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Sieve maximum likelihood estimation for
generalized linear mixed models with an unknown
link function

Mengdie Yuan and Guoqing Diao
∗

We study the generalized linear mixed models with an
unknown link function for correlated outcome data. We pro-
pose sieve maximum likelihood estimation procedures by
using B-splines. Specifically, we estimate the unknown link
function in a sieve space spanned by the B-spline basis of
the linear predictor that includes both the fixed and random
terms. We establish the consistency and asymptotic normal-
ity of the proposed sieve maximum likelihood estimators.
Extensive simulation studies, along with an application to
an epileptic study, are provided to evaluate the finite-sample
performance of the proposed method.
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1. INTRODUCTION

Canonical link functions are commonly used in practice
for generalized linear models (GLMs) and generalized linear
mixed models (GLMMs). However, there have been increas-
ing concerns about the impact of misspecification of the link
function on the inference procedure, say the consistency and
robustness of the regression parameter estimators. [13] pro-
vided data analytic procedures to assess the adequacy of
the assumed link function for GLMs. [1] proposed families
of parametric link functions for binary outcomes by con-
sidering departures from the logistic model. [14] extended
these ideas to other GLMs. However, these parametric mod-
els may still not be adequate in many applications [4]. There-
fore, instead of assuming a known (or parametric) form of
the link function, one can leave it completely unspecified and
estimate it together with the mean model in GLMs. How-
ever, in this situation, it is challenging to estimate the un-
known parameters, including an infinite-dimensional param-
eter in the unknown link function and the finite-dimensional
regression coefficients. GLMs with unknown link functions
have been well studied for cross-sectional data. Kernel-based
method to estimate the unknown link function in GLMs has

∗Corresponding author.

been studied by [18]. Other smoothing techniques without
full model specification have also been considered in [8], [3]
and [11], among others. GLMs have also been widely applied
to longitudinal and/or correlated data.

For longitudinal data, we need to consider the variance-
covariance structure to account for the within-subject cor-
relations. Generally, there are two ways to fit the longitu-
dinal data: marginal approach (such as GLMs) and con-
ditional approach (such as GLMMs). GLMs construct the
mean and variance-covariance structures separately. There
are no subject-specific coefficients or random effects in the
mean structure, and thus the inference is made on the popu-
lation average. The aforementioned methodologies of dealing
with GLMs with unknown link functions for cross-sectional
data can also be applied to longitudinal data. [4] fitted the
variance-covariance matrix as a function of the means where
the function is unknown, then used the local polynomial
kernel smoothing to estimate both the link function and
variance-covariance function, and proposed “estimated esti-
mating equations” (EEE) to obtain regression parameter es-
timators. [20] proposed profile-type estimating functions for
the coefficients by applying the Kernel smoothing method
to estimate the unknown link function.

An alternative method to estimate the unknown link
function is to use the method of sieves, such as B-spline
smoothing and truncated-power-spline smoothing, which is
favorable due to its computational flexibility. [2] developed
estimating equation-based procedures to estimate the un-
known link function under the GLMs using the penalized
truncated-power-spline smoothing. In fact, [7] compared
the penalized B-spline smoothing and penalized truncated-
power-spline smoothing. They found no advantage of the
penalized truncated-power-spline smoothing over the penal-
ized B-spline smoothing. On the other hand, GLMMs in-
corporate subject-specific random effects in the mean struc-
ture in addition to the fixed effects and allow the regression
coefficients to vary across subjects through the random ef-
fects. One can also incorporate the random effects into the
single index models, where we use a function of covariates
to predict the outcome instead of a linear combination of
fixed effects. Single index models are very useful for pre-
dictive modeling in various areas, such as econometrics and
biometrics. [10], [9], and [12] have studied the single index
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models with random effects. However, for explanatory mod-
eling, one may prefer to use regression coefficients instead of
a function to interpret the relationship between the outcome
and the covariates. Essentially no work on GLMM with an
unknown link function is available in the literature.

In this article, we propose a sieve maximum likelihood
estimation procedure to estimate the unknown parameters,
including the regression coefficients, variance-covariance ma-
trix of the random effects, and the unknown link function
in GLMMs by using the B-spline smoothing. We derive the
convergence rate of the sieve maximum likelihood estimators
(MLEs) and establish the asymptotic normality and semi-
parametric efficiency of the sieve MLEs of the regression
coefficients and the variance-covariance matrix of the ran-
dom effects. Extensive simulation studies and an application
to an epileptic study [17] are provided.

2. METHOD

Suppose there are n subjects in the study with ki ob-
servations for the ith subject. Let Yij denote the jth out-
come of the ith subject (i = 1, . . . , n; j = 1, . . . , ki),
Xij = (Xij1, . . . , Xijpx)

T and Zij = (Zij1, . . . , Zijpz )
T de-

note, respectively, the corresponding px-dimensional and pz-
dimensional vectors of covariates. We assume that the out-
come variable Yij has a probability distribution belonging
to the exponential family. Specifically, the density of Yij in
the general form of the exponential family is given by

f(yij) = exp

{
yijφij − b(φij)

a(ϕ)
− c(yij , ϕ)

}
,

j = 1, . . . , ki, i = 1, . . . , n,

where a(·), b(·), and c(·) are known functions, and ϕ is a
dispersion parameter, which may be either known or un-
known. Here φij contains covariates information and their
associated parameters.

