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Copy number variation detection based on
constraint least squares
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Copy number variations (CNVs) are a form of structural
variation of a DNA sequence, including amplification and
deletion of a particular DNA segment on chromosomes. Due
to the huge amount of data in every DNA sequence, there
is a great need for a computationally fast algorithm that
accurately identifies CNVs. In this paper, we formulate the
detection of CNVs as a constraint least squares problem
and show that circular binary segmentation is a greedy ap-
proach to solving this problem. To solve this problem with
high accuracy and efficiency, we first derived a necessary op-
timality condition for its solution based on the alternating
minimization technique and then developed a computation-
ally efficient algorithm named AMIAS. The performance of
our method was tested on both simulated data and two real-
world applications using genomic data from diagnosed pri-
mal glioblastoma and the HapMap project. Our proposed
method has competitive performance in identifying CNVs
with high-throughput genotypic data.

Keywords and phrases: Alternating minimization in-
duced active set, Change point detection, Circular binary
segmentation, HapMap.

1. INTRODUCTION

Copy number variations (CNVs) are a form of struc-
tural variation of the DNA sequence, including amplification
and deletion of a particular DNA segment on chromosomes
(Freeman et al., 2006). CNVs have been shown to be asso-
ciated with a wide collection of diseases, including autism
(Sebat et al., 2007), Alzheimer’s (Brouwers et al., 2012),
schizophrenia (Ingason et al., 2011; Vacic et al., 2011), and
cancer (Shlien and Malkin, 2009).

Array comparative genomic hybridization (aCGH) has
been widely used in genome-wide identification of CNVs.
The aCGH technology compares the copy number of a dif-
ferentially labeled case sample with a normal reference and
returns log2 intensity ratio measurements. A value greater
than zero indicates a possible gain in the DNA sequence,
while a value less than zero suggests possible losses.

In recent years, various algorithms have been developed
to identify CNVs for aCGH data. A general approach is
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based on the idea of binary segmentation (Vostrikova, 1981),
which looks at a single point at each step and can be viewed
as a greedy approach with low computational complexity.
One of its most popular variants is circular binary segmen-
tation (CBS, Olshen et al., 2004; Venkatraman and Olshen,
2007), which searches for two change points at a time and
works well for multiple change point detection. CBS di-
vides the genome into regions of equal copy number us-
ing maximum likelihood ratio statistics or t statistics. An-
other popular variant is the wild binary segmentation (WBS,
Fryzlewicz, 2014, which randomly draws a collection of sub
samples and chooses the one with the maximum statis-
tic. Thus, WBS can detect change points even for very
short spacings between change points or very small jump
magnitudes (Fryzlewicz, 2014). Contrary to forward detec-
tion methods such as CBS, the backward detection (BWD,
Jun Shin et al., 2020) works from the opposite extreme in
that every single position is assumed to be a change point
and then two neighbor ring groups are merged into one re-
peatedly. BWD works well in identifying short signals in
lengthy noise sequences.

Another general approach formalizes the detection of
CNVs as a penalized least squares problem, a technique
first considered by Yao (1988). Yao (1988) proposed the
Schwartz information criterion (SIC) to estimate the num-
ber of change points, but this approach brings a heavy
computational burden. To alleviate the computational cost,
Tibshirani et al. (2005) and Tibshirani and Wang (2008) re-
placed the penalty term with the fused lasso penalty and
transformed the problem into convex optimization. Unlike
the binary segmentation approach, the fused lasso regres-
sion method encourages both sparsity and smoothness in
the copy number estimate simultaneously. Other approaches
include PennCNV (Wang et al., 2007) (based on hidden
Markov models), and the screening and ranking algorithm
and its variant (Niu and Zhang, 2012; Xiao et al., 2014).

In this paper, we formulate the detection of CNVs as a
constraint least squares problem and show that CBS is a
greedy approach to solving this problem. Then we derive a
necessary optimality condition for its solution based on the
alternating minimization technique. A computationally fast
algorithm named Alternating Minimization Induced Active
Set (AMIAS) is provided to obtain an accurate solution for
the constraint least squares problem. Our proposed algo-
rithm is compared with previous methods using extensive
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simulated and real-world data, showing that it has compet-
itive performance.

The rest of the article proceeds as follows. In Section 2,
we describe a constraint least squares framework and de-
velop the AMIAS algorithm. Section 3 is devoted to simu-
lated numerical studies, and Section 4 analyzes two empir-
ical datasets. We conclude the article in Section 5. Proofs
of the main theorems and technical lemmas are provided in
the Appendix.

2. MODEL AND METHODOLOGY

2.1 Constraint least squares framework

Suppose we have an aCGH data set from n probes. Let
Yi, i = 1, . . . , n be the observed log2 intensity ratio measure-
ment at probe i. Then Yi is assumed to be the sum of the
true hidden signal βi and random error εi,

(1) Yi = βi + εi, i = 1, 2, . . . , n,

where εi is assumed to have mean 0 and variance σ2. Here
the parameter β = (β1, β2, . . . , βn) quantifies the copy num-
ber levels with βi = 0 corresponding to the standard copy
number 2. Since CNVs are rare in the whole genome, the
true parameter β∗ is expected to be piecewise constant with
the majority of values equal to 0 and a few segments with
positive values (duplication) and negative values (deletion).
To recover β∗, one could solve the following constraint op-
timization problem

min
β

1

2

n∑
i=1

(Yi − βi)
2,(2)

s.t.

n∑
i=1

|βi|0 ≤ s1,

n∑
i=2

|βi − βi−1|0 ≤ s2,

where |x|0 = 1 if x �= 0, and |x|0 = 0 if x = 0. Here s1
controls the overall sparsity of CNV regions (the number of
nonzero values in β), and s2 controls the number of CNV al-
terations (the number of change points between the adjacent
probes).

