics. EEs of distribution func-
tions of the maximum likelihood estimate (MLE) of a lo-
cation parameter were derived by Linnik and Mitrofanova
(1963, 1965). Mitrofanova (1967) obtained EEs of distribu-
tion functions of the MLE in general. Chibisov (1972, 1973)
obtained EEs of distribution functions of statistics with the
form

∑k
i=0 n

−j/2Hj(Sn) and Sn =
∑n

i=1 Xi. Gusev (1975,
1976) obtained EEs for the MLE, Bayes estimator and the
moments. Lahiri (2010) derived EEs for studentized statis-
tics with mixing weak dependent observations without plug-
in estimators of nuisance parameters.

In this section we derive the k-th order EE for the dis-
tribution function Fn(x) = Pθ0

(√
n(θn − θ0) ≤ x

)
and

its density function fn(x), x ∈ Rd. Let V = (Δi : |i| =
0, 1, ..., k − 1), and Ω = Covθ0(V). V has dimension dk = k

when d = 1, and dk = d
∑k−1

r=0 d
r = d(dk − 1)/(d− 1) when

d > 1.

Theorem 3. Assume conditions of Theorem 2, that V has
finite (k + 1)-th moments and an integrable characteristic
function. Then, uniformly over x,

fn(x) = φI−1(x) +

k−1∑
r=1

n−r/2gr(x)φI−1(x) +O(n−k/2),

Fn(x) = ΦI−1(x) +

k−1∑
r=1

n−r/2Gr(x)φI−1(x) +O(n−k/2),

where for each r, gr(x) = E[Tr(IX,Y)|X = x], and
Tr(IX,Y) is a polynomial in (X,Y ) (its construction is
given in the proof in the Appendix); the expectation is with
respect to Y ∼ N(0,Ω2), Ω2 is the sub-block matrix in Ω
corresponding to (Δi : |i| = 1, ..., k − 1); Gr(·) is given by
the relationship Gr(x)φI−1(x) =

∫ x
gr(y)φI−1(y)dy.

Note. In Theorem 3, the gr’s and Gr’s are computed from
Ω = Ωk of dimension dk, so we may denote them as gk,r’s
and Gk,r’s. A natural question is: are they really depend on
k? The answer is Yes, gr’s computed using Ωk are correct up
to order O(nk/2), while those computed using Ωl are correct
up to order O(n−l/2).

5. CHOICE OF C

The constant c in θn(c) allow us to control the behavior of
the compound estimator to satisfy some specified optimality
criterion. Since the MLE, Bayes estimator, hybrid estimator
and the compound estimator are first order equivalent, re-
gardless of c in θn(c), a natural consideration is to minimize
the second order instability of θn(c). Although E(B0) = 0,
where the expectation is obtained under θ0, the second or-
der termB1 has non-zero expectation, and a way to measure
the amount of stability is its expectation. We want it to be
as small as possible in absolute value componentwise. As
the exact expectation is generally not easy to compute, we
compute that for the weak limit B̃1(c) of B1(c). Note the
weak limits of the Δi’s and the δi’s are normal, so the weak
limit B̃1(c) of B1(c) is easily obtained.

To compute E[B̃1(c)], let 1j be the column d-vector
with j-th component be 1 and others be zero, Aj =
Eθ0 [Lj(X|θ0)L(X|θ0], jI

−1 and I−1
j be the j-th row and

j-th column of I−1. Proposition 1 below gives a clear ex-
pression of E[B̃1(c)] in terms of c, so that we can optimize
g(c) = ||E[B̃1(c)]|| over c.

Proposition 1. We have

E[B̃1(c)] = [(1−c)I+2cD]−1

(
[(1−c)I+2cDI−1]

[ d∑
j=1

AjI
−1
j

+

d∑
i,j=1

E1i+1j iI
−1I−1I−1

j /(1i + 1j)!
]
+ 2cDI−1ρ0

)
.

Re-write E[B̃1(c)] as

E[B̃1(c)] = [(1− c)I+ 2cD]−1

(
(1− c)

[ d∑
j=1

AjI
−1
j

+

d∑
i,j=1

E1i+1j iI
−1I−1I−1

j /(1i+1j)!
]
+2c

(
DI−1

[ d∑
j=1

AjI
−1
j

+
d∑

i,j=1

E1i+1j iI
−1I−1I−1

j /(1i + 1j)!
]
+DI−1ρ0

))

:= [(1− c)I+ 2cD]−1

(
(1− c)a+ 2cb

)
.
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Note that E[B̃1(c)] is a vector, a is from the likelihood
component, and b is from the Bayesian component. Initially
we define the asymptotic instability of B1(c) as

g(c) = ||E[B̃1(c)]|| = ||
(
(1− c)I+2cD

)−1(
(1− c)a+2cb

)
||.

We are to select c to minimize g(c). Since g(c) is a single
variable function, argminc g(c) can be easily found by plot-
ting g(c) on [0, 1].

After investigating the function g(c) for a variety of
choices of (a and b, we found g(c) is nearly linear in c,
and will end up argminc g(c) to be 0 or 1. So we redefine
the function g(·) and the instability as the following convex
function in c,

g(c) = (1− c)2||a||+ c2||b||

and choose c to minimize the above g(·) on [0,1], and it gives
c = ||a||/(||a||+ ||b||).

For the linear combination estimator θ̄n = (1−c)θ̂n+cθ̌n,
its second order term is linear in c, and linear in c for the
above criterion, its minimal value is attained at either c = 0
or c = 1, with the corresponding estimator being the MLE
or the Bayesian. So it cannot achieve the above second order
optimal criterion, nor is any other combination estimators
such as θ̄n = 1

1+c θ̂n + c
1+c θ̌n with c ∈ [0,∞), as c with c ∈

[0, 1] and 1/(1+c) with c ∈ [0,∞) has a 1-1 correspondence;

nor any estimator of the form a(c)θ̂n + (1 − a(c))θ̌n with
0 ≤ a(c) ≤ 1.

6. HYPOTHESIS TESTING

Consider testing the hypothesis H0 : θ ∈ Θ0 = {θj =
θj,0, j = 1, ..., d− r} (1 ≤ r < d). A commonly used frequen-
tist procedure is to use the likelihood ratio test statistic

Λn =
supθ∈Θ0

f(|xn|θ)
supθ∈Θ f(xn|θ) , or λn = −2 log Λn.

Under H0, asymptotically and suitable conditions, one
has (Wilks,1938; Serfling 1980)

λn
D→ χ2

r.

However this test procedure does not use the loss func-
tion, which in some cases will be desirable to be a factor in
the decision making. Recall the definition of G(θ) = G(θ|xn)
in Section 1. Now we consider compound test procedure with
both the likelihood and Bayesian criteria, of the form

λc,n = 2

(
sup
θ∈Θ

G(θ|xn)− sup
θ∈Θ0

G(θ|xn)

)

One important part of a test statistic is its power at the
alternative, or the asymptotic distribution of the test statis-
tic under the alternative. Often the alternative can be some
fixed point (or region) of θ outside the null, or it can be

locally around θ0 with a shrinking rate of n−1/2. The fixed
alternative has the problem that the power always tends to
1 as the sample size n increases without bound, and subject
to the criticizing that a test is not the testing procedure it-
self, rather its the game of sample size. So we consider the
local alternative H0,n : θ = θ0 + n−1/2δ, for some fixed δ.

Let I0 be the r × r Fisher information under H0 (its the
lower right r× r block in I), and Ĩ be the d× d matrix with
the lower right r×r block be I−1

0 and other elements be 0’s.

Theorem 4. Assume conditions of Theorem 2 with k = 1.
Then

Under H0, λc,n
D→

r∑
j=1

γjχ
2
j ;

Under H0,n, λc,n
D→ Z′[(1− c)I+ 2cD]Z,

where γ1, ..., γr are all the non-zero eigenvalues of
B = (I−1/2)′(I−1 − Ĩ)[(1 − c)I + 2cD](I−1 − Ĩ)I−1/2,
(I−1/2)′I−1/2 = I−1, and the χ2

j ’s are independent
chisquared distributions with one degree of freedom; Z ∼
N(δ, (I−1 − Ĩ)I(I−1 − Ĩ)).