Consider the following generalized linear mixed model

g (E(Yij |Xij ,Zij ,bi)) = h(XT
ijβ + ZT

ijbi),

j = 1, . . . , ki, i = 1, . . . , n,
(1)

where g(·) is a known transformation function, h(·) is a trun-
cated function such that for two constants −∞ < c1 < c2 <
∞, h(x) = h(c1) if x < c1 and h(x) = h(c2) if x > c2, and β
is a px × 1 vector of unknown regression parameters More-
over, bi’s are pz-dimensional subject-specific random vec-
tors that are independently and identically distributed with
a joint distribution ψ. We impose the technical condition on
h because, unlike standard single index models, the linear
predictor XT

ijβ+ZT
ijbi is not bounded. The transformation

function g(·) can be taken as the canonical link function. For
example, g(x) = x for normal data, g(x) = log(x) for count
data, and g(x) = logit(x) for binary data. Notice that the
actual link function is h−1 ◦ g(·). To ensure the identifiabil-
ity of the model, we do not include an intercept in the term

XT
ijβ, and impose the constraint on β such that ‖β‖ = 1

and βpx > 0, where ‖ · ‖ is the Euclidean norm. In this arti-
cle, we assume bi follows a multivariate normal distribution
with mean 0 and variance-covariance matrix Σ. We also as-
sume Yi1, . . . , Yiki are mutually independent given bi. Let
μij = E(Yij |Xij ,Zij ,bi). Then for the canonical link func-
tion, we have g(μij) = φij . We hereinafter refer to model (1)
as the generalized linear mixed single index model (GLM-
SIM) while referring to the standard GLMM with a known
link function simply as GLMM.

The conditional likelihood given bi for the ith subject is
given by

Lci(β, h, ϕ|Xi,Zi,Yi,bi)

=

ki∏
j=1

exp

[
1

a(ϕ)
{Yijh(X

T
ijβ + ZT

ijbi)

− b
(
h(XT

ijβ + ZT
ijbi)

)
} − c(Yij , ϕ)

]
,

where Xi = (XT
i1,X

T
i2, . . . ,X

T
iki

)T , Zi = (ZT
i1,Z

T
i2, . . . ,

ZT
iki

)T , and Yi = (Yi1, Yi2, . . . , Yiki)
T . It follows that the

log-likelihood given the observed data {(Xi,Zi,Yi), i =
1, . . . , n} takes the form

ln(β, h, ϕ,Σ)=

n∑
i=1

log

∫
Lci(β, h, ϕ|Xi,Zi,Yi,bi)ψ(bi)dbi,

where ψ(·) is the multivariate normal density function with
mean 0 and variance-covariance matrix Σ.

Consider a bounded interval (c1, c2). We also consider
Kn interior knots v1, v2, . . . , vKn with Kn = O(nν) and
max0≤j≤Kn |vj+1 − vj | = O(n−ν), for ν ∈ (0, 0.5), and
c1 = v0 ≤ v1 ≤ v2 ≤ · · · ≤ vKn ≤ vKn+1 = c2. Let
Sn(v,Kn,M) denote the space of polynomial splines of or-
der M defined in [15], where v = (v0, v1, . . . , vKn+1). Then
there exists a local basis {Bj : 1 ≤ j ≤ Kn +M} such that
for any s ∈ Sn(v,Kn,M), we have

s(t) =

Kn+M∑
j=1

γjBM,j(t) = γTBM (t),

where γ = (γ1, γ2, . . . , γKn+M )T are the smoothing coeffi-

cients and BM (t) =
{
BM,1(t), BM,2(t), . . . , BM,Kn+M (t)

)T
are the M -degree B-spline basis functions. Under some
smoothness assumptions, the unknown univariate function
h(·) can be well approximated by an M -degree B-spline in
Sn(v,Kn,M), that is,

h(t) ≈

⎧⎪⎨
⎪⎩
∑Kn+M

j=1 γjBM,j(t) = γTBM (t), t ∈ [c1, c2];

γTBM (c1), t < c1;

γTBM (c2), t > c2.
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Replacing h(t) by γT B̃M (t), where B̃M (t) =
BM (c1)I(t < c1)+BM (t)I(c1 ≤ t ≤ c2)+BM (c2)I(t > c2),
in the conditional likelihood function, we obtain

Lci(β,γ, ϕ|Xi,Zi,Yi,bi)

=

ki∏
j=1

exp

[
1

a(ϕ)

{
Yijγ

T B̃M (XT
ijβ + ZT

ijbi)

− b
(
γT B̃M (XT

ijβ + ZT
ijbi)

)}
− c(Yij , ϕ)

]
.

Similarly, we can obtain the observed-data log-likelihood,
denoted by ln(β,γ, ϕ,Σ). In order to estimate the un-
known parameters, we need to maximize the observed-data
log-likelihood. Notice that there is no closed form for the
observed-data log-likelihood in general except for normal
responses. We suggest using the Gauss-Hermite quadra-
ture to approximate the log-likelihood function numerically.
Let σ = (σ1, σ2, . . . , σr) be a r × 1 vector of parameters
that contain all the unknown parameters involved in the
variance-covariance matrix Σ. To accommodate the con-
straint ‖β‖ = 1 and βpx > 0, we use the following repa-
rameterization

βj =
αj√∑px

l=1 α
2
l

, j = 1, . . . , px,

where αpx = 1. Define θ = (α,γ,σ) if ϕ is known and
θ = (α,γ,σ, ϕ) if ϕ is unknown. The score equations are
then given by

∂ln(θ)

∂θ
= 0.