We can rewrite problem (2) in matrix and vector form as
follows:

(3) min
β

1

2
‖Y − β‖22, s.t.‖β‖0 ≤ s1, ‖Dβ‖0 ≤ s2,

where ‖x‖0 =
∑n

i=1 |xi|0 is the L0 norm, and D is an (n −
1)× n matrix with zeros entries everywhere except for 1 in
the diagonal and −1 in the super-diagonal.

Due to the use of the non convex and noncontinuous
L0 constraint, it is computationally expensive to directly
solve problem (3) by exhaustively searching over all possi-
ble choices of selections. Optimization-based methods that
are computationally friendlier have been proposed as sur-
rogates for problem (3), among which the convex relax-
ation technique is a popular choice. For example, with

the norm ‖x‖0 replaced by the convex norm ‖x‖1 =∑n
i=1 |xi|, the corresponding minimizer is named the fused

lasso method in Tibshirani and Wang (2008). However, like
other L1-norm based methods, the fused lasso tends to over-
shrink large coefficients, which leads to biased estimates
and an over-selection problem (Behrendt and Schweikert,
2021; Zhao and Yu, 2006). Non convex penalties such as
the smoothly clipped absolute deviation (SCAD) penalty
(Fan and Li, 2001) and the minimax concave penalty
(MCP) (Zhang, 2010) can be used to remedy the bias is-
sue by rewriting problem (3) as a regularization formulation
(Xiu et al., 2019). Rather than using the relaxed penalties,
we propose to directly solve the problem (3). Unlike the L1

penalty or other non convex penalties, the L0 penalty en-
ables us to directly control the number of change-points,
which is more explicit than using the tuning parameters as
in the works of Tibshirani and Wang (2008) and Xiu et al.
(2019).

For the linear regression model without the constraint
on Dβ, Huang et al. (2018) proposed an L0 construction
approach to a least squares problem with L0 penalty on
the coefficient parameter and developed a support detection
and root finding algorithm to solve the optimization prob-
lem. Wen et al. (2017) studied the constrained maximum
likelihood problem and proposed a primal-dual active set
algorithm for solving it. Our formulation (4) can be viewed
as an extension of the algorithm proposed by Huang et al.
(2018) and Wen et al. (2017) to the fused detection prob-
lem with an additional penalty on Dβ. However, it is not
straight forward to generalize their proposed algorithm to
solve problem (3) since the term Dβ entangles all elements
in β. To remedy the problem, we introduce an auxiliary
variable v = Dβ, and reformulate the problem (4) to its
augmented Lagrangian form:

L(β, v, u) =
1

2
‖Y − β‖22 + λ1‖β‖0 + λ2‖v‖0

+
ρ

2
‖Dβ − v‖22 + uT (Dβ − v),(4)

where u ∈ Rn−1 is a dual variable corresponding to the lin-
ear constraint v = Dβ, and parameters λ1, λ2, and ρ all have
positive values. As in the constrained version, parameters λ1

and λ2 encourage sparsity in β and shrink the differences be-
tween neighboring coefficients in β toward zero, respectively.
The introduction of v separates the parameters needing to
be estimated, making the problem computational feasible.
To be specific, let (β�, v�, u�) be a coordinate-wise solution
to (4). Next, we present the necessary optimality conditions
for (β�, v�, u�) with the help of an alternating minimization
technique. The proof appears in the Appendix.

Theorem 1. Let Nρ = (Nρ
1 , . . . , N

ρ
n) with Nρ

j = 1+2ρ for
j = 2, . . . , n− 1, and Nρ

j = 1+ ρ for j = 1, n. Then, for the
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solution (β�, v�, u�), we have:

(5)

β�
j =

{
β�
j + d�j , if |β�

j + d�j | >
√
2λ1/N

ρ
j

0, otherwise,

v�j =

{
v�j + u�

j/ρ, if |v�j + u�
j/ρ| >

√
2λ2/ρ,

0, otherwise,

where d�j is the j-th element of d� = (y −DTu� − β�)/Nρ.

Note that d� can be viewed as a dual variable of β�. From
(5), we conclude that

(6)

⎧⎨
⎩
β�
j = 0, if |β�

j + d�j | ≤
√
2λ1/N

ρ
j ,

d�j = 0, if |β�
j + d�j | >

√
2λ1/N

ρ
j .