A well known property of the log-likelihood ratio is the lo-
cally asymptotic normality (LAN) property (LeCam, 1960),
which states that, under suitable conditions,

l(θ0 + n−1/2δ|xn)− l(θ0|xn) = δ′Δ0 −
1

2
δ′Iδ + op(1)

The following LAN property for the compound log-
likelihood posterior risk G(θ|xn) parallel that of the log-
likelihood ratio, and may have its own interest.

Proposition 2. Assume conditions of Theorem 1 in Walker
(1969), and condition (B9) in the Appendix, then for δ ∈
Rd,

G(θ0 + n−1/2δ|xn)−G(θ0|xn)

= δ′[(1− c)I + 2cDI−1]Δ0 −
1

2
δ′Iδ + op(1).

7. EXAMPLES

Example 1. Take W (θ, α) = ||θ − α||2 to the commonly
used squared error loss, then θn is the solution of the fol-
lowing equation

(1− c)L(θn|xn)− 2cnθn + 2cnE(θ|xn) = 0,

where L(θn|xn) = ∂l(θn|xn)/∂θ, and E(θ|xn) =∫
θπ(θ|xn)dθ is the posterior mean of θ. Consider the ex-

ample where X ∼ N(θ, I) with I be the identity matrix, if
we use the squared error loss, then the above equation leads
to

(1− c)

n∑
i=1

(xi − θn)− 2cnθn + 2cnE(θ|xn) = 0
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and so with θ̂n = n−1
∑n

i=1 xi be the MLE and θ̌n =
E(θ|xn) be the Bayesian estimate,

θn =
1

1 + c

(
(1− c)θ̂n + 2cθ̌n

)

when c = 1/3, we get θn = 1
2 (θ̂n + θ̌n). But generally θn is

not a linear combination of, nor any function of θ̂n and θ̌n,
even for the squared error loss.

Example 2. TakeW (θ, α) =
∑d

j=1 |θj−αj | be the absolute
error loss, θn = (θn,1, ..., θn,d)

′ is the solution of the following
equation

0 = G(1)(θ) = (1− c)L(θn|xn)

−cn

(∫
θ≤θn

π(θ|xn)dθ −
∫
θ>θn

π(θ|xn)dθ

)
,

where θ ≤ (>)θn is in the componentwise sense.

Example 3. For W (θ, α) to be the 0-1 loss, the correspond-
ing Bayesian estimator is θ̌n = supθ∈Θ f(xn|θ)π(θ), thus in
the compound estimation case,

θn = sup
θ∈Θ

(
(1− c)l(θ|xn)m(xn) + cnf(xn|θ)π(θ)

)
.

8. SIMULATION STUDIES

Two scenarios are considered. In Scenario 1, we assume
that X follows an exponential distribution with probabil-
ity density function (PDF) fX(x) = λ exp(−λx), x ≥ 0.
To estimate λ, we adopt its conjugate prior, that is, λ ∼
Gamma(α1, β1) with PDF fλ(t) =

β
α1
1 tα1−1 exp(−tβ1)

Γ(α1)
, t ≥

0. We replicate 1,000 times to make inference. For each
replicate, we generate n i.i.d. observations. The first three
columns of Table 1 show the parameter settings. Let the
sample be x1, x2, · · · , xn. Then the MLE, Bayisan estima-
tor and the compound estimator are, respectively, λ̂n =

n∑
xi
, λ̌n = n+α1

β1+
∑

xi
, λn = −u+

√
u2−4wv
2w , where u = (1 −

c) 1n
∑

xi − 2cα1

β1
, v = c− 1 and w = 2c.

In Scenario 2, we assume that X follows a binomial distri-
bution with Pr(X = 1) = p,Pr(X = 0) = 1− p. Denote the
prior, p ∼ Beta(α2, β2). We replicate 1,000 times and gen-
erate n i.i.d. observations in each replicate. The first three
columns of Table 2 gives the details of the parameter set-
ting. Denote the sample as x1, x2, · · · , xn. Then the MLE,
Bayesian estimator and the compound estimator are, re-

spectively, p̂n =
∑

xi

n , p̌n =
∑

xi+α2−1
n+α2+β2−2 , and pn, which is

the solution on p of the equation:

2cp3−2c(1+ p̌n)p
2+(2cp̌n−1+c)p+(1−c)p̂n = 0, p ∈ [0, 1]

We define the relative efficiency (RE) of the two estima-
tors to be the inverse of the ratio of the mean-squared er-
rors and the REs are summarized in Tables 1 and 2. We

Table 1. The relative efficiency (RE) of the compound

estimate (λn) compared to the MLE (λ̂n) and the Bayesian
estimator (λ̌n) when the data are generated from an
exponential distribution. The results are based on one

thousand replications.

n α1 β1 1/λ RE(λn, λ̂n) RE(λn, λ̌n)
100 3 8 0.8 1.24 1.28

3 9 0.8 1.28 1.39
4 9 0.7 1.23 1.40
4 10 0.7 1.26 1.51
5 9 0.7 1.27 1.27
5 10 0.8 1.22 1.24

150 3 8 0.8 1.07 1.13
3 9 0.8 1.11 1.23
4 9 0.7 1.08 1.24
4 10 0.7 1.11 1.30
5 9 0.7 1.12 1.12
5 10 0.8 1.06 1.07

200 3 8 0.8 1.02 1.05
3 9 0.8 1.05 1.14
4 9 0.7 1.01 1.15
4 10 0.7 1.04 1.24
5 9 0.7 1.05 1.05
5 10 0.8 1.01 1.02

Table 2. The relative efficiency (RE) of the compound
estimate (pn) compared to the MLE (p̂n) and the Bayesian
estimator (p̌n) when the data are generated from a binomial

distribution. The results are based on one thousand
replications.

n p α2 β2 Re(pn, p̂n) Re(pn, p̌n)

100 0.2 7 7 1.21 1.24
0.2 7 10 1.24 1.35
0.2 8 8.5 1.20 1.36
0.2 8 9.5 1.22 1.47

150 0.2 7 7 1.15 1.18
0.2 7 10 1.18 1.29
0.2 8 8.5 1.14 1.30
0.2 8 9.5 1.17 1.40

200 0.2 7 7 1.00 1.04
0.2 7 10 1.04 1.13
0.2 8 8.5 1.00 1.13
0.2 8 9.5 1.02 1.22

can see, under the considered scenarios, the empirical mean-
squared errors (MSEs) are smaller than those of the MLE
and the Bayesian estimator. For example, as for the expo-
nential distribution, when 1/λ = 0.7 and n = 100, two pa-
rameters of the prior are 4 and 10, the MSE of the proposed
method is 0.0176, which is by far smaller than those of MLE
with 0.0222 and Bayesian estimator with 0.0265. The im-
provement rate over the Bayes estimator is 34% (=(0.0265-
0.0176)/0.0265), and that over the MLE is 21%(=(0.0222-
0.0176)/0.0222). However, when the sample size increases,
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Table 3. Empirical power and type-I error rate of the tests
based on the compound estimate (CE) and the MLE when
the data are generated from a binomial distribution. The

results are based on one thousand replications.

n 1/λ α1 β1 CE MLE

100 0.8 3 8 0.051 0.055
3 9 0.049 0.055

0.7 3 8 0.460 0.353
3 9 0.453 0.353

150 0.8 3 8 0.051 0.052
3 9 0.049 0.052

0.7 3 8 0.511 0.436
3 9 0.516 0.436

200 0.8 3 8 0.049 0.056
3 9 0.048 0.056

0.7 3 8 0.568 0.538
3 9 0.571 0.538

the improvement decreases and the effect will diminish or
become less pronounced. For Scenario 1, we test the hy-
pothesis H0 : λ = 1/0.8. Letting 1/λ = 0.8 or 1/λ = 0.7, we
conduct simulations to compare the type-I error or power of
the tests based on the MLE and Compound estimator. The
results are summarized in Table 3.