We use an iterative procedure to estimate the unknown
parameters θ. The resulting sieve MLEs are denoted by
θ̂n = (α̂n, γ̂n, σ̂n) or θ̂n = (α̂n, γ̂n, ϕ̂n, σ̂n) for known or

unknown ϕ, respectively. Then β̂n, the sieve MLE of β, is
determined by α̂n, and Σ̂n, the sieve MLE of Σ, is deter-
mined by σ̂n. Furthermore, the sieve MLE of h(·) is ĥn(t) =

γ̂nB̃M (t). Notice that the likelihood involves the value of the
basis functions at XT

ijβ + zTijbi, j = 1, . . . , ki, i = 1, . . . , n.
We recommend choosing the knots based on the equally
spaced sample quantiles of XT

ijβ + ZT
ijb

∗
k, j = 1, . . . , ki, i =

1, . . . , n, k = 1, . . . , Npz
q , whereNpz

q is the number of quadra-
ture points and b∗

k are the kth abscissas of the Gauss-
Hermite quadrature. As a result, the knots and basis change
as β and Σ change. We describe the detailed algorithm in
simulation studies.

To make statistical inferences of β, ϕ, andΣ, the distribu-
tion of (β̂n, ϕ̂n, σ̂n) can be approximated by a multivariate
normal distribution when the sample size is large enough.
The variance-covariance matrix of (β̂n, ϕ̂n, σ̂n) can be es-
timated by the inverse of the observed information matrix
under the efficient score function of (β, ϕ,σ). We show that

the asymptotic variance-covariance matrix of (β̂n, ϕ̂, σ̂n) at-
tains the semiparametric efficiency bound under the correct

model specification. In the event of model misspecification,
we may consider the sandwich estimator of the variance-
covariance matrix to improve robustness. [6] suggested us-
ing the observed information matrix by taking into account
the parameter γ. In our simulation, we used the inverse ma-
trix of the estimated variance-covariance matrix of the score
functions by taking into account all the unknown parame-
ters (β, ϕ, σ, γ). Extensive simulations suggest that the
variance-covariance estimator works well.

3. ASYMPTOTIC PROPERTIES

Let θ0 = (β0, ϕ0,Σ0, h0) denote the true parameters.
Before establishing the asymptotic properties of the sieve
MLEs, we impose the following regularity conditions.

C1. The true values (β0, ϕ0,Σ0) for parameters (β, ϕ,Σ)
belong to the interior of a compact set

B0 = {(β, ϕ,Σ) : β ∈ Rp, ϕ ∈ R+, βpx > 0, ‖β‖ = 1,

and Σ is positive definite and its eigenvalues

are bounded away from 0 and ∞}.

C2. The covariate vectors X and Z are bounded almost
surely, and both E(XXT ) and E(ZZT ) are positive
definite.

C3. The number of observations k for each subject is ran-
dom. Moreover, there exists a positive integer k0 such
that 1 ≤ k ≤ k0 and Pr(k ≥ 2) > 0.

C4. The true function h0(·) for h belongs to Hq, where the
functional space Hq is the collection of all bounded
functions h on a bounded interval [c1, c2] with bounded
jth derivative h(j), j = 1, . . . , k, such that h(k) satisfies
the Lipschitz continuity condition with exponent m
(0 < m ≤ 1):

|h(k)(s)− h(k)(t)| ≤ L|s− t|m, for s, t ∈ [c1, c2],

where L < ∞ is a positive constant, and q = k+m ≥ 3.
C5. For some η ∈ (0, 1), uTV ar(X|XTβ0 + ZTb)u ≥

ηuTE(XXT |XTβ0 + ZTb)u and uTV ar(Z|XTβ0 +
ZTb)u ≥ ηuTE(ZZT |XTβ0 + ZTb)u almost surly for
all u ∈ Rp.

C6. E[{h′
0(X

Tβ0 + ZTb)}2XXT ] and E[{h′
0(X

Tβ0 +
ZTb)}2ZZT ] are nonsingular.

Remark 3.1. Condition C1 is a common regularity as-
sumption in the literature. Conditions C1 and C2 ensure
the identifiability of the model. The restriction q ≥ 3 in
Condition C4 is needed to provide desirable control for the
B-spline approximation error rates of h0 as well as the first
and second derivatives of h0 for the proof of the normal-
ity. Conditions C5 and C6 are technical assumptions and
can be justified in many applications. Condition C3 implies
that the number of observations for each subject is bounded
and some of them have at least two observations. Note that
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although the domain of XTβ + ZTb is (−∞,∞), we focus
on the estimation and inference of h on a bounded inter-
val [c1, c2]. In practice, we may choose c1 and c2 such that
P (XT

ijβ + ZT
ijbi ∈ (c1, c2)) is greater than a pre-specified

threshold, e.g., 99%. In addition, Condition C6 ensures that
the semiparametric efficiency information matrix is invert-
ible and is also necessary to ensure model identifiability.