Define an active set A = {j : |β�
j +d�j | >

√
2λ1/N

ρ
j } and an

inactive set I = {j : |β�
j + d�j | ≤

√
2λ1/N

ρ
j }. Then, we have

d�A = 0 and β�
I = 0. Thus on the active set A, only the dual

variable d� is 0, and the primal variable β� is different from
0. In contrast, on the inactive set I, the primal variable β�

is 0, and the dual variable d� may or may not be 0. From the
above discussion, set A is actually the active set for sparsity
in β�; that is, A = {j : β�

j �= 0}.
Similarly, we have the following equation for v:

(7)

{
v�j = 0, if |v�j + u�

j/ρ| ≤
√

2λ2/ρ,

u�
j = 0, if |v�j + u�

j/ρ| >
√

2λ2/ρ.

Define an active set B = {j : |v�j + u�
j/ρ| >

√
2λ2/ρ} and

an inactive set J = {j : |v�j + u�
j/ρ| ≤

√
2λ2/ρ}. Then, we

have u�
B = 0 and v�J = 0. Thus on the active set B, only the

dual variable u� is 0, and the primal variable v� is not 0. On
the inactive set J , the primal variable v� is 0, and the dual
variable u� component may or may not be 0. These facts
suggest that set B is the active set for sparsity in v� = Dβ�;
that is, B = {j : v�j �= 0}. Each element in B corresponds to
a change point at which the copy number changes.

2.2 Relationship with CBS

The basic ingredient of the CBS is the likelihood ratio
test statistic defined by

Zij =

√
(j − i)(n− j + i)

n

(
Sj − Si

j − i
− Sn − Sj + Si

n− j + i

)
,

(8)

where Si = Y1 + · · · + Yn, i = 1, . . . , n, is the partial
sum. The CBS algorithm computes Zij and then takes
ZC = max1≤i<j≤n |Zij | to be the first change-point can-
didate, whose significance is to be judged against a certain
criterion. Once it is considered significant, the interval [1, n]
is split, and the same procedure is applied recursively to

identify all the change points. The following lemma pro-
vides further insight into the relationship between Zij and
Y = (Y1, . . . , Yn)

�.

Lemma 1. Define F1,n
i,j to be the set of circular piecewise-

constant functions supported on [1, n] with change points at
i and j. We have

(9) argmax
i,j

|Zij | = argmin
i,j

min
f1,n
i,j ∈F1,n

i,j

n∑
t=1

(Yt − f1,n
i,j )2.

Lemma 1 shows that maximizing |Zij | is equivalent to
the least squares fit of a piecewise-constant function with
one or two change-points to Y = (Y1, . . . , Yn)

�. Further-
more, the optimization problem in (9) can be reformulated
as the following penalized least squares problem with the L0

penalty,

(10) min
β

n∑
t=1

(Yt−βt)
2 subject to

n∑
t=1

|βi−βi+1|0 ≤ 2.

Thus CBS iteratively solves the L0 constraint least squares
problem with the count of change points no more than 2.
The process of the CBS algorithm declaring a change is to
check whether |Zi,j | is large enough, which is equivalent to
checking whether the difference of the estimated β in two
separated segments is large enough. In this regard, we can
see that CBS is a special case of our method, which we name
it the fused L0 approach.

When the change points are estimated to be i and j, then
the CBS is applied cursively on the segments [1, i], [i+1, j],
and [j + 1, n]. We will see next that the fused L0 method
is optimal compared to the CBS algorithm in terms of the
sum of squared errors (SSE). Note that

min
f1,n
6 ∈F1,n

6

n∑
t=1

(Yt − f1,n
6 )2(11)

≤ min
i′,j′

min
f1,i

i′,j′∈F1,i
i,j

i∑
t=1

(Yt − f1,i
i′,j′)

2

+min
i′,j′

min
fi+1,j

i′,j′ ∈Fi+1,j
i,j

j∑
t=i+1

(Yt − f i+1,j
i′,j′ )2

+min
i′,j′

min
fj+1,n

i′,j′ ∈Fj+1,n
i,j

n∑
t=j+1

(Yt − f j+1,n
i′,j′ )2,

where F1,n
6 is the set of piecewise-constant function sup-

ported on [1, n] with at most six change points. The left-
hand side of the above inequality is equivalent to the penal-
ized least squares problem with L0 penalty,

(12) min
β

n∑
t=1

(Yt−βt)
2 subject to

n∑
t=1

|βi−βi+1|0 ≤ 6.
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The right-hand side of (11) is the SSE with change points
detected by the CBS algorithm. Thus, the SSE of the fused
L0 method is always smaller than the CBS algorithm’s SSE.
This relationship proves that CBS can be viewed as a top-
down sequential greedy algorithm to solve the constraint
least squares problem.

2.3 Algorithm

From the discussion in Section 2.1, the solution to prob-
lem (4) has complementary supports in the primal-dual vari-
able pairs. The two active sets A and B play a crucial role
in solving the fused L0 problem; indeed, if B or J is known
a priori, we may estimate u� on J by

(13) u�
J = (DJD�

J )−1DJ Y,

where DJ denotes the sub matrix with the row index in J .
Then if A is known a priori, the primal-dual variable β� on
A can be estimated by

(14) β�
A = YA −D�

Au
�.