9. AN APPLICATION TO DEEP GROOVE
BALL HEARINGS DATA

The data set is from Lawless (1982). The data given arose
in tests on endurance of deep groove ball bearings. The data
are the number of million revolutions before failure (Y ) for
each of the 23 ball bearings in the life tests and they are:

17.88, 28.92, 33.00, 41.52, 42.12, 45.60, 48.80, 51.84,
51.96, 54.12, 55.56, 67.80, 68.44, 68.64, 68.88, 84.12, 93.12,
98.64,

105.12, 105.84, 127.92, 128.04, 173.40. We use the expo-
nential distribution to model Y and the MLE is 0.014 and
the compound estimator (CE) is 0.012. The 95% normal-
based confidence intervals from the bootstrap samples (B =
1000) are respectively (0.011, 0.017), and (0.009, 0.015).

10. CONCLUDING REMARKS

We proposed a frequentist and Bayesian compound
method, as an attempt to unify the two methods. Basic
properties are studied, like each of the two methods there
are still lots of issues to be tackled, such as bias reduction
in both point estimation and hypothesis testing, choice of
prior, possibility of extension to nonparametric problems,
and difficulties in high-dimensional settings, etc. These is-
sues will be topics of our future research. Currently only the
second order term in the expansion is taken into account,
the usefulness of the third and higher order terms is also a
research topic.

APPENDIX A. APPENDIX SECTION

Regularity conditions. Throughout this paper we assume
the densities are with respect to the Lebesgue measure. In
the following, conditions (A1)–(A3) are A 2.1, A 2.6 and A
2.7 in Bickel and Yahav (1969).

(A1) θ belongs to an open subset of Rd.

(A2) Let l(x|θ) be the log-likelihood. Assume ∂l(x|θ)/∂θ
and ∂2l(x|θ)/(∂θ∂θ′)exist and are continuous in θ for almost
all x.

(A3) Eθ

(
supη∈Θ ||∂2l(x|η)/(∂θ∂θ′)|| : ||η−θ|| < ε(θ)

)
< ∞

for some ε(θ) > 0 and all θ ∈ Θ.
Let Pθ be the data distribution given θ ∈ Θ, and

ln(x
n|θ) = 1

n

∑n
i=1 l(xi|θ). Conditions (A4)-(A9) below are

those of (1)-(6) in Strasser (1981).

(A4) The metric space (Θ, d) is separable, where d(θ, η) =
||Pθ − Pη||.
(A5) The functions (ln(·|θ))θ∈Θ, n ∈ N , are separable and
measurable.

(A6) f(·|θ), θ ∈ Θ, are lower semicontinuous, that is,
lim supn→∞ f(·|θn) ≤

f(·|θ) (a.e) if d(θn, θ) → 0.

(A7) For every θ, η ∈ Θ, there is an open neighborhood Uθ,η

of η such that
Eθ(infθ′∈Uθ,η

ln(x
n|θ′)) > −∞ for at least one n.

(A8) For every θ ∈ Θ and ε > 0, Π
(
η ∈ Θ : Eθl(x|η) <

Eθl(x|θ) + ε
)
> 0,

where Π(·) is the distribution for π(·).
(A9) For every θ ∈ Θ there is some nθ such that Pn

θ (x
n :∫ ∏n

i=1 f(xi|η)Π(dη)
< ∞) = 1 if n ≥ nθ.
Conditions (B1)–(B10) are multivariate versions of those

of 1–10 in Gusev (1975).

(B1) For θ = η,
∫
|f(x|θ)− f(x|η)|dx > 0.

(B2) For some p1 > 0 and some compact set K ∈ Θ,
supθ∈K,η∈Θ ||θ − η||p1

×
∫ √

f(x|θ)f(x|η)dx < ∞.

(B3) f(x|·) is continuous on Θc, the closure of Θ on Rd and
has k + 2 (k ≥ 1)

continuous derivatives on Θ.

(B4) (a) For some b > 0, and every compact K ∈ Θ,
supθ∈K Eθ||L(x|θ)||3∨(k+1+b) < ∞.
(b) For every compact K ∈ Θ,
max1≤|i|≤k supθ∈K Eθ||Li(x|θ)||k+1 < ∞.
(c) For every compact K ∈ Θ, and for some ε1(K) > 0,
max|i|=k+1 supθ∈K,||θ−η||≤ε1(K) Eθ||Li(x|η)||(k+1)/2 < ∞.

(B5) (a) For some p2 ≥ 0, supθ∈Θ(1+ ||θ||p2)−1||I(θ)|| < ∞.
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(b) I(θ) is positive definite for θ ∈ Θ.

(B6) π(·) has k continuous derivatives on Θ.

(B7) For some p3 > 0, supθ∈Θ(1 + ||θ||p3)−1π(θ) < ∞.

(B8) W (·) ≥ 0, is convex, that is, for any t ∈ [0, 1] and u1

and u2,
W (tu1 + (1− t)u2) ≤ tW (u1) + (1− t)W (u2).

(B9) For some small ε2 > 0 and positive definite D,
W (θ) = θ′Dθ for ||θ|| ≤ ε2.

(B10) For some p4 > 0, supθ∈Θ(1 + ||θ||p4)−1W (θ) < ∞.

Proof of Theorem 1. Let θ̃n be the MLE and θ̌n be the
Bayesian estimate of θ, and write θn = θn(c) to stress its
dependence on c. Then θn(1) = θ̃n, θn(0) = θ̌n.

With the given conditions, θ̃n and θ̌n exist and consistent
(a.s.), and so for large n, in a small neighborhood of θ0,
(1 − c)l(θ|xn) and cn

∫
W (θ, α)f(xn|α)π(α)dα are peaked

at θ̃n and θ̌n respectively, both are convex as a function of
θ.

Recall the definition of G(θ) after expression (1). First
consider the case d = 1. It is seen that if θ < θ̃n ∧ θ̌n or
θ > θ̃n ∨ θ̌n, then G(θ) < max{G(θ̃n), G(θ̌n)} ≤ G(θn), so
we must have θ̃n ∧ θ̌n ≤ θn ≤ θ̃n ∨ θ̌n, i.e., θn exists. Since
under the given conditions θ̃n → θ0 (a.s.) and θ̌n → θ0 (a.s.),
we must have θn → θ0 (a.s.).

For d > 1, let θ̃n ∧ θ̌n and θ̃n ∨ θ̌n be in the component-
wise sense. Similarly, we cannot have θn ∈ [θ̃n∧ θ̌n, θ̃n∨ θ̌n]

c.
So at lease one component θj,n of θn satisfies θj,n ∈ [θ̃j,n ∧
θ̌j,n, θ̃j,n∨ θ̌j,n]. Fix this component and let the new parame-
ter be θ−j which is θ with component j removed, and define

θ̃−j,n, θ̌−j,n and θ−j,n accordingly. Then we see that at least
one component of θ−j,n will be in the corresponding com-

ponent of [θ̃−j,n ∧ θ̌−j,n, θ̃−j,n ∨ θ̌−j,n];... continue this way

we have θn ∈ [θ̃n ∧ θ̌n, θ̃n ∨ θ̌n], so the existence of θn, and
the a.s. consistency of it.

Let

Zn(θ) =

( n∏
i=1

f(xi|θ0 + θn−1/2)

f(xi|θ0)

)
π(θ0 + θn−1/2)

π(θ0)
.

Let θ̂n be the posterior mode, i.e.

θ̂n = sup
θ
{f(xn|θ)π(θ)} and θ̂

′
n =

√
n(θ̂n − θ0).

The following Lemma is a multivariate modification of
Gusev (1975, Theorem 2).

Lemma 1. Under the conditions of Theorem 2,

Zn(θ + θ̂
′
n)

Zn(θ̂
′
n)

= exp

(
− 1

2
θ′Iθ

)(
1+

k−1∑
|r|=1

n−|r|/2
3|r|∑
|i|=2

〈θi〉Ni,r

)

+n−k/2Rk,n(θ),

where Rk,n(θ) is such that for some C1 and C2 and for every
δ with 0 < δ < C1, for every compact K,

sup
θ0∈K

Pθ0(sup
θ

|Rk,n(θ)| > nδ) = O(n(k−1+C2δ)/2),

Ni,r =
∑

I2(r,i)

|r|∏
v=1

∑
I1(2,v+2,kv,iv)

v+2∏
s=2

F
|js|
s,v

js!(s!)|js|
,

in the above the summations are for (kv, iv) ∈ I2(r, i); for
each given pair (kv, iv), js(s = 2, ..., v + 2) ∈ I1(2, v +
2,kv, iv), I2(r, i) and I1(m, r,kv, iv) given below, and

Fs,v =

v−s∑
|j|=v,|k|=0

ρj−k

∑
|i|=s,

∑
I1(0,|k|,k,j−i−k)

|k|∏
v=0

〈Hiv
v 〉/iv!