Let Hq
n = Hq ∩ Sn. Clearly, we have Hq

n ⊆ Hq
n+1 ⊆

· · · ⊆ Hq for all n ≥ 1. Denote Θq
n = B0 × Hq

n as the
sieve space. The sieve MLEs are the maximizer of the log-
likelihood function over the sieve space Θq

n. Define the norm
‖ · ‖2 over the space Hq as

‖h‖2 =
[
E{h2(XTβ0 + ZTb)}

] 1
2 .

Let ‖·‖∞ denote the supremum norm. We define the distance
over the space Θq = B0 ×Hp as follows

d(θ1,θ2) =(‖β1 − β2‖2 + |ϕ1 − ϕ2|2

+ ‖σ1 − σ2‖2 + ‖h1 − h2‖22)
1
2 ,

for θ1 = (β1, ϕ1,σ1, h1),θ2 = (β2, ϕ2,σ2, h2) ∈ Θq.
Recall that Kn = O(nν). We restrict ν to be in

( 1
2(1+q) ,

1
2q ), where q is the smoothness parameter in C4.

The following theorem establishes the convergence rate of
the sieve MLEs θ̂n = (β̂n, ϕ̂n, σ̂n, ĥn) to the true parame-
ter, with a slight abuse of notation, still denoted by θ0.

Theorem 3.1. Under the Conditions C1–C6,

d(θ̂n,θ0) = Op(n
−min(qν, 1−ν

2 )).

The outlines of the proofs of Theorem 3.1 and the two
subsequent theorems concerning the large sample distribu-
tions of the sieve MLEs of the finite-dimensional parameters
are deferred to the Appendix.

Before describing the next two theorems, we introduce
some notation in the context of empirical processes. Let Pn

and P be the empirical measure and the population dis-
tribution of n i.i.d. observations O1,O2, . . . ,On for O =
(Y,X,Z), i = 1, . . . , n. Let Gn =

√
n(Pn − P) denote the

empirical process. Then for any measurable function h(O),

Pnh(O) =
1

n

n∑
i=1

h(Oi),Ph(O) = EP[h(O)],

and

Gnh(O) =
√
n(Pnh(O)− Ph(O)).

The following theorem establishes the asymptotic nor-
mality of the sieve MLEs of the finite-dimensional param-
eters, denoted by ζ ≡ (β, ϕ,σ). Their corresponding true

values and sieve MLEs are denoted by ζ0 and ζ̂n, respec-
tively.

Theorem 3.2. Under the Conditions C1–C6,

n
1
2 (ζ̂n − ζ0) → N(0, I−1(ζ0))

in distribution, where I(ζ0) = P{l̃ζ(ζ0;O)⊗2}, and

l̃ζ(ζ0;O) is the efficient score function of ζ0 based on ob-

servations O from a generic subject.

Finally, a consistent estimator for the asymptotic
variance-covariance matrix is provided in the following the-
orem.

Theorem 3.3. Under the Conditions C1–C6,

Pn

{
l̃ζ(θ̂n;O)⊗2

}
→ P

{
l̃ζ(θ0;O)⊗2

}
in probability, where l̃ζ(θ̂n;O) is the plug-in estimator of

l̃ζ(θ0;O).

4. SIMULATION STUDIES

We conduct simulation studies to examine the finite-
sample performance of the proposed method. In the study,
we consider the longitudinal count data. We include three
covariates (px = 3) X1, X2 and X3 in the model. Specif-
ically, X1 is generated from a normal distribution with
mean 1 and variance 0.52, X2 is generated from the uni-
form distribution U(−1, 2.25), and X3 is generated from
a Bernoulli distribution with success probability 0.5. We
set the true values β0 = 1√

3
(1, 1, 1) and g(t) = log(t).

We include a random intercept in the model that follows
N(0, 0.62). The outcome Y is generated from a Poisson dis-
tribution with mean exp

{
h(XTβ0+b)

}
. In the simulations,

we consider two different scenarios for h(·): (i) h(t) = t;
(ii) h(t) = cos(t). For scenario (i), we divide X1, X2 and
X3 by 2. The log-likelihood is approximated by the Gauss-
Hermite quadrature with Nq = 10 quadrature points. Sup-
pose ak, k = 1, . . . , Nq are the abscissas. Let σ denote the
standard deviation of the random intercept b. Then we adopt
three data-adaptive interior knots that were placed at the
equally spaced quantiles of XT

ijβ+
√
2σak, j = 1, . . . , ki, i =

1, . . . , n, k = 1, . . . , Nq given β and σ, and employ the cubic
(M = 4) B-spline to approximate the unknown function.
We obtain the sieve MLEs iteratively by using the following
iterative procedures.

(1) Choose the initial values β and σ.
(2) Given β, σ and the abscissas ak, k = 1, . . . , Nq of the

Gauss-Hermite quadrature, calculate the knots and ba-
sis functions.

(3) Given the knots and basis functions, obtain γ̂ by solv-
ing ∂ln(β, σ,γ)/∂γ = 0.

(4) Given the knots, basis functions and γ̂, obtain β̂ and σ̂
by solving ∂ln(β,σ,γ)/∂β = 0 and ∂ln(β, σ,γ)/∂σ =
0.