Thus, the key ingredient in our algorithm is the determi-
nation of sets A and B. Firstly, we can see that there are
three parameters in sets A and B. The parameter ρ can be
viewed as a learning rate, for which a larger value is bet-
ter; here, we set ρ = n2. The parameters λ1 and λ2 are two
real numbers and related to the number of change points
and nonzero points respectively. Take the active set B� as
an example. Let Δj = |v�j + 1

ρu
�
j |, j = 1, . . . , n − 1 and de-

note the order statistic Δ1, . . . ,Δn−1 by decreasing order
as Δ[1], . . . ,Δ[n−1]. If parameter

√
2λ1 lies in [Δ[k],Δ[k+1]),

the active set B� stays the same. Thus, we can choose√
2λ1 = Δ[k] and transform the problem of selecting λ1 into

determining the integer k. Similarly, we can replace λ2 with
an integer s. Note that k and s have the explicit meaning
of the number of segments and number of nonzero probes,
respectively. Thus we can develop an iterative procedure for
updating A and B for fixed k and s and search over a two-
dimensional grid of possible integers to find an optimal pair
of parameters.

Suppose at the m-th iteration with the current estimate
Am and Bm, we can estimate um and βm by (13)–(14) and
derive dm and vm as discussed above. Then we can update
the active sets by

Bm+1 =
{
j : Δm

j ≥ Δm
[k]

}
, Jm+1 =

{
j : Δm

j < Δm
[k]

}
,

Am+1 =
{
i : Γm

i ≥ Γm
[s]

}
, Im+1 =

{
i : Γm

i < Γm
[s]

}
,

where Δm
j = |vmj + 1

ρu
m
j |, j = 1, . . . , n − 1 and Γm

i =√
Nρ

i |βm
i + dmi |, i = 1, . . . , n.

We call this the Alternating Minimization Induced Ac-
tive Set (AMIAS) algorithm for solving the constraint least
squares problem (4). AMIAS is presented in pseudocode
form below.

AMIAS algorithm

1. Specify the number of change points k, the cardinality s
of the active set for sparsity, and the maximum number
of iterations mmax. Let ρ = n2. Initialize I0 = φ, A0 =
(I0)c and B0 = φ, J 0 = (B0)c, where φ is the empty set.

2. For m = 0, 1, 2, . . . ,mmax, do

(2.a) Determine um and vm by

um
Bm = 0, and um

Jm = (DJmD�
Jm)−1DJmY,

vmJm = 0, and vmBm = DBm(Y −D�um).

(2.b) Determine βm and dm by

βm
Im = 0, and βm

Am = YAm −D�
Amum,

dmAm = 0, and dmIm =
(
YIm −D�

Imum
)
/Nρ

Im .

(2.c) Determine Δm
j = |vmj + 1

ρu
m
j |, j = 1, . . . , n−1 and

Γm
i =

√
Nρ

i |βm
i + dmi |, i = 1, . . . , n.

(2.d) Update the active and inactive sets by

Bm+1 =
{
j : Δm

j ≥ Δm
[k]

}
,

Jm+1 =
{
j : Δm

j < Δm
[k]

}
,

Am+1 =
{
i : Γm

i ≥ Γm
[s]

}
,

Im+1 =
{
i : Γm

i < Γm
[s]

}
.

(2.e) If Am+1 = Am and Bm+1 = Bm, then stop, else
m = m+ 1 and return to steps (2.a)–(2.d).

3. Output (u, v) = (um, vm) and (β, d) = (βm, dm).

In the AMIAS Algorithm, all computational steps re-
quire at most O(n) operations except for the computation
of the dual variable u in (2.a). This step involves matrix
inverse calculation, which is computationally expensive, es-
pecially when n is large. To avoid the calculation of the
inverse matrix (DJmD�

Jm)−1, we here adopt the efficient
algorithm proposed in Wen et al. (2023). In particular, for
a pre-specified number of change points k, assume that Bm

separates the indices {1, . . . , n} into k + 1 blocks with size
{n1, . . . , nk+1}. The matrix DJmD�

Jm is a block diagonal
matrix with k + 1 blocks and its i-th main-diagonal sub
matrix defined by

Bni =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1
−1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
∈ Rni×ni .
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Then the inverse of the matrix DJmD�
Jm is given by

(15) DJmD�
Jm =

⎡
⎢⎢⎢⎣

B−1
n1

0 . . . 0
0 B−1

n2
. . . 0

...
...

. . .
...

0 0 . . . B−1
nk+1

⎤
⎥⎥⎥⎦ ,

where B−1
ni

= (bpq)ni×ni with bpq = min{p, q}(ni + 1 −
max{p, q})/(ni + 1). Therefore, the computational cost for

the matrix inverse is O(
∑k+1

i=1 n2
i ) and the overall compu-

tational cost of AMIAS algorithm is O(n +
∑k+1

i=1 n2
i ). For

example, the AMIAS algorithm costs O(n2) when the num-
ber of change points is fixed. When the number of change
points is O(n/ log(n)) and they are equally spaced, the com-
putational cost of the AMIAS algorithm is O(n+ log(n)), a
linear computational cost.