+

v+1−s∑
|j|=v+1,|k|=0

Δj−k

∑
|i|=s,

∑
I1(0,|k|,k,j−i−k)

|k|∏
v=0

1

iv!

+

v+2−s∑
|j|=v+2,|k|=0

Ej−k

∑
|i|=s,

∑
I1(0,|k|,k,j−i−k)

|k|∏
v=0

〈Hiv
v 〉/iv!.

The Hs’s parallel the same notations as in Theorem 2 in
Yuan (2009), and

I1(a, r,m, l) = {(ia, ..., ir) :
r∑

v=a

viv = m,

r∑
v=a

iv = l}.

I2(r, i) =
{
(k1, ...,k|r|), (m1, ...,m|r|) :

|r|∑
v=1

kv = r,
i− r

2
≤

|r|∑
v=1

kv ≤ i

2
,

|r|∑
v=1

mv = i, 2kv ≤ |mv| ≤ (v + 2)kv, v = 1, ..., |r|
}
.

Proof of Theorem 2. The given conditions ensure the valid-
ity of the results as in Gusev (1975) and Yuan (2009). Below
we derive the details of the results. The proof is involved,
we break it into steps.

Step 1. Let θ′n =
√
n(θn − θ0), recall the definition of θ̂

′
n

given before the Lemma, m(xn) =
∫
f(xn|θ)π(θ)dθ, and

define d′
n = θ′n − θ̂

′
n. By definition of θn, we have, with S0

be the score,

0 = (1− c)S0(θn)m(xn)

−n1/2c

∫
W(1)(θn − θ)f(xn|θ)π(θ)dθ
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=

∫ (
(1− c)S0(θn)− n1/2cW(1)(θ0 − θ + n−1/2θ′n)

)

f(xn|θ)π(θ)dθ

= n−d/2

∫ (
(1− c)S0(θn)− n1/2cW(1)(

θ′n − η√
n

)

)

f(xn|θ0 + n−1/2η)π(θ0 + n−1/2η)dη

= n−d/2

∫ (
(1− c)S0(θn)− n1/2cW(1)(

d′
n − θ√
n

)

)

f(xn|θ0 + n−1/2(θ + θ̂
′
n))π(θ0 + n−1/2(θ + θ̂

′
n))dθ,

and we get
(A.1)

0 =

∫ (
(1−c)S0(θn)−n1/2cW(1)(

d′
n − θ√
n

)

)
Zn(θ + θ̂

′
n)

Zn(θ̂
′
n)

dθ.

Step 2. Solving out θ′n =
√
n(θn − θ0) from the above

equation to get the desired result. Expanding S0(θn) =
S0(θ0 + n−1/2θ′n) we get

S0(θ0 + n−1/2θ′n) =
k∑

r=0

n−r/2
∑
|i|=r

Si
〈(θ′n)i〉

i!
+ r1,k,n(θ

′
n).

Using results of Ibragimov and Khas’minski (1973a, 1973b),

Gusev (1975) proved, in the case of d = 1, r1,k,n(θ̂
′
n)

k∼ 0

and r1,k,n(θ̃
′
n)

k∼ 0, where θ̃
′
n =

√
n(θ̃n − θ0), and θ̃n is the

MLE (the original result is for the posterior mode θ̂n, which
is the MLE if we choose the prior to be constant). The same
results hold for d > 1, and as in the proof of Theorem 1,
since θn ∈ [θ̃n ∧ θ̌n, θ̃n ∨ θ̌n], and thus the a.s. consistency

of θn, we have θ′n ∈ [θ̃
′
n ∧ θ̌

′
n, θ̃

′
n ∨ θ̌

′
n], and consequently,

r1,k,n(θ
′
n)

k∼ 0.

Step 3. Write the integral on the right hand side of (A,1)
as

∫
=

∫
‖θ‖≤nδ +

∫
‖θ‖>nδ , and justify that

∫
‖θ‖>nδ is neg-

ligibly small. Note by definition Zn(θ̂
′
n) ≥ 1. As in Gu-

sev (1975, p.485-486), condition (B8) implies that, for some

0 < C < ∞ and 0 < α < 1/2, ||W (1)(
d′

n−θ√
n

)|| ≤ C||θ+ θ̂
′
n||α,

also, since θn → θ0 (a.s.), and it is known that θ̂
′
n =

I−1S0(θ0)+op(1), so for all large n, ||S0(θn)|| ≤ C||θ+ θ̂
′
n||α

(a.s.) for ||θ|| large, also, Zn(θ̂
′
n) ≥ 1 for large n, conse-

quently

∥∥∫
||θ||>nδ

(
(1−c)S0(θn)−n1/2cW(1)(

d′
n−θ√
n

)

)
Zn(θ+θ̂

′
n)

Zn(θ̂
′
n)

dθ
∥∥

≤
∥∥∫

||θ||>nδ

(
(1−c)S0(θn)−n1/2cW(1)(

d′
n−θ√
n

)

)
Zn(θ+θ̂

′
n)dθ

∥∥

= Op(n
−(k+|a|−1)/2).

Step 4. The above, with condition (B9), on the set ||θ|| ≤
nδ/2 we can replace n1/2cW(1)(n−1/2(d′

n−θ)) by 2cD(d′
n−

θ) and using Lemma 1, recall the definition of
k∼, (A.1) is

now

0
k∼ (

∫
||θ||≤nδ/2

+

∫
||θ||>nδ/2

)

(
(1− c)S0(θn)

−n1/2cW(1)(
d′
n − θ√
n

)

)
Zn(θ + θ̂

′
n)

Zn(θ̂
′
n)

dθ

=

∫
||θ||≤nδ/2

(
(1− c)S0(θn)− n1/2cW(1)(

d′
n − θ√
n

)

)

Zn(θ + θ̂
′
n)

Zn(θ̂
′
n)

dθ +Op(n
−(k+|a|−1)/2)

=

∫
||θ||≤nδ/2

(
(1− c)S0(θn)− 2cD(d′

n − θ)

)
Zn(θ + θ̂

′
n)

Zn(θ̂
′
n)

dθ

+Op(n
−(k+|a|−1)/2)

k∼
∫
||θ||≤nδ/2

(
(1− c)S0(θn)− 2cD(d′

n − θ)

)

exp

(
− 1

2
θ′Iθ

)(
1 +

k−1∑
|r|=1

n−|r|/2
3r∑

|j|=2

〈θj〉Nj,r

)
dθ

k∼
∫ (

(1− c)S0(θn)− 2cD(d′
n − θ)

)

exp

(
− 1

2
θ′Iθ

)(
1 +

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

〈θj〉Nj,r

)
dθ

k∼
∫ (

(1− c)

k∑
r=0

n−r/2
∑
|i|=r

Si
〈(θ′n)i〉

i!
− 2cD(d′

n − θ)

)

×
[
exp

(
− 1

2
θ′Iθ

)(
1 +

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

〈θj〉Nj,r

)]
dθ

k∼ Eθ

[
(1− c)

( k∑
r=0

n−r/2
∑
|i|=r

Si
〈(θ′n)i〉

i!
− 2cD(θ′n − θ̂

′
n− θ)

)
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(
1 +

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

〈θj〉Nj,r

)]
,

where θ ∼ N(0, I−1), and in the above we used the fact that

for all 0 < δ < ∞,
∫
||θ||>nδ/2

(
S0(θn)−2cD(d′

n−θ)

)
exp

(
−

1
2θ

′Iθ

)(
1 +

∑k−1
|r|=1 n

−|r|/2 ∑3|r|
|j|=2〈θj〉Nj,r

)
dθ = op(n

−k/2)

for all finite k.