(5) Set the initial values for next iteration as β = β̂, σ = σ̂.
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Table 1. Summary Statistics of the proposed sieve MLEs with
h(t) = t for Poisson data

n Parameter True Bias SE SEE MSE CP

120 β1 0.577 −0.0161 0.146 0.158 0.0217 0.938
β2 0.577 −0.0091 0.110 0.119 0.0121 0.953
β3 0.577 −0.0226 0.145 0.158 0.0215 0.940
σ 0.600 −0.0201 0.139 0.140 0.0197 0.932

200 β1 0.577 −0.0042 0.113 0.116 0.0128 0.938
β2 0.577 −0.0137 0.089 0.089 0.0080 0.930
β3 0.577 −0.0113 0.113 0.117 0.0129 0.941
σ 0.600 −0.0223 0.096 0.102 0.0097 0.920

True is the true value for the parameter; Bias is the bias of the param-
eter estimate; SE is the empirical standard deviation of the parameter
estimates; SEE is the average of the standard error estimates; MSE
is the mean squared error; and CP is the coverage probability of the
95% confidence interval estimates.

(6) Repeat steps (2)–(5) until the maximum of the

component-wise absolute value difference of β̂ and σ̂
between two consecutive iterations is less than 10−3.

The maximization in steps (3) and (4) is carried out by
the quasi-Newton algorithm. In our experience, the above
algorithm converges quickly and is reasonably robust to the
choices of the initial estimates.

We estimate the variance-covariance matrix for the re-
gression parameter β using the inverse of the consistent
variance-covariance matrix estimator for the score functions.
We compare the proposed sieve MLEs with the sieve MLEs
based on model (1) but without random effects, referred to
as the generalized linear single index model (GL-SIM). We
also consider the standard Poisson GLMM with a random
intercept and a canonical log link function. For fair com-
parisons, we standardize the estimates of the regression pa-
rameters (excluding the fixed intercept) of the GLMM such
that the Euclidean norm is 1. For each case, we considered
the sample sizes n = 120, 200 with 5 observations for each
subject. The results are based on 1000 replicates.

Tables 1 and 3 present the summary statistics of the sieve
MLEs of the unknown regression parameters β and σ using
our method with h(t) = t and h(t) = cos(t), respectively. In
these tables, Bias is the sampling average of the biases of
the estimates; SE denotes the empirical standard deviations
of the parameter estimates; SEE denotes the average of the
standard error estimates; CP is the coverage probability of
95% confidence interval estimates; and MSE is the mean
squared error of the parameter estimates. We observe that
the biases of the proposed sieve MLEs are small under all
simulation settings. The standard error estimates exhibit
the true variation well. The coverage probabilities of the
95% confidence interval estimates are close to the nominal
level.

Tables 2 and 4 present the results from the GL-SIM and
the Poisson GLMM with a random intercept and a log link

function. Notice that the results for σ under the GL-SIM
are not applicable. The column RE is the MSE relative ef-
ficiency, defined as the ratio of the MSE of the competing
estimators and the MSE of the proposed sieve MLEs. In Ta-
ble 2, the relative efficiencies for all parameters compared to
the GL-SIM are greater than 1. These results are expected
because the GL-SIM ignores the within-subject correlations.
As expected, the proposed sieve MLEs are less efficient than
the MLEs from the GLMM with the correctly specified link
function in most cases, with the efficiency loss of less than
10%. The loss of efficiency is caused by estimating the un-
known link function in our method. We also notice that
when the sample size increases, the relative efficiency com-
pared to the GLMM improves. The sieve MLEs appear to
be more efficient with h(t) = cos(t) in Table 4 compared
to both the estimators based on GL-SIM and the standard
GLMM. Additionally, the estimates under the GLMM in Ta-
ble 4 have larger biases compared to those of the proposed
estimators in Table 3.

5. EXAMPLE

In this section, we apply the proposed method to an
epileptic data study [17]. The objective of this study is to ex-
plore the treatment/drug effects on patients’ seizures. Fifty-
nine epileptics were enrolled in this study. The numbers of
seizures for each patient suffering from epileptic episodes
were recorded at the baseline, then followed every two weeks
for an eight-week period. Patients in this study were ran-
domized to the test group to receive the drug Progabide
(Trt = 1) or the control group to receive a placebo (Trt = 0).
Besides the treatment, two additional covariates are also of
interest, including Age in years and Base in the logarithm
of the baseline counts divided by 4. Variable Age was log-
transformed.

In our analysis, we include Age, Trt, Base and the in-
teraction Trt*Base as covariates, and evaluate the covariate
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Table 2. Comparison of the proposed sieve MLEs with the sieve MLEs assuming
independence (GL-SIM) and the MLEs from the GLMM with h(t) = t for Poisson data

GL-SIM GLMM
n Parameter Bias SE MSE RE Bias SE MSE RE

120 β1 −0.0449 0.194 0.0396 1.83 −0.0164 0.142 0.0203 0.94
β2 −0.0080 0.146 0.0214 1.77 −0.0063 0.108 0.0117 0.97
β3 −0.0317 0.189 0.0367 1.71 −0.0222 0.139 0.0198 0.92
σ −0.0050 0.125 0.0157 0.80

200 β1 −0.0225 0.139 0.0198 1.54 −0.0046 0.111 0.0123 0.96
β2 −0.0070 0.112 0.0127 1.58 −0.0098 0.090 0.0082 1.01
β3 −0.0163 0.142 0.0205 1.59 −0.0141 0.111 0.0125 0.97
σ −0.0022 0.100 0.0099 1.03

Bias is the bias of the parameter estimate; SE is the empirical standard deviation of the
parameter estimates; MSE is the mean squared error; and RE is the relative efficiency of
the proposed sieve MLEs with the estimators under the indicating model.