Two parameters, i.e., k and s, need to be tuned in prac-
tical applications, which would need a two-dimensional grid
search for an optimal choice if approached naively. To allevi-
ate the computation cost in the tuning parameter determi-
nation, we develop a two-step procedure with change point
detection in the first step and zero-segment removal in the
second step. In this way, there is no need to tune s, and thus
the computational time is much reduced. To be specific, we
set λ1 = 0 in (4) and derive an estimate of β in the first step.
Based on the current estimate, we remove segments with the
smallest β estimate sequentially. For each removal, we cal-
culate the sparsity Schwartz Information Criterion (sSIC)
defined as follows,

(16) sSIC(β) = n log

(
1

n

n∑
i=1

(Yi − βi)
2

)
+ 2q log(n),

where q = #{non zero coefficient block in β} represents
the complexity of the model, with larger values indicating
greater complexity. Then, an optimal β estimate with the
minimum sSIC value is chosen. We remark that if we discard
the penalty in sparsity in β, it reduces to the standard SIC
proposed by Yao (1988) for multiple change point detection.
The two-step AMIAS algorithm is outlined as follows.

Two-step AMIAS algorithm for constraint least
squares problem

1. Specify the maximum number of change points K and
the maximum number of iterations mmax. Let ρ = n2.

2. For k = 1, 2, . . . ,K, do

(2.1) Initialize B0 = φ and J 0 = (B0)c, where φ is the
empty set.

(2.2) For m = 0, 1, 2, . . . ,mmax, do

(a) Determine um and vm by

um
Bm = 0, and um

Jm = (DJmD�
Jm)−1DJmY,

vmJm = 0, and vmBm = DBm(Y −D�um).

(b) Determine Δm
j = |vmj + 1

ρu
m
j |, j = 1, . . . , n−1.

(c) Update the active and inactive sets by

Bm+1=
{
j : Δm

j ≥ Δm
[k]

}
, Jm+1=(Bm+1)c.

(d) If Bm+1 = Bm, then stop, else m = m+1 and
return to steps (a)–(c).

(e) Output (u(k), v(k)) = (um, vm) and
(β(k), d(k)) = (βm, dm).

3. Arrange the absolute values of the jump sizes in theK+1
segments of β(k) in descending order. Denote the ordered
segment sets by S(1), S(2), . . . , S(K+1), and their sizes by
sk = |S(k)|, k = 1, 2, . . . ,K + 1. For k = 1, 2, . . . ,K + 1,
calculate

(a) β̃(k)j = β(k)j when j ∈ S(1), . . . , S(k),

(b) β̃(k)j = 0 for j ∈ S(k+1), . . . , S(K+1).

4. Determine the optimal tuning parameters k∗ and s∗ =∑k∗

k=1 sk such that β̃(k∗) has the smallest sSIC value.

Output β = β̃(k∗).

Remark 1. The two-step AMIAS algorithm provides a sim-
plified strategy for determining the optimal values of tun-
ing parameters k and s in the AMIAS algorithm. As said
before, the naive approach requires a two-dimensional grid
search, say {1, 2, . . . ,K}×{1, 2, . . . , S}, for choosing an op-
timal pair for k and s. In the two-step AMIAS algorithm,
we only need to search for the best k in {1, 2, . . . ,K} and
determine optimal s by that optimal k. This strategy can re-
duce the computational cost of finding the tuning parameters
substantially.

3. SIMULATION STUDIES

In this section, we investigate the finite-sample perfor-
mance of the fused L0 method and compare it to other com-
petitors. The competing methods include the CBS method
proposed by Olshen et al. (2004), the wild binary segmen-
tation (WBS) method introduced by Fryzlewicz (2014) for
multiple change point detection, and the fused lasso method
proposed by Tibshirani and Wang (2008). In general, the
default settings are employed for each method, following
their respective proposals.

Given an estimator β̂ of β, we measure the estimation
error by two metrics: the mean squared error (MSE) and
the mean absolute deviation (MAD):

MSE(β̂) =
1

n

n∑
i=1

(β̂i − βi)
2, MAD(β̂) =

1

n

n∑
i=1

|β̂i − βi|.

Here n is the number of observations, and β̂i is the estimate
of parameter βi for the i-th observation.
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We also report the number of change points detected,
denoted by q̂. To assess the accuracy of our change point
detection, we use the scaled Hausdorff distance defined as

(17) dH =
1

n
max

{
max

j
min
k

|τj − τ̂k|,max
k

min
j

|τ̂j − τk|
}
,

where τ̂k, k = 1, . . . , q̂ and τj , j = 1, . . . , q are the estimated
and true change-point locations, respectively. We can see
that 0 ≤ dH ≤ 1, and a value of dH close to 0 indicates the
good performance of the estimator. We consider the model
in (1) with n = 10,000 and the true signal β having ten
non zero blocks of values (2.56, −3.47, 3.02, 3.26, −3.92,
−3.12, 1.74, 3.05, −3.09, −3.69) and sizes (35, 18, 79, 62,
51, 27, 84, 32, 26, 19), respectively. Four scenarios, (S1)–
(S4), are considered to evaluate the robustness of the fused
L0 method in identifying change points if the assumption
of homogenous variance in error term or the normal distri-
bution assumption are violated. In particular, the errors are
drawn from standard normal distribution N(0, 1) in scenar-
ios (S1)–(S2). In scenarios (S1) and (S2), the parameter σ
is set to be 1 and 2, respectively. These values are chosen to
represent a situation with low noise and a situation with low
signal strength, respectively. In scenario (S3), the parame-
ter σ varies across different positions such that σ = 2 when
i = 3001, . . . , 4000 and i = 7001, . . . , 8000, and σ = 1 other-
wise. We consider the noise distribution as a t-distribution
with degree of freedom of 3 multiplied by a factor 0.5 in
scenario (S4). We simulate data from (S1)–(S4), generating
100 replications for each scenario, and record summary re-
sults. Figure 1 shows an example of the simulated data from
(S1)–(S4).