Step 5. We make some notation clear-up. Note S0 = Δ0,
E0 = 0; Si = Δi + n1/2Ei for |i| ≥ 1, I = −(Ei : |i| = 1),∑

|i|=1 Ei〈(θ′n)i〉 = −Iθ′n, and n−k/2
∑

|i|=k Δi〈(θ′n)i〉/i! =

Op(n
−k/2). Let 〈μ〉i = E[〈θi〉] and μ1,j = E[θ〈θj〉], with

θ ∼ N(0, I−1). We have

0
k∼ Eθ

[(
(1− c)(Δ0 − Iθ′n)− 2cD(θ′n − θ̂

′
n − θ)

+

k−1∑
r=1

n−r/2(1− c)
( ∑
|i|=r

Δi
〈(θ′n)i〉

i!
+

∑
|i|=r+1

Ei
〈(θ′n)i〉

i!

))

(
1 +

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

〈θj〉Nj,r

)]

= (1− c)(Δ0 − Iθ′n)− 2cD(θ′n − θ̂
′
n)

+

k−1∑
r=1

n−r/2(1− c)
( ∑
|i|=r

Δi
〈(θ′n)i〉

i!
+

∑
|i|=r+1

Ei
〈(θ′n)i〉

i!

)

+

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

Nj,r

(
(1− c)〈μ〉j(Δ0 − Iθ′n)

−2cD[(θ′n − θ̂
′
n)〈μ〉j − μ1,j]

)

+

k−1∑
r=2

n−r/2(1−c)
∑

l+|m|=r,|m|≥1

3|m|∑
|j|=2

〈μ〉jNj,m

(∑
|i|=l

Δi
〈(θ′n)i〉

i!

+
∑

|i|=l+1

Ei
〈(θ′n)i〉

i!

)
.

Also, the same way as in the proof in Yuan (2009,p2480–
2481) and Theorem 2.2 there, we have, with Δ0 =∑d

i=1 eie
′
iΔei be the score,

θ′n
k∼

k−1∑
r=0

n−r/2Br, θ̂
′
n

k∼
k−1∑
r=0

n−r/2Hr, and H0 = I−1Δ0.

Step 6. Further simplifications. These give, with I being the
d-dimensional identity matrix (without confusing it with the
Fisher information matrix I)

[(1− c)I+ 2cD]θ′n
k∼ [(1− c)I + 2cDI−1]Δ0

+

k−1∑
r=1

n−r/2

(
2cDHr+(1−c)

(∑
|i|=r

Δi
〈(θ′n)i〉

i!
+
∑

|i|=r+1

Ei
〈(θ′n)i〉

i!

))

+

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

Nj,r

(
(1− c)〈μ〉j(Δ0 − Iθ′n)

−2cD[(θ′n − θ̂
′
n)〈μ〉j − μ1,j]

)

+
k−1∑
r=2

n−r/2(1−c)
∑

l+|m|=r,|m|≥1

3|m|∑
|j|=2

〈μ〉jNj,m

(∑
|i|=l

Δi
〈(θ′n)i〉

i!

+
∑

|i|=l+1

Ei
〈(θ′n)i〉

i!

)
.

Recall
∑s

r=t(· · · ) = 0 for t > s, so for k = 1, we get

[(1− c)I+ 2cD]θ′n
1∼ [(1− c)I + 2cDI−1]Δ0

or

√
n(θn−θ0) = θ′n

1∼ [(1−c)I+2cD]−1[(1−c)I+2cDI−1]Δ0.

Step 7. Expand [(1 − c)I + 2cD]−1 in the above to get
more clear result. Note [(1 − c)I + 2cD] is positive definite
and hence invertible. Using the formula (A−BD−1C)−1 =
A−1+A−1B(D−CA−1B)−1CA−1, with A = (1− c)I, B =
−2cD, C = D = I, we get [(1 − c)I + 2cD]−1 = (1 −
c)−1I−1 − 2c(1 − c)−1I−1D[(1 − c)I + 2cI−1D]−1I−1, note
I−1[(1− c)I + 2cDI−1] = [(1− c)I + 2cI−1D]I−1, and get

[(1−c)I+2cD]−1[(1−c)I+2cDI−1]=I−1+2c(1−c)−1I−1DI−1

−2c(1−c)−1I−1D[(1−c)I+2cI−1D]−1[(1−c)I+2cI−1D]I−1

= I−1,

consequently,

√
n(θn − θ0)

1∼ I−1Δ0

and, with B0 = I−1Δ0,

√
n(θn − θ0)

k∼ B0 +

k−1∑
r=1

n−r/2[(1− c)I+ 2cD]−1

(
2cDHr
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+(1− c)
( ∑
|i|=r

Δi
〈(θ′n)i〉

i!
+

∑
|i|=r

Ei
〈(θ′n)i〉

i!

))

+

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

Nj,r[(1− c)I+ 2cD]−1

(
(1− c)〈μ〉j(Δ0 − Iθ′n)− 2cD[(θ′n − θ̂

′
n)〈μ〉j − μ1,j]

)

+

k−1∑
r=2

n−r/2
∑

l+|m|=r,|m|≥1

3|m|∑
|j|=2

(1−c)〈μ〉jNj,m[(1−c)I+2cD]−1

( ∑
|i|=l+1

Δi
〈(θ′n)i〉

i!
+

∑
|i|=l+1

Ei
〈(θ′n)i〉

i!

)

k∼ B0 +

k−1∑
r=1

n−r/2[(1− c)I+ 2cD]−1

(
2cDHr

+(1− c)
( ∑
|i|=r

Δi
〈(
∑k−2

s=0 n
−s/2Bs)

i〉
i!

+
∑

|i|=r+1

Ei
〈(
∑k−2

s=0 n
−s/2Bs)

i〉
i!

))

+

k−1∑
|r|=1

n−|r|/2
3|r|∑
|j|=2

Nj,r[(1− c)I+ 2cD]−1

(
(1− c)〈μ〉j(Δ0 − I

k−2∑
s=0

n−s/2Bs)

−2cD[

k−2∑
s=0

n−s/2(Bs −Hs)〈μ〉j − μ1,j]

)

+

k−1∑
r=2

n−r/2
∑

l+|m|=r,|m|≥1

(1−c)

3|m|∑
|j|=2

〈μ〉jNj,m[(1−c)I+2cD]−1

×
(∑

|i|=l

Δi
〈(
∑k−2

s=0 n
−s/2Bs)

i〉
i!

+
∑

|i|=l+1

Ei
〈(
∑k−2

s=0 n
−s/2Bs)

i〉
i!

)
.

Step 8. Collecting terms to get the final result. Similarly,
as in Yuan (2009, p.2480),

〈(
k−2∑
s=0

n−s/2Bs)
i〉 = i!

k−2∑
s=0

n−s/2
∑
|l|=s

∑
I1(0,s,l,i)

s∏
ν=0

〈Biν
ν 〉

iν !
,

plugging in the above into the previous expression, collect-
ing terms in powers of n−r/2, and notice that for l = 0,
I1(0, 0, l, i) is an empty set, we have

√
n(θn − θ0)

k∼ B0 +

k−1∑
r=1

n−r/2[(1− c)I+ 2cD]−1
(
2cDHr

+(1− c)
∑

t+s=r,t≥1

[ ∑
|i|=t

Δi

∑
|l|=s

∑
I1(0,s,l,i)

s∏
ν=0

〈Biν
ν 〉

iν !

+
∑

|i|=t+1

Ei

∑
|l|=s

∑
I1(0,s,l,i)

s∏
ν=0

〈Biν
ν 〉

iν !

]

+
∑

|m|=r

3r∑
|j|=2

Nj,m

[
(1− c)〈μ〉jΔ0 + 2cDμ1,j

]

−
∑

t+s=r,t≥1

∑
|m|=t

3t∑
|j|=2

Nj,m〈μ〉j
(
[(1−c)I+2cD]Bs−2cDHs

))

+

k−1∑
r=2

n−r/2[(1− c)I+ 2cD]−1

∑
b+t+s=r,t≥2,

∑
b+a=t

∑
|m|=a,|m|≥1

3a∑
|j|=2

Nj,m(1− c)〈μ〉j

×
( ∑

|i|=b

Δi

∑
|l|=s

∑
I1(0,s,l,i)

s∏
ν=0

〈Biν
ν 〉

iν !

+
∑

|i|=b+1

Ei

∑
|l|=s

∑
I1(0,s,l,i)

s∏
ν=0

〈Biν
ν 〉

iν !

)

:=

k−1∑
r=0

n−r/2Br.