Table 3. Summary statistics of the proposed sieve MLEs with
h(t) = cos(t) for Poisson data

n Parameter True Bias SE SEE MSE CP

120 β1 0.577 −0.0128 0.091 0.093 0.0084 0.952
β2 0.577 0.0024 0.067 0.068 0.0045 0.948
β3 0.577 −0.0073 0.086 0.090 0.0075 0.946
σ 0.600 −0.0095 0.116 0.106 0.0135 0.942

200 β1 0.577 −0.0074 0.068 0.071 0.0046 0.961
β2 0.577 0.0031 0.050 0.052 0.0025 0.953
β3 0.577 −0.0056 0.066 0.069 0.0043 0.958
σ 0.600 −0.0026 0.081 0.079 0.0065 0.942

True is the true value for the parameter; Bias is the bias of the param-
eter estimate; SE is the empirical standard deviation of the parameter
estimates; SEE is the average of the standard error estimates; MSE
is the mean squared error; and CP is the coverage probability of the
95% confidence interval estimates.

Table 4. Comparison of the proposed sieve MLEs with the sieve MLEs assuming
independence (GL-SIM) and the MLEs from the GLMM with h(t) = cos(t) for Poisson

data

GL-SIM GLMM
n Parameter Bias SE MSE RE Bias SE MSE RE

120 β1 −0.0129 0.104 0.0110 1.31 −0.0433 0.106 0.0131 1.56
β2 0.0001 0.077 0.0060 1.33 0.0282 0.079 0.0070 1.55
β3 −0.0110 0.102 0.0106 1.40 −0.0116 0.103 0.0116 1.43
σ −0.0125 0.123 0.0154 1.14

200 β1 −0.0073 0.079 0.0062 1.34 −0.0436 0.085 0.0092 1.97
β2 −0.0003 0.058 0.0033 1.31 0.0316 0.064 0.0051 2.02
β3 −0.0055 0.075 0.0056 1.29 −0.0063 0.082 0.0068 1.58
σ −0.0260 0.097 0.0100 1.54

Bias is the bias of the parameter estimate; SE is the empirical standard deviation of the
parameter estimates; MSE is the mean squared error; and RE is the relative efficiency of
the proposed sieve MLEs with the estimators under the indicating model.
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Table 5. Results for the analysis of the epileptic data

Est SE P -value Est SE P -value
New New0

Age 0.478 0.291 1.00E-01 0.622 0.032 <1.00E-06**
Trt −0.297 0.168 7.70E-02 −0.245 0.034 <1.00E-06**
Base 0.766 0.184 3.05E-05** 0.688 0.039 <1.00E-06**

Trt*Base 0.310 0.253 2.20E-01 0.282 0.045 <1.00E-06**
σ 0.448 0.108 1.67E-05**

GLMM GLM
Intercept 1.795 0.104 <1.00E-06** 1.860 0.041 <1.00E-06**

Age 0.481 0.346 1.64E-01 0.888 0.117 <1.00E-06**
Trt −0.334 0.147 2.33E-02** −0.346 0.061 <1.00E-06**
Base 0.883 0.131 <1.00E-06** 0.949 0.044 <1.00E-06**

Trt*Base 0.339 0.202 9.40E-02 0.562 0.064 <1.00E-06**
σ 0.501 0.058 <1.00E-06**

** indicates significant effect at the 5% significance level.

effects using the proposed method with a random intercept.
For comparison, we also consider three other methods: a) the
GLM based on the Poisson distribution with an unknown
link function (GL-SIM); b) the standard GLM based on the
Poisson distribution with a log link function; and c) the
standard GLMM based on the Poisson distribution with a
random intercept and a log link function. The parameter es-
timates are summarized in Table 5 for the four different ap-
proaches. The results under the GLM-SIM and the GL-SIM
do not include the intercept because of the constraint on
the regression parameters for the model identifiability. The
standard GLM and GLMM were fitted by routines glm()
and glmer() in R, respectively.

The estimate of the standard error σ of the random in-
tercept and the standard error estimate for the estimator
are 0.448 and 0.108 under the GLM-SIM, and are 0.501
and 0.058 under the GLMM. Both models detected signif-
icant within-subject correlations. By comparing the Wald
test statistic for testing H0 : σ = 0 against a half-half mix-
ture of a point mass at 0 and a χ2

1 distribution, we obtain the
p-values of 1.67E−05 and < 1.0E−6 for the GLM-SIM and
the GLMM, respectively. As expected, the tests based on
the standard GLM and the GL-SIM tend to be liberal in the
presence of within-subject correlations. At the significance
level of 0.05, the proposed method detected a significant
Base effect whereas the GLMM detected both a significant
Base effect and a significant treatment effect. The directions
of the estimates are the same from these two models with
a random intercept. Notice that the interpretation of the
parameter estimates that are obtained by our method is in-
trinsically tied to the link function.