Table 1 summarizes the mean and standard deviation
of the five metrics. Among all methods, cghFLasso pro-
duces a significantly larger number of change points on av-
erage in all scenarios, indicating its tendency to over-select.
This phenomenon is common to methods using the L1-type
penalty (Bühlmann and Van De Geer, 2011).

In scenario (S1), where errors come from a Gaussian dis-
tribution with a small and homogeneous variance, WBS has
the best performance in terms of all measures except for
MAD, followed by the CBS and fused L0 methods. Com-
pared with CBS and WBS, the fused L0 method yields a
slightly larger yet comparable average value in terms of dH ,
particularly when considering the large values in the stan-
dard deviations. Additionally, the fused L0 method bears
the smallest MAD among all methods. Therefore, our pro-
posed method yields comparable results to CBS and WBS
when the data contains Gaussian error and a high signal.

In scenario (S2), where a weak signal is considered, CBS
performs the best, as evidenced by the smallest average
value of MSE and dH . Nevertheless, our fused L0 method
has a considerably small MAD value. Similarly, in scenario
(S3), where errors have heterogeneous variance, CBS per-
forms the best, followed by the fused L0 and WBS meth-
ods. Notably, WBS tends to identify slightly more change

Figure 1. An example using simulated data from scenarios
(S1)–(S4).
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points on average and has the largest dH among all meth-
ods except for cghFLasso. WBS’s success might be because
WBS works even for very small jump magnitudes and treats
random jumps in segments with higher variance as change
points. Again, our fused L0 does a reasonably good job in
this scenario.

When the errors are distributed from a t distribution
with df = 3 (as observed in scenario (S4)), the performance
of WBS deteriorates drastically, as evidenced by it having
the largest MSE and the second-largest number of identi-
fied change points. CBS has a tendency of under-selecting
change points, giving rise to a low value in the number of
change points (q̂). It should be noted that not detecting a
true change point is much more serious than over-selecting
by identifying one unnecessary point. Our fused L0 method
identifies an average of 22 change points and gives the low-
est dH among all methods. In terms of estimation accuracy,
while CBS yields the smallest MSE, our fused L0 method
has the smallest MAD. This means that the fused L0 method
performs toward the top based on the overall evaluation of
estimation and change point detection accuracy.

Compared with scenario (S1), where a Gaussian error is
considered, enormous observations occasionally occur in sce-
nario (S4), as demonstrated in Figure 1. These enormous ob-
servations can be considered as ‘spikes’ within a very small
region, with magnitudes greater than the original signal.
Our approach aims to solve a constrained least squares prob-
lem, with constraints imposed on the sparsity of both β and
Dβ. By constraining Dβ, we can treat the ‘spikes’ as change
points with very short spacings between change points, ef-
fectively limiting their impact on the least squares loss. The
average number of detected change points from our method
is 22, which is slightly larger than the true value of 20. In
contrast, the cghFLasso method detects a much larger num-
ber of change points due to the use of an L1-type constraint,
which can cause bias and over-selection problems similar
to other variable selection methods based on the L1-norm
(Behrendt and Schweikert, 2021; Zhao and Yu, 2006).

Overall, the fused L0 method has comparable and stable
performance with different error distributions, which sug-
gests that our proposal is more suitable for practical appli-
cation than previous methods.

4. REAL DATA ANALYSES

In this section, we apply the aforementioned methods to
two array CGH datasets. The first data set contains synthe-
sis data from two patients with diagnosed primal glikblas-
toma (GBM) and can be downloaded from R package cgh-
FLasso (Tibshirani and Wang, 2008). It was constructed
such that both local duplications and a large region of dele-
tion exist in the same chromosome; for further information
see Tibshirani and Wang (2008).

The second data set comes from the HapMap project
(http://www.hapmap.org/), which catalogued SNPs in four

Table 1. Performance of the different methods on detecting
change points in the simulated datasets. Within each column,
the mean and the standard deviations (inside parenthesis) are

recorded

MSE MAD q̂ dH(×102)

(S1) Gaussian error sd=1
CBS 0.01 (0.00) 0.03 (0.01) 20 (1) 0.29 (0.95)
WBS 0.01 (0.00) 0.03 (0.01) 20 (0) 0.07 (0.48)
cghFlasso 0.02 (0.00) 0.08 (0.01) 97 (33) 6.28 (2.15)
Fused L0 0.03 (0.01) 0.02 (0.01) 20 (0) 0.35 (0.93)