Proof of Corollary 1. Recall B0 = H0 = I−1Δ0, and so
Theorem 2 gives, for r = 1,

B1 = [(1− c)I+ 2cD]−1

(
2cDH1

+(1− c)
∑

|m|=1

∑
|j|=2

Nj,m〈μ〉jΔ0 + 2c
∑

|m|=1

∑
|j|=2

Nj,mDμ1,j

−
∑

|m|=1

∑
|j|=2

Nj,m〈μ〉j
(
[(1− c)I+ 2cD]B0 − 2cDH0

)
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+(1− c)[
∑
|i|=1

Δi〈Bi
0〉+

∑
|i|=2

Ei
〈Bi

0〉
i!

]

)

= [(1− c)I+ 2cD]−1
(
2cDH1 + 2c

∑
|m|=1

∑
|j|=2

Nj,mDμ1,j

+(1− c)[
∑
|i|=1

Δi〈Bi
0〉+

∑
|i|=2

Ei
〈Bi

0〉
i!

]
)
.

By the Lemma, for |m| = 1 and |j| = 2, Nj,m =∑
I2(m,j)

∑
I1(2,3,k,i)

∏3
s=2

F
|js|
s,1

js!(s!)|j2| . Recall that ei is the d-

vector with i-th element be 1 and others be 0’s. With
|m| = 1 and |j| = 2, I2(m, j) is non-empty only
when (m, j) = (ei, 2ei) for i = 1, ..., d. The correspond-
ing I1(2, 3,m, j) = {(i2, i3) = {(ei,0)}. So for given

|m| = 1 and |j| = 2, Nj,m =
F2,1

j! . In the formula for
F2,1, the first summation is over an empty set; the sec-
ond summation is

∑
|j|=2 Δj

∑
|i|=2

∑
I1(0,0,0,0)

1/i0!. Since

I1(0, 0,0,0) = {0}, this term is
∑

|j|=2 Δj. The third

summation is
∑

|j|=3 Ej

∑
|i|=2

∑
I1(0,0,0,j−i)〈H

i0
0 〉/i0! =∑

|j|=3 Ej

∑
|i|=2〈H

j−i
0 〉/(j− i)!. This gives, with i ≤ j,

Nj,m =
1

2

∑
|j|=1

Δj +
1

2

∑
|j|=2

Ej

∑
|i|=2

〈(I−1Δ0)
j−i〉/(j− i)!.

However, it is easy to see that for |j| = 2, μ1,j = 0, so we
get

B1 = [(1− c)I+ 2cD]−1
(
2cDH1

+(1− c)[
∑
|i|=1

Δi〈Bi
0〉+

∑
|i|=2

Ei
〈Bi

0〉
i!

]
)
,

where

H1 = I−1
( ∑

|i|=2

Ei
〈Bi

0〉
i!

+
∑
|i|=1

Δi〈Bi
0〉+ ρ0

)

is the multivariate version of Gusev (1975, p.496). This gives

H1 = I−1
( ∑

|i|=2

Ei
〈Bi

0〉
i!

+
∑
|i|=1

Δi〈Bi
0〉
)

+[(1− c)I+ 2cD]−12cDI−1ρ0.

Note that, when d = 1, our notation (E2,Δ1,Δ0, ρ0) here
correspond to (E3,Δ2,Δ1, ρ0,1) in Gusev (1975).

Proof of Proposition 1. By the Proposition in Yuan (2009),
asymptotically we have

Eθ0 [
∑
|i|=1

Δi〈(I−1Δ0)
i〉+

∑
|i|=2

Ei
〈(I−1Δ0)

i〉
i!

]

=

d∑
j=1

AjI
−1
j +

d∑
i,j=1

E1i+1j iI
−1I−1I−1

j /(1i + 1j),

here our notationsAj and 1j correspond toDj and ej there,
this gives the result.

Proof of Theorem 3. Under the given conditions the valid-
ity of the results are justified in Chibisov (1973) and Gu-
sev (1976). Below we give such detailed constructions of the
terms in the EE. Recall by Theorem 2,

√
n(θn − θ0) =

k−1∑
r=0

n−r/2Br +Op(n
−k/2),

where Br is a polynomial of degree r, of the random vectors
Δi (|i| = 0, 1, ..., r) and of the random variables δi’s (|i| =
r, r + 1), but the δi’s are components of some Δj’s with
|j| < |i|. The coefficients of the Br’s depend on the Ei’s,
eis, 〈μ〉i’s, μ1,i (|i| = 0, 1, ..., r + 1) and D. In summary,∑k−1

r=0 n
−r/2Br is a dk-variate polynomial of degree k, of

the random vector

V = (Δi : |i| = 0, 1, ..., k − 1), and let Ω = Covθ0(V).

Thus each Br is a function of V and denoted as Br(V)
(r = 0, 1, ..., k − 1), although B0 = I−1Δ0 is a function
only of Δ0, and Br is only a function of (Δi : |i| ≤ r).
For each fixed i, Δi is of dimension d; for |i| = r, there
are dr different Δi’s. Thus V has dimension dk = k when
d = 1, and dk = d

∑k−1
r=0 d

r = d(dk − 1)/(d− 1) when d > 1.
Note that Eθ0(V) = 0. Let φΩ(·) and ΦΩ(·) be the density
and distribution function of the normal random vector with
mean zero and covariance matrix Ω, and

X =

k−1∑
r=0

n−r/2Br(V).

Let gn(x) andGn(x) be the density and distribution func-
tions of X. By results in Chibisov (1972,1973) and Gusev
(1975), we have

sup
x

|fn(x)− gn(x)| = o(n−k/2),

sup
x

|Fn(x)−Gn(x)| = o(n−k/2).

So we only need to compute the EE for gn(x) and Gn(x) of
X.

We first compute the EE for gn(x), and in turn we need
the EE for the density function qn(v) of V. Denote Y =
(Δi : |i| = 1, ..., k − 1), thus V = (Δ0,Y). By Theorem
19.2 in Battacharya and Rao (1986, p.192), with the given
conditions we have, uniformly over v = (Δ0,y),

qn(v) = φΩ(Δ0,y)
[
1 +

k−1∑
r=1

n−r/2Pr(Δ0,y)
]
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(A.1) +
O(n−k/2)

1 + ||(Δ0,y)||k+1
,

where

Pr(Δ0,y) = −
∑

|ν|=r+2

χν

ν!
pv(Δ0,y),

pv(Δ0,y) is the r-th Hermit polynomial for φΩ(·), given by

φ
(ν)
Ω (Δ0,y) = pv(Δ0,y)φΩ(Δ0,y), and χν is the ν-th cum-

munant of V, ν is a dk-dimensional non-negative integer
vector.

Our strategy is to compute the EE of gn(·) from that of
qn(·) as given in (A.1), via the following transformation

{
x = I−1Δ0 +

∑k−1
r=1 n

−r/2Br(Δ0,y),
y = y.

or

{
Δ0 = Ix−

∑k−1
r=1 n

−r/2IBr(Δ0,y),
y = y.

However in the above transformation, Δ0 cannot be solved
out as function of (x,y) explicitly, and the transformation
Jacobin is difficult to work with, as the Br’s are polynomials
of Δ0 and y. Thus we cannot get the density of X directly
from the above transformation.

To overcome these difficulties, Chibisov (1972) used the
following method and proved its validity. First replace Δ0

in B1, ...,Bk−1 by a random vector u = u(δ) different from
Δ0, u and Δ0 have the same dimension. Then in the trans-
formation we have

{
Δ0 = Ix− B(u,y),
y = y, u = u.

with B(u,y)=

k−1∑
r=1

n−r/2IBr(u,y),

in which Δ0 is solved out explicitly, the transformation Ja-
cobin is |I|, and the EE of gn(·) on x will be easily obtained
by plugging in the above relationships into (A.1) and inte-
grate with respect to (u,y), expanding and collecting terms
in powers of n−1/2 will give EE for x from that of (Δ0,u,y).
Then let u = u(δ) → Δ0 as δ → 0, to get the EE on x from
that of (Δ0,y), the limit does not depend on π(·), and gives
us the desired result.