Figure 1 presents the estimated curve ĥn(t) in the region

of XT
ijβ̂n + b̂in, i = 1, . . . , n, j = 1, . . . , ki, where b̂in =

E(bi|Yi,Xi, θ̂n) is the predictor of the random intercept
for the ith subject given the observed data and the sieve
MLEs θ̂n. It appears that ĥn(t) is close to a straight line
within the interval [−2, 2] suggesting a link function close

to the canonical log link function in the Poisson GLMM.
To check the fit of the proposed method to the epileptic
data, in Figure 2, we also plot the model-fitted mean curve
exp{ĥn(t)} and compare it with the observed data as well
as the empirically estimated mean curve. The model-fitted
mean curve and the empirically estimated mean curve agree
very well, indicating a good fit of the GLM-SIM.

6. DISCUSSION

We have proposed a sieve maximum likelihood estimation
approach for the GLMMs with an unknown link function us-
ing B-spline smoothing and have established the asymptotic
properties of the proposed sieve MLEs. The sieve MLEs of
the regression coefficients and the variance-covariance ma-
trix of the random effects achieve the semiparametric effi-
ciency bound. The simulation studies demonstrate that the
GLM-SIM outperforms the standard GLMMs when the link
function is misspecified and there is little loss of efficiency
with a correctly specified link function. We have applied our
method to the epileptic data. A model-checking procedure of
comparing the model-fitted mean curve with the empirically
estimated mean curve suggests that the proposed method
can handle the longitudinal data well and yield satisfying
results. The proposed methods are implemented in a C pro-
gram that is available upon request.

The GLMMs are useful in exploratory modeling. It is of-
ten of interest to interpret the model by increasing one unit
in one covariate. Usually the interpretation can be straight-
forward with the canonical link. Discussion on the inter-
pretation of a nonparametric link function can be found
in [5] and [4]. One of the potential issues with using the
splines method to approximate the unknown function is the
well-known undersmoothing problem. A penalty term can
be introduced into the likelihood to control for the poten-
tial undersmoothing problem, which is known as penalized
splines (P-splines) smoothing. As future work, it would be
interesting to develop an estimation procedure based on the
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Figure 1. Estimated curve ĥn(t) in the region of XT
ijβ̂n + b̂in, i = 1, . . . , n, j = 1, . . . , ki, where b̂in = E(bi|Yi,Xi, θ̂n) is the

predictor of the random intercept for the ith subject given the observed data and the sieve MLEs θ̂n.

penalized likelihood and compare the results. Note that our
methods can not only provide the estimation for the coeffi-
cients, but also obtain an estimation for the link function.
Therefore, it is feasible to further develop a formal proce-
dure to test H0 : h′(t) = c, ∀t ∈ [c1, c2] for some constant c
to detect if the canonical link function is deviated from the
true link function. Future research is warranted toward this
direction.

We impose some conditions (C4 in Section 3) on the true
link function h. Under these conditions, we establish the con-
sistency and convergence rate of the estimator of h. Similar
conditions have been imposed in the literature to use B-
splines to approximate an unknown function. However, the
estimator of hmay be biased if these conditions are violated.
It warrants future research to examine the performance of
the proposed methods when the conditions on h are not
satisfied.
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Figure 2. Model fitted mean curve exp{ĥn(t)} (blue solid curve) and the empirical estimated mean curve (red solid curve).

The circles correspond to the observed data Yij against XT
ijβ̂n + b̂in, i = 1, . . . , n, j = 1, . . . , ki.

APPENDIX

A.1 Proof outline for Theorem 3.1

The convergence rate of θ̂n is obtained by verifying the
assumptions in Theorem 1 in [16]. According to [6], the sieve

space Hq
n does not have to be restricted to Sn as long as the

estimator θ̂n satisfies the following assumptions correspond-
ing to those in Theorem 1 in [16].

1) inf{d(θ,θ0)≥ε,θ∈Θp
n} P(l(θ0;O)− l(θ;O)) � ε.
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2) P {l(ζ, h;O)− l(ζ0, h0;O)}2 ≤ C2(‖ζ − ζ0‖2 + ‖h −
h0‖22).

3) Let θ0,n = (ζ0, h0,n), and Fn = {l(θ;O) − l(θ0,n;O) :
θ ∈ Θp

n}, where

‖h0,n − h0‖∞ = O(q−q
n ) = O(n−qν).

Then the L∞-metric entropy of the space Fn satisfies

H(ε,Fn, ‖ · ‖∞) = logN[](ε,Fn, ‖ · ‖∞)

≤ c7(cqn + p) log(1/ε) ≤ c8n
ν log(1/ε).

With these three conditions verified, it then follows from
Theorem 1 in [16] that

d(θ̂n,θ0) = Op

(
max(n− 1−ν

2 , n−qν , n−qν)
)

= Op(n
−min(qν, 1−ν

2 )).

We first consider model (1) without random effects, i.e.,
the GL-SIM,

(2) g(μi) = h(XT
i β), i = 1, . . . , n.