(S2) Gaussian error sd=2
CBS 0.03 (0.01) 0.07 (0.01) 20 (1) 0.80 (2.20)
WBS 0.04 (0.01) 0.07 (0.01) 19 (1) 4.01 (5.38)
cghFlasso 0.07 (0.01) 0.17 (0.01) 141 (29) 7.55 (0.84)
Fused L0 0.09 (0.02) 0.05 (0.01) 18 (2) 7.33 (6.41)

(S3) mixed error
CBS 0.01 (0.01) 0.04 (0.01) 21 (1) 0.56 (1.22)
WBS 0.02 (0.01) 0.04 (0.01) 21 (3) 1.26 (1.98)
cghFlasso 0.06 (0.01) 0.15 (0.02) 288 (58) 7.64 (0.90)
Fused L0 0.04 (0.01) 0.03 (0.01) 21 (1) 1.20 (2.41)

(S4) t-distributed error
CBS 0.04 (0.08) 0.04 (0.03) 18 (5) 7.60 (15.26)
WBS 0.11 (0.10) 0.04 (0.01) 41 (7) 6.33 (1.43)
cghFlasso 0.06 (0.04) 0.08 (0.02) 47 (14) 5.02 (4.05)
Fused L0 0.05 (0.09) 0.02 (0.01) 21 (1) 1.28 (1.92)

of the major ethnic human populations. We downloaded
the raw CEL file of 270 individuals from https://www.
mathworks.com and obtained the log R ratio values follow-
ing the preprocessing procedure. Here we use data from one
individual as an illustrative example.

The estimators for the GBM data from different methods
are illustrated in Figure 2. We can see that while all meth-
ods successfully identify both the local duplications and the
large region of deletions, WBS seems to be very sensitive to
outlier measurements. Compared with cghFLasso, fused L0

has cleaner and smoother solutions for segmentations, espe-
cially in the large region. The fused L0 approach has esti-
mates similar to those from CBS except for the left region,
where a weak alteration signal was detected by fused L0.

For the HapMap data, we first look at the number of
change points found by the tested methods. Again, cgh-
FLasso detected too many change points, a total of 3492.
The number of change points detected by our fused L0

method is 106, which lies between those by CBS (53 change
points) and WBS (180 change points). Next, we evaluate
the overlapping proportion of the change points identified
by our proposal and the other three methods by the Venn
diagram in Figure 4. From Figure 4, we can see that 13
common change points are detected by all methods, which
indicates these are true change points.

To gain further insight into the differences in these four
methods, we plotted the log R ratio estimate from each
method in Figure 3. All methods except cghFLasso produce
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Figure 2. Array CGH profile of the GBM data. The red line in
each panel represents the estimated copy number of a

particular method, whose name is shown on the top of each
sub figure.

smooth solutions. The estimate from cghFLasso fluctuates
around zero with small jump size, which means that cgh-
FLasso might not control false positives for change point
detection in this specific data. WBS has a tendency to pick
outliers as change points, as shown in Figure 3. While fused
L0 performs similarly to CBS, it identified more changes
with weak jump size, as shown in the left side of the sub
figures. This confirms that CBS tends to miss weak signals
(Fryzlewicz, 2014).

5. CONCLUSION

In this paper, we propose a novel CNV detection method
by formulating the problem as a constraint least squares
problem based on the L0 norm. An efficient algorithm is
developed by deriving a necessary optimality condition of its
solution. We evaluate the finite-sample performance of the
proposal via numerical simulation studies and two analyses
of real-world data.

The proposed method can be extended to the whole-
genome sequencing data obtained from next-generation se-
quencing technology. Xi et al. (2011) developed an accurate
and efficient CNV detection algorithm via minimizing the
Bayesian information criterion (BIC). The algorithm itera-
tively identifies and merges the most similar pair of bins,
using the BIC as the merging and stopping criterion. The
BIC can be formulated as penalized log-likelihood function
with L0 penalty on the model complexity, similar to the
model we introduce here. The study of how to extend our
methods to the whole-genome sequencing data is beyond

Figure 3. Array CGH profile of the HapMap data. The red
line in each panel represents the estimated copy number of a
particular method, whose name is shown on the top of each

sub figure.

Figure 4. Venn diagram of the detected change points by
different methods using the HapMap data.

the scope of the current paper but constitutes an intriguing
topic for further research.
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APPENDIX A. PROOF OF THEOREM 1

Proof. It can be seen that the Lagrangian function L(β, v, u)
in (4) is continuously differentiable with respect to u.
Since (β�, v�, u�) is an alternating solution of minimizing

L(β, v, u), we have the following equation:

∂L(β, v, u)

∂u

∣∣∣∣
(β�,v�,u�)

= Dβ� − v� = 0.

It reduces to

(18) Dβ� − v� = 0.

Given (β�, u�), the Lagrangian function L(β�, v, u�) can
be minimized coordinate-wise with respect to v. Consider
the expression

l(vj) � λ|vj |0 +
ρ

2
((Dβ�)j − vj)

2 + u�
j ((Dβ�)j − vj),

which is continuously differentiable with respect to vj except
a critical point vj = 0. When vj �= 0, minimizing l(vj) leads

to

vmin = (Dβ�)j +
1

ρ
u�
j .