Specifically, let u = u(δ) = Δ0+δw, with w independent
of V and having density π(·) with various order of partial
derivatives, and with support on some compact set, say on
||w|| ≤ 1. By (A.1), the above transformation and Lemma
2 in Chibisov (1972) we have

gn(x) = lim
δ→0

Jn,k(δ) +O(n−k/2),

i.e., the limit limδ→0 Jn,k(δ) is the k-th order EE for gn(·).
Since fn(·) = gn(·) + o(n−k/2), the limit limδ→0 Jn,k(δ) is
also the k-th order EE for fn(·), where

Jn,k(δ) = |I|
∫ ∫ (

1 +

k−1∑
r=1

n−r/2Pr

(
Ix− B(u,y),y

))

×φΩ(Ix− B(u,y),y)π(
u− Ix+ B(u,y)

δ
)
1

δd
dudy.

Note Lemma 2 of Chibisov is for integration over x on any
set A, take A = (−∞,x] we get the result for distribution
function, and then take derivative with respect to x to get
result for density function.

Expanding Pr

(
Ix − B(u,y),y

)
and φΩ(Ix − B(u,y),y)

at Ix in powers of n−1/2, and expanding π(u−Ix+B(u,y)
δ ) at

(u− Ix)/δ in powers of n−1/2, i.e.

Pr

(
Ix− B(u,y),y

)
=

k−1∑
s=0

n−s/2Pr,s(Ix,u,y) +O(n−k/2),

with Pr,0(Ix,u,y) = Pr

(
Ix,y

)
for r > 0, P0,0(Ix,u,y) ≡ 1,

and P0,l(Ix,u,y) ≡ 0 for l > 0. In the above expansion the
powers on u comes from Br(u,y), not from Pr(Ix,y) nor
its derivatives; and Br(u,y) is a polynomial of degree r+1,
so the power of u in Qr,s(Ix,u,y) is at most some finite
number;

φΩ(Ix− B(u,y),y) = φΩ(Ix,y)

(
1+

k−1∑
|i|=1

pi(Ix,y)
〈Bi(u,y)〉

i!
+O(n−k/2)

)

= φΩ(Ix,y)

(
1 +

k−1∑
|i|=1

pi(Ix,y)

k−1∑
s=1

n−s/2

∑
|l|=s

∑
(1,s,l,i)

s∏
v=1

〈
(
IBv(u,y)

)iv 〉
iv!

+O(n−k/2)

)

= φΩ(Ix,y)

(
1 +

k−1∑
s=1

n−s/2

k−1∑
|i|=1

pi(Ix,y)
∑
|l|=s

∑
(1,s,l,i)

s∏
v=1

〈
(
IBv(u,y)

)iv 〉
iv!

+O(n−k/2)

)

:= φΩ(Ix,y)

(
1 +

k−1∑
s=1

n−s/2Ls(Ix,u,y) +O(n−k/2)

)
,

in the above i is a d-dimensional non-negative integer vector,
and pi is pν given in (A.1) with ν = (i,0); Since Bv(u,y) is
a polynomial in (u,y) of degree v + 1, so the power of u in
Ls(Ix,u,y) is at most (s2 + 3s)/2; Also,

π(
u− Ix+ B(u,y)

δ
) = π(

u− Ix

δ
)+
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k−1∑
|i|=1

1

i!
π(i)(

u− Ix

δ
)
1

δ|i|
〈Bi(u,y)〉+O(n−k/2)

= π(
u− Ix

δ
) +

k−1∑
|i|=1

π(i)(
u− Ix

δ
)
1

δ|i|

k−1∑
s=|i|

n−s/2

∑
|l|=s

∑
(1,s,l,i)

s∏
v=1

〈
(
IBv(u,y)

)iv 〉
iv!

+O(n−k/2)

= π(
u− Ix

δ
) +

k−1∑
s=1

n−s/2
s∑

|i|=1

π(i)(
u− Ix

δ
)
1

δ|i|

∑
|l|=s

∑
(1,s,l,i)

s∏
v=1

〈
(
IBv(u,y)

)iv 〉
iv!

+O(n−k/2)

:= π(
u− Ix

δ
) +

k−1∑
s=1

n−s/2
s∑

|i|=1

π(i)(
u− Ix

δ
)δ−|i|Mi,s(u,y)

+O(n−k/2),

where the Qr,s(·, ·, ·)’s and Ls(·, ·, ·)’s are polynomials in
(Ix,u,y); and the Mi,s(·, ·)’s are polynomials in (u,y);
and π(i)(·) is the i-th derivative of π(·). Define L0(·, ·, ·) =
M0,0(·, ·) ≡ 1.

Now Jn,k(δ) can be written in the form, omit term of
order O(n−k/2),

Jn,k(δ) = |I|
∫ ∫ ( k−1∑

r=0

n−r/2

l,s≥0∑
l+s=r

Pl,s(Ix,u,y)

)

( k−1∑
r=0

n−r/2Lr(Ix,u,y)

)

×
( k−1∑

r=0

n−r/2
r∑

|i|=0

π(i)(
u−Ix

δ
)δ−|i|Mi,r(u,y)

)
φΩ(Ix,y)dudy

= |I|
∫ ∫ ( k−1∑

r=0

n−r/2

l,s,j,t≥0∑
l+s+j+t=r

Pl,s(Ix,u,y)Lj(u,y)

×
t∑

|i|=0

Mi,t(u,y)π
(i)(

u− Ix

δ
)

1

δ|i|+d

)
φΩ(Ix,y)dudy

= |I|
∫∫ (

π(
u−Ix

δ
)
1

δd
+

k−1∑
r=1

n−r/2

l,s,j,t≥0∑
l+s+j+t=r

Pl,s(Ix,u,y)Lj(u,y)

×
t∑

|i|=1

Mi,t(u,y)π
(i)(

u− Ix

δ
)

1

δ|i|+d

)
φΩ(Ix,y)dudy

= |I|
∫∫ (

π(
u−Ix

δ
)
1

δd
+

k−1∑
r=1

n−r/2Sr(Ix,u,y)

)
φΩ(Ix,y)dudy,

where

Sr(Ix,u,y) =

l,s,j,t≥0∑
l+s+j+t=r

Pl,s(Ix,u,y)Lj(u,y)

t∑
|i|=1

Mi,t(u,y)π
(i)(

u− Ix

δ
)

1

δ|i|+d
.

Since Pl,s(Ix,u,y), Ls(u,y) and Mi,t(u,y) are polynomi-
als, Sr,i(Ix,u,y) is a summation of terms of the form
C(Ix)aubyc, and the above integration over u is a sum-
mation of terms of the form

C〈(Ix)a〉〈yc〉
∫

〈(I−1u)b〉π(j)(
u− Ix

δ
)

1

δ|j|+d
du.

Using integration by parts, note π(·) has compact support
{u : ||u|| ≤ 1}, and for small δ, (±1 − Ix)/δ lies outside of
this support, thus 〈(I−1u)b−l〉π(j−l)(u−Ix

δ )
∣∣
||u||=1

= 0, and

that for b ≥ j (means componentwise greater or equal)

lim
δ→0

∫
〈(I−1u)b−j〉π(u− Ix

δ
)
1

δd
du = 〈xb−j〉,

we have ∫
〈(I−1u)b〉π(j)(

u− Ix

δ
)

1

δ|j|+d
du

=

{
(−1)|j| b!

(b−j)! 〈xb−j〉, if b ≥ j,

0, else.

Thus, we get, with Tr(Ix,y) being Sr(Ix,u,y) with factors
of the form 〈(I−1u)b〉 in Ql,s(Ix,u,y)Ls(u,y)Mi,t(u,y) re-
placed by (−1)|i| b!

(b−i)! 〈xb−i〉 if b ≥ i, and 0 otherwise (es-

pecially, Ql,s(Ix,u,y)Ls(u,y) is a special case with i = 0),

lim
δ→0

Jn,k(δ) = |I|
∫ (

1 +
k−1∑
r=1

n−r/2Tr(Ix,y)

)
φΩ(Ix,y)dy,

and consequently, uniformly over x,

fn(x) = |I|φΩ1(Ix) +

k−1∑
r=1

n−r/2E[Tr(Ix,Y)]|I|φΩ1(Ix)

+O(n−k/2),

where Ω1 is the sub-block d-dimensional matrix in Ω corre-
sponding to Δ0, the expectation is for Y ∼ N(0,Ω2), Ω2
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is the sub-block matrix in Ω corresponding to (Δi : |i| =
1, ..., k− 1), and for each r, gr(·) is a polynomial. Note that
Ω1 = Covθ0(Δ0) = I, and that |I|φI(Ix) = φI−1(x), so we
have

fn(x) = φI−1(x)+

k−1∑
r=1

n−r/2E[Tr(Ix,Y)]φI−1(x)+O(n−k/2)

:= φI−1(x) +
k−1∑
r=1

n−r/2gr(x)φI−1(x) +O(n−k/2),

The EE for Fn(·) is obtained by integrating that for fn(·)
and its validity is given in Theorem 1 of Chibisov (1972).