In other words, we take Σ = 0 in model (1), in which case
the integral with respect to b in the likelihood is reduced to
a fixed point at 0. It is easy to see the three assumptions
are satisfied for model (2).

We then generalize the results to model (1) where the
individual likelihood is integrated over the distribution of
the random effects. In fact, the integral of a bounded func-
tion against a probability measure is still bounded. In the
methodology, h(·) is defined on a bounded interval. To make
the integral meaningful, we extended h(·) to the whole real
line with h(x) = 0 if x is outside the bounded interval.
Then under Conditions C1–C4, the likelihood and all of its
derivatives above are continuous and bounded. Due to this
fact, the properties of the log-likelihood and its derivatives
remain the same. In addition, Condition C1 indicates that
the eigenvalues of Σ0 are also bounded. Therefore, the con-
ditions in [16] can be verified.

A.2 Proof outline for Theorem 3.2

To prove Theorem 3.2, we use Theorem 6.1 in [19]. Specif-
ically, we need to verify the consistency and rate of conver-
gence, positive information, stochastic equicontinuity of the
estimators and the smoothness of the model. The key idea
is that we need to construct ε-baskets in which the target
functions can be bounded by ε times a positive number.
Following the proof of Theorem 6.1 in [19], we only need to
verify the following assumptions.

(i) d(θ̂n,θ0) = Op(n
−δ) for some δ > 0.

(ii) Pl̇ζ(θ0;O) = 0 and Pl̇h(θ0;O)[h] = 0 for all h ∈ H.

(iii) There exists an h∗ = (h∗
1, h

∗
2, . . . , h(px + p2z)

∗)T ,
where h∗

j ∈ H for j = 1, . . . , px + p2z, such

that Pl̈ζh
(θ0;O)[h] − Pl̈hh(θ0;O)[h∗, h] = 0, for all

h ∈ H. Furthermore, the matrix P{l̈ζζ(θ0;O) −
l̈
hζ(θ0;O)[h∗]} is nonsingular.

(iv) Pn l̇ζ(θ̂n,O) = op(n
− 1

2 ) and Pn l̇h(θ̂n;O)[h∗] =

op(n
− 1

2 ).
(v) For any c > 0,

sup
{d(θ,θ0)≤cn−δ,θ∈Θp

n}

∣∣∣Gn l̇ζ(θ;O)−Gn l̇ζ(θ0;O)
∣∣∣

= op(1),

and

sup
{d(θ,θ0)≤cn−δ,θ∈Θp

n}

∣∣Gn l̇g(θ;O)[h∗]−Gn l̇g(θ0;O)[h∗]
∣∣

= op(1).

(vi) For some ζ > 1 and δζ > 1/2, consider a neighbor-
hood of θ0:{

θc : |ζc − ζ0|+ ‖hc − h0‖2 ≤ cn−δ
}
.

Then∣∣∣Pl̇ζ(θ;O)− Pl̇ζ(θ0;O)− Pl̈ζζ(θ0;O)(ζc − ζ0)

− Pl̈ζh(θ0;O)[hc − h0]
∣∣∣

= O
(
(|ζc − ζ0|+ ‖hc − h0‖2)ζ

)
,

and ∣∣∣Pl̇h(θ;O)[h∗]− Pl̇h(θ0;O)[h∗]

− Pl̈
hζ(θ0;O)(ζ − ζ0)[h

∗](ζ − ζ0)

− Pl̈hh(θ0;O)[h∗, h− h0]
∣∣∣

= O
(
(|ζc − ζ0|+ ‖hc − h0‖2)ζ

)
.

Notice that the term l̃ζ(θ0;O) in Theorem 3.2 is given by

l̇ζ(θ0;O)− l̇h(θ0;O)[h∗].

Again it is easier to first show the asymptotic normality
of the sieve MLEs for Model (2) by verifying the above con-
ditions. To extend the result to model (1), again we use the
fact that the integral of a bounded function over a probabil-
ity space is still bounded, therefore will not change the fact
that the above conditions are still satisfied, which provides
the proof of Theorem 3.2.
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A.3 Proof outline for Theorem 3.3

We first can prove the theorem for model (2), in which
case ζ is reduced to ξ ≡ (β, ϕ). Define

Ijk(θ0) = P

[{
l̇ξj (θ0;O)− l̇h(θ0;O)[h∗

j ]
}

×
{
l̇ξk(θ0;O)− l̇h(θ0;O)[h∗

k]
}]

= PAjk(θ0;O)

and

Ijkn(θ̂n) = Pn

[{
l̇ξj (θ̂n;O)− l̇h(θ̂n;O)[h∗

j ]
}

×
{
l̇ξk(θ̂n;O)− l̇h(θ̂n;O)[h∗

k]
}]

= PnAjkn(θ̂n;O).

Then

Ijkn(θ̂n)− Ijk(θ0) = GnAjkn(θ̂n;O)

+ P

{
Ajkn(θ̂n;O)−Ajk(θ0;O)

}
= I1n + I2n.

Using the similar argument in the verification of the as-
sumption (iv) in the proof of the asymptotic normality, we
can show I1n = op(1) and I2n = op(1). This is for model (2).
Using the similar boundedness arguments, we obtain the
consistency of the variance-covariance matrix estimator for
model (1).
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