To check whether vmin is the global minimum, we only need
to see whether the inequality l(vmin) ≤ l(0) is satisfied. By

simple calculation,

l(vmin)− l(0) = λ− ρ

2

(
(Dβ�)j +

1

ρ
u�

)2

.

Then, given (β�, u�), the alternating minimum v�j is

v�j =

{
(Dβ�)j + u�

j/ρ, if
∣∣(Dβ�)j + u�

j/ρ
∣∣ > √

2λ2/ρ,

0, otherwise.

(19)

Given (v�, u�), the Lagrangian L(β, v�, u�) is (up to some

constants not related to β):

1

2
‖Y − β‖22 + λ1‖β‖0 +

ρ

2
‖Dβ − v�‖22 + (u�)TDβ

∝ 1

2

{
β�(I+ρD�D)β−2(y−D�(u� − ρv�))Tβ

}
+ λ1‖β‖0

∝ 1

2
‖(I+ρD�D)1/2β−(I+ρD�D)−1/2(y−D�(u�−ρv�))‖22

+ λ1‖β‖0

Let X̃ = (I + ρD�D)1/2 and Ỹ = (I + ρD�D)−1/2(y −
D�(u� − ρv�)). Then the minimization of L(β, v�, u�) with
respect to β is equivalent to

minβ
1

2
‖X̃β − ỹ‖22 + λ1‖β‖0.

Then given β�
−j = (β�

1 , . . . , β
�
j−1, β

�
j+1, . . . , β

�
n), the term β�

j

can be obtained by

β�
j ∈ argmin

t

1

2
‖X̃−jβ

�
−j − Ỹ + X̃jt‖22 + λ1|t|0

⇔ β�
j ∈ argmin

t

1

2
|X̃j |2t2 + tX̃�

j (X̃−jβ
�
−j − Ỹ ) + λ1|t|0

⇔ β�
j ∈ argmin

t

1

2
|X̃j |2

(
t+

1

|X̃j |
X̃�

j (X̃−jβ
�
−j − Ỹ )

)2

+ λ1|t|0

⇔ β�
j ∈ argmin

t

1

2
|X̃j |2

(
t− β�

j +
1

|X̃j |
X̃�

j (X̃β� − Ỹ )

)2

+ λ1|t|0.

Let d�j = X̃T
j (Ỹ −X̃β�)/|X̃j | and d� = (d�1, . . . , d

�
n). Since

the term |X̃j |2 is the j-th element in the diagonal vector of

X̃T X̃ = (I + ρDTD), we have |X̃j |2 = 1 + 2ρ for j =

2, . . . , n − 1, and |X̃j |2 = 1 + ρ for j = 1, n. Denote Nρ =
(Nρ

1 , . . . , N
ρ
n) with Nρ

j = 1 + 2ρ for j = 2, . . . , n − 1, and
Nρ

j = 1 + ρ for j = 1, n. Then we have

d� = X̃T (Ỹ − X̃β�)/Nρ(20)

= (y −DT (u� − ρv�)− (I + ρDTD)β�)/Nρ,

and

(21) β�
j =

{
β�
j + d�j , if |β�

j + d�j | >
√
2λ1/N

ρ
j

0, otherwise.

This, together with Equations (18) and (19), completes the
proof.

APPENDIX B. PROOF OF LEMMA 1

Proof. Let Fn
i,j denote the set of piecewise constant func-

tions with change point s at i and j, 1 ≤ i < j ≤ n. Then for
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fixed i and j (>i), the problem of finding the least squares
fit is

min
fn
i,j∈Fn

i,j

n∑
t=1

(Yt−fn
i,j)

2 =

j∑
t=i+1

(Yt−Ȳ1)
2+

∑
t≤i ort>j

(Yt−Ȳ2)
2,

where Ȳ1 =
∑j

t=i+1 Yt/(j − i) and Ȳ1 =
∑

t≤i ort>j Yt/(n−
j + i) are the least squares fit in segments (i+1, . . . , j) and
(j + 1, . . . , n, 1, . . . , i). Then

min
i,j

min
fn
i,j∈Fn

i,j

n∑
t=1

(Yt − fn
i,j)

2

⇔ min
i,j

j∑
t=i+1

(Yt − Ȳ1)
2 +

∑
t≤i ort>j

(Yt − Ȳ2)
2

⇔ min
i,j

j∑
t=i+1

Y 2
t − (j − i)Ȳ 2

1 +
∑

t≤i ort>j

Y 2
t − (n− j + i)Ȳ 2

2

⇔ min
i,j

n∑
t=1

Y 2
t − (j − i)Ȳ 2

1 − (n− j + i)Ȳ 2
2

⇔ max
i,j

(j − i)Ȳ 2
1 + (n− j + i)Ȳ 2

2

⇔ max
i,j

(j − i)Ȳ 2
1 + (n− j + i)Ȳ 2

2 −
( n∑

t=1

Yt

)2

/n

⇔ max
i,j

(j − i)Ȳ 2
1 + (n− j + i)Ȳ 2

2

−
(
(j − i)Ȳ1 + (n− j + i)Ȳ2

)2
/n

⇔ max
i,j

(j − i)(n− j + i)

n
(Ȳ1 − Ȳ2)

2

⇔ max
i,j

|Zi,j |2,

which completes the proof.
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