Proof of Theorem 4. Let θ0,n be the compound estima-
tor under H0 (i.e., its first r components are fixed as
given in Θ0), G(1)(θ|xn) = ∂G(θ|xn)/∂θ, G(2)(θ|xn) =
∂G(θ|xn)/(∂θ∂θ′), W (2)(·) be the matrix of second partial
derivatives of W (·), and θ̃n be between θn and θ0,n. Note by
definition of θn, G

(1)(θn|xn) = 0, so we have

λc,n = −2

(
G(θ0,n|xn)−G(θn|xn)

)

= −2G(1)′(θn|xn)(θ0,n − θn)

−(θn − θ0,n)
′G(2)(θ̃n|xn)(θn − θ0,n)

= −(θn − θ0,n)
′G(2)(θ̃n|xn)(θn − θ0,n)

= n(1− c)(θn − θ0,n)
′[−n−1l(2)(θ̃n|xn)](θn − θ0,n)

+cn

∫
(θn − θ0,n)

′W (2)(θ̃n − α)(θn − θ0,n)π(α|xn)dα.

Note θ̃n → θ0 (a.s.),
√
n(θn − θ0,n) = Op(1), and π(α|xn) is

asymptotically N(θ̂n, n
−1I−1) in probability, for some small

δ > 0, on ||θ̃n − α|| ≤ n−δ, we can replace W (2)(θ̃n − α) by
2D, so we have

λc,n = n(1− c)(θn − θ0,n)
′I(θn − θ0,n)

+cn

∫
||θ̃n−α||≤n−δ

(θn−θ0,n)
′W (2)(θ̃n−α)(θn−θ0,n)π(α|xn)dα

+op(1)

= n(1− c)(θn − θ0,n)
′I(θn − θ0,n)

+2cn

∫
||θ̃n−α||≤n−δ

(θn−θ0,n)
′D(θn−θ0,n)π(α|xn)dα+op(1)

= n(1− c)(θn − θ0,n)
′I(θn − θ0,n)

+2cn

∫
(θn − θ0,n)

′D(θn − θ0,n)π(α|xn)dα+ op(1)

= n(θn − θ0,n)
′[(1− c)I+ 2cD](θn − θ0,n) + op(1).

By Theorem 2,
√
n(θn − θ0) = I−1Δ0 + op(1). Let I0 be

the r × r Fisher information under H0, and Ĩ be the d × d
matrix with the lower right r × r block be I−1

0 and other
elements be 0’s. Then we have

√
n(θ0,n− θ0) = ĨΔ0+ op(1).

Note Δ0
D→ N(0, I). Thus we have

λc,n = Δ′
0(I

−1 − Ĩ)[(1− c)I+ 2cD](I−1 − Ĩ)Δ0 + op(1)

= Z′BZ+ op(1),

where Z ∼ N(0, I), B = (I−1/2)′(I−1 − Ĩ)[(1 − c)I +
2cD](I−1 − Ĩ)I−1/2, (I−1/2)′I−1/2 = I−1. Especially, if we
take c = 0, then B = (I−1/2)′(I−1 − Ĩ)I(I−1 − Ĩ)I−1/2,

and λc,n is the likelihood ratio statistic, and λc,n
D→ χ2

r,
the chisquared distribution with r degrees of freedom. Thus
rank((I−1/2)′(I−1−Ĩ)I(I−1−Ĩ)I−1/2) = r. Since I and I−1/2

are of full rank, we must have rank(I−1 − Ĩ) = r, and so
rank(B) = r for all 0 ≤ c ≤ 1. Finally, we have

λc,n = Z′BZ+ op(1)
D→

r∑
j=1

γjχ
2
j ,

where γ1, ..., γr are all the non-zero eigenvalues of B, and
the χ2

j ’s are independent chisquared distributions with one
degree of freedom.

Under H0,n, we have
√
n(θn − θ0) =

√
n(θn − (θ0 +

n−1/2δ)) + δ
D→ N(δ, I−1). Similarly, under H0,n,

√
n(θ0,n −

θ0) = ĨΔ0 + δ, so under H0,n,

λc,n = [δ′ +Δ′
0(I

−1 − Ĩ)][(1− c)I+ 2cD][(I−1 − Ĩ)Δ0 + δ]

+op(1) = Z′[(1− c)I+ 2cD]Z+ op(1),

with Z = (I−1 − Ĩ)Δ0 + δ ∼ N(δ, (I−1 − Ĩ)I(I−1 − Ĩ)), and
the conclusion follows.

Proof of Proposition. Recall that θ̂n is the MLE. Under the
given conditions, we have

G(θ0 + n−1/2δ|xn)−G(θ0|xn)

= (1− c)
(
l(θ0 + n−1/2δ|xn)− l(θ0|xn)

)

−cn

∫ (
W (θ0 + n−1/2δ − α)−W (θ0 − α)

)
π(α|xn)dα

= (1− c)
(
Δ′

0δ −
1

2
δ′Iδ +Op(n

−1/2)
)

−cn

∫ (
n−1/2W (1)′(θ0 − α)δ
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+
1

2
n−1δ′W (2)(θ̃ − α)δ

)
π(α|xn)dα

= (1− c)
(
Δ′

0δ −
1

2
δ′Iδ +Op(n

−1/2)
)

−c

∫ [
W (1)′(θ0 − θ̂n − n−1/2β)δ

+
1

2
n−1/2δ′W (2)(θ̃ − θ̂n − n−1/2β)δ

]
π(θ̂n + n−1/2β|xn)dβ

= (1−c)
(
Δ′

0δ−
1

2
δ′Iδ

)
−c

∫
||β||≤nδ

[
W (1)′(θ0−θ̂n−n−1/2β)δ

+
1

2
n−1/2δ′W (2)(θ̃ − θ̂n − n−1/2β)δ

]
π(θ̂n + n−1/2β|xn)dβ

+op(1),

where 0 < δ < 1/2, θ̃ is an intermediate point be-
tween θ0 and θ0 + n−1/2δ. By condition (B9), and that

θ0 − θ̂n = Op(n
−1/2), so on the set ||β|| ≤ nδ, we can re-

place W (1)′(θ0 − θ̂n − n−1/2β) by 2(θ0 − θ̂n − n−1/2β)′D,

and W (2)(θ̃− θ̂n−n−1/2β) by 2D. By Theorem 1 in Walker
(1969), for any a,b ∈ Rd,

∫ b

a

π(θ̂n + n−1/2β|xn)dβ =

∫ b

a

φI−1(β)dβ + op(1),

now we have

G(θ0 + n−1/2δ|xn)−G(θ0|xn)

= (1− c)
(
Δ′

0δ−
1

2
δ′Iδ

)
−2c

∫
||β||≤nδ

[
(θ0− θ̂n−n−1/2β)′Dδ

+
1

2
n−1/2δ′Dδ

]
π(θ̂n + n−1/2β|xn)dβ + op(1)

= (1− c)
(
Δ′

0δ −
1

2
δ′Iδ

)
− 2c

∫ [
(θ0 − θ̂n − n−1/2β)′Dδ

+
1

2
n−1/2δ′Dδ

]
π(θ̂n + n−1/2β|xn)dβ + op(1)

= (1− c)
(
Δ′

0δ −
1

2
δ′Iδ

)
− 2c

∫ [
(θ0 − θ̂n − n−1/2β)′Dδ

+
1

2
n−1/2δ′Dδ

]
φI−1(β)dβ + op(1)

= (1− c)
(
Δ′

0δ −
1

2
δ′Iδ

)
+ 2c

∫
Δ′

0I
−1DδφI−1(β)dβ + op(1)

= Δ′
0[(1− c)I + 2cI−1D]δ − 1

2
δ′Iδ + op(1).
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